
Computers & Operations Research 67 (2016) 174–183
Contents lists available at ScienceDirect
Computers & Operations Research
http://d
0305-05

n Corr
E-m

lorena@
resende
journal homepage: www.elsevier.com/locate/caor
Hybrid method with CS and BRKGA applied to the minimization of tool
switches problem

A.A. Chaves a,n, L.A.N. Lorena b, E.L.F. Senne c, M.G.C. Resende d

a Federal University of São Paulo, São José dos Campos 12231-280, Brazil
b National Institute for Space Research, São José dos Campos 12201-970, Brazil
c São Paulo State University, Guaratinguetá 12516-410, Brazil
d Amazon.com, Mathematical Optimization and Planning (MOP), Seattle 98109, USA
a r t i c l e i n f o

Available online 24 October 2015

Keywords:
Hybrid heuristics
Clustering search
Genetic algorithm
Scheduling
Tool switches
x.doi.org/10.1016/j.cor.2015.10.009
48/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: antonio.chaves@unifesp.br (A.A.
lac.inpe.br (L.A.N. Lorena), elfsenne@feg.unes
m@amazon.com (M.G.C. Resende).
a b s t r a c t

The minimization of tool switches problem (MTSP) seeks a sequence to process a set of jobs so that the
number of tool switches required is minimized. The MTSP is well known to be NP-hard. This paper
presents a new hybrid heuristic based on the Biased Random Key Genetic Algorithm (BRKGA) and the
Clustering Search (CS). The main idea of CS is to identify promising regions of the search space by
generating solutions with a metaheuristic, such as BRKGA, and clustering them to be further explored
with local search heuristics. The distinctive feature of the proposed method is to simplify this clustering
process. Computational results for the MTSP considering instances available in the literature are pre-
sented to demonstrate the efficacy of the CS with BRKGA.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The minimization of tool switches problem (MTSP) considers a
set of jobs T ¼ f1;…;Ng to be processed on a single machine. Let
F ¼ f1;…;Mg be the set of tools available for this machine and Tf
the set of jobs that require the tool f AF . Each job tAT requires a
subset of tools FtAF and can only process this job when all of
this subset of tools is on the machine. Consider that the machine
is capable of holding a maximum of C tools at a time, and
CZmaxtfjFt j g. It is assumed that C is less than the total number of
tools required to process all jobs. Thus, tool switches are necessary,
i.e., remove a tool from the machine and add another in its place.
In the MTSP we are seeking a sequence to process a set of jobs so
that the number of tool switches required is minimized.

MTSP is NP-hard [1,2] and it has been studied by several
authors, mostly through heuristics. Tang and Denardo [1] show
that the MTSP for a given sequence of jobs can be solved in
polynomial time by a policy known as KTNS (Keep Tool Needed
Soonest). This policy states that when tool switches are required,
the first tools required for the next job should be the first to be
held in the machine.

Crama et al. [2] propose heuristics, based on heuristics for the
traveling salesman problem, to solve the MTSP. Hertz et al. [3] also
Chaves),
p.br (E.L.F. Senne),
present and compare heuristics based on the traveling salesman
problem, but the authors use a more appropriate definition of
the “distance” between tools to be minimized. This improvem-
ent provides superior performance over the heuristics of Crama
et al. [2].

Matzliach and Tzur [4] present three heuristics for the MTSP
with non-uniform tool sizes in a dynamic (online) environment.
The proposed heuristics are based on the static problem and
consider various assumptions with respect to the randomness of
the process.

Shirazi and Frizelle [5] assess the efficiency of the methods
currently employed by seven manufacturing companies for solving
the tool switches problem and compare these methods with some
available tool switching heuristics.

Fathi and Barnette [6] propose three heuristic procedures
for solving the problem of scheduling a set of parts with given
processing times and tool requirements on m identical parallel
machines. The paper shows that these heuristics are effective to
find a tool-switching plan for each machine in order to minimize
the makespan.

Song and Hwang [7] propose an optimal tooling policy utilizing
the concept of early insertions of tools in order to minimize the
frequency of movements of the tool transporter for a flexible
machine. This machine must process a set of parts with its pro-
duction sequence already prescribed.

Ghrayeb et al. [8] consider the problem of scheduling printed
circuit packs on sequencers. The authors present a mathematical
model and a fast heuristic to solve this problem. The proposed

www.sciencedirect.com/science/journal/03050548
www.elsevier.com/locate/caor
http://dx.doi.org/10.1016/j.cor.2015.10.009
http://dx.doi.org/10.1016/j.cor.2015.10.009
http://dx.doi.org/10.1016/j.cor.2015.10.009
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.009&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cor.2015.10.009&domain=pdf
mailto:antonio.chaves@unifesp.br
mailto:lorena@lac.inpe.br
mailto:elfsenne@feg.unesp.br
mailto:resendem@amazon.com
http://dx.doi.org/10.1016/j.cor.2015.10.009
http://dx.doi.org/10.1016/j.cor.2015.10.009

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183 175
heuristic is effective in reducing the number of changeovers of
input tapes and can be used for the MTSP.

Al-Fawzan and Al-Sultan [9] present a tabu search algorithm to
solve the MTSP. Senne and Yanasse [10] present three variants of
the Beam Search algorithm for the MTSP. The authors adopt a
depth first strategy of the enumeration tree and a scheme that
considers partially ordered job sequences. All approaches found
good results for the 1350 instances tested.

Konak and Kulturel-Konak [11] propose an Ant Colony App-
roach to minimize the number of tool switching instants, when
the tool switch time is independent of the number of tool
switches. The algorithm was applied to solve large sized instances
of practical importance. Konak et al. [12] apply two Tabu Search
approaches to solve this problem and show that they find solu-
tions close to optimal in reasonable times.

Amaya et al. [13] present a memetic algorithm that combines
Genetic Algorithm and local search heuristics. A hill climbing
heuristic is used just after the mutation operator on every new
individual generated. Computational tests show that hybrid evo-
lutionary approaches are effective to solve the MSTP. Later, Amaya
et al. [14] study three cooperative methods with local search
mechanisms and one cooperative method with a model based on
heterogeneous techniques. The last approach provides better
solutions than those found by the Beam Search and Tabu Search.
Also, Amaya et al. [15] combine a Genetic Algorithm with three
different local search heuristics: hill climbing, Tabu Search and
Simulated Annealing. The memetic algorithm with hill climbing
found the best results.

Chaves et al. [16] present a new heuristic for the MTSP. This
heuristic has a constructive phase, based on a graph where the
nodes correspond to tools and an arc links two nodes if and only
if these tools are required to execute some job. An additional
improvement phase is based on Iterated Local Search (ILS).

The success in solving the MTSP exactly is limited to small
instances. Laporte et al. [17] report that just a few instances among
a set of 25 jobs instances were solved to optimality using the
branch-and-bound scheme they proposed. Yanasse and Rodrigues
[18], Yanasse et al. [19] present an enumeration algorithm based
on partial orders that obtained good results on instances in which
the algorithm of Laporte et al. [17] failed. The computational
results of Chaves et al. [16] show that the hybrid heuristic con-
tributes to a significant reduction in the number of nodes in the
tree of the enumeration algorithm.

This paper presents a new application of the hybrid method
Clustering Search (CS) [20] to solve the MTSP. The CS detects
promising areas of the search space using a metaheuristic that
generates solutions to be clustered. These promising areas should
be explored with local search heuristics as soon as they are dis-
covered. A Biased Random Key Genetic Algorithm (BRKGA) [21]
was chosen to generate solutions for the clustering process. A
BRKGA encodes a solution as a vector of random keys and pro-
duces a feasible solution through the decoder. The use of the
BRKGA made it possible to simplify some components of the CS.
The users have at their disposal a robust method in which they
need to implement only the decoder and local search heuristics.
The computational results are compared with other methods
found in the literature.

The remainder of the paper is organized as follows. Section 2
describes the basic ideas of CS and BRKGA. In Section 3 we
introduce the new approach, describing in detail the BRKGA and
CS applied to the MTSP. Section 4 reports computational experi-
ments and Section 5 makes concluding remarks.
2. Methods

In this section we present the basic ideas of the CS and the
BRKGA, including descriptions of the solution encoding and
decoding, clustering process and local search.

2.1. Clustering search

The Clustering Search (CS) [20] is a hybrid method which
combines metaheuristic-based heuristics and local search heur-
istics. The search is intensified only in areas of the search space
that deserve special attention (promising regions). The CS intro-
duces intelligence and priority to the choice of solutions on which
to apply local search, instead of randomly choosing or applying
local search to all solutions. Therefore, an improvement is expec-
ted in the convergence process associated with a decrease in
computational effort through a more rational employment of the
heuristics.

The CS divides the search space in regions called clusters. A
solution center, c, represents the location of a cluster. This center
is, generally, initialized at random and tends to progressively tra-
verse promising points in the search space. The number of clusters
NC is defined a priori.

The value of NC has no influence on the amount of local search
performed by the CS. Thus, there is little impact on computational
time. However, with a larger number of clusters, CS can efficiently
discover more promising regions and intensify the search in only
those regions.

Chaves [22] analyzes the behavior of CS with different numbers
of clusters. The author shows that a number of clusters in the
interval [10, 25] provides good results in solution quality and
increases the efficiency of local search.

The CS consists of four components: the search metaheuristic
(SM), the iterative clustering (IC), the analyzer module (AM), and
the local searcher (LS). Fig. 1 shows the conceptual design of these
components.

The SM component can be implemented by any optimization
algorithm that generates diversified solutions in the search space.
It must work as a full-time solution generator, exploring the search
space by manipulating a set of solutions, according to its specific
search strategy.

Solutions sk generated by the SM are sent to the IC. The IC
gathers similar solutions into groups, maintaining a representative
cluster center for each group. A distance metric, Δ, must be
defined to provide a similarity measure for the clustering process.
For example, in combinatorial optimization, the similarity can be
defined as the number of movements needed to change a solution
into the cluster center [20].

An assimilation process is applied over the closest center ci to
each newly generated solution sk. The assimilation can assume two
different forms: crossover and path [20]. In crossover assimilation,
we alter one or more positions in the center ci with information
derived from solution sk, resulting in a new center. Path assim-
ilation can generate several solutions, keeping the best one to be
the new center. These exploratory moves are commonly used in
path relinking [23].

The AM component examines each cluster when it is active,
indicating a probable promising cluster. A cluster density, δj, is a
measure that indicates the activity level inside the cluster j. For
simplicity, δj can count the number of solutions generated by SM
and grouped into cluster j. Whenever δj reaches a certain thresh-
old λ, i.e. some information template becomes predominantly
generated by SM, such cluster must be further investigated to
accelerate the convergence process in it.

If the value of λ is large, the LS component will be applied a few
times, while small values of λ results in many local searches. This

Fig. 1. Components of CS with BRKGA.

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183176
parameter has to be tuned before the execution of the CS. The
parameter λ may have a strong influence on the efficiency and
effectiveness of the search as well as on computational time.

Finally, the LS component is an internal searcher module that
provides the exploitation of a potentially promising search area,
represented by a cluster.

2.2. Biased Random Key Genetic Algorithm

The Biased Random Key Genetic Algorithm (BRKGA) is a recent
metaheuristic proposed by Gonçalves and Resende [21]. It has
been used to solve sequencing and optimization problems. In the
BRKGA, solutions are encoded as vectors of randomly generated
real numbers in the interval [0, 1]. These numbers are called ran-
dom keys.

The decoder, a deterministic algorithm, takes as input a solution
vector and associates with it a feasible solution of the problem for
which an objective value or fitness can be computed [24]. Thus,
points in the random keys space are mapped to points in the
problem space for evaluation [25].

A BRKGA evolves a population of random-key vectors, or indi-
viduals, over a number of generations. The initial population is
made up of p real n-vectors of random keys. Each component of an
initial solution vector is generated randomly and independently in
the real interval [0, 1]. The fitness of each individual is computed
by the decoder. Then, the population is partitioned into two
groups of individuals: a small group of pe elite individuals, i.e.,
those with the best fitness values, and the remaining set of p�pe
non-elite individuals. To evolve the population, a new generation
of individuals must be produced. All elite individuals in the
population of generation k are copied without modification to the
population of generation kþ1 [21].

The BRKGA implements mutation by introducing mutants into
the population. A mutant is simply a vector of random keys gen-
erated in the same way as an individual in the initial population.
At each generation, a small number (pm) of mutants are introduced
into the population. With the pe elite individuals and the pm
mutants accounted for in population kþ1, p�pe�pm additional
individuals are needed to produce the p individuals that make up
the new population. This is done by producing p�pe�pm offspring
through the process of crossover, by combining pairs of individuals
of the current population.

The parameterized uniform crossover [26] is used in BRKGA. Let
ρe be the probability that an offspring inherits the vector com-
ponent of its elite parent. Let n denote the number of components
in the solution vector of an individual. For i¼ 1;…;n, the ith
component of the offspring vector takes on the value of the ith
component e(i) of the elite parent e with probability ρe and the
value of the ith component ne(i) of the non-elite parent ne with
probability 1�ρe [27]. Parameter ρe is always greater than 0.5.

The important feature of random keys is that all offspring
formed by crossover are feasible solutions. Toso and Resende [28]
concluded that the BRKGA has two distinct parts: one consisting of
the genetic algorithm with its chromosome methods and genera-
tions, called problem-independent and the other consisting of the
decoder, called problem-dependent.

2.3. CS with BRKGA

In this paper we propose to use the BRKGA as the SM compo-
nent of CS. Thus, we seek to make the implementation of CS more
independent in relation to the optimization problem. We use a
random-key vector to represent a solution. Therefore, the distance
metric is the Euclidean distance and the assimilation process is
performed over the random-key vector. The local search (LS) is the
only component that works with decoded solutions. Fig. 1 shows
the conceptual design of CS with BRKGA.

Initially, we define a number of clusters NC. Their centers are
generated with random keys by the method used in the BRKGA to
generate the initial population. This set of cluster centers is not
part of the population of BRKGA, and it evolves separately.

The BRKGA generates solutions for the clustering process. After
each generation, the offspring are analyzed and clustered. The IC
component determines a distance metric to compute the similarity

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183 177
between a given solution and a cluster center. With centers
represented by random keys, the similarity is based on the Eucli-
dean distance. Thus, we avoid the cost of computing the number of
movements needed to change a solution into the cluster center.

The assimilation process is applied over the closest center, by
adding the new solution to this cluster, thus causing an update of
the center. In this paper, we use a path assimilation. Then, we
generate several solutions keeping the best evaluated solution to
be the new center. These exploratory moves are commonly refer-
red to in path relinking [23]. In the case of random key vector, a
move consists of replacing one of its component. The process
terminates when a percentage of solutions in the path have been
analyzed.

After performing the assimilation process, we conduct an
analysis of the density δj (AM component), verifying if this cluster
can be considered promising. A cluster becomes promising when
its density reaches the threshold λ ðδjZλÞ.

The local search of CS (i.e. the LS component) intensifies the
search in the neighborhood of a promising cluster center. The
center is first decoded into a solution of the problem and then
specific local search heuristics are applied to find the best possible
solutions in the corresponding region.

Changes in the solution made by the local search need to be
taken into account in the new cluster center. Then, the cluster
center is adjusted to reflect these changes carrying out the inverse
steps taken by the algorithm used to decode a random-key
solution.
3. CS with BRKGA applied to MTSP

In this paper, we encode a solution to the problem as a vector of
random keys that is later used by a decoding procedure to obtain a
solution. A solution to the MTSP is represented indirectly by the
following solution structure:

solution¼ ðk1;…; knÞ

where n is the number of jobs. The decoding of the n random keys
k1;…; kn of each solution into a sequence of jobs is accomplished
by sorting the jobs in ascending order of their corresponding
random keys values. Fig. 2 shows an example of the decoding
process for the MTSP. In this example there are five jobs. The
sorted random keys correspond to the jobs sequence (3, 5, 1, 2, 4).

The fitness of a solution with the job sequence is obtained with
the KTNS algorithm [1]. It returns the total number of tool
switches needed to process the jobs in this sequence. The pseudo-
code of the KTNS is presented in Appendix A.

The initial clusters of CS and the initial population of BRKGA are
made up of vectors with n random keys. Each component of the
solution vector, i.e. each random key, is generated independently
at random in the real interval [0, 1].
0.45

Fig. 2. Decoding of the job sequence.
This paper uses a greedy method based on maximum diversity
to create the initial centers. It generates a large set with q ðq⪢NCÞ
random key vectors and a subset of cardinality NC with the largest
diversity selected based on Euclidean distance. A possible example
of initial clusters (with NC¼ 3 and n¼5) is

c1 ¼ ð0:45;0:62;0:02;0:87;0:23Þ � ð3;5;1;2;4Þ δ1 ¼ 0;

c2 ¼ ð0:71;0:12;0:89;0:38;0:57Þ � ð2;4;5;1;2Þ δ2 ¼ 0;

c3 ¼ ð0:21;0:47;0:84;0:41;0:38Þ � ð1;5;4;2;3Þ δ3 ¼ 0:

To implement a BRKGA, we simply need to specify how solu-
tions are encoded and decoded, including how their correspond-
ing fitness values are computed. When the next population is
complete, the vector of random keys are decoded and their cor-
responding fitness values are computed for all of the newly cre-
ated random-key vectors. The population is partitioned into elite
and non-elite individuals to start a new generation.

The offspring of a new population are used in the clustering
process of CS. At each iteration, one individual sk is grouped into
the closest cluster j; i.e. the cluster that minimizes the Euclidean
distance between sk and the cluster center. The density δj is
increased by one unit and the center cj is updated with the
new attributes of sk (assimilation process). For example, if
sk ¼ ð0:41;0:92;0:02;0:27;0:68Þ � ð3;4;1;5;2Þ, the Euclidean dis-
tances to the centers ðc1; c2; c3Þ are respectively

Δsk ;c1 ¼
X5

i ¼ 1

ffi
ðskðkiÞ�c1ðkiÞÞ2

q
¼ 1:39;

Δsk ;c2 ¼
X5

i ¼ 1

ffi
ðskðkiÞ�c2ðkiÞÞ2

q
¼ 2:19;

Δsk ;c3 ¼
X5

i ¼ 1

ffi
ðskðkiÞ�c3ðkiÞÞ2

q
¼ 1:91:

Then, the cluster c1 is the closest cluster for this individual sk. The
density δ1 is increased by one unit.

The assimilation process uses the path-relinking method [29].
The procedure starts by computing the symmetric difference
between the center cj and the solution sk, i.e., the set of moves
needed to reach sk from cj. A path of solutions is generated, linking
cj and sk. At each step, the procedure examines all moves from the
current solution s and selects the one that results in the best-cost
solution, applying the best move to solution s. The set of available
moves is updated.

The procedure terminates when a percentage ρ of the solutions
in the path have been analyzed. Thus, the center is not moved to a
new location too far away from the current one. The new center cj
is the best solution along this path. In this paper, one move is to
replace a single random key of cj by a random key of sk. An
example of path-relinking moves between c1 and sk are

c1 ¼ ð0:45;0:62;0:02;0:87;0:23Þ

ð0:41; � ;0:02; � ; �Þ ð� ;0:92;0:02; � ; �Þ ð� ; � ;0:02;0:27; �Þ
ð� ; � ;0:02; � ;0:68Þ

ð0:41; � ;0:02;0:27; �Þ ð� ;0:92;0:02;0:27; �Þ
ð� ; � ;0:02;0:27;0:68Þ

ð0:41;0:92;0:02;0:27; �Þ ð0:41; � ;0:02;0:27;0:68Þ

sk ¼ ð0:41;0:92;0:02;0:27;0:68Þ
where solutions in the path are represented by the random-key
replaced (in bold) and the random-keys that are already present in
sk. Random-keys that do not appear in the solution ð�Þ are the

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183178
same as in c1. The underlined solution is the best solution at each
iteration, and the new center c1 is the best solution of the path
analyzed.

After performing the path-relinking, we conduct an analysis of
the density δj, verifying if this cluster can be considered promising.
A cluster becomes promising when its density reaches the
threshold λ ðδjZλÞ.

If the density δj reaches λ, local search heuristics are applied to
the center cj. In this paper, the Variable Neighborhood Descent
(VND) [30] is implemented as local search component of CS,
intensifying the search in the neighborhood of a promising cluster.
The promising centers are decoded into a feasible solution of
MTSP. For example, let us assume that the density δj of the center
cj ¼ ð0:32;0:78;0:02;0:41;0:93Þ reaches the threshold λ. Thus, we
apply the VND on the decoded solution cj � ð3;1;4;2;5Þ.

Our VND utilizes four descent heuristics: Shift(1), Swap(1,1),
Shift(2), and Swap(2,2) (see examples of these neighborhoods in
Fig. 3):

(a) Shift(1) – Nð1Þ: A job k is transferred from its current position
to position i;

(b) Swap(1,1) – Nð2Þ: Permutation between a job k and a job l;
(c) Shift(2) – Nð3Þ: Two adjacent jobs k and l are transferred from

their current positions to positions i and iþ1;
(d) Swap(2,2) – Nð4Þ: Permutation between two adjacent jobs k

and l, and two other adjacent jobs k0 and l0. Two different ways
for exchanging jobs (k,l) and ðk0; l0Þ are considered.

The descent heuristics are applied in the order fN1;N2;N3;N4g.
Whenever a given heuristic fails to improve the incumbent solu-
tion, the VND chooses the next heuristic to continue the search. It
returns to the first heuristic each time a better solution is found.

The solution spaces of the neighborhoods can be explored
exhaustively, that is, all possible combinations are examined, and
the best improving move is considered. When no improvement
can be obtained, we stop.

The CS attempts to apply the VND only in promising regions.
Thus, one strives to obtain the best possible solution within the
neighborhood of a promising center.

At the end of VND, we adjust the cluster center to reflect the
new order of the jobs. For example, if c0j ¼ ð3 5 4 2 1Þ in Fig. 3(b) is
a local optimum obtained from cj, we sort the keys of cj to obtain
ð0:02;0:32;0:41;0:78;0:93Þ and associate each element of c0j with
the corresponding key. That is, 3 is associated with 0.02, 5 is
associated with 0.32, etc. Then, the encoding of the new center is
ð0:93;0:78;0:02;0:41;0:32Þ by considering the jobs in the order 1,
2, 3, 4, 5.
Fig. 3. Examples of the four neighborhood structures for MTSP.
This process of CSþBRKGA is applied repeatedly. The stopping
criterion used in this paper is a fixed number of generations. There
are other possible stopping criteria, including stopping after a
fixed number of generations since the generation of the last
solution improvement, after a time limit is reached, or after a
solution at least as good as a given threshold is found.
4. Computational results

The CS and BRKGA were coded in Cþþ and the computational
tests carried out on an Intel Core i7 3.4 GHz processor with 16GB
of RAM. Nine problem sets are used in these tests: five sets
introduced by Yanasse and Rodrigues [18] named A, B, C, D and E,
and four sets introduced by Crama et al. [2], named C1, C2, C3
and C4.

Table 1 shows the values of the parameters of the five sets of
Yanasse and Rodrigues [18] and the four sets of Crama et al. [2].
These instances as well as our best solutions can be found at
http://www.sjc.unifesp.br/docente/chaves.

We chose a subset of instances to tune the parameters of the
proposed method. We tune one parameter at a time. Its best value
(in terms of quality of solutions and computational time) is
determined empirically. Although setting these parameters is kind
of an art form, our experience and suggestions from [21] have led
us to the parameters values shown in Table 2. We can observe that
the population size of CSþBRKGA was smaller and the number of
mutants was larger than for the BRKGA. Though the CSþBRKGA
used a small population, it was robust and enjoyed sufficient
diversity.

Tables 3–8 present the results for the ILS [16], BRKGA, and
CSþBRKGA. The entries in tables are the number of jobs (N), the
number of tools (M), the machine capacity (C), the best solution
(Sn), the average solution (S) over 20 runs, the average running
time to find the best solution (Tn), and the average running time
(T) in seconds. The values in boldface show the best objective
function value for each instance.

Chaves et al. [16] propose a ILS based in [31]. It starts from an
initial solution generated by a constructive heuristic based on a
graph where each vertex corresponds to a tool and there is an arc
k¼ ði; jÞ between vertices i and j when the tools i and j are required
for the execution of task k. The perturbation uses swap(1,1) moves
to escape from local optima. The local search phase is also based
on this move, with all solutions in the neighborhood being eval-
uated before the best one is returned. The stopping criterion of the
ILS is a maximum number of iterations, defined as 3000 iterations.

The tables of results show that CSþBRKGA performed better
than ILS [16]. For groups A, B (Tables 3 and 4), C and E
(Tables 5 and 7), the CSþBRKGA found optimal solutions for all
instances (proven by enumeration using the ILS upper bound
Table 1
Characteristics of MTSP instances.

Group Number of jobs Number of tools Capacity Number of
instances

Min Max Min Max Min Max

A 8 8 15 25 5 20 340
B 9 9 15 25 5 20 330
C 15 15 15 25 5 20 340
D 20 25 15 25 5 20 260
E 10 15 10 20 4 12 80
C1 10 10 10 10 4 7 40
C2 15 15 20 20 6 12 40
C3 30 30 40 40 15 25 40
C4 40 40 60 60 20 30 40

http://www.sjc.unifesp.br/docente/chaves

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183 179
[19,16]). The ILS [16] does not find the optimal solution for two
instances of C and one instance of E.

For group D (Table 6), the CSþBRKGA found optimal solutions
for 189 of 260 instances (enumeration proved optimality of only
those 189 instances) while ILS [16] did not find optimal solutions
for 13 of these 189 instances. The ILS [16] found a better solution
than CSþBRKGA for only one instance. Moreover, the CSþBRKGA
obtained new upper bounds for three instances.

The instances of Crama et al. [2] were solved by enumeration
[18,19], the ILS [16], the BRKGA, and CSþBRKGA. For each problem
size ðN;M;CÞ, 10 instances were generated. Table 8 also shows the
number of tool switches required by the best sequence found by
the heuristics of Crama et al. [2]. The enumeration algorithm
[18,19], limited to 3600 s of computational time, was able to get
the optimal solution only for instances with 10 and 15 jobs. For
these instances, the ILS and CSþBRKGA found all optimal solu-
tions. Considering instances with 30 jobs, CSþBRKGA found better
solutions than ILS in 32 of 40 instances and solutions with the
same number of tool switches for 8 instances (5 in set C4, that have
larger capacities). For the instances with 40 jobs, CSþBRKGA
found better solutions than ILS on all tested instances.

To show the advantage of the CSþBRKGA with respect to ILS
when applied to MTSP, we calculated minimum (Min), maximum
(Max), mean (Mean), median (Median), and standard deviation
(StdDev) of the solution values obtained over 20 independent runs
of these methods for each instance with 30 and 40 jobs. We also
analyzed two other criteria for which lower values represent
better results: the number of runs where the best known solutions
(BK) was not obtained (Nopt) and the average relative distance
value to best known solution for those runs that did not reach BK
(Avd), expressed in percentages. Table 9 shows these results.

We observe that the CSþBRKGA found the best-known solu-
tions for all instances. Moreover, the CSþBRKGA found the BK
Table 2
Values for the BRKGA and CS parameters.

Parameter Meaning BRKGA CSþBRKGA

p Number of individuals in population 2000 1000
Gen Number of generations 100 100
pe Size of the elite set in population 0.20 0.20
pm Number of mutants to be introduced in

population at each generation
0.15 0.20

ρe Probability that an allele is inherited from
the elite parent

0.70 0.70

NC Determines the number of clusters – 20
ρ Percentage of the analyzed path in the path-

relinking
– 0.3

λ Defines the maximum density for the local
search

– 15

Table 3
MTSP: comparison of the results for instances of group A.

N M C ILS [16] BRKGA

Sn S Tn T Sn

8 15 5 12.00 12.00 0.00 0.98 12.00
8 15 10 6.83 6.83 0.00 1.03 6.83
8 20 5 16.80 16.80 0.00 1.30 16.80
8 20 10 13.07 13.07 0.00 1.49 13.07
8 20 15 7.08 7.08 0.00 1.34 7.08
8 25 5 20.10 20.10 0.00 1.60 20.10
8 25 10 18.20 18.20 0.00 1.70 18.20
8 25 15 12.95 12.95 0.00 1.62 12.95
8 25 20 6.61 6.61 0.00 1.47 6.61

Average 12.63 12.63 0.00 1.39 12.63
solution in 22% of tests (average Nopt¼0.78) and the deviation
from the BK solution, when the BK solution was not found, was
1.79% on average (column Avd). The ILS found the BK solutions on
a very small number of tests (only for sets ð30;40;20Þ and
ð30;40;25Þ) and its deviation from the BK solution was greater
than 7%. The average improvement of the CSþBRKGA with respect
to the ILS was 5% and 6% for instances with 30 and 40 jobs,
respectively. The CSþBRKGA algorithm was robust, producing low
percentage deviation from the best solution found (the average
deviation found by CSþBRKGA was 0.8% for the instances of
Yanasse and Rodrigues [18] and 1.5% for the instances of Crama
et al. [2]).

Finally, we performed a statistical analysis to compare our
CSþBRKGA and ILS proposed in [16] considering the 80 instances
of 30 and 40 jobs with 20 independents runs for each one (two
sets of 1600 solutions). First, we apply the Shapiro–Wilk normality
test, which reject the null hypothesis that the data are normally
distributed (W¼0.685, p-value o2:2e�16).

We also apply a Wilcoxon signed-rank test (WSR) a non-
parametric statistical hypothesis test [32]. This test is used to
compare the two sets of solutions to investigate if a significant
difference exists between the solutions of CSþBRKGA and ILS. The
WSR indicated that the CS ranks were statistically less significant
than the ILS ranks (Z¼580, po2:2e�16). This result suggests that
the use of CSþBRKGA on this set of instances improves the results
found in comparison with ILS.

The local search method (LS) is responsible, on average, for 60%
of the computational time and the assimilation process (path-
relinking method) is responsible for 30% of the computational
time. Therefore, the total computational time of the ILS were
better than the CSþBRKGA. However, the computational time of
CSþBRKGA to find the best solution (Tn) is, on average, less than
for the ILS. The CSþBRKGA converges to best solutions in
approximately 2% of the total time for smaller instances and 10%
for instances with 30 and 40 jobs. Whereas the ILS converges
within 7% and 47% of the total time, respectively. Generally the
computational times of CSþBRKGA were competitive, finding very
good solutions within few seconds for the instances up to 25 jobs
and in a reasonable time for instances with 30 and 40 jobs.

For the 80 instances with 30 and 40 jobs, we made a boxplot
analysis based on the computational time needed to find the best
solution in each algorithm execution. In Fig. 4 we observe that
CSþBRKGA had a better overall behavior, being more efficient
with regard to computational time.

We can also observe that BRKGA without search intensification
did not find good results for the tested instances, although the
computational time is very low. This same fact was reported by
Amorim [33], Roque et al. [34], who studied the application of
BRKGA to solve the p-Median and the unit commitment problem,
CSþBRKGA

S Tn T Sn S Tn T

12.00 0.00 1.03 12.00 12.00 0.00 2.39
6.83 0.00 0.98 6.83 6.83 0.00 2.65
16.80 0.00 1.32 16.80 16.80 0.01 2.97
13.07 0.00 1.36 13.07 13.07 0.00 3.54
7.08 0.00 1.25 7.08 7.08 0.00 3.57
20.10 0.00 1.67 20.10 20.10 0.00 4.54
18.20 0.01 1.73 18.20 18.20 0.01 4.37
12.95 0.01 1.64 12.95 12.95 0.01 4.61
6.61 0.01 1.48 6.61 6.61 0.01 4.72

12.63 0.00 1.38 12.63 12.63 0.00 3.71

Table 4
MTSP: comparison of the results for instances of group B.

N M C ILS [16] BRKGA CSþBRKGA

Sn S Tn T Sn S Tn T Sn S Tn T

9 15 5 12.20 12.20 0.00 1.39 12.20 12.20 0.00 1.10 12.20 12.20 0.01 2.72
9 15 10 7.37 7.37 0.00 1.27 7.37 7.38 0.01 1.07 7.37 7.37 0.01 3.15
9 20 5 17.40 17.40 0.01 1.82 17.40 17.40 0.03 1.38 17.40 17.40 0.02 3.13
9 20 10 14.17 14.17 0.02 1.81 14.17 14.19 0.01 1.43 14.17 14.17 0.02 3.92
9 20 15 7.60 7.60 0.01 1.58 7.60 7.62 0.01 1.32 7.60 7.60 0.01 3.99
9 25 5 20.40 20.40 0.01 2.22 20.40 20.40 0.01 1.73 20.40 20.40 0.01 4.08
9 25 10 18.77 18.77 0.02 2.34 18.77 18.80 0.05 1.81 18.77 18.77 0.03 5.08
9 25 15 14.74 14.74 0.02 2.23 14.74 14.77 0.04 1.77 14.74 14.75 0.03 5.10
9 25 20 7.19 7.19 0.01 2.30 7.19 7.20 0.01 1.62 7.19 7.19 0.01 5.26

Average 13.31 13.31 0.01 1.88 13.31 13.33 0.02 1.47 13.31 13.32 0.02 4.05

Table 5
MTSP: comparison of the results for instances of group C.

N M C ILS [16] BRKGA CSþBRKGA

Sn S Tn T Sn S Tn T Sn S Tn T

15 15 5 16.60 16.64 0.69 5.90 16.60 17.25 0.23 1.53 16.60 16.69 0.21 5.31
15 15 10 9.80 9.86 0.41 6.15 9.87 10.12 0.07 1.53 9.80 9.88 0.09 7.10
15 20 5 20.60 20.74 0.95 9.60 20.60 21.25 0.24 2.02 20.60 20.77 0.51 7.26
15 20 10 18.40 18.58 0.72 9.11 18.43 19.00 0.16 2.07 18.33 18.52 0.32 8.93
15 20 15 10.52 10.58 0.63 7.07 10.57 10.90 0.09 1.92 10.52 10.65 0.21 9.61
15 25 5 27.50 27.67 0.80 9.99 27.70 28.24 0.33 2.51 27.50 27.70 0.38 9.30
15 25 10 25.07 25.21 1.30 11.49 25.17 25.81 0.21 2.65 25.07 25.30 0.41 13.52
15 25 15 19.07 19.19 1.10 10.74 19.17 19.70 0.17 2.50 19.07 19.27 0.36 13.63
15 25 20 9.66 9.76 0.52 8.59 9.70 10.02 0.10 2.31 9.66 9.79 0.27 13.82

Average 17.47 17.58 0.79 8.74 17.53 18.03 0.18 2.12 17.53 17.62 0.31 9.83

Table 6
MTSP: comparison of the results for instances of group D.

N M C ILS [16] BRKGA CSþBRKGA

Sn S Tn T Sn S Tn T Sn S Tn T

20 15 5 21.20 21.72 3.55 15.00 21.40 22.45 0.47 3.38 21.10 21.58 0.80 10.78
20 15 10 8.20 8.41 0.97 12.62 8.40 8.78 0.26 3.46 8.20 8.44 0.41 12.34
20 20 5 24.40 24.86 6.17 23.21 24.80 25.93 0.64 5.49 24.30 24.93 1.24 14.84
20 20 10 10.60 10.66 0.96 21.99 10.60 10.76 0.16 5.78 10.60 10.76 0.38 16.08
20 20 15 6.67 6.72 0.61 17.90 6.67 6.85 0.12 5.09 6.67 6.79 0.33 24.66
20 25 5 30.40 30.87 4.41 23.74 30.40 31.68 0.76 5.89 30.10 30.74 1.40 19.16
20 25 10 15.40 15.48 1.02 22.30 15.40 15.56 0.26 6.11 15.40 15.47 0.80 21.49
20 25 15 21.43 21.79 3.58 22.65 21.55 22.45 0.47 5.92 21.25 21.75 0.93 28.11
20 25 20 6.18 6.24 0.58 18.34 6.18 6.35 0.18 5.21 6.15 6.28 0.52 35.53
25 15 10 5.90 5.96 0.93 21.87 6.00 6.12 0.11 4.18 5.90 6.00 1.02 21.14
25 20 10 11.60 11.93 3.55 31.27 11.90 12.40 0.38 5.45 11.60 12.05 1.94 27.48
25 20 15 7.60 7.73 2.07 27.81 7.70 8.02 0.22 5.07 7.60 7.82 1.57 25.66
25 25 10 16.60 16.86 6.51 41.19 16.70 17.45 0.51 6.63 16.60 17.06 2.66 36.88
25 25 15 10.00 10.00 0.00 38.92 10.00 10.00 0.04 6.61 10.00 10.00 0.01 54.70
25 25 20 5.50 5.53 0.91 35.91 5.53 5.65 0.13 6.12 5.50 5.59 1.14 66.10

Average 13.44 13.65 2.39 24.98 13.55 14.03 0.31 5.36 13.40 13.68 1.01 27.66

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183180
respectively. The authors obtained good results when a local
search heuristic was added to the decoder of the BRKGA. There-
fore, the proposed CS introduces intelligence and priority to the
choice of solutions to apply, generally costly, local searches,
instead of applying random or elitist choices.

We perform computational tests by applying the VND to all
offspring generated by the BRKGA. However, this approach did
not result in better solution quality than those obtained with
CSþBRKGA. Furthermore, there was a significant increase of
computational time. In some cases this increase of computational
time, sometimes up to 30%. Chaves [22] has shown that the
combination of metaheuristic, path-relinking and local search in
CS is usually better than the combination of just two of these
techniques.

Fig. 5 illustrates run-time distributions, or time-to-target (TTT)
plot [35], for MTSP instances. The experiment consists in running
the ILS and CSþBRKGA 100 times on the instances of type (40, 60,
20). Each run is independent of the other and stops when a

Table 7
MTSP: comparison of the results for instances of group E.

N M C ILS [16] BRKGA CSþBRKGA

Sn S Tn T Sn S Tn T Sn S Tn T

10 10 4 9.50 9.50 0.02 1.17 9.50 9.53 0.03 0.76 9.50 9.50 0.02 1.55
10 10 5 6.20 6.20 0.00 1.12 6.20 6.20 0.02 0.82 6.20 6.21 0.01 1.96
10 10 6 4.30 4.30 0.00 1.09 4.30 4.30 0.00 0.89 4.30 4.30 0.00 2.88
10 10 7 3.00 3.00 0.00 1.07 3.00 3.00 0.00 0.92 3.00 3.00 0.00 3.45
15 20 6 21.40 21.54 1.07 8.84 21.40 22.11 0.17 2.01 21.40 21.71 0.31 7.09
15 20 8 14.30 14.35 0.62 7.88 14.30 14.53 0.06 2.06 14.20 14.33 0.20 7.68
15 20 10 10.30 10.30 0.01 7.58 10.30 10.34 0.04 2.25 10.30 10.34 0.11 12.71
15 20 12 8.20 8.20 0.00 7.36 8.20 8.20 0.01 2.26 8.20 8.20 0.00 14.97

Average 9.65 9.67 0.21 4.51 9.65 9.78 0.04 1.50 9.64 9.70 0.08 6.54

Table 8
MTSP: comparison of the results for instances of Crama et al. [2].

N M C Best(I) [2] Enumerative [19] ILS [16] BRKGA CSþBRKGA

Sn Sn T Sn S Tn T Sn S Tn T Sn S Tn T

10 10 4 13.20 9.10 0.01 9.10 9.10 0.01 0.48 9.10 9.21 0.01 0.18 9.10 9.11 0.01 1.57
10 10 5 11.20 6.20 0.01 6.20 6.20 0.00 0.43 6.20 6.20 0.00 0.19 6.20 6.20 0.00 2.05
10 10 6 10.30 4.30 0.01 4.30 4.30 0.00 0.46 4.30 4.30 0.00 0.20 4.30 4.30 0.00 2.64
10 10 7 10.10 3.10 0.00 3.10 3.10 0.00 0.39 3.10 3.10 0.00 0.22 3.10 3.10 0.00 3.41

15 20 6 26.50 20.60 1.94 20.60 20.90 0.41 3.62 20.80 21.66 0.08 0.56 20.60 20.87 0.32 8.18
15 20 8 21.60 13.70 3.04 13.70 13.70 0.11 2.86 13.70 14.12 0.05 0.58 13.70 13.72 0.13 8.88
15 20 10 20.00 10.10 60.79 10.10 10.10 0.03 2.80 10.10 10.23 0.02 0.61 10.10 10.10 0.09 11.20
15 20 12 19.60 7.60 95.41 7.60 7.60 0.00 2.68 7.60 7.60 0.00 0.63 7.60 7.60 0.01 18.05

30 40 15 113.60 96.10 3600.00 94.00 96.73 31.55 71.77 96.80 101.32 1.61 2.80 91.80 93.03 14.99 140.05
30 40 17 95.90 76.80 3600.00 74.00 76.38 29.32 65.11 76.60 81.00 1.28 2.56 71.70 72.98 15.66 127.09
30 40 20 76.80 56.90 3600.00 52.20 54.20 26.48 62.41 55.80 58.67 0.93 2.40 50.70 51.85 11.07 121.43
30 40 25 56.80 35.40 3600.01 28.80 30.18 17.23 50.80 31.00 33.42 0.65 2.04 28.10 28.97 10.94 104.02

40 60 20 211.60 192.60 3600.00 188.40 191.93 146.46 298.26 192.50 199.70 5.03 6.51 179.80 182.25 63.30 599.34
40 60 22 189.70 167.10 3600.01 161.00 164.34 145.01 276.31 164.50 171.52 4.55 6.31 153.30 155.28 60.39 557.97
40 60 25 160.50 137.70 3600.01 128.70 132.26 135.49 262.15 131.80 139.27 3.99 5.80 122.50 124.35 57.68 533.52
40 60 30 127.40 102.40 3600.01 90.70 93.07 114.41 233.97 93.90 99.58 2.96 5.17 84.50 86.94 50.54 473.56

Average 72.80 58.73 1810.08 55.78 57.13 40.41 83.41 57.36 60.06 1.32 2.30 53.57 54.42 17.82 169.56

Table 9
MTSP: comparison between ILS and CSþBRKGA using seven criteria.

N M C BK CSþBRKGA ILS [16]

Min Max Mean Median StdDev Nopt (%) Avd (%) Min Max Mean Median StdDev Nopt (%) Avd (%)

30 40 15 91.80 91.80 94.40 93.03 93 0.73 0.80 1.38 94.00 99.00 96.73 97 1.33 1.00 5.41
30 40 17 71.70 71.70 74.30 72.88 73 0.81 0.78 1.64 74.00 78.50 76.39 76 1.27 1.00 6.54
30 40 20 50.70 50.70 53.00 51.79 51 0.69 0.76 2.14 52.20 56.10 54.20 54 1.08 0.99 6.89
30 40 25 28.10 28.10 29.80 28.94 29 0.49 0.66 2.92 28.80 31.50 30.18 30 0.74 0.92 7.24

40 60 20 179.80 179.80 184.50 182.01 184 1.31 0.86 1.24 188.40 195.10 191.93 195 1.79 1.00 6.76
40 60 22 153.30 153.30 157.00 155.16 157 1.13 0.84 1.22 161.00 167.20 164.34 167 1.68 1.00 7.21
40 60 25 122.50 122.50 126.10 124.20 126 1.10 0.80 1.38 128.70 134.90 132.26 134 1.55 1.00 7.96
40 60 30 84.50 84.50 88.60 86.55 87 1.31 0.78 2.42 90.70 95.00 93.07 94 1.22 1.00 10.14

Average 97.80 100.96 99.32 99.94 0.95 0.78 1.79 102.23 107.16 104.88 105.75 1.33 0.99 7.27

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183 181
solution with a cost which is at least as good as a given target
value is found. In these experiments, we observe an integer value
at most 5% greater than the best-known solution.

In these experiments, we want an integer value that the rela-
tive position of the curves implies that, given any fixed amount of
running time, CSþBRKGA has a higher probability than does ILS of
finding a solution whose objective function value is at least as
good as the target objective function value. For example, in Fig. 4
the probability of the CSþBRKGA to find a solution at least as good
as the target value in at most five seconds is about 80%, in at most
10 s is about 95%, and in at most 20 s is about 99%. The probability
of the ILS to find a solution at least as good as the target value in at
most 20 s is only 20%. For a probability of 90% over 150 s are
required. Other tested instances also had this same behavior.

BRKGA+CS ILS

0

50

100

150

Ti
m

e(
s)

Fig. 4. Time to find the best solution with CSþBRKGA and ILS (time in seconds).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1 10 100

cu
m

ul
at

iv
e

pr
ob

ab
ili

ty

time to target solution (seconds)

CS+BRKGA
ILS

Fig. 5. Time to target distributions of CSþBRKGA and ILS for MTSP instances of
type (40, 60, 20) (time in seconds).

Step 1: Set Ji = 1 for C values of i having minimal values of L(i, 0).
Break the ties arbitrarily. Set Ji = 0 for the remaining M C
values of i. Set n = 1.

Step 2: Set Wn = J. Stop if n = N.

Step 3: If each i having L(i, n) = n also has Ji = 1, set n = n + 1 and
go to Step 2.

Step 4: Pick i having L(i, n) = n and Ji = 0. Set Ji = 1.

Step 5: Set Jk = 0 for a k that maximizes L(p, n) over {p: Jp = 1}. Go
to Step 3.

Fig. A1. KTNS pseudo-code [1].

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183182
5. Conclusions

This paper presents a new method based on the Biased Ran-
dom Key Genetic Algorithms (BRKGA) and the Clustering Search
(CS) to solve the Minimization of Tool Switches Problem (MTSP).
The BRKGA and CS have been applied with success in many
combinatorial optimization problems [21,16]. However, this work
is the first approach where both methods are used to solve an
optimization problem.

The idea of this paper was to simplify the clustering process of
the CS based on the concept of random keys. With this, users have
available an application in which one needs to only implement the
decoder and local search heuristics.
Furthermore, this hybrid method detects the promising regions
in the search space and applies local search only in these regions.
The detection of promising areas becomes an interesting option
and prevents the indiscriminate use of local search heuristics.

This paper reports results found by BRKGA and CS on over 1510
instances for the MTSP. The CSþBRKGA found optimal solutions
for 1360 instances (proven by [19,16]) and the best known solu-
tions for the others. The results show that the CSþBRKGA is
competitive for solving the MTSP. New different instances in size,
difficulties and structure may be randomly generated to evaluate
the performance of the CSþBRKGA.

For further work, it is intended to develop an API for the
CSþBRKGA (coded in Cþþ and based on [28]). Then, it should be
easy to apply this method to other combinatorial optimization
problems. We also want to explore an automated algorithm for
parameters tuning, known as iterated F-race [36]. Other aspects of
the CS may be analyzed by parallelizing its various algorithmic
components and by applying it for multiobjective optimization
problem.
Acknowledgments

This work was supported by the FAPESP under Grant 2012/
17523-3; and CNPq under Grants 482170/2013-1, 304979/2012-0,
476862/2012-4, 300692-2009-9 and 300692/2009-9. The research
of Mauricio G.C. Resende was done while he was employed at
AT&T Labs Research.
Appendix A. KTNS pseudo-code

Fig. A1 presents the pseudo-code of the Keep Tool Needed
Soonest (KTNS) policy, proposed by Tang and Denardo [1], to
minimize the total number of tool switches for a fixed job
sequence.

Where
� J is the vector whose ith entry Ji is equal to 1 if tool i is on the
machine at a given instant n, and 0 otherwise;

� Lði;nÞ is the first instant at or after instant n at which tool i is
needed.
References

[1] Tang CS, Denardo EV. Models arising from a flexible manufacturing machine,
part I: minimization of the number of tool switches. Oper Res 1988;36(5):767–
77.

[2] Crama Y, Kolen AW, Oerlemans A, Spieksma FC. Minimizing the number of
tool switches on a flexible machine. Int J Flex Manuf Syst 1994;6(1):33–54.

http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref1
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref1
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref1
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref1
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref2
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref2
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref2

A.A. Chaves et al. / Computers & Operations Research 67 (2016) 174–183 183
[3] Hertz A, Laporte G, Mittaz M, Stecke KE. Heuristics for minimizing tool
switches when scheduling part types on a flexible machine. IIE Trans 1998;30
(8):689–94.

[4] Matzliach B, Tzur M. The online tool switching problemwith non-uniform tool
size. Int J Prod Res 1998;36:3407–20.

[5] Shirazi R, Frizelle GDM. Minimizing the number of tool switches on a flexible
machine: an empirical study. Int J Prod Res 2001;39:3547–60.

[6] Fathi Y, Barnette KW. Heuristic procedures for the parallel machine problem
with tool switches. Int J Prod Res 2002;40(1):151–64.

[7] Song CY, Hwang H. Optimal tooling policy for a tool switching problem of a
flexible machine with automatic tool transporter. Int J Prod Res 2002;40:873–
83.

[8] Ghrayeb OA, Phojanamongkolkij N, Finch PR. A mathematical model and
heuristic procedure to schedule printed circuit packs on sequencers. Int J Prod
Res 2003;41(16):3849–60.

[9] Al-Fawzan M, Al-Sultan K. A tabu search based algorithm for minimizing the
number of tool switches on a flexible machine. Comput Ind Eng 2003;44
(1):35–47.

[10] Senne ELF, Yanasse HH. Beam search algorithms for minimizing tool switches
on a flexible manufacturing system. In: Proceedings of the 11th WSEAS
international conference on mathematical and computational methods in
science and engineering, MACMESE'09. Stevens Point, Wisconsin, USA: World
Scientific and Engineering Academy and Society (WSEAS); 2009. p. 68–72.

[11] Konak A, Kulturel-Konak S. An ant colony optimization approach to the
minimum tool switching instant problem in flexible manufacturing system. In:
2007 IEEE symposium on computational intelligence in scheduling (CISched
2007). Honolulu, Hawaii, USA; 2–4 April 2007. p. 43–8.

[12] Konak A, Kulturel-Konak S, Azizoglu M. Minimizing the number of tool
switching instants in Flexible Manufacturing Systems. Int J Prod Econ
2008;116(2):298–307.

[13] Amaya J, Cotta C, Fernández A. A memetic algorithm for the tool switching
problem. In: Blesa M, Blum C, Cotta C, Fernandez A, Gallardo J, Roli A, et al.,
editors. Hybrid metaheuristics, Lecture notes in computer science, vol. 5296.
Malaga, Spain: Springer Berlin Heidelberg; 2008. p. 190–202.

[14] Amaya J, Cotta C, Leiva A. Hybrid cooperation models for the tool switching
problem. In: González J, Pelta D, Cruz C, Terrazas G, Krasnogor N, editors.
Nature inspired cooperative strategies for optimization (NICSO 2010), Studies
in computational intelligence, vol. 284. Malaga, Spain: Springer Berlin Hei-
delberg; 2010. p. 39–52.

[15] Amaya JE, Cotta C, Fernandez-Leiva AJ. Solving the tool switching problem
with memetic algorithms. Artif Intell Eng Des Anal Manuf 2012;26:221–35.

[16] Chaves AA, Senne ELF, Yanasse HH. Uma nova heurística para o problema de
minimização de trocas de ferramentas. Gest Prod 2012;19:17–30.

[17] Laporte G, Salazar-González JJ, Semet F. Exact algorithms for the job sequen-
cing and tool switching problem. IIE Trans 2004;36(1):37–45.

[18] Yanasse HH, Rodrigues RCM. A partial ordering enumeration scheme for sol-
ving the minimization of tool switches problem. In: Proceedings of INFORMS
annual meeting Seattle 2007. Seattle, Washington; 2007. p. 299 (Book of
Abstracts).
[19] Yanasse HH, Rodrigues RCM, Senne ELF. Um algoritmo enumerativo baseado
em ordenamento parcial para resolução do problema de minimização de
trocas de ferramentas. Gest Prod 2009;16(3):370–81.

[20] Oliveira ACM, Chaves AA, Lorena LAN. Clustering search. Pesqui Oper
2013;33:105–21.

[21] Gonçalves J, Resende M. Biased random-key genetic algorithms for combina-
torial optimization. J Heuristics 2011;17:487–525.

[22] Chaves AA. A hybrid metaheuristic with clustering search applied to combi-
natorial optmization problems [thesis], Applied Computing; 2009.

[23] Glover F, Martí R. Fundamentals of scatter search and path relinking. Control
Cybern 2000;39:653–84.

[24] Gonçalves JF, Resende MG. A biased random key genetic algorithm for 2D and
3D bin packing problems. Int J Prod Econ 2013;145(2):500–10.

[25] Bean JC. Genetic algorithms and random keys for sequencing and optimiza-
tion. ORSA J Comput 1994;6(2):154–60.

[26] Spears WM, Jong KAD. On the virtues of parameterized uniform crossover. In:
Proceedings of the fourth international conference on genetic algorithms;
1991. p. 230–6.

[27] Buriol LS, Hirsch MJ, Pardalos PM, Querido T, Resende MG, Ritt M. A biased
random-key genetic algorithm for road congestion minimization. Optim Lett
2010;4(4):619–33.

[28] Toso R, Resende M. A Cþþapplication programming interface for biased
random-key genetic algorithms. Optim Methods Softw 2015;30(1):81–93.

[29] Glover F. Tabu search and adaptive memory programing? Advances, applica-
tions and challenges. In: Interfaces in computer science and operations
research. Kluwer; 1996. p. 1–75.

[30] Hansen P, Mladenovic N. A tutorial on variable neighborhood search. Technical
Report, Les Cahiers du GERAD, HEC Montreal and GERAD; 2003.

[31] Lourenco H, Martin O, Stützle T. Iterated local search. In: Glover F, Kochen-
berger GA, editors. Handbook of metaheuristics, International series in
operations research & management science, vol. 57. New York: Springer; 2003.
p. 320–53.

[32] Rey D, Neuhauser M. Wilcoxon-signed-rank test. In: Lovric M, editor. Inter-
national encyclopedia of statistical science. Springer Berlin Heidelberg; 2014.
p. 1658–9.

[33] Amorim FMS. Metaheurísticas aplicadas ao problema das p-medianas [Mas-
ter's thesis], Centro Federal de Educaç ao Tecnológica de Minas Gerais, Brazil,
Belo Horizonte; 2011.

[34] Roque L, Fontes D, Fontes F. A hybrid biased random key genetic algorithm
approach for the unit commitment problem. J Comb Optim 2014:1–27.

[35] Aiex R, Resende M, Ribeiro C. TTT plots: a perl program to create time-to-
target plots. Optim Lett 2007;1(4):355–66.

[36] López-Ibáñez M, Dubois-Lacoste J, Stützle T, Birattari M. The irace package,
iterated race for automatic algorithm configuration. Technical Report TR/IRI-
DIA/2011-004, IRIDIA, Université Libre de Bruxelles, Belgium; 2011.

http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref3
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref3
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref3
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref3
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref4
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref4
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref4
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref5
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref5
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref5
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref6
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref6
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref6
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref7
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref7
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref7
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref7
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref8
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref8
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref8
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref8
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref9
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref9
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref9
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref9
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref12
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref12
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref12
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref12
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref13
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref14
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref15
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref15
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref15
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref16
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref16
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref16
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref17
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref17
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref17
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref19
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref19
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref19
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref19
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref20
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref20
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref20
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref21
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref21
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref21
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref23
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref23
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref23
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref24
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref24
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref24
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref25
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref25
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref25
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref27
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref27
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref27
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref27
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref28
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref31
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref31
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref31
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref31
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref31
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref31
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref32
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref32
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref32
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref32
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref34
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref34
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref34
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref35
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref35
http://refhub.elsevier.com/S0305-0548(15)00240-3/sbref35

	Hybrid method with CS and BRKGA applied to the minimization of tool switches problem
	Introduction
	Methods
	Clustering search
	Biased Random Key Genetic Algorithm
	CS with BRKGA

	CS with BRKGA applied to MTSP
	Computational results
	Conclusions
	Acknowledgments
	KTNS pseudo-code
	References

