

UNESP – UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO" FACULDADE DE ENGENHARIA CAMPUS DE BAURU

Estudo da Usinabilidade dos Plásticos de Engenharia:

Polieteretercetona – PEEK, Polióxido de metileno – POM,

Politetrafluoretileno – PTFE e Polietileno de ultra alto peso

molecular – PEUAPM

Luiz Eduardo Rodrigues Pereira

UNESP – UNIVERSIDADE ESTADUAL PAULISTA "JÚLIO DE MESQUITA FILHO"

CAMPUS DE BAURU

PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA

LUIZ EDUARDO RODRIGUES PEREIRA

Estudo da Usinabilidade dos Plásticos de Engenharia:

Polieteretercetona – PEEK, Polióxido de metileno – POM,

Politetrafluoretileno – PTFE e Polietileno de ultra alto peso

molecular – PEUAPM

Tese apresentada à Faculdade de Engenharia da UNESP - Câmpus de Bauru, como parte dos requisitos para a obtenção do título de Doutor em Engenharia Mecânica.

Prof. Dr. Ivaldo de Domenico Valarelli **Orientador**

P436e

Pereira, Luiz Eduardo Rodrigues

Estudo da usinabilidade dos plásticos de engenharia:

Polieteretercetona-PEEK, Polióxido de metileno-POM,

Politetrafluoretileno-PTFE e Polietileno de ultra alto peso

molecular-PEUAPM / Luiz Eduardo Rodrigues Pereira. -- Bauru, 2021

141 f.: tabs., fotos

Tese (doutorado) - Universidade Estadual Paulista (Unesp),

Faculdade de Engenharia, Bauru

Orientador: Ivaldo de Domenico Valarelli

1. Polímeros. 2. Tomeamento. 3. Usinagem de plástico. 4.

Rugosidade. 5. potência de corte. I. Título.

Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca da Faculdade de Engenharia, Bauru. Dados fornecidos pelo autor(a).

Essa ficha não pode ser modificada.

UNIVERSIDADE ESTADUAL PAULISTA

Câmpus de Bauru

ATA DA DEFESA PÚBLICA DA TESE DE DOUTORADO DE LUIZ EDUARDO RODRIGUES PEREIRA, DISCENTE DO PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA MECÂNICA, DA FACULDADE DE ENGENHARIA - CÂMPUS DE BAURU.

Aos 17 dias do mês de dezembro do ano de 2020, às 09:00 horas, por meio de Videoconferência, realizou-se a defesa de TESE DE DOUTORADO de LUIZ EDUARDO RODRIGUES PEREIRA, intitulada Usinabilidade dos Plásticos de Engenharia: Polieteretercetona - PEEK, Polióxido de metileno - POM, Politetrafluoroetileno - PTFE e Polietileno de ultra alto peso molecular -PEUAPM. A Comissão Examinadora foi constituida pelos seguintes membros: Prof. Dr. IVALDO DE DOMENICO VALARELLI (Participação Virtual) do(a) Departamento de Engenharia Mecânica / Faculdade de Engenharia de Bauru - UNESP, Prof. Dr. FRANSBER SANTADE (Participação Virtual) do(a) Coordenadoria de Mecânica e Eletromecânica / Escola Técnica Estadual de São Paulo - ETEC Jacinto Ferreira de Sá, Prof. Dr. ELSON AVALLONE (Participação Virtual) do(a) Departamento de Indústria / Instituto Federal de Educação, Ciência e Tecnologia de São Paulo (IFSP) - Câmpus de Catanduva/SP, Prof. Dr. ALEXANDRE JORGE DUARTE DE SOUZA (Participação Virtual) do(a) Departamento de Engenharia Industrial Madeireira / Campus Experimental de Itapeva - UNESP, Prof. Dr. ULISSES FRAZAO DE OLIVEIRA TIBURCIO (Participação Virtual) do(a) Departamento de Mecânica / Faculdade de Engenharia de Bauru - UNESP. Após a exposição pelo doutorando e arguição pelos membros da Comissão Examinadora que participaram do ato, de forma presencial e/ou virtual, o discente recebeu o conceito final: APROVADO__. Nada mais havendo, foi lavrada a presente ata, que após lida e aprovada, foi assinada pelo(a) Presidente(a) da Comissão Examinadora.

Prof. Dr. IVALDO DE DOMENICO VALARELLI

Faculdade de Engenharia - Câmpus de Bauru -Avenida Engenheiro Luiz Edmundo Carrijo Coube, 14-01, 17033360, Bauru - São Paulo http://www.feb.unesp.br/posgrad_mec/index.phpCNPJ: 48.031.918/0030-69.

Dalarelli

PROPOSTA DE ALTERAÇÃO DO TÍTULO

A BANCA EXAMINADORA PROPÕE A ALTERAÇÃO DO TÍTULO DO TRABALHO DO ALUNO: LUIZ EDUARDO RODRIGUES PEREIRA

DE: "Usinabilidade dos Plásticos de Engenharia: Polieteretercetona - PEEK, Polióxido de metileno - POM, Politetrafluoroetileno - PTFE e Polietileno de ultra alto peso molecular - PEUAPM"

PARA:	
	ISTUDO DA USINABILIDADE DOS PLASTICOS DE
FNG	ENHARIA : POLIETERETERCETONA - PEEK, POLI-
OXID	DO DE METILENO-POM, POLITETRAFLUORDETILENO
PTF	E, 2 POLIETILENO DE ULTRA ACTO PESO MOLECU-
LAR-	- PEUAPM.

Bauru, 17 de dezembro de 2020,

Prof. Dr. Ivaldo De Domenico Valarelli Orientador

Dedico este trabalho a Deus, à minha esposa Sonia, às minhas filhas Suéllen, Stefanie, Sofia e a meus pais, Joel e Aranilda, que sempre me deram condições e o apoio necessário que alicerçou esta conquista.

AGRADECIMENTOS

Ao Sr. Diretor da Faculdade de Engenharia de Bauru (FEB), Prof. Dr Luttgardes de Oliveira Neto, da Universidade Estadual Paulista "Júlio de Mesquita Filho" - UNESP/FEB pelo constante apoio.

Ao Prof. Dr. Délson Luiz Módulo, Coordenador do Laboratório de Motores e Biocombustíveis da UNESP/FEB, que cedeu o torno e o espaço para realização dos ensaios de usinagem.

Aos Professores da Unesp, Prof. Dr. Marcos Tadeu Tibúrcio Gonçalves, do Campus Experimental de Itapeva e Prof. Dr. José Ângelo Cagnon, da Faculdade de Engenharia Elétrica (FEE) – UNESP/FEB, pela essencial ajuda na montagem e organização da bancada para a coleta e formação do banco de dados experimental e pela grande contribuição e apoio a este trabalho.

Ao Prof. Tarcísio José Zago, Orientador de Práticas Profissionais e ao Prof. Ruben Araújo Escobar, da Escola Senai "João Martins Coube" de Bauru, que permitiram o uso do laboratório de Metrologia e acompanharam os ensaios em apoio a esta pesquisa.

Ao amigo, Prof. Dr. Elson Avallone, pelo precioso apoio e disponibilidade durante os momentos de dificuldade desta pesquisa.

AGRADECIMENTO ESPECIAL

Agradeço ao Professor Doutor Ivaldo de Domenico Valarelli, a oportunidade de tê-lo como orientador.

Me faltam palavras para agradecer sua dedicação, profissionalismo, conhecimento científico, seu grande apoio e a constante presença, mesmo nos momentos de grandes dificuldades.

O senhor é um exemplo de simplicidade, compreensão e competência, todos os que tiveram o prazer de fazer parte sua equipe admiram sua dedicação, amor ao trabalho e a pesquisa, com uma dedicação que vai muito além do que o dever impõe. Um Homem preocupado não só com a realização do trabalho, mas principalmente com o ser humano.

Receba os meus mais profundos e sinceros agradecimentos e que eu possa sempre contar com a honra e o privilégio de sua preciosa amizade.

Obrigado, Professor Ivaldo!

"Por vezes sentimos que aquilo que fazemos, não é senão uma gota de água no mar. Mas o mar seria menor se the faltasse uma gota".

RESUMO

No mercado de usinagem de peças técnicas, a usinagem de plásticos de engenharia está aumentando gradativamente e ganhando espaço entre os materiais ferrosos, devido as altas tecnologias empregadas nestes materiais.

A produção de ferramentas voltadas especialmente para este tipo de material, ainda não existe. A abundância de pesquisas, não alcançou a abrangência necessárias para despertar este interesse na indústria do setor. Nesta direção, este trabalho buscou apresentar resultados da usinagem de quatro plásticos de engenharia, o PEUAPM, o POM, o PTFE e o PEEK, apresentando a potência de corte durante o processo de usinagem com ferramentas monocortantes por torneamento com inserto de metal duro, analisando e comparando as forças de corte, consumo de energia e acabamento superficial, utilizando os mesmos parâmetros de usinagem para todos os materiais.

A pesquisa nos mostra que, respeitadas as diferenças, as assimetrias encontradas na usinagem destes materiais, assemelha-se as encontradas nos materiais metálicos, que por sua vez, dispõe de uma grande variedade de ferramentas para usinagem e por isso justificaria que a indústria se inclinasse no sentido de produzir ferramentas para materiais poliméricos e seus compostos, que estão em constante evolução e tem contribuído para esta alternativa de processamento.

Palavras-chave: Usinagem de plástico, Rugosidade, Esforço de corte, Potência de corte, Polímeros, Torneamento.

ABSTRACT

In the technical parts machining market, the machining of engineering plastics is gradually increasing and gaining space between ferrous materials, due to the high technologies used in these materials.

The production of tools aimed especially at this type of material does not yet exist, perhaps there is not an abundance of research necessary to awaken this interest in the industry of the sector. In this direction, this work sought to present results of the machining of four engineering plastics, UHMWPE, POM, PTFE and PEEK, presenting the cutting power during the machining process with single-cutting tools by turning with a carbide insert, analyzing and comparing cutting forces, energy consumption and surface finish, using the same machining parameters for all materials.

The research shows that, respecting the differences, the asymmetries found in the machining of these materials, is similar to those found in metallic materials, which in turn, has a wide variety of tools for machining and therefore would justify the industry to lean in the sense of producing tools for polymeric materials and their compounds, which are constantly evolving and have contributed to this processing alternative.

Keywords: Plastic machining, Roughness, Cutting effort, Cutting power, Polymers, Turning.

Lista de ilustrações

Figura 1: Força de corte em função da profundidade de corte	26
Figura 2: Torno Pinacho	29
Figura 3: Inversor de frequência	30
Figura 4: Aparelhos instalados para teste	30
Figura 5: Torneamento entre placa e ponta	31
Figura 6: Tacômetro digital	31
Figura 7: Suporte para o tacômetro	32
Figura 8: Termômetro digital	32
Figura 9: Analisador de energia conectado a bancada de testes	33
Figura 10: Bancada de ensaio	33
Figura 11: Plásticos de engenharia de uso geral	34
Figura 12: Plásticos de engenharia de uso especial	35
Figura 13: Medindo a rugosidade no intervalo 2 do POM	36
Figura 14: Medição de cinco cut-offs (Im)	37
Figura 15: Parâmetro de rugosidade Ra	37
Figura 16: Rugosímetro Mahr	38
Figura 17: Tabela de avanço de corte	39
Figura 18: Painel digital	40
Figura 19: Primeiro ensaio com os plásticos de engenharia de uso geral	42
Figura 20: Primeiro ensaio com os plásticos de engenharia de uso especial	43
Figura 21: Porta ferramenta para torneamento externo	44
Figura 22: Estojo com quatro insertos	44
Figura 23: Identificação por cor no inserto	46
Figura 24: Relógio do analisador de energia	50
Figura 25: Potência medida na primeira usinagem do PEUAPM com o inserto A .	52
Figura 26: Potência medida durante a usinagem do PEUAPM com inserto A	55
Figura 27: Potência medida durante a usinagem do PEUAPM com inserto B:	56
Figura 28: Primeira usinagem com os insertos A, B, C e D, PEUAPM	57
Figura 29: Usinagens do POM com os insertos A, B, C e D	58
Figura 30: Potência medida durante a usinagem do POM com inserto A	59

Figura 31: Potência medida durar	nte a usinagem do POM com inserto B	361
Figura 32: Potência medida durar	nte a usinagem do POM com inserto C	62
Figura 33: Potência medida durar	nte a usinagem do POM com inserto D)63
Figura 34: Usinagens do PTFE co	om os insertos A, B, C e D	65
Figura 35: Potência medida durar	nte a usinagem do PTFE com inserto /	466
Figura 36: Potência medida durar	nte a usinagem do PTFE com inserto l	367
Figura 37: Potência medida durar	nte a usinagem do PTFE com inserto (C68
Figura 38: Potência medida durar	nte a usinagem do PTFE com inserto l	D69
Figura 39: PEEK usinado com os	insertos A, B, C e D	71
Figura 40: Potência medida durar	nte a usinagem do PEEK com inserto <i>i</i>	A72
Figura 41: Potência medida durar	nte a usinagem do PEEK com inserto	B73
Figura 42: Potência medida durar	nte a usinagem do PEEK com inserto	C74
Figura 43: Potência medida durar	nte a usinagem do PEEK com inserto	D75

Lista de Tabelas

Tabela 01: Comprimento das barras (mm)	47
Tabela 02: Dados para a primeira usinagem	48
Tabela 03: Dados calculados para a segunda e terceira usinagem	50
Tabela 04: Identificação dos insertos	51
Tabela 05: Potência média	53
Tabela 06: Potência equivalente (W) A (PEUAPM)	54
Tabela 07: Potência de corte A (W) (PEUAPM)	55
Tabela 08: Potência equivalente B (PEUAPM)	56
Tabela 09: Potência de corte B (W) (PEUAPM)	57
Tabela 10: Potências médias de corte (PEUAPM)	58
Tabela 11: Potência equivalente A (POM)	59
Tabela 12: Potência de corte A (W) (POM)	60
Tabela 13: Potência equivalente B (POM)	60
Tabela 14: Potência de corte B (W) (POM)	61
Tabela 15: Potência equivalente C (POM)	62
Tabela 16: Potência de corte C (W) (POM)	62
Tabela 17: Potência equivalente D (POM)	63
Tabela 18: Potência de corte D (W) (POM)	64
Tabela 19: Potências médias de corte de corte (POM)	64
Tabela 20: Potência equivalente A (PTFE)	65
Tabela 21: Potência de corte A (W) (PTFE)	66
Tabela 22: Potência equivalente B (PTFE)	67
Tabela 23: Potência de corte B (W) (PTFE)	67
Tabela 24: Potência equivalente C (PTFE)	68
Tabela 25: Potência de corte C (W) (PTFE)	69
Tabela 26: Potência equivalente D (PTFE)	69
Tabela 27: Potência de corte D (W) (PTFE)	70
Tabela 28: Potências medias de corte (PTFE)	70
Tabela 29: Potência equivalente A (PEEK)	71
Tabela 30: Potência de corte A (W) (PEEK).	72

Tabela 31: Potência equivalente B (PEEK)	72
Tabela 32: Potência de corte B (W) (PEEK)	73
Tabela 33: Potência equivalente C (PEEK)	74
Tabela 34: Potência de corte C (W) (PEEK)	74
Tabela 35: Potência equivalente D (PEEK)	75
Tabela 36: Potência de corte D (W) (PEEK)	76
Tabela 37: Potências medias de corte (PEEK)	76
Tabela 38: PEUAPM Rugosidade média (µm)	77
Tabela 39: POM Rugosidade média (µm)	78
Tabela 40: PTFE Rugosidade média (µm)	78
Tabela 41: PEEK Rugosidade média (µm)	79
Tabela 42: Referências da usinagem do PEUAPM	81
Tabela 43: Referências da usinagem do POM	81
Tabela 44: Referências da usinagem do PTFE	81
Tabela 45: Referências da usinagem do PEEK	82

Sumário

1 INTRODUÇÃO	18
2 JUSTIFICATIVA	20
3 OBJETIVOS	21
4 REVISÃO BIBLIOGRÁFICA	22
4.1 HISTÓRICO DO PLÁSTICO DE ENGENHARIA	22
4.2 Classificação	22
4.3 Aplicações	23
4.4 USINAGEM	24
4.5 PLÁSTICOS DE ALTO DESEMPENHO	25
4.6 INCERTEZA DAS MEDIÇÕES DE RUGOSIDADE	28
5 MATERIAIS E MÉTODOS	29
5.1 Torno	29
5.2 Inversor de frequência	29
5.3 MODO DE FIXAÇÃO	31
5.4 TACÔMETRO	31
5.5 TERMÔMETRO	32
5.6 Analisador de energia	33
5.7 Bancada de ensaio	33
5.8 PLÁSTICOS DE ENGENHARIA DE USO GERAL	34
5.9 PLÁSTICOS DE ENGENHARIA DE USO ESPECIAL	34
5.10 ACABAMENTO SUPERFICIAL	35
5.11 Parâmetros de corte	38
5.12 Corpos de prova	42
5.13 FERRAMENTAS	43
5.14 Instalações elétricas	45
5.15 Preparação	45
5.16 Ensaios	46
6 RESULTADOS	51
6.1 POLIETILENO DE ULTRA ALTO PESO MOLECULAR – PEUAPM	51
6.1.1 Inserto A	52
6.1.2 Inserto B	56

6.2 POLIÓXIDO DE METILENO — POM	58
6.2.1 Inserto A	59
6.2.2 Inserto B	60
6.2.3 Inserto C	61
6.2.4 Inserto D	63
6.3 POLITETRAFLUORETILENO – PTFE	64
6.3.1Inserto A	65
6.3.2 Inserto B	66
6.3.3 Inserto C	68
6.3.4 Inserto D	69
6.4 POLIETERETERCETONA – PEEK	70
6.4.1Inserto A	71
6.4.2 Inserto B	72
6.4.3 Inserto C	73
6.4.4 Inserto D	75
7 RUGOSIDADE	77
7.1 PEUAPM	
7.2 POM	
7.3 PTFE	
7.4 PEEK	79
9 CONCLUSÃO	05
10 TRABALHOS FUTUROS	
11 REFERÊNCIAS BIBLIOGRAFICAS	
APÊNDICE A - ANÁLISE DE INCERTEZAS	
APÊNDICE B - POTÊNCIAS: PEUAPM COM INSERTO A	
APÊNDICE C – POTÊNCIAS: PEUAPM COM INSERTO B	
APÊNDICE D – POTÊNCIAS: POM COM INSERTO A	
APÊNDICE E – POTÊNCIAS: POM COM INSERTO B	
APÊNDICE F – POTÊNCIAS: POM COM INSERTO C	
APÊNDICE G – POTÊNCIAS: POM COM INSERTO D	
APÊNDICE H – POTÊNCIAS: PTFE COM INSERTO A	104
APÊNDICE I – POTÊNCIAS: PTFE COM INSERTO B	106
APÊNDICE J – POTÊNCIAS: PTFE COM INSERTO C	108
APÊNDICE K – POTÊNCIAS: PTFE COM INSERTO D	111

APÊNDICE L – POTÊNCIAS: PEEK COM INSERTO A	115
APÊNDICE M – POTÊNCIAS: PEEK COM INSERTO B	118
APÊNDICE N – POTÊNCIAS: PEEK COM INSERTO C	121
APÊNDICE O – POTÊNCIAS: PEEK COM INSERTO D	124
APÊNDICE P – RUGOSIDADE PEUAPM: 1º USINAGEM	126
APÊNDICE Q - RUGOSIDADE PEUAPM: 2ª USINAGEM	127
APÊNDICE R - RUGOSIDADE PEUAPM: 3ª USINAGEM	128
APÊNDICE S - RUGOSIDADE POM: 1ª USINAGEM	129
APÊNDICE T - RUGOSIDADE POM: 1ª USINAGEM	130
APÊNDICE U - RUGOSIDADE POM: 2ª USINAGEM	131
APÊNDICE V - RUGOSIDADE POM: 2ª USINAGEM	132
APÊNDICE W - RUGOSIDADE POM: 3ª USINAGEM	133
APÊNDICE X - RUGOSIDADE POM: 3ª USINAGEM	134
ANEXO A – MANUAL MINIPA ET-5061C	135
ANEXO B – CERTIFICADO DE CALIBRAÇÃO DO RUGOSÍMETRO	140

1 INTRODUÇÃO

Considerados materiais de alto desempenho, os plásticos de engenharia, tiveram maior presença na indústria na década de 1960, substituindo o aço e outros metais em muitos setores.

São usados como matéria-prima para uma ampla gama de componentes e produtos finais de alta qualidade em áreas como a indústria de alimentos, tecnologia médica, indústria automotiva e aeroespacial.

Devido à grande variação e o crescente emprego do plástico pelas indústrias, surge a necessidade de usinagem destes materiais, quer seja para reposição de peças unitárias ou poucas unidades até produções seriadas de grandes volumes.

Esta crescente necessidade e a falta de ferramentas específicas para usinagem de materiais plásticos, leva a indústria a utilizar ferramentas comumente usada para usinagem de alumínio.

Manter o alto padrão de qualidade e funcionalidade para essas aplicações também é um desafio para os fabricantes destes materiais, pois há uma busca incessante no sentido de produzir materiais com qualidades e estabilidade dimensional, próximas ao dos metais e com todas as vantagens dos materiais poliméricos.

Componentes dimensionalmente estáveis, funcionais e duráveis podem ser fabricados a partir de plásticos, usando técnicas profissionais de usinagem e processamento. O termo geral "Processamento de plásticos" sugere que todos os plásticos podem ser usinados com os mesmos parâmetros e ferramentas. Com os metais, por outro lado, fala-se não apenas de "Processamento de metal", mas também há uma diferença entre alumínio, aço ou aço inoxidável. De maneira análoga, as características individuais dos materiais plásticos devem ser levadas em consideração ao processá-las.

Os plásticos podem ser divididos em dois subgrupos principais: Termoplásticos e Termofixos (ou Termoendurecíveis). Os termoplásticos são materiais que têm a propriedade de amolecerem seguidamente sob a influência do calor e endurecem novamente quando esfriados, enquanto que os termofixos amolecem uma vez e depois, mediante aplicação de uma quantidade suficiente de calor (operação

conhecida pelo nome de cura), endurecem irreversivelmente. (MILES; BRISTON, 1975)

Há grande variedade de plásticos encontradas no mercado, é comum encontrarmos outros materiais adicionados a eles, como por exemplo a fibra de carbono e esta adição de material denomina-se carga, obtendo-se como resultado a melhora de suas propriedades físico-química, para aplicações específicas. Segundo Wiebeck e Harada (2005), as cargas são incorporadas aos polímeros com o objetivo de modificar suas propriedades ou de reduzir o custo dessas composições.

Com tantas variedades de plásticos e muitas aplicações diferentes, existem também vários processos de produção usados na indústria manufatureira, como por exemplo a moldagem por injeção, extrusão, fundição, moldagem por sopro, impressão 3D e usinagem, são alguns exemplos.

Na indústria, de um modo geral, os produtos à base de polímeros são produzidos em larga escala, praticamente uma produção em massa. Nesse tipo de produção, os processos de moldagem, como por exemplo a injeção e a extrusão são os mais utilizados, pois implicam em baixo custo de manufatura.

Entretanto, para alguns tipos de polímeros, a sua produção em peça acabada, a partir de técnicas de injeção, sopro ou extrusão é impossível. O PEUAPM (Polietileno de Ultra Alto Peso Molecular), é um exemplo deste tipo de material polimérico. Para estes materiais a fabricação de componentes com maior complexidade geométrica, requer o uso de processos de usinagem.

2 JUSTIFICATIVA

Encontra-se hoje no mercado, vários plásticos de engenharia, porém, ainda não há ferramentas específicas para a usinagem destes materiais. Portanto, para a usinagem de plásticos industriais, os parâmetros e métodos utilizados são oriundos de especificações de alguns fornecedores de matéria-prima, de correlações com materiais não ferrosos, como o alumínio ou latão e principalmente da experiência acumulada.

Nesta pesquisa, o processo de usinagem por torneamento utilizou quatro ferramentas comerciais de metal duro, de duas marcas distintas e com dois raios de pontas e características diferentes para cada marca. Com estas ferramentas, foram usinados quatro plásticos de engenharia diferentes entre si, em iguais condições de usinagem e posteriormente analisado o acabamento superficial e comparados. Os esforços de cortes de cada material, também foram analisados e comparados o comportamento de cada um durante o processo de usinagem.

3 OBJETIVOS

Para este trabalho, propõem-se a comparação entre as operações de torneamento, entre quatro plásticos de engenharia diferentes, sendo dois de uso geral: polietileno de ultra alto peso molecular (PEUAPM) e polióxido de metileno (POM) e dois Plásticos de engenharia de uso especial: o politetrafluoretileno (PTFE) e o polieteretercetona (PEEK), utilizando duas marcas de insertos comerciais com dois raios de ponta diferentes cada uma e em condições iguais de usinagem. Para o processo de torneamento, serão utilizados insertos, que são originariamente para usinagem de alumínio e após os ensaios espera-se obter resultados claros dos esforços de corte, acabamento superficiais, condições das ferramentas e quais os melhores resultados dentro das mesmas condições de usinagem e através destes resultados, definir se a prática do uso de ferramentas para usinagem de alumínio é adequada para todos os plásticos.

4 REVISÃO BIBLIOGRÁFICA

4.1 Histórico do Plástico de Engenharia

Segundo Garrido; Cristina; Mara (2014), na década de 1940, o pioneiro Henry Ford, introduzia em sua produção automotiva os primeiros plásticos de engenharia, devido ao período que antecedia a Segunda Guerra Mundial e a demanda pelos materiais metálicos era grande.

Nos últimos oitenta anos, a indústria médica baseada em polímeros evoluiu rapidamente de um ramo da indústria química para seu próprio campo distinto e inovador. (SOUERY; BISHOP, 2018)

Novos materiais têm tido uma notável expansão pelo que estão a conquistar grande quota de mercado, especialmente em produtos onde o rendimento e desempenho são fundamentais. (VENTURA, 2009)

Existe um constante aprimoramento dos plásticos de engenharia, uma busca para alcançar materiais que possam substituir com vantagens os materiais metálicos em diversas áreas. A indústria automobilística, busca materiais cada vez mais leves, resistentes ao desgaste e a altas temperaturas, a indústria de materiais médico-hospitalares, estuda materiais para implantes que não sofra rejeição pelo organismo, até instrumentos cirúrgicos que possam ser esterilizados em autoclaves para reutilização. Para Guo et al (2018), polímeros como o PEEK tem sido adotado em um número crescente de campos médicos, incluindo cranioplastia, implantes dentários, fusão intersomática, artroplastia total de articulação (TJA) e aplicações para reparo de tecidos moles.

4.2 Classificação

De acordo com Wiebeck; Harada (2005) os plásticos são, geralmente divididos em duas categorias quanto a sua escala de fabricação e/ou de acordo com o desempenho de suas propriedades. Quanto à escala, os termoplásticos *commodities*, representam o maior volume de produção e em função de sua aplicação, esses materiais podem ser denominados como plásticos de uso comum, uso geral ou ainda de massa.

Segundo Mano (1991), do ponto de vista de aplicação os plásticos podem ser distribuídos em dois grandes grupos: plásticos de uso geral e plásticos de engenharia. Os plásticos de uso geral, por sua vez, podem ser distribuídos em termoplásticos e termorrígidos. Os plásticos de engenharia, subdivide-se em uso geral e uso especial.

Os polímeros de engenharia também podem ser denominados de uso geral e de uso especial, sendo que o de uso geral pode ainda ser denominado de superplástico ou plástico de altíssimo desempenho.

A palavra polímero, origina-se do grego *poli* (muitos) e *mero* (unidade de repetição). Assim um polímero é uma macromolécula composta por muitas unidades de repetição (dezenas de milhares) denominadas meros, ligadas por ligação covalente. A matéria prima para a produção de um polímero é o monômero, uma molécula com uma unidade de repetição. Dependendo do tipo do monômero (estrutura química), do número médio de meros por cadeia e do tipo de ligação covalente, os polímeros podem ser divididos em três grandes classes: Plásticos, Borrachas e Fibras.(CANEVAROLO JR., 2006)

Os plásticos de engenharia, são definidos por sua estabilidade físico-química ao sofrer esforços mecânicos, térmicos, elétricos, químicos ou ambientais.

Os Plásticos de engenharia de uso geral são: polietileno de altíssimo peso molecular (PEUAPM), polióxido de metileno (POM), politeraftalato de etileno (PET), politereftalato de butileno (PBT), policarbonato (PC), poliamida alifatica (náilon) (PA), polióxido de fenileno (PPO) e poli(fluoreto de vinilideno) (PVDF). Os Plásticos de engenharia de uso especial, superplásticos, de altíssimo desempenho, são: politetrafluoro-etileno (PTFE), comumente conhecido como teflon; polarilatos (PAR); polímeros cristais – líquidos (LCP); poli-imidas (PI); poliamidaimida (PAI); poliéter-imida (PEI); polieter-cetona (PEK); polieter-etercetona (PEEK); polisulfeto de fenileno (PPS); polisulfona (PSU); polifenilsulfona (PPSU); poliftalamida (PPA); polietersulfona (PES). (WIEBECK; HARADA, 2005)

4.3 Aplicações

Materias poliméricos, são usados em diferentes áreas, como na medicina, onde há um largo uso desde a segunda Grande Guerra, quando os sobreviventes tiveram que conviver com variados tipos de amputações. Várias pesquisas nesta área se

desenvolvem desde aquela época, inclusive na ortopedia, conforme afirma Souery e Bishop (2018), com o advento dos polímeros no século XX, os substitutos do enxerto ósseo se expandiram para incluir polímeros degradáveis e não degradáveis em produtos como CORTOSS, OPLA e IMMIX, utilizados em implantes de cartilagem sintéticas.

Na indústria da construção civil, os materiais poliméricos, também encontra espaço. Os compósitos de FRP (*Fiber Reinforced Polymer*) consistem em tipos específicos de fibras, como carbono ou fibra de vidro, unidas por uma resina de matriz termoendurecível ou termoplástica para atingir as propriedades mecânicas alvo. A resina epóxi e as fibras de carbono têm sido os polímeros e fibras mais comumente usados, respectivamente no desenvolvimento de compósitos poliméricos reforçados com fibras para aplicações estruturais. No entanto, devido às suas várias características atraentes, como grande capacidade de deformação, capacidade de centralização, boa capacidade de dissipação de energia, alto impacto e resistência à corrosão, as ligas com memória de forma (SMAs) também foram usadas como fibra de reforço em uma variedade de matrizes para desenvolver materiais compósitos à base de SMA (Stone Matrix Asphalt). Em particular, houve vários esforços de pesquisa sobre a integração da fibra SMA em matrizes epóxi. (OZBULUT et al., 2019)

4.4 Usinagem

Em muitas situações e para diversos usos, o material plástico para usos especiais, passam pelo processo de manufatura ou precisam de ajustes em suas dimensões, adequação da forma ou atenção no acabamento de sua superfície e é nestas situações que se aplica usinagem para alcançar os ajustes necessários.

Segundo Ferraresi (1970), a operação de usinagem tem como objetivo proporcionar ao material a ser usinado a forma, as dimensões ou o acabamento, ou qualquer combinação entre estes itens e esta operação é caracterizada pela formação de cavaco, que é a porção de material retirada da peça pela ferramenta em uso durante o processo.

A usinagem por torneamento é muito utilizada na indústria e segundo Clark (2013), oi torno é chamado de Rei das máquinas ferramentas, devido a sua versatilidade na produção de componentes para engenharia.

A usinagem de plásticos industriais é indicada, principalmente, para menores volumes de peças, porém, este serviço também se aplica às peças de grande porte e precisão.

4.5 Plásticos de alto desempenho

O peso molecular extremamente elevado do PEUAPM proporciona a esse polímero uma viscosidade no estado fundido tão alta que seu índice de fluidez, medido a 190 °C com uma carga de 21,6 kg, se aproxima de zero. Assim, não é possível processá-lo por métodos convencionais de injeção, sopro ou extrusão. O método empregado é o de moldagem por compressão ou variações dele como prensagem e extrusão por pistão. Nos dois casos são obtidos produtos semiacabados em forma de chapas ou tarugos para acabamento posterior por usinagem (Polialden PetroQuimica, 2000, apud COUTINHO; MELLO; SANTA MARIA, 2003).

O PEUAPM pode ser empregado em uma ampla gama de aplicações industriais quando a temperatura de trabalho não excede 80 °C. (COUTINHO; MELLO; SANTA MARIA, 2003)

O Poli-óxi-metileno (POM), comumente chamado de Acetal ou Poliacetal, é um polímero cristalino obtido a partir da polimerização do formol aldeído e a adição de grupos terminais acetato. (PLASTECNO, 2018)

O POM, também apresenta boas características mecânicas, baixa absorção de umidade e excelente estabilidade dimensional e boa usinabilidade e tem grande índice de aplicação nos diversos setores industriais.

O PTFE (Politetrafluoroetileno), é um plástico de engenharia de alto desempenho que é amplamente utilizado na indústria, devido as suas propriedades de auto lubrificação, baixo coeficiente de atrito, estabilidade em alta temperatura e resistência química.

Segundo Kobayashi (1967), o Politetrafluoroetileno (PTFE) tem larga utilização na indústria e é amplamente utilizada como material para peças eletrônicas, mecânicas ou químicas, devido à sua estabilidade em alta temperatura, resistência química e propriedades de auto lubrificação.

Ao contrário de outros termoplásticos, o PTFE não forma um derretimento de fluxo livre e derrete a temperaturas bastante altas, isto dificulta a moldagem do

material e por esta razão, as peças de PTFE devem ser usinadas a partir de barras e tarugos, para atender as tolerâncias dimensionais.

De acordo com ARIF et al. (2018), nos últimos anos, tem havido um interesse crescente na fabricação de polímeros de alto desempenho, como o poliéterétercetona (PEEK), devido às suas excelentes propriedades mecânicas e estabilidade química. O PEEK é um termoplástico caro, com excelentes propriedades de resistência mecânica e química, mesmo em temperaturas de até 240°C e exibe excelente resistência à hidrólise. O PEEK, é um dos poucos polímeros considerados para substituição de metais em aplicações de alta temperatura.

Devido à sua estrutura química e mecânica aprimorada, o termoplástico PEEK tem sido amplamente utilizado em muitas aplicações, como indústrias aeroespacial, semicondutora, eletrônica e biomédica (DENAULT; DUMOUCHEL, 1997).

Para Kobayashi (1967), a ferramenta de corte para a usinagem de materiais como polietileno, deve ter ângulo de ataque adequado, devido à alta elasticidade do material. A figura 01, apresenta a força de corte em função da profundidade de corte e a influência do ângulo de ataque. As linhas contínuas, representam a força paralela à direção de corte e as linhas tracejadas, a força perpendicular ao movimento da ferramenta. Os valores negativos indicam a força de tração.

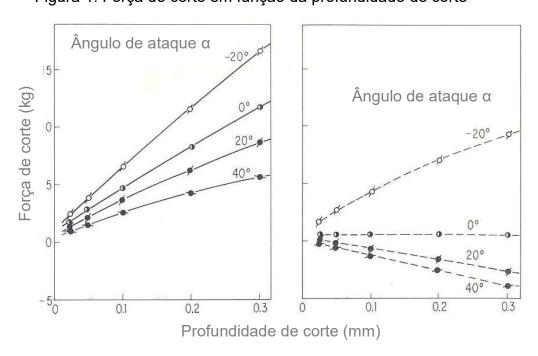


Figura 1: Força de corte em função da profundidade de corte

Fonte: Kobayashi (1967)

De acordo com Lokensgard (2013), os poliacetais (POM), são facilmente fabricados, possuem propriedades não encontradas nos metais e são competitivos com metais não ferrosos em custo e desempenho.

Criado a partir da resina acetálica, o poliacetal tem como característica boa resistência mecânica, química e baixa absorção de umidade, o que é caracterizado por uma boa estabilidade dimensional e fácil usinagem.(NITAPLAST, 1996)

Para Kobayashi (1967), uma ferramenta para poliacetal deve ter um ângulo de inclinação na faixa de zero a 20 ° para usinar resina em condições ideais de corte.

O politerafluoretileno (PTFE), mais comumente conhecido pelo nome comercial Teflon, nome dado pela empresa DuPont, é um polímero amplamente utilizado na indústria devido às suas propriedades autolubrificantes, baixo coeficiente de atrito, quimicamente inerte em altas temperaturas e pressão.

As operações de usinagem exigidas em um produto em PTFE, variam desde pequenas correções de dimensões até grandes cortes no material, que geralmente se devem às limitações nos processos de prensagem e/ou às deformações induzidas pela sinterização, muitas vezes difíceis de serem previstas no projeto do produto. (CANTO, 2007)

O polieteretercetona (PEEK), tem como característica principal a alta performance (alta resistência mecânica e ao desgaste).

Mesmo submetido à altas temperaturas, apresenta boa estabilidade dimensional e resistência química. Recomendado para as indústrias de máquinas, eletroeletrônicas, aeroespacial e em equipamentos da área médica.(NITAPLAST, 1996)

As vantagens do termoplástico (PEEK) em relação aos compósitos termoendurecíveis, a saber, tenacidade aprimorada, menor absorção de água e vida útil ilimitada, incentivaram a aplicação desse novo tipo de compósito nas indústrias aeroespacial e aeronáutica. (DENAULT; DUMOUCHEL, 1997)

Os altos custos e um número limitado de fornecedores de PEEK, seja talvez o motivo de poucos trabalhos de pesquisa, relacionados com sua usinagem. A maioria das pesquisas encontradas, concentrou-se apenas no processo contínuo de torneamento com ferramentas monocortantes e que não alcançam a mesma complexidade de usinagem como as pesquisas com fresamento, desenvolvidas por Izamshah; Mo; Ding (2011).

Elbestawi e Sagherian (1991), investigaram os efeitos de interação da velocidade de corte e taxa de avanço na usinabilidade de PEEK reforçado e não reforçado com pastilha de corte PCD. Eles descobriram que a alta taxa de avanço aumentaria a potência de usinagem e diminuiria a pressão de corte na velocidade de corte específica. A pesquisa também mostra que o PEEK reforçado tem pouca usinabilidade em comparação com o PEEK não reforçado, embora os elementos de reforço possam melhorar as propriedades de resistência e rigidez, no entanto, o custo de usinagem se torna alto, devido à alta abrasividade do PEEK reforçado.

4.6 Incerteza das medições de rugosidade

A avaliação do nível do acabamento superficial após os processos de usinagem, deve ser feito com o uso de um rugosímetro e segundo (BÖESCH JÚNIOR et al., 2012), existem vários métodos de determinar a rugosidade, entre os mais simples estão a inspeção visual a olho nu ou a inspeção por meio da sensação dos dedos. Há métodos baseados na comparação com amostras de superfícies conhecidas. Mas, para avaliar a rugosidade com maior precisão usa-se o rugosímetro digital, aparelho eletrônico de varredura.

Em geral, o resultado de uma medição de uma grandeza física, é apenas uma estimativa, ou uma aproximação do valor verdadeiro do mensurado.

O resultado da medição só é completo, quando acompanhado do valor declarado da incerteza. A incerteza que obtém por análises estatísticas de uma série de observações, denomina-se incerteza do tipo A e a incerteza obtida por outros métodos, como informações disponíveis no Certificado de calibração do aparelho, especificação do fabricante ou dados de medições anteriores, por exemplo, chamamos de incerteza do tipo B.

Para a avaliação da incerteza da rugosidade, foi utilizada a incerteza do rugosímetro declarada no Certificado de Calibração (ANEXO B).

5 MATERIAIS E MÉTODOS

5.1 Torno

Para o processo de usinagem utilizou-se um torno mecânico, da marca Pinacho, modelo S-90/200, conectado à rede elétrica trifásica de 220 volts. Figura 02.

Figura 2: Torno Pinacho

Fonte: Autor

O torno teve seu motor elétrico desligado do painel de comando e conectado diretamente ao inversor de frequência e este, ligado ao painel de controle da máquina, através de uma bancada de testes, possibilitando assim que, todo o conjunto seja energizado quando a chave do torno é acionada para que o motor atinja a rotação definida no inversor de frequência.

5.2 Inversor de frequência

Utilizou-se um inversor de frequência da marca WEG, modelo CFW 08, para garantir maior precisão na seleção das rotações. Este inversor de frequência, foi ligado entre o painel de comando elétrico e o motor do torno, possibilitando o controle preciso das rotações do motor. Figura 03.

Figura 3: Inversor de frequência

Fonte: Autor

Concluídas as instalações elétricas no torno e montada a bancada de ensaio, foi possível iniciar os ensaios preliminares, coletar dados aleatórios e fazer os ajustes necessários para o início dos ensaios definitivos.

A Figura 04, apresenta o inversor de frequência e o analisador de energia, já instalados.

Figura 4: Aparelhos instalados para teste

5.3 Modo de fixação

Utilizou-se o método placa e ponta para fixação dos materiais, com um contraponta fixo com ponta de metal duro, acoplado ao cabeçote fixo do torno e garantindo maior rigidez ao conjunto, conforme Figura 05.

Figura 5: Torneamento entre placa e ponta

Fonte: Autor

5.4 Tacômetro

Para garantir as mesmas condições de usinagem, durante todo o processo de torneamento, utilizou-se um tacômetro digital, modelo DT-2234C+, da DIGITAL TACHOMETER, Figura 06.

Figura 6: Tacômetro digital

O uso deste aparelho em conjunto com o inversor de frequência, garante a mesma velocidade de corte em todas as situações de usinagem. O posicionamento inadequado deste aparelho, pode causar erros de leitura, devido a superfície reflexiva da placa do torno, onde foram efetuadas as leituras de rotação. Para garantir leituras confiáveis, foi construído um suporte para ser fixado no barramento da máquina, e possibilitou o ângulo e a distância adequada em todas as leituras, como apresentado na Figura 07.

Figura 7: Suporte para o tacômetro

Fonte: Autor.

5.5 Termômetro

Para monitorar a temperatura do óleo do cabeçote fixo do torno e do mancal do eixo árvore, foi usado um termômetro digital da marca Minipa modelo MT-350, para assegurar igualdade de condições e temperatura em todos os ensaios. Figura 08.

Figura 8: Termômetro digital

5.6 Analisador de energia

Utilizou-se um aparelho Analisador de energia da marca Minipa, modelo ET-5601C, para monitoramento do motor elétrico do torno e coleta das informações de potência ativa, necessárias para o desenvolvimento da pesquisa. Figura 9.

Figura 9: Analisador de energia conectado a bancada de testes

Fonte: Autor

5.7 Bancada de ensaio

Para viabilizar a conexão dos equipamentos elétricos com segurança, foi utilizada uma bancada com tomadas e conectores. A construção em base isolante, evita choques elétricos, curto-circuito ou conexões equivocadas dos aparelhos utilizados. Apresentado na Figura 10.

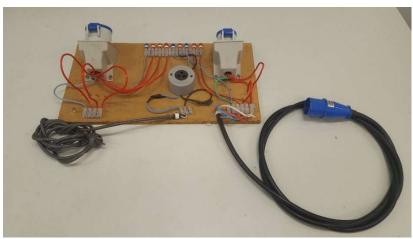


Figura 10: Bancada de ensaio

5.8 Plásticos de engenharia de uso geral

Os materiais para os ensaios, foram adquiridos conforme a disponibilidade da empresa FGM Plásticos de Engenharia em Pinhais PR, o ideal seria que todos os corpos de prova, tivessem as mesmas dimensões e que estivessem dentro do limite mínimo de diâmetro, pois, se o diâmetro fosse pequeno, ultrapassaria o limite de rotação do torno, para atingir a mesma velocidade de corte e diâmetros maiores, elevaria os custos, já que alguns materiais tem valores altos. Durante as negociações, foi possível encontrar o ponto de equilíbrio, entre os materiais oferecidos pelo fornecedor.

O Plástico de engenharia de uso geral, polietileno de ultra-alto peso molecular (PEUAPM), foi adquirido com 30 mm de diâmetro e 250 mm de comprimento e as dimensões do polióxido de metileno (POM) foram 30 mm de diâmetro e 250 mm de comprimento. Figura 11.

Figura 11: Plásticos de engenharia de uso geral

Fonte: Autor

5.9 Plásticos de engenharia de uso especial

Os plásticos de engenharia de uso especial, utilizados nos ensaios, foram o politetrafluoroetileno (PTFE), adquirido nas dimensões de 30 mm de diâmetro e 250 mm de comprimento e o polieteretercetona (PEEK), com 45 mm de diâmetro e 100 mm de comprimento. Figura 12.

PEEK

63/90

83/90

WS

PTFE

Figura 12: Plásticos de engenharia de uso especial

Fonte: Autor

5.10 Acabamento superficial

As quatro barras dos plásticos de engenharia (PEUAPM, PTFE, POM e PEEK), foram divididas em quatro intervalos de usinagem, cada barra.

A distância percorrida por cada uma das ferramentas, foi determinada por um intervalo de tempo de usinagem, controlado pelo indicador horário, do analisador de energia.

Como exemplo, usaremos uma barra a ser usinada com um comprimento de 200 mm e que foi dividida em 4 partes de 50 mm. A rotação calculada para esta condição, foi de 1980 rpm e o avanço definido é de 0,1 mm/rot.

Para determinar o intervalo de tempo (t) para cada um dos insertos, percorrerem a distância determinada, e sabendo-se, que os intervalos de tempo serão dados em segundos e a rotação é calculada por minutos, então calculou-se a rotação por segundo:

$$\frac{1980 \, rot.}{60 \, s} = 33 \, rot./s \tag{01}$$

Se o avanço é de 0,1 mm/rot. e temos 33 rot./s, então o deslocamento a cada segundo será de 3,3 mm/s, conforme Equação 02.

$$0.1 \ mm/rot. \times 33 \ rot./s = 3.3 \ mm/s$$
 (02)

O comprimento a ser usinado por cada inserto é de 50 mm, portanto, o intervalo de tempo (t) a ser controlado através do analisador de energia será de 15,15 s,

conforme apresentado na equação 03.

$$t = \frac{50 \, mm}{3.3 \, mm/s} \cong 15,15 \, s \tag{03}$$

Como o controlador horário do analisador de energia, não apresenta casas decimais de segundos, o intervalo de tempo de usinagem a ser controlado através do analisador de energia, para cada inserto, será de 15 segundos.

Cada um dos quatro intervalos, foi usinado por uma ferramenta com perfil e raio de ponta diferente e seguindo a mesma sequência de insertos em todas as barras.

Após a usinagem dos quatro intervalos, em cada um dos quatro plásticos de engenharia (PEUAPM, PTFE, POM e o PEEK), as superfícies usinadas foram analisadas para comparar o acabamento superficial, deixado por cada inserto, em cada um dos quatro materiais, somando dezesseis intervalos a serem analisados. Este processo se repete em cada uma das três usinagens, efetuadas em cada um dos quatro materiais citados.

A figura 13, apresenta uma das barras ensaiadas, sendo analisada com o rugosímetro, cada intervalo usinado, foi identificado com um número entre 1 a 4.

Figura 13: Medindo a rugosidade no intervalo 2 do POM

Fonte: Autor

A análise da superfície de cada intervalo, utilizou o parâmetro mais comumente relatado na literatura, o Ra ou Roughness Average (Rugosidade Média).

Este mesmo parâmetro pode ser encontrado em outros textos como CLA (Center Line Average – Media da Linha Central) ou AA (Arithmetical Average – Média Aritmética).

O parâmetro Ra, é muito utilizado por ser adequado aos processos de fabricação com sulcos orientados, como torneamento, fresamento e é encontrado em todos os rugosímetros.

Os critérios para avaliação da rugosidade são: o comprimento total de avaliação (lm), o cut-off ou comprimento da amostragem (le), o comprimento para atingir a velocidade do apalpador (lv) e o comprimento para a parada do apalpador (ln), conforme apresentado na figura 14.

Figura 14: Medição de cinco cut-offs (lm)

Fonte: Senai

O parâmetro Ra, expresso em micrômetro (µm), é o valor médio aritmético do desvio absoluto do perfil da linha de referência (M), ao longo do comprimento de amostragem (lm) Figura 15.

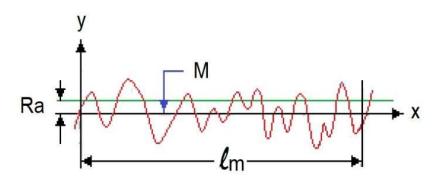


Figura 15: Parâmetro de rugosidade Ra

Fonte: Mário Caetano

Para mensurar a rugosidade superficial em cada um dos quatro intervalos, dos quatro corpos de prova, utilizou-se um rugosímetro da marca Mahr, modelo MarSurf M 300C, apresentado na Figura 16, no Laboratório de Metrologia da Escola Senai

"João Martins Coube", em Bauru. As medidas de rugosidade das amostras foram realizadas de acordo com as normas: NBR ISO 4287: 2002, NBR ISO 4288: 2008, NBR ISO 3274: 2008.

Figura 16: Rugosímetro Mahr

Fonte: Autor

5.11 Parâmetros de corte

O avanço (f) definido para estes experimentos foi de 0,1 mm/volta e a velocidade de corte (Vc) foi determinada em 200 m/min.

O torno mecânico horizontal utilizado nos ensaios, possui 44 opções de avanço de corte (a), variando de 0,05 a 0,752 mm/volta, como pode ser observado em destaque na Figura 17.

P. F G F G 0.4 0.05 0.1 0.2 15 30 0,226 0.056 0.113 0.45214 28 13 1/2 0.238 0.476 0.059 0.119 27 0.25 0.5 0.062 0.125 26 13 24 12 0.0690.138 0.276 0.552 11 1/2 0.144 0.288 0.576 23 0.072 0.075 22 11 0.15 0.3 0.6 20 10 0.163 0,326 0.652 9 1/2 19 0.085 0.17 0.34 0.68 9 0.176 0.352 0.704 18 880.0 16 8 0.188 0.376 0.752

Figura 17: Tabela de avanço de corte

As rotações (n), foram calculadas com base no avanço já definido e de acordo com ao diâmetro de cada material, conforme Equação 04.

$$n = \frac{Vc \times 1000}{\pi \times D} \ (rpm) \tag{04}$$

A profundidade de corte (ap), foi definida em 1 mm, para todos os ensaios.

O torno utilizado, possui um painel para controle digital dos deslocamentos do carro principal, do carro transversal e do carro superior e para cada um destes eixos, possui um *display* com oito dígitos numéricos e um para sinal negativo.

Nesta configuração, é possível alcançar uma precisão no deslocamento de um centésimo de milímetro, o que possibilitou a correção com mais exatidão, do avanço selecionado na tabela da máquina. Figura 18.

Figura 18: Painel digital

A rotação do eixo árvore, foi conferida diretamente na placa do torno, com o auxílio do tacômetro e simultaneamente, o inversor de frequência foi ajustado, porém, a leitura da rotação indicada no inversor de frequência é diferente da leitura no tacômetro, isso acontece, porque o inversor de frequência, é um dispositivo eletrônico que tem como sua principal função, alterar a velocidade de rotação de um motor trifásico, através da mudança do valor da frequência que o inversor envia em seus contatos de saída.

O motor elétrico, transmite o movimento de rotação à placa, através de combinações de engrenagens no cabeçote fixo do torno. Estas engrenagens, possuem tamanhos diferentes e dependendo da combinação utilizada, pode-se atingir rotações superiores ou inferiores a rotação do motor elétrico da máquina.

Para estes ensaios, definiu-se que a combinação de engrenagens, seria aquela que proporcionasse ao eixo árvore do torno, a rotação mais próxima da rotação do motor, segundo as definições de fábrica, impressos no painel da máquina.

A variação de tensão, corrente ou potência do motor elétrico do torno, influenciam no resultado final da transmissão mecânica da rotação para a placa do torno, o que torna importante a leitura diretamente na placa, que está fixada ao eixo árvore da máquina e transmite a rotação para a peça que será usinada.

Como o analisador de energia mede com muita precisão a potência do motor, em intervalos de um segundo, é importante monitorar a temperatura da máquina, até que a mesma estabilize.

O óleo lubrificante da caixa de engrenagens e/ou o eixo árvore, em temperaturas muito diferentes entre um ensaio e outro, provocará desigualdade nas medições de potência, devido a grande sensibilidade do analisador de energias. As engrenagens de transmissão do torno, são submersas em óleo lubrificante, que se torna mais viscoso em temperaturas mais baixas e quanto mais viscoso, maior a resistência ao movimento do conjunto mecânico de transmissão da rotação da máquina, provocando um aumento da potência e uma leitura equivocada do analisador de energia.

Com a máquina devidamente aquecida e lubrificada, foi novamente conferida a rotação do eixo árvore com o tacômetro e o mesmo indicou 2.254 rpm (n). Optouse, então, por conferir a velocidade de avanço (Vf) do carro principal. Selecionado em 0,1 mm/rot. (f), segundo indicação da tabela na caixa norton, e para este ajuste, o resultado do deslocamento do carro principal, no tempo de um minuto, deveria ser de 225,4 mm, ou seja:

$$Vf = \frac{n \times f}{min.} = \frac{(2.254 \, rot./min.) \times (0.1 \, mm/rot.)}{1 \, min.} = 225.4 \, mm \tag{05}$$

Foram coletados quatro registros de deslocamento do carro principal (Dc), através do painel digital do torno e o deslocamento médio medido, durante o período de um minuto foi de 217,0725 mm, diferente dos 225,4 mm esperados, conforme é apresentado na Equação 06.

$$\bar{x}_{Dc} = \frac{217,08+217,07+217,06+217,08}{4} = 217,0725 \, mm$$
 (06)

Como a rotação (n) era de 2.254 e houve um deslocamento médio de 217,0725 mm, no período de um minuto (Vf), o avanço (f) pode ser calculado, conforme apresentado na Equação 07.

$$f = \frac{vf}{n} = \frac{217,075 \, mm/min}{2254 \, rot./min} = 0,0963 \, mm/rot. \tag{07}$$

O valor corrigido de 0,0963 mm/rot., foi utilizado em todos os cálculos em que exigiu o avanço na equação.

5.12 Corpos de prova

A usinagem dos corpos de prova, foram divididos em dois grupos, sendo o primeiro grupo dos plásticos de engenharia de uso comum, com o PEUAPM e o POM, e o outro grupo com os plásticos de engenharia de uso especial, com o PTFE e o PEEK.

Para o primeiro ensaio, com os plásticos de engenharia de uso geral, PEUAPM e o POM, determinou-se que os intervalos a serem usinados por cada um dos quatro insertos, terá de 50 mm de comprimento, como referência.

Os intervalos foram identificados com numeração de 1 a 4 e limitados por linhas azuis e no centro da barra, o diâmetro em bruto não foi usinado. Detalhes apresentados na Figura 19.

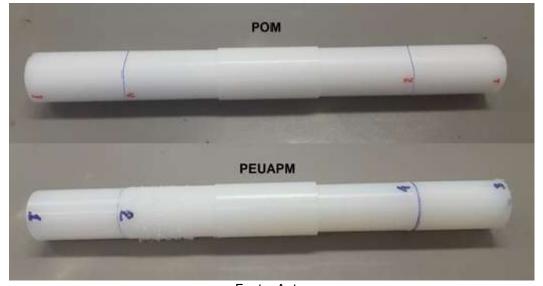


Figura 19: Primeiro ensaio com os plásticos de engenharia de uso geral

Fonte: Autor

No grupo dos plásticos de engenharia de uso especial, o POM foi usinado com os mesmos intervalos, tendo 50 mm como referência e seguindo a mesma sequência de ferramentas. O PEEK, que possui menor comprimento em relação aos anteriores, determinou-se que os intervalos para a primeira sequência de usinagem, terá 25 mm como referência, para cada um dos quatro insertos. Os detalhes são apresentados na Figura 20.

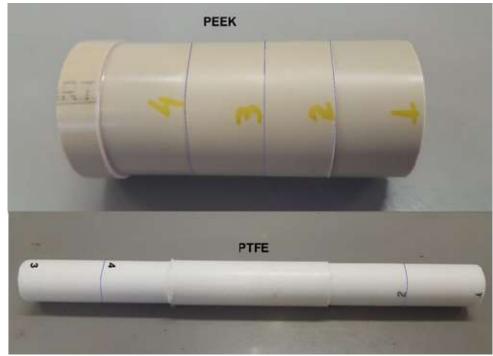


Figura 20: Primeiro ensaio com os plásticos de engenharia de uso especial

Para o segundo e terceiro ensaio de rugosidade, considerando um cut-off de 0,8 mm e o comprimento, ou percurso total de medição da rugosidade (It), definido em 5,6 mm, determinou-se que o intervalo percorrido pelas ferramentas, durante as usinagens, pode ter como referência uma distância menor, entre 30 e 35 mm.

Esta redução, viabiliza que a segunda e a terceira usinagem, sejam nas metades opostas da mesma barra, proporcionando maior rigidez, melhor aproveitamento do material usinado e sem comprometer o ensaio de rugosidade.

A segunda e terceira usinagens do PEEK, que tem menor comprimento em relação as demais, seguiu a mesma sequência da primeira usinagem.

5.13 Ferramentas

A opção por usar pastilhas de metal duro, foi devido ao baixíssimo ou nenhum desgaste da ferramenta na usinagem dos materiais propostos, por não necessitar de reafiação durante os ensaios e por serem facilmente encontradas no comércio, caso houvesse necessidade de substituição.

O porta ferramenta utilizado para receber os insertos é o MTJNR2525M16, apresentado na Figura 21.

Figura 21: Porta ferramenta para torneamento externo

Os insertos de metal duro utilizados, são ferramentas para usinagem de alumínio, sem cobertura e de dois fornecedores comerciais diferentes, os insertos tem geometrias de corte diferentes e serão analisadas a usinabilidade e acabamento superficial de quatro plásticos de engenharia diferentes, com as mesmas ferramentas e nas mesmas condições para que seja possível coletar dados e comparar seus resultados.

Todos os processos de usinagem, serão realizados a seco, ou seja, não será utilizado líquidos refrigerantes, pois, os quatro plásticos de engenharia utilizados, são higroscópicos, em maior ou menor grau de absorção, o que poderia causar alterações em sua estrutura física e/ou dimensional.

Os quatro insertos utilizados são, dois da marca Korloy, sendo um TNMG 160404-HA H01, com raio de ponta de 0,4 mm e a outra TNMG 160408-HA H01 com 0,8 mm de raio de ponta e dois da Marca Dormer Pramet, sendo uma TNMG 160404ER-SI, raio de ponta de 0,4 mm e outra TNMG 160408ER-SI com raio de ponta de 0,8 mm, apresentados na Figura 22.

Figura 22: Estojo com quatro insertos

Fonte: Autor

Para evitar dúvidas, decorrentes de um eventual dano em qualquer uma das ferramentas, a mesma aresta cortante, repetiu o processo de usinagem em um único material, tornando possível analisar cada arestas de acordo com os materiais usinados.

5.14 Instalações elétricas

O inversor de frequência foi conectado à bancada de teste e esta, ao painel de comando do torno, que ao ser conectado à rede trifásica de 220 volts, alimentou todo o circuito.

Na bancada de teste, bornes para pino banana, ligados em paralelo com as três fases de alimentação, viabilizaram as conexões das pontas de prova do Analisador de Energia.

A fiação da tomada instalada na bancada de testes, possui folga adequada para a instalação das garras de corrente (Bobina de Rogowski).

Os dados coletados e gravados na memória do Analisador de Energia, foram transmitidos para um computador em planilhas eletrônicas, através do programa TOPVIEW 2.0.0.16-00, para criação dos gráficos e análise dos dados

5.15 Preparação

Após definir-se que a rotação do motor será controlada pelo inversor de frequência, definiu-se que o arranjo das engrenagens do torno, deverá transmitir ao eixo-árvore, uma rotação o mais próximo possível da rotação do motor, ou seja, o mais próximo possível da relação 1:1. Tendo em vista que a rotação indicada na placa de identificação do motor é de 1.690 RPM, a opção que mais se aproxima na alavanca de seleção é 1750 RPM. A rotação correta, calculada para cada material, será definida no eixo-árvore, com o auxílio do tacômetro.

A operação de usinagem iniciou-se com a operação de furo de centro em todos materiais, para que fosse possível apoiá-los no contraponta, fixado no cabeçote fixo.

Para viabilizar que uma determinada aresta de corte de um inserto, fosse usada para usinar o mesmo material, repetidas vezes, utilizou-se cores para identificação destas arestas, conforme apresentado na Figura 23.

Figura 23: Identificação por cor no inserto

Fonte: Autor

A cor preta foi escolhida para identificar o PTFE, o amarelo para o PEEK, a cor vermelha identificou o POM e o azul marcou a aresta escolhida para o PEUAPM.

Para as identificações por cores, utilizou-se canetas para retroprojetor, de tinta permanente e que também pudessem ser usadas em superfícies metálicas.

Após selecionado o avanço do carro principal em 0,1 milímetro por volta (mm/v), cada material foi fixado na placa universal de três castanhas do torno, no sistema de placa e ponta, respeitando o espaço necessário para viabilizar a usinagem dos quatro intervalos predeterminados para cada um dos corpos de prova.

Os materiais foram separados em dois grupos, sendo um formado pelos plásticos de engenharia de uso comum com o PEUAPM e o POM e o segundo grupo com os plásticos de engenharia de uso especial, formado pelo PTFE e o PEEK.

Tendo em vista que o analisador de energia, coleta a potência ativa (W), usada nas análises deste trabalho, foi necessário separar os dados em condição de vazio e em condição de carga, ou seja, separar os dados de quando o motor realiza trabalho para movimentar o carro principal do torno e todo o sistema de transmissão mecânica, sem a carga da usinagem do material e a situação onde é acrescida o esforço de corte, durante a usinagem de cada corpo de prova.

5.16 Ensaios

Os quatro materiais dos dois grupos, com dois plásticos de engenharia de uso geral e dois de uso especial, foram medidos para ter o registro do comprimento exato de cada um, pois não tinham o mesmo comprimento indicado no pedido de compra, sendo o comprimento corrigido de 260 mm para o PEUAPM e POM, 305 mm para o PTFE e 105 para o PEEK. Tabela 01.

Tabela 01: Comprimento das barras (mm)

Material	PEUAPM	POM	PTFE	PEEK
Comprimento (mm)	260	260	305	105

Cada material foi dividido em quatro intervalos, cada um deles para ser usinado com uma ferramenta diferente, no perfil e raio de ponta.

O avanço (f) permanece inalterado em 0,0963 mm/volta, durante todos os ensaios e para que a velocidade de corte (vc), também se mantenha constante em 200 m/min, a rotação sofrerá ajustes, sempre que o material reduzir o diâmetro, devido a rotação ser inversamente proporcional ao diâmetro do material, ou seja, a rotação aumenta, conforme diminui o diâmetro, para manter a mesma velocidade de corte.

A divisão das barras em quatro partes iguais, será uma referência para determinar o tempo que terá cada intervalo de usinagem.

Os intervalos serão calculados, de forma a se conhecer o intervalo de tempo que a ferramenta percorre uma distância, próxima do calculado para cada divisão.

Portanto, o controle do intervalo da usinagem, será em função do tempo, em segundos inteiros, desprezando as casas decimais, que será acompanhado no controlador horário do analisador de energia, enquanto faz o registro das potências durante o processo.

O analisador de energia, possui um relógio com indicação de hora, minuto e segundo, o que torna possível usá-lo para controle de tempo durante o processo. A atenção deve estar voltada para o intervalo entre o acionamento do equipamento para gravação e o início da gravação, pois, ao acioná-lo para gravar, a gravação somente inicia no minuto seguinte ao acionamento. Portanto, é importante acionar o aparelho para coletar os dados, com tempo suficiente para ligar o automático do torno, no início do minuto seguinte.

No minuto anterior a usinagem de cada intervalo, é efetuado um passe em vazio de quinze segundos, para registrar a potência exigida para movimentar somente o sistema de transmissão mecânica.

Para o primeiro ensaio, os materiais foram divididos em quatro partes e cada uma delas usinada por um inserto diferente. A troca de cada inserto, foi feita sem retirar o porta-ferramentas para não mudar seu posicionamento ou alterar o ângulo da

aresta principal de corte em relação a ferramenta anterior.

Para aferir o tempo de deslocamento da ferramenta em um determinado intervalo a ser usinado, foi criada a Tabela 02.

Tabela 02: Dados para a primeira usinagem

Parâmetro	PEUAPM	POM	PTFE	PEEK	unidade
D	30,8	30,6	30	46	mm
n	2040	2053	2094	1366	rpm
L	50	50	50	25	mm
V	3,27419	3,29559	3,361501	2,192283	mm/seg.
t	15,27095	15,17179	14,87431	11,40364	seg.
L_1	49,11284	49,43384	50,42252	24,11511	mm

Fonte: Autor

Estes dados são para a primeira usinagem, onde foram registrados os diâmetros (D) de cada barra, após medição individual com um paquímetro.

O planejamento experimental foi realizado, considerando a velocidade de corte (vc) fixa em 200 metros por minuto (m/min) para todos os ensaios. A rotação do eixo árvore (n), foi calculada conforme Equação 04 e utilizando os dados da Tabela 02.

A rotação da máquina, foi ajustada com o uso do inversor de frequência e o tacômetro digital.

O comprimento (L) em milímetros indicado na Tabela 02, refere-se ao intervalo de usinagem de cada inserto individualmente. Para maior segurança e rigidez durante o processo de usinagem, as barras foram divididas ao meio e usinados dois intervalos de cada lado, na primeira usinagem.

A parte da barra exposta além da placa, recebeu maior atenção para garantir que não houvesse colisão da ferramenta com a placa em rotação, durante a usinagem do último intervalo do corpo de prova.

Esta preocupação é devido ao acionamento manual da alavanca de deslocamento e parada do carro principal, estar vinculado ao tempo de usinagem e a atenção voltada para o relógio do analisador de energia.

Na linha representada pela letra v, da primeira coluna da Tabela 02, apresenta o deslocamento da ferramenta em milímetros, durante o tempo de um segundo, com o torno em rotação. Para determinar este dado, aplicou-se a Equação 08:

$$v = \frac{n \times f}{60} \ (mm/s) \tag{08}$$

Esta informação (v) é importante para calcular os intervalos de tempo de usinagem das ferramentas em segundos.

As informações de t, na Tabela 02, refere-se ao intervalo de tempo, em segundos, que a ferramenta leva para percorrer a distância L.

Para o controle dos intervalos de tempo de usinagem para cada inserto, foi desprezadas as casas decimais de segundos, tornando as distâncias definidas em L, como referências para determinação dos intervalos de tempo de usinagem.

É através deste tempo de usinagem, lido no visor do analisador de energia, que o deslocamento do carro principal do torno é controlado.

Para determinar t, dividiu-se o comprimento a usinar, pela velocidade de avanço, como apresentado na Equação 09.

$$t = \frac{L}{v}(s) \tag{09}$$

O item L₁, na última linha da primeira coluna da Tabela 02, refere-se ao deslocamento da ferramenta em milímetros, calculados com a informação em t, sem as casas decimais, multiplicado pelo deslocamento calculado em v, conforme Equação 10:

$$L_1 = t \times v (mm) \tag{10}$$

Devido a operação manual de ligar e desligar a alavanca do deslocamento automático do carro principal do torno, torna-se impossível acionar o comando da máquina com exatidão, no tempo calculado para cada período.

O valor calculado para T, sem as casas decimais, é a distância percorrida pela ferramenta, quando a alavanca de acionamento do carro principal, é desligado em segundos completos.

Esta indicação de tempo, é possível ser lido no relógio do visor do analisador de energia, como pode ser observado no destaque da Figura 24.

TOTAL RMS VALUES - Page 1/7 VNPE V3N 138.2 0.0 V31 0.0 0.0 NEG% ZERO% SEQ Hz 0.0 132 0.0 $\mathbf{0.0}$ IN 12 13 11 0.0 0.0 0.00.0 HARM VECTOR PAGE SCOPE

Figura 24: Relógio do analisador de energia

As quatro barras, divididas em dois grupos, tiveram o seu diâmetro externo reduzido, após a primeira usinagem. A redução do diâmetro, exige um aumento da rotação, para manter a mesma velocidade de corte do material a ser usinado.

Para evitar um aumento ainda maior na terceira usinagem e evitar o risco de exceder os limites da máquina, as barras foram divididas em duas metades, sendo que em uma metade foi efetuada a segunda usinagem dos quatro intervalos, com os quatro insertos diferentes e na outra metade, efetuada a terceira usinagem.

O PEEK, que é um plástico de engenharia de uso especial, não pôde ser dividido, devido ao seu comprimento. Reduzir o seu intervalo de usinagem, poderia resultar em um comprimento de usinagem muito pequeno e comprometer o ensaio de rugosidade.

Os cálculos da Tabela 03, são para a segunda e terceira usinagem.

Tabela 03: Dados calculados para a segunda e terceira usinagem

símbolo	PUAPM	POM	PTFE	PEEK (2 ^a)	PEEK (3 ^a)	unidade
D	28,5	28,5	28	44	42	mm
n	2205	2205	2244	1428	1496	rpm
L	35	30	35	25	25	mm
٧	3,538422	3,538422	3,601609	2,291933	2,401072	mm/seg.
T	9,891414	8,478355	9,71788	10,90782	10,41202	seg.
L ₁	31,8458	31,8458	36,01609	22,91933	24,01072	mm

Fonte: Autor

6 RESULTADOS

Os dados colhidos com o analisador de energia, foram armazenados em uma planilha e posteriormente, plotados gráficos para melhor analise do esforço de corte.

O analisador de energia, registrou a potência do motor elétrico do torno, em intervalos de um segundo, durante todo o processo de usinagem dos quatro plásticos de engenharia.

Para facilitar a identificação na manutenção dos dados, atribuiu-se letras para a identificação dos insertos, conforme Tabela 04:

Tabela 04: Identificação dos insertos

Identificação	Código ISO	Raio de ponta	Fabricante
Α	TNMG160404-HA H01	0,4 mm	Korloy
В	TNMG160408-HA H01	0,8 mm	Korloy
С	TNMG160404ER-SI T9325	0,4 mm	Dormer
D	TNMG160408ER-SI T9325	0,8 mm	Dormer

Fonte: Autor

As análises iniciais serão dos plásticos de engenharia de uso geral, o polietileno de ultra alto peso molecular (PEUAPM) e o polióxido de metileno (POM), nesta ordem.

Ao iniciar os registros com o analisador de energia, as primeiras informações são da ferramenta em vazio, ou seja, a ferramenta percorre uma distância, durante um tempo de dez segundos, sem tocar o material a ser usinado, registrando a potência exigida para movimentar o conjunto mecânico. Ao iniciar o minuto seguinte e com a ferramenta já posicionada, durante os cinquenta segundos restantes, o carro principal do torno é acionado para iniciar o corte durante o tempo definido em T para cada material, conforme consta nas Tabelas 2 e 3. Estas quatro ações, são separadas por cores nas Tabelas apresentadas nos Apêndices B ao O. O intervalo usinado, variou o comprimento, na mesma proporção em que variou o tempo e a rotação.

6.1 Polietileno de ultra alto peso molecular – PEUAPM

Cada um dos quatro insertos (A, B, C e D), usinaram três intervalos cada um, no PEUAPM, somando doze intervalos no total.

Com os dados coletados pelo analisador de energia durante as usinagens, foram criados os gráficos de potência, com as informações coletadas durante as usinagens de cada ferramenta.

6.1.1 Inserto A

Os primeiros dados a serem analisados, foram coletados durante as três usinagens do PEUAPM, com a ferramenta A.

Os gráficos gerados com as informações coletadas pelo analisador de energia, geraram imagens irregulares e confusas, dificultando muito o entendimento do comportamento da potência do motor durante o processo de usinagem.

O gráfico gerado com os dados da soma das potências médias das três fases do motor, medida durante a primeira usinagem do PEUAPM, com o inserto A e sem o tratamento dos dados coletados pelo analisador de energia, é apresentado na Figura 25.

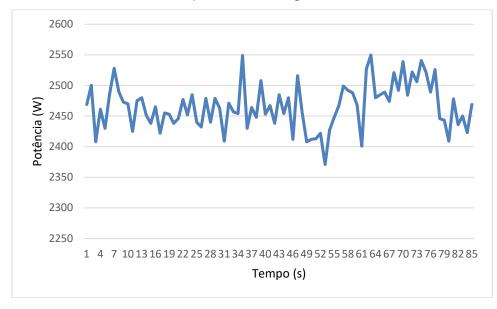


Figura 25: Potência medida na primeira usinagem do PEUAPM com o inserto A

Fonte: Autor

Os dados referentes aos períodos em que a máquina operou em vazio, ou seja, o período em que a ferramenta não tocou a peça, é apresentado na Tabela 05 entra as linhas 1 ao 4.

O período de espera, que é o tempo em que o torno esteve ligado e aguardando

iniciar a marcação do minuto seguinte para iniciar a usinagem. Linhas 49 ao 52 da Tabela 05.

O período apresentado entre as linhas 61 ao 64, é o intervalo de tempo em que foi coletado os dados do processo de usinagem do material.

As informações coletadas em sequência, foram identificadas na planilha e separadas para posterior cálculo da potência equivalente, para cada um dos três períodos citados.

O analisador de energia, foi programado para fazer a leitura da potência média de cada uma das três fases do motor elétrico, a cada segundo.

Na planilha gerada com os dados coletados pelo analisador de energia, apresenta uma coluna com as informações de Pt+_Avg [W], que é a soma das potências médias das três fases em cada segundo e este foi o dado utilizado para construir o gráfico de potência de cada ensaio. Um exemplo é apresentado na Tabela 05.

Tabela 05: Potência média

Pos.	Time	Pt+_Avg [W]
1	21/10/2019 16:00:00	2469
2	21/10/2019 16:00:01	2500
3	21/10/2019 16:00:02	2408
4	21/10/2019 16:00:03	2461
49	21/10/2019 16:00:48	2408
50	21/10/2019 16:00:49	2412
51	21/10/2019 16:00:50	2413
52	21/10/2019 16:00:51	2422
61	21/10/2019 16:01:00	2401
62	21/10/2019 16:01:01	2527
63	21/10/2019 16:01:02	2550
64	21/10/2019 16:01:03	2480
		•••

Fonte: Adaptado do Autor

A Tabela 05, é um resumo dos dados coletados pelo analisador de energia, durante a primeira usinagem do PEUAPM, com a ferramenta A, com raio de ponta de 0,4 mm. As demais tabelas completas, são apresentadas nos Apêndices de B ao O.

A potência equivalente (Peq) (FELIPPO FILHO, 2000) foi calculada e aplicado

o mesmo valor para todo o período de tempo, proporcionando um gráfico linear.

Para os cálculos da potência equivalente, utilizou-se a Equação 11.

$$P_{eq} = \sqrt{\frac{\sum_{i=1}^{n} P_i^2 \cdot t_i}{\sum t_i}}$$
 (11)

Aplicando a equação para o cálculo da Peq, os intervalos tiveram valores constantes em todo o período de tempo equivalente na planilha.

Foram registradas as potências nas condições em vazio, espera e em carga, durante a primeira, segunda e terceira usinagem do PEUAPM, com o inserto A.

A média entre as potências, nas três condições (em vazio, espera e carga) e o registro da potência equivalente da primeira, segunda e terceira usinagem, são apresentadas na Tabela 06.

Tabela 06: Potência equivalente (W) A (PEUAPM)

Usinagem	vazio	espera	carga
Primeira	2465,7	2455,4	2501,6
Segunda	2634,0	2624,5	2656,1
Terceira	2552,8	2506,8	2603,4
Média	$2550,8 \pm 0,3$	$2528,9 \pm 0,3$	$2587,0 \pm 0,3$

Fonte: Autor

O processo experimental que determina a potência média nas condições citadas anteriormente, apresenta um grau de incerteza da medição, que varia em função do número de amostras e a incerteza do instrumento de medição, conforme indicado no manual do analisador de energia (ANEXO A).

Foi calculada a incerteza para indicar a qualidade da medida da potência média equivalente $(u_{\overline{Peq}})$ de uma forma quantitativa (APÊNDICE A). As incertezas das médias das potências equivalentes são devidas às variações das potências medidas durante os experimentos ou condições ambientais como temperatura e ruído elétrico.

Os dados organizados conforme apresentado na Tabela 06, tornou possível padronizar estes intervalos de tempo, facilitando as comparações e tornando mais compreensível, como apresentado no gráfico da Figura 26.

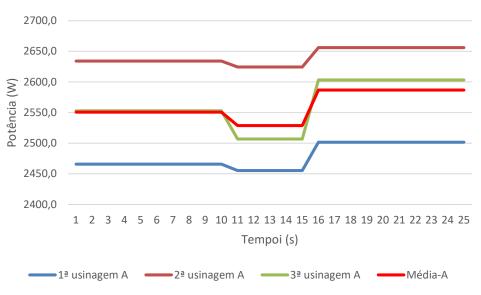


Figura 26: Potência medida durante a usinagem do PEUAPM com inserto A

Observa-se que nos primeiros dez segundos a ferramenta percorre o intervalo de usinagem em vazio, ou seja, há um deslocamento da ferramenta sem tocar o material.

Entre dez e quinze segundos, é o tempo de espera, apesar do torno estar ligado, não há movimento da ferramenta e dos dezesseis segundos em diante, ocorre um aumento da carga durante a usinagem do material, o que exige um aumento de potência do motor da máquina.

Para comparação futura, foram calculadas as diferenças de potência do motor na condição do torno em vazio, em relação ao torno em espera e também entre a condição da máquina em carga e a condição em espera. Conhecendo estes dados, foi possível calcular a potência de corte, em cada uma das três usinagens, subtraindo o primeiro dado do segundo para as três usinagens e o mesmo foi feito para a média, como apresentado na Tabela 07.

Tabela 07: Potência de corte A (W) (PEUAPM)

Usinagem	vazio/espera	carga/espera	corte
Primeira	10,3	46,3	35,9
Segunda	9,5	31,6	22,1
Terceira	46,0	96,6	50,6
Média	$21,9 \pm 0,3$	$58,2 \pm 0,3$	$36,2 \pm 0,3$

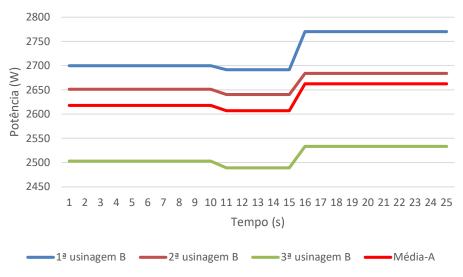
Fonte: Autor

A média calculada para a potência de corte da ferramenta A, é de 36.2 ± 0.3 watts.

6.1.2 Inserto B

O processo de usinagem da ferramenta B, com raio de ponta de 0,8 mm, foi analisado nas mesmas condições do inserto A.

Os cálculos da potência equivalente, gerou a Tabela 08.


Tabela 08: Potência equivalente B (PEUAPM)

Usinagem	vazio	espera	carga
Primeira	2699,8	2691,5	2770,3
Segunda	2651,0	2640,5	2683,9
Terceira	2502,9	2489,3	2533,6
Média	$2617,9 \pm 0,3$	2607,1 ± 0,3	2662,6 ± 0,3

Fonte: Autor

Os dados de potência equivalentes da Tabela 08, gerou o gráfico apresentado na Figura 27.

Figura 27: Potência medida durante a usinagem do PEUAPM com inserto B:

Fonte: Autor

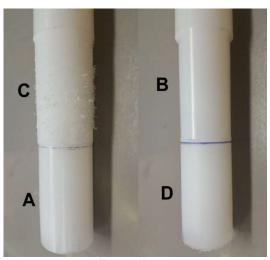
Na Tabela 09, são apresentadas as diferenças de potência do motor na condição do torno em vazio, em relação ao torno em espera e também entre a

condição da máquina em carga e a condição em espera para o inserto B.

Tabela 09: Potência de corte B (W) (PEUAPM)

Usinagem	vazio/espera	carga/espera	corte
Primeira	8,2	78,8	70,5
Segunda	10,6	43,4	32,8
Terceira	13,5	44,3	30,7
Média	$10,8 \pm 0,3$	$55,5 \pm 0,3$	$44,7 \pm 0,3$

Fonte: Autor


Para a ferramenta B, a média da potência de corte é 44,7 ± 0,3 watts.

É sabido que não há ferramenta destinada exclusivamente à usinagem de materiais poliméricos, porém, a experiência prática, mostra que as ferramentas destinadas a usinagem de alumínio apresentam os melhores resultados.

As ferramentas C e D, usadas na usinagem do PEUAPM, não apresentaram resultados satisfatórios.

Com os parâmetros de usinagem utilizados, provocou forte vibração do material e não foi possível alcançar o acabamento desejado ou fazer a medição da rugosidade em sua superfície. A qualidade do acabamento dos quatro intervalos, podem ser observados na Figura 28.

Figura 28: Primeira usinagem com os insertos A, B, C e D, PEUAPM

Fonte: Autor

O problema encontrado com a vibração dos insertos C e D, persistiu durante

os ensaios seguintes, o que leva a conclusão de que, dentro das condições de usinagem utilizadas neste ensaio, esta ferramenta não satisfaz as condições mínimas para o ensaio proposto, para medição de acabamento superficial e esforço de corte.

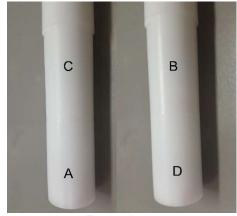
A Tabela 10, apresenta as potências médias de corte das ferramentas A e B, durante o ensaio do PEUAPM. As ferramentas C e D, não foram registradas.

Tabela 10: Potências médias de corte (PEUAPM)

inserto	Watts
Α	36,2 ± 0,3
В	$44,7 \pm 0,3$

Fonte: Autor

Como esperado, a ferramenta B, cujo raio de ponta do inserto é maior que a ferramenta A, exigiu uma potência maior no processo de corte.


Devido a fortes vibrações durante a usinagem e a grande oscilação na coleta dos dados de potência do analisador de energia, não foi possível fazer registro das ferramentas C e D.

6.2 Polióxido de metileno - POM

Os insertos A, B, C e D, usinaram quatro intervalos no plástico de engenharia de uso comum POM e como nos ensaios do PEUAPM, este processo de usinagem se repetiu por três vezes.

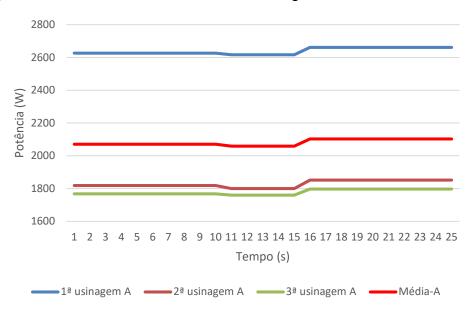
A Figura 29, apresenta a barra de POM, após usinagem dos quatro intervalos.

Figura 29: Usinagens do POM com os insertos A, B, C e D

Fonte: Autor

6.2.1 Inserto A

As respectivas potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do POM e suas respectivas médias como o inserto A, são apresentadas na Tabela 11.


Tabela 11: Potência equivalente A (POM)

vazio	espera	carga
2626,6	2617,0	2661,3
1818,7	1800,1	1851,8
1767,5	1760,3	1797,9
$2070,9 \pm 0,3$	$2059,1 \pm 0,3$	2103,7 ± 0,3
	2626,6 1818,7 1767,5	2626,6 2617,0 1818,7 1800,1 1767,5 1760,3

Fonte: Autor

Com os dados da potência equivalente das três usinagens e a média entre elas, gerou o gráfico apresentado na figura 30.

Figura 30: Potência medida durante a usinagem do POM com inserto A

Fonte: Autor

Nos primeiros dez segundos as ferramentas percorrem o intervalo de usinagem em vazio.

Entre dez e quinze segundos é o tempo de espera e entre dezesseis e vinte e cinco segundos, é o tempo de usinagem do material POM, com o inserto A.

Calculada a diferença de potência do motor do torno em vazio, em relação a potência em espera e também a diferença de potência em carga em relação a espera, calculou-se a potência de corte em cada uma das três usinagens, subtraindo o primeiro dado do segundo e o mesmo foi feito para a média.

A Tabela 12, mostra a potência média requerida para o processo de corte do POM com o inserto A, já descontada a potência necessária para a movimentação do conjunto mecânico da máquina.

Tabela 12: Potência de corte A (W) (POM)

Usinagem	vazio/espera	carga/espera	corte
Primeira	9,6	44,4	34,8
Segunda	18,6	51,7	33,1
Terceira	7,1	37,6	30,4
Média	11,8 ± 0,3	$44,6 \pm 0,3$	$32,8 \pm 0,3$

Fonte: Autor

Na usinagem do POM, a média da potência de corte para a ferramenta A, foi de 32.8 ± 0.3 Watts.

6.2.2 Inserto B

As potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do POM, com o inserto B e suas respectivas médias, são apresentadas na Tabela 13.

Tabela 13: Potência equivalente B (POM)

Usinagem	vazio	espera	carga
Primeira	2619,2	2607,0	2653,4
Segunda	1786,9	1770,1	1813,2
Terceira	1867,7	1862,8	1943,0
Média	$2091,3 \pm 0,3$	$2080,0 \pm 0,3$	$2136,5 \pm 0,3$

Fonte: Autor

As informações da Tabela 13, gerou o gráfico apresentado na Figura 31.

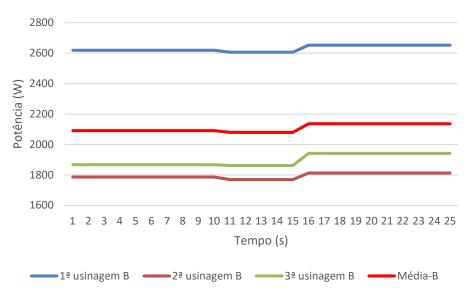


Figura 31: Potência medida durante a usinagem do POM com inserto B

A potência média requerida para o processo de corte, subtraída a potência necessária para a movimentação do conjunto mecânico (vazio/espera) da potência exigida durante a usinagem (carga/espera), é apresentada na Tabela 14.

Tabela 14: Potência de corte B (W) (POM)

Usinagem	vazio/espera	carga/espera	corte
Primeira	12,2	46,4	34,2
Segunda	16,8	43,1	26,3
Terceira	4,9	80,1	75,3
Média	$11,3 \pm 0,3$	$56,6 \pm 0,3$	$45,3 \pm 0,3$

Fonte: Autor

A potência média para a ferramenta B, durante a usinagem do POM, foi de 45,3 ± 0,3 Watts.

6.2.3 Inserto C

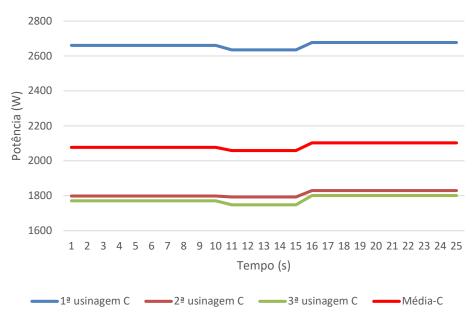

As potências equivalentes em vazio, espera, carga e média, calculadas a partir das informações coletadas durante as três usinagens do POM com o inserto C, são apresentadas na Tabela 15.

Tabela 15: Potência equivalente C (POM)

Usinagem	vazio	espera	carga
Primeira	2660,1	2635,3	2676,9
Segunda	1798,9	1793,9	1830,4
Terceira	1771,0	1748,7	1801,9
Média	$2076,7 \pm 0,3$	$2059,3 \pm 0,3$	$2103,0 \pm 0,3$

Os dados da Tabela 15, gerou o gráfico apresentado na figura 32.

Figura 32: Potência medida durante a usinagem do POM com inserto C

Fonte: Autor

A Tabela 16, apresenta a potência média requerida para o processo de corte, subtraindo a potência necessária para a movimentação do conjunto mecânico (vazio/espera) da potência exigida durante a usinagem (carga/espera).

Tabela 16: Potência de corte C (W) (POM)

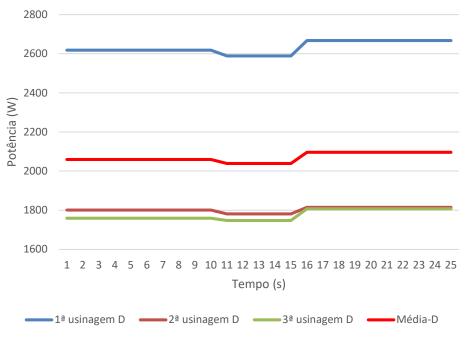
Usinagem	vazio/espera	carga/espera	corte
Primeira	24,8	41,6	16,8
Segunda	5,0	36,5	31,5
Terceira	22,4	53,2	30,8
Média	$17,4 \pm 0,3$	43.8 ± 0.3	$26,4 \pm 0,3$

Fonte: Autor

A potência média para a ferramenta C, foi de 26,4 ± 0,3 W.

6.2.4 Inserto D

As potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do POM, com o inserto D e suas respectivas médias, são apresentadas na Tabela 17.


Tabela 17: Potência equivalente D (POM)

Usinagem	vazio	espera	carga
Primeira	2618,6	2588,9	2667,8
Segunda	1800,4	1781,4	1814,7
Terceira	1758,6	1748,1	1807,5
Média	$2059,2 \pm 0,3$	$2039,5 \pm 0,3$	$2096,7 \pm 0,3$

Fonte: Autor

Os dados da Tabela 17 gerou o gráfico, apresentado na Figura 33.

Figura 33: Potência medida durante a usinagem do POM com inserto D

Fonte: Autor

Calculada a diferença entre vazio-espera e carga-espera, resultou na potência exigida para a usinagem, apresentada na tabela 18 como corte.

Tabela 18: Potência de corte D (W) (POM)

Usinagem	vazio/espera	carga/espera	corte
Primeira	29,7	79,0	49,3
Segunda	18,9	33,3	14,3
Terceira	10,5	59,4	48,9
Média	$19,7 \pm 0,3$	$57,2 \pm 0,3$	$37,5 \pm 0,3$

A potência média para a ferramenta D, foi de 37,5 ± 0,3 W.

As médias das potências de corte das quatro ferramentas utilizadas na usinagem do POM, são apresentadas na Tabela 19

Tabela 19: Potências médias de corte de corte (POM)

inserto	Watts
Α	$32,8 \pm 0,3$
В	$45,3 \pm 0,3$
С	$26,4 \pm 0,3$
D	$37,5 \pm 0,3$

Fonte: Autor

A ferramenta A, com raio de ponta de 0,4 mm, exigiu uma potência menor que a ferramenta B, de raio 0,8 mm. O mesmo comportamento, notou-se com as ferramentas C e D, com raios de ponta de 0,4 mm e 0,8 mm, respectivamente.

Após todo o processo, os insertos foram examinados e não foi notado desgaste nas arestas cortantes das ferramentas.

6.3 Politetrafluoretileno – PTFE

Os ensaios foram repetidos para o PTFE, na mesma sequência, usando os mesmos insertos, com aresta de corte diferente, como nos ensaios anteriores.

A Figura 34, apresenta o PTFE após um ensaio de usinagem.

C B

Figura 34: Usinagens do PTFE com os insertos A, B, C e D

6.3.1Inserto A

As informações coletadas durante as três usinagens do PTFE, com o inserto A, originou a Tabela 20.

Tabela 20: Potência equivalente A (PTFE)

Usinagem	vazio	espera	carga
Primeira	2648,0	2642,8	2668,1
Segunda	1697,0	1689,3	1711,8
Terceira	1690,5	1666,5	1707,6
Média	$2011,8 \pm 0,3$	$1999,5 \pm 0,3$	$2029,2 \pm 0,3$
•			

Fonte: Autor

A Tabela 20, gerou o gráfico apresentado na Figura 35.

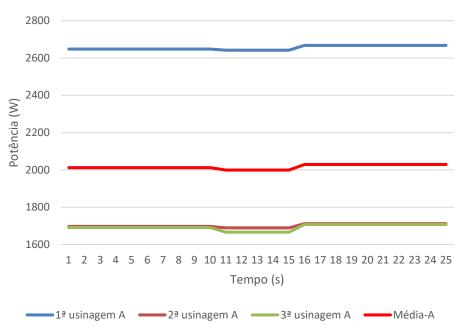


Figura 35: Potência medida durante a usinagem do PTFE com inserto A

A diferença entre carga/espera e vazio/espera, resultou na potência exigida para a usinagem, que é apresentada como corte, na tabela 21.

Tabela 21: Potência de corte A (W) (PTFE)

Usinagem	vazio/espera	carga/espera	corte
Primeira	5,2	25,4	20,1
Segunda	7,7	22,5	14,8
Terceira	24,0	41,2	17,2
Média	$12,3 \pm 0,3$	$29,7 \pm 0,3$	$17,4 \pm 0,3$

Fonte: Autor

A potência média de corte para a ferramenta A, durante a usinagem do PTFE, foi de 17.4 ± 03 W.

6.3.2 Inserto B

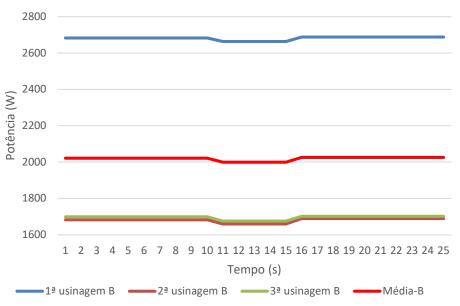

As potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do POM, com o inserto B e suas respectivas médias, são apresentadas na Tabela 22.

Tabela 22: Potência equivalente B (PTFE)

Usinagem	vazio	espera	carga
Primeira	2682,6	2663,6	2687,9
Segunda	1681,8	1660,0	1689,2
Terceira	1698,7	1675,8	1701,8
Média	$2021,0 \pm 0,3$	$1999,8 \pm 0,3$	$2026,3 \pm 0,3$

Os dados da Tabela 22, gerou o gráfico apresentado na figura 36.

Figura 36: Potência medida durante a usinagem do PTFE com inserto B

Fonte: Autor

A potência média requerida para o processo de corte, subtraída a potência necessária para a movimentação do conjunto mecânico (vazio/espera) da potência exigida durante a usinagem (carga/espera), é apresentada na Tabela 23.

Tabela 23: Potência de corte B (W) (PTFE)

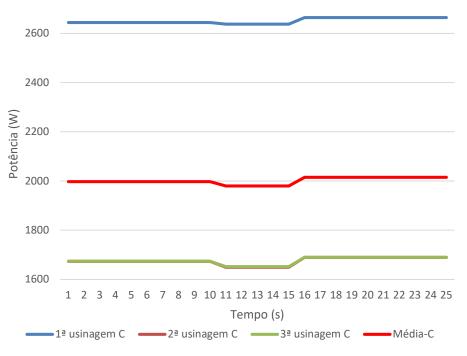
Usinagem	vazio/espera	carga/espera	corte
Primeira	19,0	24,3	5,3
Segunda	21,9	29,2	7,3
Terceira	22,9	26,0	3,1
Média	$21,3 \pm 0,3$	$26,5 \pm 0,3$	$5,2 \pm 0,3$

Fonte: Autor

Na usinagem do PTFE, a potência média para a usinagem do PTFE, com a ferramenta B, foi de 5.2 ± 0.3 W.

6.3.3 Inserto C

As potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do PTFE, com o inserto C e suas respectivas médias, são apresentadas na Tabela 24.


Tabela 24: Potência equivalente C (PTFE)

Usinagem	vazio	espera	carga
Primeira	2643,8	2637,8	2664,3
Segunda	1673,3	1649,0	1689,8
Terceira	1673,8	1652,0	1689,7
Média	$1997,0 \pm 0,3$	1979,6 ± 0,3	$2014,6 \pm 0,3$

Fonte: Autor

Os dados da Tabela 24, gerou o gráfico, apresentado na Figura 37.

Figura 37: Potência medida durante a usinagem do PTFE com inserto C

Fonte: Autor

A potência média requerida para o processo de corte, resultante da subtração da potência necessária para a movimentação do conjunto mecânico (vazio/espera) da potência exigida durante a usinagem (carga/espera), é apresentada na Tabela 25.

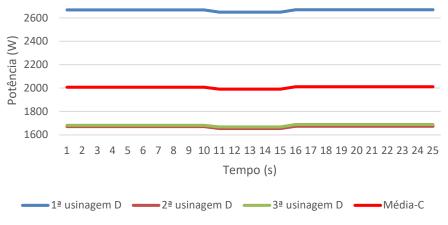
Tabela 25: Potência de corte C (W) (PTFE)

Usinagem	vazio/espera	carga/espera	corte
Primeira	6,0	26,5	20,5
Segunda	24,3	40,8	16,5
Terceira	21,8	37,7	16,0
Média	$17,3 \pm 0,3$	$35,0 \pm 0,3$	$17,7 \pm 0,3$

Para a usinagem do POM, a média calculada para a potência de corte da ferramenta C, foi de 17.7 ± 0.3 W.

6.3.4 Inserto D

As potências equivalentes em vazio, espera, carga e média, calculadas a partir das informações coletadas durante as três usinagens do PTFE com o inserto D, são apresentadas na Tabela 26.


Tabela 26: Potência equivalente D (PTFE)

Usinagem	vazio	espera	carga
Primeira	2668,1	2649,0	2670,2
Segunda	1670,0	1654,1	1674,3
Terceira	1681,5	1668,2	1688,3
Média	$2006,5 \pm 0,3$	$1990,5 \pm 0,3$	$2010,9 \pm 0,3$

Fonte: Autor

Os dados da Tabela 26, gerou o gráfico, apresentado na Figura 38.

Figura 38: Potência medida durante a usinagem do PTFE com inserto D

Fonte: Autor

A diferença das potências, entre vazio/espera e carga/espera, resultou na potência exigida para a usinagem, apresentada como corte, na Tabela 27.

Tabela 27: Potência de corte D (W) (PTFE)

Usinagem	vazio/espera	carga/espera	corte
Primeira	19,1	21,2	2,1
Segunda	15,9	20,1	4,2
Terceira	13,2	20,1	6,8
Média	$16,1 \pm 0,3$	$20,5 \pm 0,3$	$4,4 \pm 0,3$

Fonte: Autor

Na usinagem do PTFE, a média da potência de corte para a ferramenta D, foi de $4,4 \pm 0,3$ W.

As médias das potências de corte, calculadas para as quatro ferramentas utilizadas no ensaio do PTFE, estão representados na Tabela 28.

Tabela 28: Potências medias de corte (PTFE)

inserto	Watts	
Α	17,4 ± 0,3	
В	$5,2 \pm 0,3$	
С	$17,7 \pm 0,3$	
D	$4,4 \pm 0,3$	

Fonte: Autor

As ferramentas com raio de ponta de 0,4 mm (A e C), exigiram mais potência para usinar o PTFE, em relação as ferramentas de 0,8 mm (B e D).

6.4 Polieteretercetona – PEEK

Os ensaios anteriores, foram repetidos para o PEEK, na mesma sequência e com as mesmas ferramentas (A, B, C e D). Figura 39.

Figura 39: PEEK usinado com os insertos A, B, C e D

As informações coletadas durante os ensaios, geraram tabelas e gráficos para comparação dos resultados.

6.4.1Inserto A

As potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do PEEK, com o inserto A e suas respectivas médias, são apresentadas na Tabela 29.

Tabela 29: Potência equivalente A (PEEK)

-			-
Usinagem	vazio	espera	carga
Primeira	1823,9	1820,0	1891,2
Segunda	1221,6	1219,0	1292,0
Terceira	1332,7	1329,6	1395,8
Média	$1459,4 \pm 0,3$	$1456,2 \pm 0,3$	$1526,3 \pm 0,3$

Fonte: Autor

Os dados da Tabela 29, gerou o gráfico, apresentado na Figura 40.

2000

1800

1600

1400

1200

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Tempo (s)

1ª usinagem A 2ª usinagem A 3ª usinagem A Média-A

Figura 40: Potência medida durante a usinagem do PEEK com inserto A

A diferença calculada entre vazio/espera e carga/espera, resultou na potência exigida para a usinagem, apresentada na Tabela 30 como corte.

Tabela 30: Potência de corte A (W) (PEEK)

Usinagem	vazio/espera	carga/espera	corte
Primeira	3,9	71,2	67,3
Segunda	2,6	73,0	70,4
Terceira	3,1	66,2	63,1
Média	$3,2 \pm 0,3$	$70,1 \pm 0,3$	$66,9 \pm 0,3$

Fonte: Autor

Para a usinagem do PEEK, a potência média exigida para a ferramenta A, foi de 66.9 ± 0.3 W.

6.4.2 Inserto B

As potências equivalentes em vazio, espera, carga e média, calculadas a partir das informações coletadas durante as três usinagens do PEEK com o inserto A, são apresentadas na Tabela 31.

Tabela 31: Potência equivalente B (PEEK)

Usinagem	vazio	espera	carga
Primeira	1763,6	1761,0	1834,6
Segunda	1170,6	1168,1	1244,8
Terceira	1278,4	1272,0	1349,3
Média	$1404,2 \pm 0,3$	1400,4 ± 0,3	$1476,2 \pm 0,3$

Os dados da Tabela 31, gerou o gráfico, apresentado na Figura 41.

2000
1900
1800
1700

1600
1500
1400
1300
1200
1100
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25
Tempo (s)

13 usinagem B 23 usinagem B Média-B

Figura 41: Potência medida durante a usinagem do PEEK com inserto B

Fonte: Autor

Na Tabela 32, são apresentadas as diferenças de potência do motor na condição do torno em vazio, em relação ao torno em espera e também entre a condição da máquina em carga e a condição em espera para o inserto B.

Tabela 32: Potência de corte B (W) (PEEK)

Usinagem	vazio/espera	carga/espera	corte
Primeira	2,6	73,6	70,9
Segunda	2,5	76,7	74,2
Terceira	6,4	77,3	70,9
Média	$3,9 \pm 0,3$	$75,9 \pm 0,3$	$72,0 \pm 0,3$

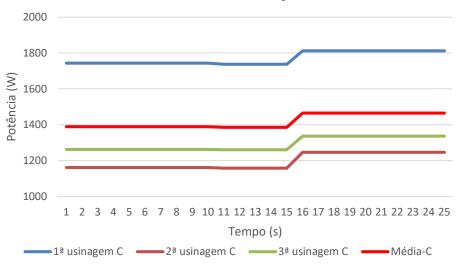
Fonte: Autor

Na usinagem do POM, a média da potência de corte para a ferramenta B é de 72 ± 0.3 watts.

6.4.3 Inserto C

As potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do PEEK, com o inserto B e suas

respectivas médias, são apresentadas na Tabela 33.


Tabela 33: Potência equivalente C (PEEK)

Usinagem	vazio	espera	carga
Primeira	1743,3	1737,7	1812,4
Segunda	1161,0	1155,6	1246,9
Terceira	1263,2	1260,7	1336,6
Média	1389,2 ± 0,3	$1384,7 \pm 0,3$	$1465,3 \pm 0,3$

Fonte: Autor

Os dados da Tabela 33, gerou o gráfico apresentado na Figura 42.

Figura 42: Potência medida durante a usinagem do PEEK com inserto C

Fonte: Autor

As potências equivalentes em vazio, espera e carga, calculadas a partir das informações coletadas durante as três usinagens do PEEK, com o inserto C e suas respectivas médias, são apresentadas na Tabela 34.

Tabela 34: Potência de corte C (W) (PEEK)

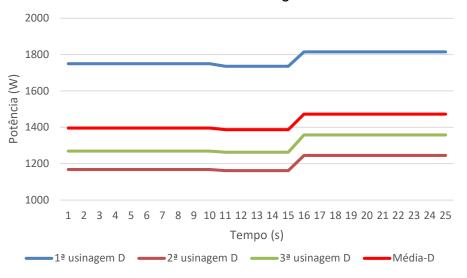
Usinagem	vazio/espera	carga/espera	corte
Primeira	5,6	74,7	69,1
Segunda	5,4	91,3	85,9
Terceira	2,5	75,9	73,4
Média	$4,5 \pm 0,3$	$80,6 \pm 0,3$	$76,1 \pm 0,3$

Fonte: Autor

Para a ferramenta C, a média da potência de corte é de 76,1 ± 0,3 W.

6.4.4 Inserto D

As potências equivalentes em vazio, espera, carga e média, calculadas a partir das informações coletadas durante as três usinagens do PEEK com o inserto C, são apresentadas na Tabela 35.


Tabela 35: Potência equivalente D (PEEK)

Usinagem	vazio	espera	carga
Primeira	1749,3	1735,8	1814,9
Segunda	1167,2	1161,8	1245,8
Terceira	1269,1	1262,8	1357,9
Média	$1395,2 \pm 0,3$	$1386,8 \pm 0,3$	$1472,9 \pm 0,3$

Fonte: Autor

Os dados da Tabela 35, gerou o gráfico apresentado na Figura 43.

Figura 43: Potência medida durante a usinagem do PEEK com inserto D

Fonte: Autor

A potência média requerida para o processo de corte, é uma resultante da potência necessária para a movimentação do conjunto mecânico (vazio/espera), subtraída da potência exigida durante a usinagem (carga/espera), apresentada na Tabela 36.

Tabela 36: Potência de corte D (W) (PEEK)

Usinagem	vazio/espera	carga/espera	corte
Primeira	13,5	79,1	65,7
Segunda	5,4	84,0	78,6
Terceira	6,3	95,1	88,8
Média	$8,4 \pm 0,3$	$86,1 \pm 0,3$	$77,7 \pm 0,3$

Na usinagem do POM, a média da potência de corte para a ferramenta D, é de 77.7 ± 0.3 W.

Na Tabela 37, estão as médias referentes as quatro ferramentas utilizadas no ensaio do PEEK.

Tabela 37: Potências medias de corte (PEEK)

inserto	Watts		
Α	$66,9 \pm 0,3$		
В	$72,0 \pm 0,3$		
С	$76,1 \pm 0,3$		
D	$77,7 \pm 0,3$		

Fonte: Autor

Ao observar as médias das potências de corte, nota-se que os insertos A e B, com raios de ponta de 0,4 mm e 0,8 mm, respectivamente, exigem menos potência do motor para usinar o PEEK.

Os insertos C e D, oferecerem maior resistência ao corte, exigindo maior potência do motor, para efetuar o processo de corte deste plástico de engenharia de uso especial.

7 RUGOSIDADE

7.1 PEUAPM

Para cada intervalo usinado dos corpos de prova, do plástico de engenharia de uso geral PEUAPM, usinado pelos insertos A e B, com raio de ponta de 0,4 e 0,8 mm respectivamente, foram tomadas três medições de rugosidade média (Ra), em pontos diferentes da mesma superfície usinada.

A unidade de medida usada para a Ra é o micrômetro (µm).

A Tabela 38, apresenta as medidas de rugosidade e a média dos ensaios para cada inserto.

Tabela 38: PEUAPM Rugosidade média (µm)

Rugosidade / usinagem	Inserto A	Inserto B
1ª ensaio / Corpo de prova 1	1,95	1,95
2ª ensaio / Corpo de prova 1	2,07	2,19
3ª ensaio / Corpo de prova 1	1,76	1,84
1ª ensaio / Corpo de prova 2	1,82	1,88
2ª ensaio / Corpo de prova 2	1,82	1,97
3ª ensaio / Corpo de prova 2	1,82	2,14
1ª ensaio / Corpo de prova 3	1,96	1,67
2ª ensaio / Corpo de prova 3	2,07	1,87
3ª ensaio / Corpo de prova 3	1,85	2,02
Média	$1,9 \pm 0,16$	1,95 ± 0,16

Fonte: Autor

Durante o processo de usinagem do plástico de engenharia PEUAPM, com os insertos C e D, ocorreu uma forte vibração que resultou numa superfície de revolução com baixa qualidade do acabamento superficial, provocados pelas ferramentas monocortantes do mesmo grupo de insertos, conforme apresentadas na tabela 04.

Devido ao estado da superfície, deixados pelos insertos C, com raio de ponta de 0,4 mm e D, com raio de 0,8 mm, decidiu-se por não medir a rugosidade nesses intervalos, evitando danos no equipamento de medição.

7.2 POM

O mesmo processo foi utilizado para criar a Tabela 39, que apresenta os resultados obtidos na medição de rugosidade média do POM com os quatro insertos.

Tabela 39: POM Rugosidade média (µm)

Rugosidade / usinagem	Inserto A	Inserto B	Inserto C	Inserto D
1ª ensaio / Corpo de prova 1	0,80	0,47	1,20	0,76
2ª ensaio / Corpo de prova 1	0,78	0,43	1,28	0,70
3ª ensaio / Corpo de prova 1	0,76	0,41	1,35	0,67
1ª ensaio / Corpo de prova 2	0,79	0,46	1,26	0,83
2ª ensaio / Corpo de prova 2	0,81	0,43	1,33	0,85
3ª ensaio / Corpo de prova 2	0,76	0,47	1,31	0,75
1ª ensaio / Corpo de prova 3	0,74	0,48	1,27	0,79
2ª ensaio / Corpo de prova 3	0,77	0,52	1,47	0,78
3ª ensaio / Corpo de prova 3	0,80	0,46	1,44	0,81
Média	$0,78 \pm 0,16$	$0,46 \pm 0,16$	1,32 ± 0,16	$0,77 \pm 0,16$

Fonte: Autor

Durante a usinagem do POM, não ocorreram interferências, como vibração por exemplo, e todos as medições puderam ser feitas e seus resultados coletados.

7.3 PTFE

Seguindo os mesmos processos, foram coletados os dados da medição da rugosidade média para o PTFE e apresentados na Tabela 40.

Tabela 40: PTFE Rugosidade média (µm)

Rugosidade / usinagem	Inserto A	Inserto B	Inserto C	Inserto D	
1ª ensaio / Corpo de prova 1	1,78	1,43	4,46	5,10	
2ª ensaio / Corpo de prova 1	1,75	1,60	5,23	5,16	
3ª ensaio / Corpo de prova 1	1,91	1,78	6,88	4,59	
1ª ensaio / Corpo de prova 2	1,72	1,72	5,03	5,04	
2ª ensaio / Corpo de prova 2	1,56	1,72	4,92	4,74	
3ª ensaio / Corpo de prova 2	1,39	1,48	5,72	4,79	
1ª ensaio / Corpo de prova 3	1,89	1,98	5,39	4,55	
2ª ensaio / Corpo de prova 3	2,20	1,87	5,14	4,64	
3ª ensaio / Corpo de prova 3	1,78	1,90	5,20	3,64	
Média	1,77 ± 0,16	1,72 ± 0,16	5,33 ± 0,16	4,69 ± 0,16	
F4 A4					

Durante a usinagem, não houve qualquer interferência perceptível, mas notase uma diferença pronunciada nos resultados das medições de rugosidade entre as ferramentas C e D em comparação com os resultados de A e B.

7.4 PEEK

Na Tabela 41, está exposto os resultados referentes as medições de rugosidade do PEEK.

Tabela 41: PEEK Rugosidade média (µm)

Rugosidade / usinagem	Inserto A	Inserto B	Inserto C	Inserto D
1ª ensaio / Corpo de prova 1	1,32	0,58	2,21	1,66
2ª ensaio / Corpo de prova 1	1,35	0,67	1,97	1,61
3ª ensaio / Corpo de prova 1	1,23	0,74	1,88	1,50
1ª ensaio / Corpo de prova 2	1,17	0,95	1,87	1,50
2ª ensaio / Corpo de prova 2	1,15	0,99	2,18	1,56
3ª ensaio / Corpo de prova 2	1,16	0,99	1,58	1,57
1ª ensaio / Corpo de prova 3	1,43	0,59	1,79	1,15
2ª ensaio / Corpo de prova 3	1,38	0,55	1,74	1,17
3ª ensaio / Corpo de prova 3	1,40	0,53	1,74	1,28
Média	1,29 ± 0,16	$0,73 \pm 0,16$	1,89 ± 0,16	1,45 ± 0,16

Fonte: Autor

Com a medição simultânea da corrente e da tensão, pode-se calcular a potência aparente, e usando-se um wattímetro é possível medir a potência ativa. A estimativa da potência de usinagem por meio da potência elétrica pode ser realizada desde que se tenha um bom entendimento da teoria da eletricidade. Deve-se ter em mente que apenas a potência ativa, ou efetiva, é usada pela máquina-ferramenta e, mesmo assim, se medida na entrada do motor, sofrerá um decréscimo devido ao rendimento mecânico desse motor. Adicionalmente, como já foi mencionado, há o rendimento do sistema de transmissão dessa potência até o eixo-árvore, e, consequentemente, até a ferramenta ou peça. Vale lembrar, ainda, que o valor de cosφ varia muito ao longo da operação de um motor de indução, por exemplo: para operação a plena carga (cosφ ≅0,90), a cerca de metade da carga (cosφ ≅0,80), e se estiver sem carga (cosφ ≅20).(MACHADO et al., 2009)

Com a potência de corte, calculada pelo analisador de energia, foi possível calcular também força de corte, através da Equação 12:

$$Fc = \frac{Pc \times 60}{vc} (N) \tag{12}$$

Onde:

Fc = Força de corte (N)

Pc = Pressão de corte (W)

Vc = Velocidade de corte (m/min).

8 RESULTADOS E DISCUSSÕES

Para uma análise mais abrangente, foram criadas quatro Tabelas, de 42 a 45 com todos os dados coletados de cada plástico de engenharia ensaiados e dos insertos A e B, da fabricante Korloy e C e D, da fabricante Dormer e realizada uma análise, para fundamentar as discussões.

Tabela 42: Referências da usinagem do PEUAPM

Insertos	А	В	С	D
Potência de corte (W)	36	45		
Rugosidade Ra (μm)	1,903	1,948		
Força de corte (N)	10,8	13,5		
Tempo de usinagem (s)	32	32		
Comp. Total usinado (mm)	110,8	110,8		
Consumo (kWh)	4,050	5,062		

Fonte: Autor

Tabela 43: Referências da usinagem do POM

Insertos	Α	В	С	D
Potência de corte (W)	35	45	26	37
Rugosidade Ra (µm)	0,777	0,458	1,324	0,772
Força de corte (N)	10,5	13,5	7,8	11,1
Tempo de usinagem (s)	32	32	32	32
Comp. Total usinado (mm)	109,58	109,58	109,58	109,58
Consumo (kWh)	3,937	5,062	2,925	4,162

Fonte: Autor

Tabela 44: Referências da usinagem do PTFE

Insertos	Α	В	С	D
Potência de corte (W)	17	5	18	4
Rugosidade Ra (µm)	1,774	1,719	5,331	4,694
Força de corte (N)	5,1	1,5	5,4	1,2
Tempo de usinagem (s)	34	34	34	34
Comp. Total usinado (mm)	119,44	119,44	119,44	119,44
Consumo (kWh)	0,741	0,529	1,905	0,423

Tabela 45: Referências da usinagem do PEEK

Insertos	Α	В	С	D
Potência de corte (W)	67	72	77	78
Rugosidade Ra (μm)	1,287	0,731	1,885	1,445
Força de corte (N)	20,1	21,6	23,1	23,4
Tempo de usinagem (s)	31	31	31	31
Comp. Total usinado (mm)	71,03	71,03	71,03	71,03
Consumo (kWh)	7,780	8,361	8,942	9,058

Para os plásticos de engenharia de uso geral, PEUAPM e o POM, podemos concluir que os insertos da marca Korloy, que formam o grupo A/B, tiveram desempenho semelhantes, com potência de corte de 36 W com o inserto A, com raio de ponta de 0,4 mm, e 45 W com o inserto B, com raio de ponta de 0,8 mm, para o PEUAPM.

Para o POM, a potência exigida durante o processo de usinagem foi de 35 W com o inserto A e 45 W com o inserto B, porém a rugosidade medida, mostra uma grande diferença no acabamento superficial dos dois materiais. O PEUAPM, alcançou um Ra de 1,903 μ m, com a ferramenta A e 1,948 μ m, com a ferramenta B. O POM, teve uma Ra de 0,777 μ m, com a ferramenta A e um resultado ainda melhor com a ferramenta B de 0,458 μ m.

O consumo de energia elétrica para ambos, também foi bastante semelhante de 4,050 kWh com o inserto A e 5,062 com o B, para o PEUAPM e para o POM foram 3,937 kWh com o inserto A e 5,062 kWh com o B, havendo uma diferença de apenas 0,113 kWh, utilizando a ferramenta A.

Para o grupo da marca Dormer, formado pelos insertos C/D, não foi possível coletar informações para o PEUAPM. O perfil de corte da ferramenta, não é adequado para este material e sua alta elasticidade, provocou fortes vibrações ao contato com a ferramenta, evidenciando que ferramentas próprias para materiais poliméricos, devem ser estudadas com maior profundidade.

Os mesmos insertos usinaram o POM e a potência exigida foi ainda menor que o grupo anterior, porém, o acabamento superficial foi pior, pois a Ra, alcançada com a ferramenta C, com raio de ponta de 0,4 mm, foi de 1,324 µm e para a ferramenta D, com raio de ponta de 0,8 mm, foi de 0,772 µm. Se compararmos a potência exigida pelas ferramentas de mesmo raio na Tabela 43, veremos que o segundo grupo (C/D), usinou com menor esforço e consequentemente, consumiu menos energia que o

grupo A/B.

Portanto, com os parâmetros de corte utilizados e repetindo as mesmas ferramentas durante os processos de usinagem, podemos afirmar que o perfil das ferramentas C e D, não produziram resultados para esta pesquisa.

A comparação entre os resultados dos insertos A/B, entre o PEUAPM e o POM, foram muito semelhantes, porém, a ferramenta B, apresentou o melhor resultado no acabamento superficial, usinando o POM.

Comparando os dois grupos de insertos na usinagem do POM, podemos observar que o grupo C/D, exigiu menor potência durante a usinagem e também teve menor consumo de energia, mas o grupo A/B, apresentou o melhor acabamento superficial.

Para os plásticos de engenharia de uso especiais, também chamados de superplásticos, o processo de usinagem ocorreu sem intercorrências para os quatro insertos e nos dois materiais escolhidos, o PTFE e o PEEK.

Comparando os resultados do primeiro grupo de insertos A/B, nas Tabelas 44 e 45, observa-se grandes diferenças. A potência de corte exigida pelo PTFE, para o inserto A foi de 17 W e para o PEEK, foi de 67 W e o acabamento superficial, resultou numa Ra de 1,774 µm, para o PTFE e de 1,287 µm para o PEEK e o consumo de energia, foi de 0,741 kWh na usinagem do PTFE e para o PEEK, foi de 7,780 kWh, com a ferramenta A.

A usinagem com o inserto B, requer uma potência de 5 W, para a usinagem do PTFE e 72 W, para o PEEK e o acabamento superficial, resultou numa Ra de 1,719 μ m e 0,731 μ m, respectivamente. O menor consumo de energia foi de 0,529 kWh, do PTFE, contra 8,361 kWh do PEEK.

As informações colhidas na usinagem do segundo grupo de insertos, C/D, apresentam uma potência de corte com o inserto C, de 18 W para o PTFE e para o PEEK de 77 W, enquanto o acabamento superficial, foi de 5,331 μm e 1,885 μm, respectivamente. O consumo de energia, durante a usinagem do PTFE, foi de 1,905 kWh e do PEEK, foi de 8,942 kWh. Com o inserto D, a potência para a usinagem do PTFE, foi de 4 W e 78W do PEEK, respectivamente, a Ra foi de 4,694 μm e 1,445 μm. A diferença no consumo de energia foi de 0,423 kWh para o PTFE e 9,058 kWh para o PEEK.

Analisando o desempenho dos quatro insertos, na usinagem dos dois

materiais, o PEEK exigiu maior potência e no consumo de energia, também superou o PTFE, mas teve um melhor resultado na comparação da rugosidade, apresentando uma Ra, menor que o PTFE, para as quatro ferramentas.

Conclui-se que devido ao PTFE, ser um material naturalmente lubrificante, ofereça menor resistência ao corte, por outro lado, o PEEK apresenta características como alta resistência mecânica, dureza, rigidez e substitui o aço em muitas situações com vantagens, apresentou um melhor acabamento superficial, dentro dos parâmetros de usinagens utilizados.

Analisando cada material individualmente, na usinagem do PTFE, os melhores resultados encontrados, foi com o inserto B, que teve a melhor Ra das quatro ferramentas e uma diferença muito pequena, em relação a potência exigida pela ferramenta D, ambas com raio de ponta de 0,8 mm. Esta última, ofereceu a menor resistência à usinagem, porém, o acabamento superficial, não superou os insertos do grupo A/B, que apresentaram os melhores resultados.

Para o PEEK, os números apresentam um melhor acabamento superficial com o inserto B, a diferença de potência de corte, consumo e força de corte já era esperada, devido ao raio de ponta ser maior em relação ao inserto A. Entre os dois grupos de insertos, o grupo A/B apresentaram os melhores resultados.

9 CONCLUSÃO

As informações coletadas mostram que as diferenças encontradas durante o processo de usinagem dos materiais pesquisados, são encontradas também entre os materiais metálicos (respeitadas as proporções), e da mesma maneira, merece atenção para o desenvolvimento de ferramentas específicas para materiais poliméricos.

As ferramentas para usinagem de alumínio utilizadas nesta pesquisa, são de duas marcas e de perfis de corte diferentes.

Os insertos para alumínio, são normalmente recomendadas para a usinagem de polímeros e o que se observa, é que os resultados de ambas foram muito diferentes. No ensaio do polietileno de ultra alto peso molecular - PEUAPM, os insertos C e D, a usinagem não apresentou qualidade do acabamento superficial, que viabilizasse a coleta de dados, utilizando os parâmetros estabelecidos para pesquisa.

Entre os plásticos de engenharia de uso geral, as informações colhidas durante o processo de usinagem com o primeiro grupo de insertos, apresentam números bastante próximos. Apesar da semelhança nos resultados e utilizando os mesmos parâmetros de usinagem, o polióxido de metileno - POM, superou o PEUAPM e apresentou o menor valor de rugosidade e consequentemente o melhor acabamento superficial.

Entre os plásticos de engenharia de uso especial, o politetrafluoretileno – PTFE, ofereceu menor resistência durante o processo de usinagem, mas apresentou valores de rugosidade mais altos em relação ao polieteretercetona – PEEK, do mesmo grupo. Os ensaios com os quatro insertos, indicam que o PEEK, exigiu as maiores potências de corte, entre os quatro materiais ensaiados e também apresentou os menores valores de rugosidade no grupo dos plásticos de engenharia de uso especial.

A usinabilidade dos materiais ensaiados, geraram informações que, ao compará-las, deixa evidente que, dentro dos parâmetros utilizados para o processo de usinagem destes materiais, as ferramentas para usinagem de materiais poliméricos não deve ser genérica e merece maiores estudos para definir ferramentas direcionadas ao seu uso específico.

10 TRABALHOS FUTUROS

A sugestão para trabalhos futuros, seria aumentar a variedade de materiais, com ou sem carga e variar os parâmetros de corte, raio de ponta das ferramentas, avanço e velocidade de corte, buscando os melhores parâmetros para alcançar os melhores acabamentos superficiais de cada material usinado, com atenção ao desgaste da ferramenta e buscando os melhores ângulos de afiação para cada material.

Desejável, também, o registro da potência com o analisador de energia e o registro, simultâneo da força de corte, através de célula de carga, com medição de alta resolução, para posterior confirmação e/ou comparação com modelos matemáticos. Análises termográficas do momento de corte, visando monitorar a transição vítrea e deformação viscosa, formando um confiável banco de dados para a elaboração de novas ferramentas.

Uma pesquisa sobre metalurgia do pó, visando a sinterização de materiais para insertos mais adequados para a usinagem de materiais poliméricos, também é desejável, visando gumes, ângulos e raios mais adequados, tanto para ferramentas monocortates, como para ferramentas multicortantes, destinados a ensaios em fresadoras ou centros de usinagem, por exemplo.

11 REFERÊNCIAS BIBLIOGRAFICAS

ARIF, M. F. et al. Performance of biocompatible PEEK processed by fused deposition additive manufacturing. **Materials & Design**, v. 146, p. 249–259, 15 maio 2018.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. Nor Iso 4287 - 2002 - Especificacoes Geometricas Do Produto (Gps) - Rugosidade Metodo Do Perfil - Termos, definições e parâmetros da rugosidade. Rio de Janeiro: ABNT, 2002.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR ISO 4288 - Especificações geométricas do produto (GPS) - Rugosidade: Método do perfil - Regras e procedimentos para avaliação de rugosidade**. Rio de Janeiro (RJ): ABNT, 2008a.

ASSOCIAÇÃO BRASILEIRA DE NORMAS TÉCNICAS. **ABNT NBR ISO 3274 - Especificações geométricas do produto (GPS) - Rugosidade: Método do perfil - Características nominais de instrumentos por contato (pontas de apalpação)**. Rio de Janeiro (RJ): ABNT, 2008b.

BÖESCH JÚNIOR, P. R. et al. Estudo do efeito da rugosidade superficial sobre o coeficiente de atrito no ensaio de compressão do anel. **Estudos Tecnológicos em Engenharia**, v. 8, n. 1, p. 1–7, 28 nov. 2012.

CANEVAROLO JR., S. V. Ciência dos polimeros. 2ª ed. São Paulo, Brasil: [s.n.].

CANTO, R. B. Theoretical and experimental study of the compaction and sintering processes of polytetrafluoroethylene (PTFE). São Carlos: Universidade de São Paulo, 2007.

CLARK, D. A. Metal Turning on the Lathe. 1a ed. Ramsbury: Crowood, 2013.

COUTINHO, F. M. B.; MELLO, I. L.; SANTA MARIA, L. C. DE. Polietileno: principais tipos, propriedades e aplicações. **Polímeros**, v. 13, n. 1, p. 01–13, jan. 2003.

DENAULT, J.; DUMOUCHEL, M. Consolidation Process of PEEK/Carbon Composite for Aerospace Applications. **Advanced Performance Materials**, p. 14, 1997.

ELBESTAWI, M. A.; SAGHERIAN, R. Dynamic modeling for the prediction of surface errors in the milling of thin-walled sections. **Journal of Materials Processing Technology**, v. 25, n. 2, p. 215–228, 1 mar. 1991.

FELIPPO FILHO, G. **Motor de indução.** 87654321. ed. São Paulo, Brasil: Ed. Érica Ltda, 2000. v. 1

FERRARESI, D. **Fundamentos da Usinagem dos Metais**. 1º ed. São Carlos, São Paulo, Brasil: Editora Edgar Blucher LTDA, 1970. v. 1

GARRIDO, R. L.; CRISTINA, M.; MARA, M. PLÁSTICOS DE ENGENHARIA COMO AGENTES COMPETITIVOS NA INDÚSTRIA AUTOMOBILÍSTICA. v. 01, p. 15, mar.

2014.

GUO, Y. et al. Medical applications of polyether ether ketone. **Translational Surgery**, v. 3, n. 1, p. 12, 2018.

IZAMSHAH, R.; MO, J.; DING, S. Hybrid deflection prediction on machining thin-wall monolithic aerospace components. **Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture**, v. 226, p. 592–605, 29 mar. 2011.

KOBAYASHI, A. Machining of plastics. New York: McGraw-Hill, 1967.

LOKENSGARD, E. **Plásticos industriais: Teoria e aplicações**. 5ªed ed. São Paulo: Cengage do Brasil, 2013.

MACHADO, A. R. et al. **Teoria da Usinagem dos Materiais**. 1ª ed. [s.l.] Ed. Blucher, 2009.

MANO, E. B. **Polimeros como Material de Engenharia**. 1ª Edição ed. [s.l.] Ed. Blucher, 1991.

MILES, D. C.; BRISTON, J. H. **Tecnologia dos polimeros**. 1ª Edição ed. [s.l.] Universidade de São Paulo, 1975.

MINIPA. **Analisador de energia Mod: ET-5061C,** Minipa, , 2016. Disponível em: www.minipa.com.br

NITAPLAST. **Resina Acética POM,** 1996. Disponível em: https://www.nitaplast.com.br/produtos. Acesso em: 9 abr. 2019

NITAPLAST. **Polieteretercetona PEEK**, 1996. Disponível em: https://www.nitaplast.com.br/produtos. Acesso em: 9 abr. 2019

OZBULUT, O. E. et al. MATS-UTC-Multifunctional-Composites.pdf. **Multifunctional Composites for Sustainable Civil Infrastructure Systems**, 2019.

PLASTECNO. **Poliacetal (POM)**. Comercial. Disponível em: https://www.plastecno.com.br/produtos/poliacetal-pom.html. Acesso em: 9 abr. 2019.

SOUERY, W. N.; BISHOP, C. J. Clinically advancing and promising polymer-based therapeutics. **Acta Biomaterialia**, v. 67, p. 3, fev. 2018.

SOUERY, W. N.; BISHOP, C. J. Clinically advancing and promising polymer-based therapeutics. **Acta Biomaterialia**, v. 67, p. 13, fev. 2018.

VENTURA, A. M. F. M. Os Compósitos e a sua aplicação na Reabilitação de Estruturas metálicas. **Ciência & Tecnologia dos Materiais**, v. 21, p. 3, 2009.

WIEBECK, H.; HARADA, J. **Plasticos de engenhari - Tecnologia e Aplicações**. 1ª Edição ed. [s.l.] Ed. Artliber, 2005.

WIEBECK, H.; HARADA, J. **Plasticos de engenharia**. 1ª edição ed. São Carlos, S. P., Br: Artliber Editora, 2005.

APÊNDICE A - Análise de incertezas

A incerteza das médias das potências equivalentes é calculada pela Equação 08:

$$u_{P_{med}} = \sqrt{\left(\frac{\partial P_{med}}{P_1}\right)^2 \cdot \left(u_{equip}\right)^2 + \left(\frac{\partial P_{med}}{P_2}\right)^2 \cdot \left(u_{equip}\right)^2 + \left(\frac{\partial P_{med}}{P_3}\right)^2 \cdot \left(u_{equip}\right)^2}$$
(13)

A potência média é calculada através da Equação 09:

$$P_{med} = \frac{P_1 + P_2 + P_3}{3} \tag{14}$$

É necessário determinar a derivada parcial da média de cada potência $(\partial P_{med}/\partial P_n)$ da equação 10:

$$\frac{\partial P_{med}}{P_1} = \frac{1}{3}; \frac{\partial P_{med}}{P_2} = \frac{1}{3}; \frac{\partial P_{med}}{P_3} = \frac{1}{3}$$

$$\tag{15}$$

A incerteza do Analisador de Energia Minipa, 2016 (u_{equip}) , modelo ET-5061C, foi definida a partir da resolução de 0,001 kW ou seja 1 W. Para calcular a incerteza, foi tomada a metade da menor unidade indicada no manual, ou seja, 0,5 W.

Calculando a incerteza da média:

$$u_{P_{med}} = \sqrt{\left(\frac{1}{3}\right)^2 \cdot (0.5)^2 + \left(\frac{1}{3}\right)^2 \cdot (0.5)^2 + \left(\frac{1}{3}\right)^2 \cdot (0.5)^2}$$
 (16)

$$u_{P_{med}} = \pm 0.3 W \tag{17}$$

APÊNDICE B - Potências: PEUAPM com inserto A

PEUAPM - Polietileno de ultra alto peso molecular

Tompo	1a ucinado	m inserto A	28 ucinado	m incorto A	28 ucinado	m incorto A
Tempo	Pt+_Avg [W]	Pot. Med. Eq.	Pt+_Avg [W]	m inserto A Pot. Med. Eq.	Dt+_Avg [W]	m inserto A Pot. Med. Eq.
segundos 00	2469	2466	2631	2634	2534	2552
01	2500	2466	2627	2634	2562	2552
02	2408	2466	2629	2634	2555	2552
03	2461	2466	2636	2634	2550	2552
03	2430	2466	2632	2634	2555	2552
05	2485	2466	2638	2634	2538	2552
06	2528	2466	2650	2634	2582	2552
07	2490	2466	2645	2634	2542	2552
08	2473	2466	2642	2634	2550	2552
09	2470	2466	2632	2634	2567	2552
10	2425	2466	2611	2634	2542	2552
11	2475	2466	2622	2624	923	964
12	2480	2466	2633	2624	864	964
13	2451	2466	2619	2624	900	964
14	2438	2466	2659	2624	838	964
15	2465	2466	2628	2624	917	964
16	2422	2455	2632	2624	992	964
17	2455	2455	2625	2624	959	964
18	2453	2455	2635	2624	961	964
19	2438	2455	2619	2624	993	964
20	2446	2455	2626	2624	959	964
21	2477	2455	2630	2624	948	964
22	2452	2455	2625	2624	988	964
23	2485	2455	2652	2624	992	964
24	2440	2455	2622	2624	987	964
25	2432	2455	2628	2624	969	964
26	2479	2455	2634	2624	969	964
27	2440	2455	2614	2624	991	964
28	2479	2455	2628	2624	971	964
29	2463	2455	2622	2624	974	964
30	2409	2455	2647	2624	977	964
31	2471	2455	2617	2624	973	964
32	2457	2455	2637	2624	934	964
33	2454	2455	2617	2624	996	964
34	2549	2455	2636	2624	992	964
35	2430	2455	2654	2624	971	964
36	2464	2455	2617	2624	957	964
37	2448	2455	2623	2624	977	964
38	2508	2455	2645	2624	998	964

Tempo	1ª usinage	m inserto A	2ª usinage	m inserto A	3ª usinage	m inserto A
segundos	Pt+_Avg [W]	Pot. Med. Eq.	Pt+_Avg [W]	Pot. Med. Eq.	Pt+_Avg [W]	Pot. Med. Eq
39	2453	2455	2620	2624	977	964
40	2467	2455	2635	2624	961	964
41	2438	2455	2596	2624	998	964
42	2485	2455	2617	2624	955	964
43	2454	2455	2630	2624	946	964
44	2480	2455	2627	2624	1005	964
45	2412	2455	2642	2624	988	964
46	2516	2455	2607	2624	951	964
47	2455	2455	2603	2624	972	964
48	2408	2455	2607	2624	980	964
49	2412	2455	2597	2624	949	964
50	2413	2455	2622	2624	949	964
51	2422	2455	2594	2624	948	964
52	2371	2455	2603	2624	984	964
53	2427	2455	2612	2624	955	964
54	2448	2455	2608	2624	951	964
55	2467	2455	2641	2624	971	964
56	2499	2455	2647	2624	966	964
57	2492	2455	2616	2624	978	964
58	2488	2455	2610	2624	988	964
59	2468	2455	2616	2624	978	964
60	2401	2502	2600	2656	2542	2603
61	2527	2502	2667	2656	2612	2603
62	2550	2502	2662	2656	2627	2603
63	2480	2502	2656	2656	2605	2603
64	2485	2502	2657	2656	2608	2603
65	2489	2502	2647	2656	2619	2603
66	2474	2502	2652	2656	2615	2603
67	2521	2502	2665	2656	2603	2603
68	2492	2502	2680	2656	2596	2603
69	2539	2502	2675	2656	2472	2496
70	2484	2502	2653	2627	2507	2496
70 71	2522	2502	2621	2627	2511	2496
71 72	2506	2502	2647	2627	2494	2496
73	2541	2502	2592	2627	2.0.	2100
73 74	2522	2502	2635	2627		
74 75	2489	2502	2613	2627		
75 76	2526	2454	2010	2021		
76 77	2446	2454				
7 <i>7</i> 78	2443	2454				
78 79	2409	2454				
79 80	2478	2454				

APÊNDICE C – Potências: PEUAPM com inserto B

PEUAPM - Polietileno de ultra alto peso molecular

	PEUAPM - Polietileno de ultra alto peso molecular					
Tempo	_	m inserto B	•	m inserto B	•	m inserto B
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00	2703	2700	2648	2651	2508	2503
01	2702	2700	2648	2651	2511	2503
02	2706	2700	2646	2651	2502	2503
03	2705	2700	2668	2651	2500	2503
04	2699	2700	2654	2651	2506	2503
05	2691	2700	2656	2651	2505	2503
06	2699	2700	2619	2651	2501	2503
07	2696	2700	2654	2651	2497	2503
80	2702	2700	2674	2651	2492	2503
09	2702	2700	2647	2651	2503	2503
10	2712	2700	2647	2651	2506	2503
11	2698	2700	2653	2640	2499	2489
12	2702	2700	2646	2640	2503	2489
13	2687	2700	2643	2640	2490	2489
14	2700	2700	2612	2640	2486	2489
15	2692	2700	2645	2640	2492	2489
16	2689	2692	2645	2640	2499	2489
17	2689	2692	2648	2640	2497	2489
18	2698	2692	2634	2640	2480	2489
19	2688	2692	2637	2640	2492	2489
20	2697	2692	2669	2640	2499	2489
21	2689	2692	2639	2640	2489	2489
22	2695	2692	2608	2640	2485	2489
23	2681	2692	2644	2640	2496	2489
24	2695	2692	2647	2640	2505	2489
25	2684	2692	2635	2640	2495	2489
26	2693	2692	2637	2640	2496	2489
27	2685	2692	2637	2640	2485	2489
28	2689	2692	2671	2640	2486	2489
29	2686	2692	2634	2640	2490	2489
30	2688	2692	2634	2640	2496	2489
31	2686	2692	2641	2640	2497	2489
32	2691	2692	2644	2640	2490	2489
33	2690	2692	2616	2640	2496	2489
34	2687	2692	2637	2640	2479	2489
35	2682	2692	2640	2640	2491	2489
36	2686	2692	2667	2640	2477	2489
37	2682	2692	2639	2640	2478	2489
38	2688	2692	2632	2640	2492	2489
39	2682	2692	2652	2640	2480	2489

Tempo	1ª usinage	m inserto B	2ª usinage	m inserto B	3ª usinage	m inserto B
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2685	2692	2643	2640	2480	2489
41	2685	2692	2643	2640	2474	2489
42	2691	2692	2608	2640	2490	2489
43	2684	2692	2641	2640	2497	2489
44	2682	2692	2647	2640	2492	2489
45	2680	2692	2656	2640	2493	2489
46	2689	2692	2634	2640	2488	2489
47	2688	2692	2650	2640	2500	2489
48	2704	2692	2647	2640	2491	2489
49	2699	2692	2644	2640	2485	2489
50	2702	2692	2609	2640	2490	2489
51	2714	2692	2642	2640	2486	2489
52	2709	2692	2644	2640	2471	2489
53	2700	2692	2656	2640	2484	2489
54	2699	2692	2637	2640	2491	2489
55	2703	2692	2638	2640	2489	2489
56	2698	2692	2660	2640	2483	2489
57	2696	2692	2643	2640	2474	2489
58	2699	2692	2644	2640	2494	2489
59	2699	2692	2609	2640	2483	2489
60	2748	2770	2695	2684	2481	2534
61	2749	2770	2695	2684	2546	2534
62	2763	2770	2627	2684	2514	2534
63	2770	2770	2699	2684	2544	2534
64	2760	2770	2707	2684	2531	2534
65	2767	2770	2649	2684	2537	2534
66	2767	2770	2676	2684	2550	2534
67	2781	2770	2707	2684	2548	2534
68	2769	2770	2686	2684	2551	2534
69	2772	2770	2697	2684	2486	2478
70	2767	2770	2657	2631	2465	2478
71	2778	2770	2635	2631	2481	2478
72	2773	2770	2630	2631	2480	2478
73	2785	2770	2608	2631	2476	2478
74	2783	2770	2637	2631		
75	2792	2770	2624	2631		
76	2736	2687	2626	2631		
77	2707	2687				
78	2670	2687				
79	2676	2687				
80	2673	2687				
81	2677	2687				
82	2669	2687	Fonte: Auto			

APÊNDICE D – Potências: POM com inserto A

POM - Polióxido de metileno

	POM - Polióxido de metileno					
Tempo	_	m inserto A	_	m inserto A	_	m inserto A
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00	2630	2626,6	1803	1818,7	1783	1767,5
01	2631	2626,6	1857	1818,7	1742	1767,5
02	2633	2626,6	1798	1818,7	1825	1767,5
03	2627	2626,6	1796	1818,7	1810	1767,5
04	2626	2626,6	1921	1818,7	1787	1767,5
05	2630	2626,6	1804	1818,7	1788	1767,5
06	2621	2626,6	1730	1818,7	1713	1767,5
07	2627	2626,6	1809	1818,7	1799	1767,5
08	2624	2626,6	1755	1818,7	1703	1767,5
09	2628	2626,6	1841	1818,7	1742	1767,5
10	2623	2626,6	1884	1818,7	1749	1767,5
11	2627	2626,6	1795	1800,1	1782	1760,3
12	2621	2626,6	1813	1800,1	1786	1760,3
13	2627	2626,6	1840	1800,1	1745	1760,3
14	2623	2626,6	1799	1800,1	1817	1760,3
15	2627	2626,6	1909	1800,1	1708	1760,3
16	2618	2617,0	1699	1800,1	1810	1760,3
17	2617	2617,0	1843	1800,1	1882	1760,3
18	2615	2617,0	1898	1800,1	1739	1760,3
19	2617	2617,0	1759	1800,1	1769	1760,3
20	2615	2617,0	1818	1800,1	1723	1760,3
21	2622	2617,0	1750	1800,1	1812	1760,3
22	2610	2617,0	1791	1800,1	1722	1760,3
23	2620	2617,0	1842	1800,1	1743	1760,3
24	2620	2617,0	1724	1800,1	1841	1760,3
25	2623	2617,0	1828	1800,1	1733	1760,3
26	2617	2617,0	1877	1800,1	1800	1760,3
27	2630	2617,0	1707	1800,1	1711	1760,3
28	2618	2617,0	1839	1800,1	1783	1760,3
29	2616	2617,0	1801	1800,1	1765	1760,3
30	2616	2617,0	1837	1800,1	1704	1760,3
31	2623	2617,0	1792	1800,1	1784	1760,3
32	2618	2617,0	1784	1800,1	1740	1760,3
33	2616	2617,0	1913	1800,1	1773	1760,3
34	2613	2617,0	1800	1800,1	1781	1760,3
35	2620	2617,0	1879	1800,1	1731	1760,3
36	2613	2617,0	1790	1800,1	1788	1760,3
37	2619	2617,0	1780	1800,1	1738	1760,3
38	2620	2617,0	1835	1800,1	1765	1760,3
39	2610	2617,0	1794	1800,1	1775	1760,3
			C			

Tempo	1ª usinage	m inserto A	2ª usinage	m inserto A	3ª usinage	m inserto A
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2618	2617,0	1775	1800,1	1693	1760,3
41	2622	2617,0	1863	1800,1	1845	1760,3
42	2621	2617,0	1785	1800,1	1712	1760,3
43	2611	2617,0	1780	1800,1	1740	1760,3
44	2618	2617,0	1776	1800,1	1758	1760,3
45	2611	2617,0	1772	1800,1	1694	1760,3
46	2619	2617,0	1731	1800,1	1750	1760,3
47	2610	2617,0	1885	1800,1	1730	1760,3
48	2620	2617,0	1833	1800,1	1743	1760,3
49	2613	2617,0	1786	1800,1	1747	1760,3
50	2617	2617,0	1881	1800,1	1755	1760,3
51	2610	2617,0	1713	1800,1	1787	1760,3
52	2620	2617,0	1782	1800,1	1685	1760,3
53	2609	2617,0	1715	1800,1	1778	1760,3
54	2620	2617,0	1770	1800,1	1777	1760,3
55	2613	2617,0	1881	1800,1	1712	1760,3
56	2621	2617,0	1764	1800,1	1783	1760,3
57	2615	2617,0	1769	1800,1	1740	1760,3
58	2620	2617,0	1847	1800,1	1746	1760,3
59	2612	2617,0	1733	1800,1	1806	1760,3
60	2657	2661,3	1785	1800,1	1767	1797,9
61	2662	2661,3	1868	1800,1	1843	1797,9
62	2667	2661,3	1697	1800,1	1754	1797,9
63	2659	2661,3	1803	1800,1	1797	1797,9
64	2671	2661,3	1773	1800,1	1781	1797,9
65	2664	2661,3	1820	1800,1	1788	1797,9
66	2661	2661,3	1820	1800,1	1796	1797,9
67	2664	2661,3	1718	1800,1	1868	1797,9
68	2662	2661,3	1780	1800,1	1785	1797,9
69	2658	2661,3	1803	1800,1	1694	1721,1
70	2663	2661,3	1792	1800,1	1755	1721,1
71	2660	2661,3	1782	1800,1	1719	1721,1
72	2660	2661,3	1800	1800,1	1763	1721,1
73	2661	2661,3	1749	1800,1	1736	1721,1
74	2657	2661,3	1804	1800,1	1658	1721,1
75	2655	2661,3	1794	1800,1		
76	2618	2616,9	1782	1800,1		
77	2615	2616,9	1800	1800,1		
78	2622	2616,9	1831	1800,1		
79	2619	2616,9	1805	1800,1		
80	2611	2616,9	1824	1800,1		
81	2618	2616,9	1707	1800,1		
82	2615	2616,9	1825	1800,1		
			Continua			

Tempo	1ª usinage	m inserto A	2ª usinage	m inserto A	3ª usinage	m inserto A
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
83			1865	1800,1		
84			1783	1800,1		
85			1812	1800,1		
86			1792	1800,1		
87			1741	1800,1		
88			1815	1800,1		
89			1770	1800,1		
90			1839	1800,1		
91			1798	1851,8		
92			1880	1851,8		
93			1904	1851,8		
94			1819	1851,8		
95			1892	1851,8		
96			1834	1851,8		
97			1891	1851,8		
98			1793	1851,8		
99			1810	1790,1		
100			1809	1790,1		
101			1740	1790,1		
102			1833	1790,1		
103			1807	1790,1		
104			1813	1790,1		
105			1802	1790,1		
106			1704	1790,1		
			Fonto: /	N tor		

APÊNDICE E – Potências: POM com inserto B

POM - Polióxido de metileno

Tempo	1ª usinage	m inserto B	Polióxido de	metileno m inserto B	3ª usinage	m inserto B
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00	2622	2619,2	1768	1786,9	1864	1867,7
01	2619	2619,2	1787	1786,9	1813	1867,7
02	2615	2619,2	1775	1786,9	1916	1867,7
03	2615	2619,2	1835	1786,9	1900	1867,7
04	2627	2619,2	1754	1786,9	1815	1867,7
05	2615	2619,2	1806	1786,9	1911	1867,7
06	2628	2619,2	1774	1786,9	1844	1867,7
07	2620	2619,2	1823	1786,9	1832	1867,7
08	2624	2619,2	1837	1786,9	1880	1867,7
09	2611	2619,2	1643	1786,9	1914	1867,7
10	2623	2619,2	1844	1786,9	1852	1867,7
11	2613	2619,2	1801	1770,1	1907	1862,8
12	2623	2619,2	1709	1770,1	1816	1862,8
13	2610	2619,2	1735	1770,1	1844	1862,8
14	2622	2619,2	1736	1770,1	1904	1862,8
15	2620	2619,2	1797	1770,1	1778	1862,8
16	2611	2607,0	1708	1770,1	1925	1862,8
17	2610	2607,0	1730	1770,1	1902	1862,8
18	2606	2607,0	1795	1770,1	1832	1862,8
19	2607	2607,0	1757	1770,1	1845	1862,8
20	2607	2607,0	1844	1770,1	1903	1862,8
21	2606	2607,0	1749	1770,1	1847	1862,8
22	2604	2607,0	1848	1770,1	1927	1862,8
23	2609	2607,0	1796	1770,1	1876	1862,8
24	2607	2607,0	1740	1770,1	1812	1862,8
25	2607	2607,0	1812	1770,1	1940	1862,8
26	2610	2607,0	1760	1770,1	1893	1862,8
27	2610	2607,0	1800	1770,1	1807	1862,8
28	2601	2607,0	1780	1770,1	1804	1862,8
29	2614	2607,0	1766	1770,1	1917	1862,8
30	2603	2607,0	1860	1770,1	1810	1862,8
31	2616	2607,0	1774	1770,1	1833	1862,8
32	2602	2607,0	1760	1770,1	1952	1862,8
33	2606	2607,0	1776	1770,1	1843	1862,8
34	2600	2607,0	1723	1770,1	1788	1862,8
35	2617	2607,0	1792	1770,1	1901	1862,8
36	2602	2607,0	1723	1770,1	1880	1862,8
37	2621	2607,0	1782	1770,1	1768	1862,8
38	2606	2607,0	1837	1770,1	1881	1862,8
39	2626	2607,0	1705	1770,1	1809	1862,8

Tempo	1ª usinage	m inserto B	2ª usinage	m inserto B	3ª usinage	m inserto B
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2602	2607,0	1765	1770,1	1846	1862,8
41	2607	2607,0	1763	1770,1	1877	1862,8
42	2606	2607,0	1740	1770,1	1880	1862,8
43	2609	2607,0	1820	1770,1	1917	1862,8
44	2607	2607,0	1737	1770,1	1817	1862,8
45	2612	2607,0	1802	1770,1	1919	1862,8
46	2604	2607,0	1743	1770,1	1859	1862,8
47	2602	2607,0	1739	1770,1	1863	1862,8
48	2604	2607,0	1779	1770,1	1877	1862,8
49	2605	2607,0	1765	1770,1	1839	1862,8
50	2604	2607,0	1761	1770,1	1860	1862,8
51	2602	2607,0	1785	1770,1	1866	1862,8
52	2609	2607,0	1758	1770,1	1812	1862,8
53	2604	2607,0	1734	1770,1	1860	1862,8
54	2609	2607,0	1674	1770,1	1911	1862,8
55	2598	2607,0	1763	1770,1	1839	1862,8
56	2601	2607,0	1894	1770,1	1874	1862,8
57	2605	2607,0	1747	1770,1	1870	1862,8
58	2603	2607,0	1750	1770,1	1851	1862,8
59	2606	2607,0	1798	1770,1	1875	1862,8
60	2633	2653,4	1781	1813,2	1937	1943,0
61	2655	2653,4	1788	1813,2	1952	1943,0
62	2663	2653,4	1808	1813,2	1987	1943,0
63	2651	2653,4	1870	1813,2	1899	1943,0
64	2657	2653,4	1761	1813,2	1903	1943,0
65	2653	2653,4	1838	1813,2	1982	1943,0
66	2660	2653,4	1816	1813,2	1904	1943,0
67	2652	2653,4	1829	1813,2	1978	1943,0
68	2660	2653,4	1825	1813,2	1941	1943,0
69	2654	2653,4	1791	1785,6	1840	1890,2
70	2658	2653,4	1860	1785,6	1909	1890,2
71	2647	2653,4	1763	1785,6	1863	1890,2
72	2663	2653,4	1718	1785,6	1879	1890,2
73	2655	2653,4	1831	1785,6	1958	1890,2
74	2656	2653,4	1782	1785,6		
75	2637	2653,4	1750	1785,6		
76	2611	2607,6				
77	2600	2607,6				
78	2612	2607,6				
79	2607	2607,6				
80	2608	2607,6	Fonte: Auto			

APÊNDICE F – Potências: POM com inserto C

POM - Polióxido de metileno

	POM - Polióxido de metileno 1º usinagem inserto C 2º usinagem inserto C 3º usinagem inserto C						
Tempo	1º usinage Pt+_Avg [W]	Pot. med. eq.	2º usinage Pt+_Avg [W]	Pot. med. eq.	3º usinage Pt+_Avg [W]	Pot. med. eq.	
segundos 00	2665	2660,1	1672	1798,9	1781	1771,4	
01	2670	2660,1	1792	1798,9	1784	1771,4	
02	2667	2660,1	1847	1798,9	1753	1771,4	
03	2667	2660,1	1792	1798,9	1738	1771,4	
03	2659	2660,1	1862	1798,9	1815	1771,4	
05	2653	2660,1	1762	1798,9	1729	1771,4	
06	2661	2660,1	1864	1798,9	1749	1771,4	
07	2662	2660,1	1769	1798,9	1806	1771,4	
08	2662	2660,1	1816	1798,9	1723	1771,4	
09	2653	2660,1	1782	1798,9	1850	1771,4	
10	2661	2660,1	1822	1798,9	1754	1771,4	
11	2656	2660,1	1773	1793,9	1767	1748,7	
12	2658	2660,1	1791	1793,9	1778	1748,7	
13	2655	2660,1	1849	1793,9	1694	1748,7	
14	2659	2660,1	1773	1793,9	1839	1748,7	
15	2654	2660,1	1737	1793,9	1697	1748,7	
16	2659	2635,3	1729	1793,9	1791	1748,7	
17	2651	2635,3	1839	1793,9	1785	1748,7	
18	2652	2635,3	1786	1793,9	1693	1748,7	
19	2641	2635,3	1765	1793,9	1787	1748,7	
20	2649	2635,3	1849	1793,9	1774	1748,7	
21	2641	2635,3	1789	1793,9	1685	1748,7	
22	2646	2635,3	1843	1793,9	1793	1748,7	
23	2637	2635,3	1681	1793,9	1750	1748,7	
24	2646	2635,3	1870	1793,9	1709	1748,7	
25	2638	2635,3	1816	1793,9	1790	1748,7	
26	2650	2635,3	1843	1793,9	1767	1748,7	
27	2639	2635,3	1812	1793,9	1645	1748,7	
28	2651	2635,3	1713	1793,9	1715	1748,7	
29	2639	2635,3	1865	1793,9	1779	1748,7	
30	2652	2635,3	1778	1793,9	1698	1748,7	
31	2649	2635,3	1833	1793,9	1791	1748,7	
32	2648	2635,3	1780	1793,9	1710	1748,7	
33	2635	2635,3	1851	1793,9	1752	1748,7	
34	2641	2635,3	1671	1793,9	1756	1748,7	
35	2642	2635,3	1803	1793,9	1698	1748,7	
36	2640	2635,3	1847	1793,9	1754	1748,7	
37	2640	2635,3	1713	1793,9	1775	1748,7	
38	2632	2635,3	1828	1793,9	1680	1748,7	
39	2637	2635,3	1826	1793,9	1775	1748,7	
			C = + !				

Tempo	1ª usinagem inserto C		2ª usinagem inserto C		3ª usinagem inserto C	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2625	2635,3	1831	1793,9	1757	1748,7
41	2631	2635,3	1816	1793,9	1679	1748,7
42	2633	2635,3	1740	1793,9	1796	1748,7
43	2627	2635,3	1840	1793,9	1733	1748,7
44	2626	2635,3	1790	1793,9	1775	1748,7
45	2631	2635,3	1786	1793,9	1776	1748,7
46	2618	2635,3	1843	1793,9	1719	1748,7
47	2624	2635,3	1777	1793,9	1791	1748,7
48	2617	2635,3	1795	1793,9	1771	1748,7
49	2626	2635,3	1721	1793,9	1732	1748,7
50	2622	2635,3	1813	1793,9	1732	1748,7
51	2637	2635,3	1830	1793,9	1727	1748,7
52	2624	2635,3	1777	1793,9	1805	1748,7
53	2628	2635,3	1771	1793,9	1719	1748,7
54	2620	2635,3	1766	1793,9	1723	1748,7
55	2622	2635,3	1798	1793,9	1834	1748,7
56	2622	2635,3	1749	1793,9	1700	1748,7
57	2620	2635,3	1809	1793,9	1743	1748,7
58	2620	2635,3	1790	1793,9	1786	1748,7
59	2625	2635,3	1773	1793,9	1729	1748,7
60	2680	2676,9	1783	1830,4	1790	1801,9
61	2682	2676,9	1831	1830,4	1777	1801,9
62	2681	2676,9	1850	1830,4	1787	1801,9
63	2680	2676,9	1865	1830,4	1927	1801,9
64	2671	2676,9	1809	1830,4	1738	1801,9
65	2672	2676,9	1836	1830,4	1848	1801,9
66	2676	2676,9	1818	1830,4	1744	1801,9
67	2679	2676,9	1846	1830,4	1820	1801,9
68	2678	2676,9	1835	1830,4	1778	1801,9
69	2681	2676,9	1767	1777,8	1797	1755,5
70	2684	2676,9	1786	1777,8	1750	1755,5
71	2683	2676,9	1760	1777,8	1672	1755,5
72	2676	2676,9	1824	1777,8	1816	1755,5
73	2673	2676,9	1750	1777,8	1755	1755,5
74	2685	2676,9			1740	1755,5
75	2649	2676,9				
76	2630	2619,3				
77	2619	2619,3				
78	2620	2619,3				
79	2612	2619,3				
80	2619	2619,3				
81	2616	2619,3				

APÊNDICE G – Potências: POM com inserto D

POM - Polióxido de metileno

Tempo	POM - Polióxido de metileno 1º usinagem inserto D 2º usinagem inserto D 3º usinagem inserto I						
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	
00	2642	2618,6	1806	1800,4	1761	1758,6	
01	2598	2618,6	1830	1800,4	1740	1758,6	
02	2598	2618,6	1758	1800,4	1742	1758,6	
03	2553	2618,6	1814	1800,4	1771	1758,6	
04	2646	2618,6	1745	1800,4	1753	1758,6	
05	2588	2618,6	1838	1800,4	1769	1758,6	
06	2564	2618,6	1808	1800,4	1785	1758,6	
07	2670	2618,6	1792	1800,4	1771	1758,6	
08	2630	2618,6	1807	1800,4	1739	1758,6	
09	2657	2618,6	1745	1800,4	1743	1758,6	
10	2611	2618,6	1857	1800,4	1770	1758,6	
11	2629	2618,6	1704	1781,4	1763	1748,1	
12	2619	2618,6	1799	1781,4	1778	1748,1	
13	2578	2618,6	1724	1781,4	1742	1748,1	
14	2627	2618,6	1816	1781,4	1730	1748,1	
15	2684	2618,6	1763	1781,4	1752	1748,1	
16	2554	2588,9	1805	1781,4	1756	1748,1	
17	2625	2588,9	1809	1781,4	1728	1748,1	
18	2554	2588,9	1725	1781,4	1713	1748,1	
19	2617	2588,9	1842	1781,4	1764	1748,1	
20	2536	2588,9	1817	1781,4	1714	1748,1	
21	2625	2588,9	1782	1781,4	1769	1748,1	
22	2602	2588,9	1792	1781,4	1759	1748,1	
23	2512	2588,9	1722	1781,4	1721	1748,1	
24	2633	2588,9	1832	1781,4	1732	1748,1	
25	2609	2588,9	1802	1781,4	1768	1748,1	
26	2607	2588,9	1778	1781,4	1722	1748,1	
27	2530	2588,9	1783	1781,4	1709	1748,1	
28	2636	2588,9	1741	1781,4	1731	1748,1	
29	2633	2588,9	1818	1781,4	1671	1748,1	
30	2584	2588,9	1744	1781,4	1765	1748,1	
31	2573	2588,9	1759	1781,4	1756	1748,1	
32	2582	2588,9	1811	1781,4	1680	1748,1	
33	2588	2588,9	1700	1781,4	1779	1748,1	
34	2549	2588,9	1801	1781,4	1761	1748,1	
35	2602	2588,9	1654	1781,4	1667	1748,1	
36	2568	2588,9	1705	1781,4	1744	1748,1	
37	2563	2588,9	1840	1781,4	1749	1748,1	
38	2653	2588,9	1779	1781,4	1668	1748,1	
39	2402	2588,9	1802	1781,4	1741	1748,1	

Tempo	1ª usinagem inserto D		2ª usinagem inserto D		3ª usinagem inserto D	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2538	2588,9	1807	1781,4	1739	1748,1
41	2617	2588,9	1717	1781,4	1692	1748,1
42	2545	2588,9	1787	1781,4	1763	1748,1
43	2607	2588,9	1809	1781,4	1753	1748,1
44	2552	2588,9	1717	1781,4	1744	1748,1
45	2561	2588,9	1874	1781,4	1772	1748,1
46	2606	2588,9	1802	1781,4	1727	1748,1
47	2574	2588,9	1828	1781,4	1818	1748,1
48	2654	2588,9	1827	1781,4	1789	1748,1
49	2635	2588,9	1767	1781,4	1720	1748,1
50	2644	2588,9	1842	1781,4	1819	1748,1
51	2674	2588,9	1692	1781,4	1840	1748,1
52	2636	2588,9	1740	1781,4	1719	1748,1
53	2488	2588,9	1873	1781,4	1799	1748,1
54	2649	2588,9	1768	1781,4	1795	1748,1
55	2557	2588,9	1818	1781,4	1760	1748,1
56	2654	2588,9	1787	1781,4	1780	1748,1
57	2598	2588,9	1762	1781,4	1767	1748,1
58	2551	2588,9	1863	1781,4	1716	1748,1
59	2613	2588,9	1747	1781,4	1795	1748,1
60	2653	2667,8	1763	1781,4	1829	1807,5
61	2676	2667,8	1842	1814,7	1744	1807,5
62	2669	2667,8	1802	1814,7	1821	1807,5
63	2677	2667,8	1859	1814,7	1809	1807,5
64	2669	2667,8	1769	1814,7	1785	1807,5
65	2671	2667,8	1874	1814,7	1879	1807,5
66	2667	2667,8	1824	1814,7	1797	1807,5
67	2671	2667,8	1818	1814,7	1806	1807,5
68	2660	2667,8	1810	1814,7	1795	1807,5
69	2673	2667,8	1731	1814,7	1699	1720,6
70	2669	2667,8	1837	1774,5	1734	1720,6
71	2669	2667,8	1718	1774,5	1760	1720,6
72	2669	2667,8	1657	1774,5	1689	1720,6
73	2674	2667,8	1909	1774,5		
74	2671	2667,8	1739	1774,5		
75	2647	2667,8				
76	2615	2462,8				
77	2610	2462,8				
78	2620	2462,8				
79	2613	2462,8				
80	2623	2462,8				
81	2616	2462,8				
82	1180	2462,8				

APÊNDICE H – Potências: PTFE com inserto A

PTFE - Politetrafluoretileno

Tem	ıno	1ª usinage	m inserto A	Politetraflu	m inserto A	3ª usinagem inserto A	
segun	-	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00		2642	2648,0	1734	1697,0	1534	1690,5
01	L	2649	2648,0	1685	1697,0	1836	1690,5
02	2	2652	2648,0	1669	1697,0	1565	1690,5
03	3	2654	2648,0	1696	1697,0	1799	1690,5
04	1	2644	2648,0	1678	1697,0	1600	1690,5
05	5	2643	2648,0	1690	1697,0	1860	1690,5
06	5	2643	2648,0	1695	1697,0	1518	1690,5
07	7	2657	2648,0	1761	1697,0	1854	1690,5
08	3	2646	2648,0	1684	1697,0	1531	1690,5
09	9	2652	2648,0	1687	1697,0	1905	1690,5
10)	2648	2648,0	1686	1697,0	1515	1690,5
11	L	2645	2648,0	1698	1689,3	1734	1666,5
12	2	2647	2648,0	1704	1689,3	1594	1666,5
13	3	2649	2648,0	1661	1689,3	1764	1666,5
14	1	2656	2648,0	1686	1689,3	1631	1666,5
15	5	2641	2648,0	1706	1689,3	1641	1666,5
16	5	2650	2642,8	1721	1689,3	1688	1666,5
17	7	2643	2642,8	1689	1689,3	1651	1666,5
18	3	2641	2642,8	1724	1689,3	1673	1666,5
19)	2638	2642,8	1697	1689,3	1583	1666,5
20)	2646	2642,8	1696	1689,3	1781	1666,5
21	l	2649	2642,8	1620	1689,3	1543	1666,5
22	2	2649	2642,8	1698	1689,3	1784	1666,5
23	3	2649	2642,8	1701	1689,3	1454	1666,5
24	1	2648	2642,8	1664	1689,3	1834	1666,5
25	5	2644	2642,8	1688	1689,3	1498	1666,5
26	5	2645	2642,8	1690	1689,3	1836	1666,5
27	7	2646	2642,8	1741	1689,3	1480	1666,5
28	3	2645	2642,8	1673	1689,3	1843	1666,5
29	9	2642	2642,8	1686	1689,3	1560	1666,5
30)	2641	2642,8	1737	1689,3	1776	1666,5
31	L	2652	2642,8	1695	1689,3	1547	1666,5
32	2	2625	2642,8	1617	1689,3	1759	1666,5
33	3	2644	2642,8	1709	1689,3	1642	1666,5
34	1	2635	2642,8	1697	1689,3	1717	1666,5
35		2645	2642,8	1675	1689,3	1586	1666,5
36		2638	2642,8	1686	1689,3	1766	1666,5
37		2645	2642,8	1686	1689,3	1570	1666,5
38		2646	2642,8	1746	1689,3	1701	1666,5
39	9	2646	2642,8	1662	1689,3	1601	1666,5
				C1:			

Tempo	1ª usinage	1º usinagem inserto A 2º usinagem inserto		m inserto A	A 3ª usinagem inserto A		
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	
40	2645	2642,8	1676	1689,3	1763	1666,5	
41	2651	2642,8	1726	1689,3	1576	1666,5	
42	2642	2642,8	1694	1689,3	1698	1666,5	
43	2634	2642,8	1697	1689,3	1586	1666,5	
44	2638	2642,8	1644	1689,3	1767	1666,5	
45	2637	2642,8	1697	1689,3	1538	1666,5	
46	2641	2642,8	1664	1689,3	1774	1666,5	
47	2638	2642,8	1677	1689,3	1610	1666,5	
48	2635	2642,8	1679	1689,3	1726	1666,5	
49	2636	2642,8	1754	1689,3	1584	1666,5	
50	2643	2642,8	1669	1689,3	1694	1666,5	
51	2644	2642,8	1682	1689,3	1688	1666,5	
52	2636	2642,8	1714	1689,3	1647	1666,5	
53	2641	2642,8	1698	1689,3	1669	1666,5	
54	2640	2642,8	1688	1689,3	1641	1666,5	
55	2637	2642,8	1628	1689,3	1763	1666,5	
56	2644	2642,8	1703	1689,3	1528	1666,5	
57	2646	2642,8	1695	1689,3	1793	1666,5	
58	2643	2642,8	1642	1689,3	1524	1666,5	
59	2658	2642,8	1684	1689,3	1861	1666,5	
60	2664	2668,1	1747	1711,8	1489	1666,5	
61	2668	2668,1	1695	1711,8	1798	1707,6	
62	2675	2668,1	1701	1711,8	1598	1707,6	
63	2668	2668,1	1726	1711,8	1764	1707,6	
64	2663	2668,1	1718	1711,8	1538	1707,6	
65	2679	2668,1	1699	1711,8	1840	1707,6	
66	2663	2668,1	1707	1711,8	1565	1707,6	
67	2673	2668,1	1732	1711,8	1809	1707,6	
68	2670	2668,1	1716	1711,8	1597	1707,6	
69	2674	2668,1	1666	1711,8	1862	1707,6	
70	2676	2668,1	1721	1711,8	1529	1707,6	
71	2669	2668,1	1717	1697,7	1831	1707,6	
72	2665	2668,1	1654	1697,7	1502	1655,9	
73	2674	2668,1	1677	1697,7	1877	1655,9	
74	2663	2668,1	1741	1697,7	1514	1655,9	
75	2646	2668,1	1674	1697,7	1801	1655,9	
76	2639	2644,7	1682	1697,7	1548	1655,9	
77	2649	2644,7	1746	1697,7			
78	2646	2644,7	1688	1697,7			

APÊNDICE I – Potências: PTFE com inserto B

PTFE - Politetrafluoretileno

Tempo	1ª usinage	m inserto B	Politetraflu	em inserto B 3º usinagem inserto B			
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	
00	2691	2682,6	1647	1681,8	1782	1698,7	
01	2689	2682,6	1850	1681,8	1565	1698,7	
02	2686	2682,6	1603	1681,8	1829	1698,7	
03	2686	2682,6	1642	1681,8	1525	1698,7	
04	2680	2682,6	1793	1681,8	1869	1698,7	
05	2689	2682,6	1526	1681,8	1539	1698,7	
06	2676	2682,6	1716	1681,8	1827	1698,7	
07	2691	2682,6	1749	1681,8	1532	1698,7	
08	2677	2682,6	1491	1681,8	1843	1698,7	
09	2689	2682,6	1765	1681,8	1499	1698,7	
10	2678	2682,6	1681	1681,8	1805	1698,7	
11	2685	2682,6	1602	1660,0	1541	1675,8	
12	2678	2682,6	1677	1660,0	1811	1675,8	
13	2679	2682,6	1725	1660,0	1562	1675,8	
14	2675	2682,6	1585	1660,0	1717	1675,8	
15	2672	2682,6	1713	1660,0	1627	1675,8	
16	2674	2663,6	1719	1660,0	1720	1675,8	
17	2680	2663,6	1565	1660,0	1627	1675,8	
18	2675	2663,6	1663	1660,0	1667	1675,8	
19	2676	2663,6	1806	1660,0	1756	1675,8	
20	2673	2663,6	1570	1660,0	1596	1675,8	
21	2670	2663,6	1636	1660,0	1755	1675,8	
22	2678	2663,6	1792	1660,0	1512	1675,8	
23	2666	2663,6	1580	1660,0	1842	1675,8	
24	2679	2663,6	1614	1660,0	1503	1675,8	
25	2663	2663,6	1808	1660,0	1844	1675,8	
26	2673	2663,6	1589	1660,0	1503	1675,8	
27	2665	2663,6	1619	1660,0	1888	1675,8	
28	2663	2663,6	1745	1660,0	1521	1675,8	
29	2654	2663,6	1690	1660,0	1824	1675,8	
30	2664	2663,6	1617	1660,0	1539	1675,8	
31	2662	2663,6	1745	1660,0	1800	1675,8	
32	2658	2663,6	1656	1660,0	1625	1675,8	
33	2658	2663,6	1596	1660,0	1742	1675,8	
34	2666	2663,6	1738	1660,0	1595	1675,8	
35	2670	2663,6	1690	1660,0	1765	1675,8	
36	2666	2663,6	1526	1660,0	1624	1675,8	
37	2665	2663,6	1740	1660,0	1689	1675,8	
38	2670	2663,6	1673	1660,0	1645	1675,8	
39	2668	2663,6	1544	1660,0	1725	1675,8	

Tempo	1ª usinagem inserto B 2ª usina		2ª usinage	m inserto B	3ª usinagem inserto B	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2661	2663,6	1728	1660,0	1673	1675,8
41	2669	2663,6	1628	1660,0	1617	1675,8
42	2650	2663,6	1588	1660,0	1716	1675,8
43	2669	2663,6	1789	1660,0	1632	1675,8
44	2654	2663,6	1617	1660,0	1702	1675,8
45	2669	2663,6	1609	1660,0	1567	1675,8
46	2654	2663,6	1807	1660,0	1802	1675,8
47	2664	2663,6	1581	1660,0	1557	1675,8
48	2656	2663,6	1611	1660,0	1780	1675,8
49	2659	2663,6	1743	1660,0	1492	1675,8
50	2652	2663,6	1557	1660,0	1837	1675,8
51	2654	2663,6	1618	1660,0	1516	1675,8
52	2652	2663,6	1728	1660,0	1833	1675,8
53	2654	2663,6	1559	1660,0	1528	1675,8
54	2658	2663,6	1656	1660,0	1882	1675,8
55	2659	2663,6	1722	1660,0	1523	1675,8
56	2663	2663,6	1516	1660,0	1843	1675,8
57	2655	2663,6	1680	1660,0	1506	1675,8
58	2657	2663,6	1730	1660,0	1844	1675,8
59	2651	2663,6	1554	1660,0	1469	1675,8
60	2708	2687,9	1831	1689,2	1818	1701,8
61	2694	2687,9	1577	1689,2	1533	1701,8
62	2687	2687,9	1703	1689,2	1840	1701,8
63	2695	2687,9	1696	1689,2	1494	1701,8
64	2675	2687,9	1591	1689,2	1805	1701,8
65	2687	2687,9	1753	1689,2	1549	1701,8
66	2679	2687,9	1726	1689,2	1835	1701,8
67	2691	2687,9	1559	1689,2	1529	1701,8
68	2692	2687,9	1808	1689,2	1871	1701,8
69	2668	2687,9	1653	1689,2	1552	1701,8
70	2682	2687,9	1660	1689,2	1821	1701,8
71	2692	2687,9	1735	1674,6	1528	1679,4
72	2687	2687,9	1595	1674,6	1838	1679,4
73	2686	2687,9	1677	1674,6	1568	1679,4
74	2683	2687,9	1787	1674,6	1776	1679,4
75	2701	2687,9	1569	1674,6	1552	1679,4
76	2650	2651,3			1785	1679,4
77	2657	2651,3				
78	2647	2651,3	Fonte: Auto			

APÊNDICE J – Potências: PTFE com inserto C

PTFF - Politetrafluoretileno

Tomas	18		Politetraflu		28 usinasa	m incorte C
Tempo segundos	Pt+_Avg [W]	m inserto C Pot. med. eq.	2± usmage Pt+_Avg [W]	m inserto C Pot. med. eq.	3≅ usmage Pt+_Avg [W]	m inserto C Pot. med. eq.
00	2641	2643,8	1732	1673,3	1746	1673,8
01	2654	2643,8	1713	1673,3	1552	1673,8
02	2643	2643,8	1582	1673,3	1820	1673,8
03	2647	2643,8	1639	1673,3	1511	1673,8
04	2649	2643,8	1787	1673,3	1811	1673,8
05	2647	2643,8	1574	1673,3	1482	1673,8
06	2642	2643,8	1628	1673,3	1820	1673,8
07	2646	2643,8	1762	1673,3	1529	1673,8
08	2654	2643,8	1585	1673,3	1771	1673,8
09	2634	2643,8	1666	1673,3	1505	1673,8
10	2649	2643,8	1721	1673,3	1800	1673,8
11	2643	2643,8	1526	1649,0	1542	1652,0
12	2635	2643,8	1674	1649,0	1737	1652,0
13	2632	2643,8	1723	1649,0	1584	1652,0
14	2648	2643,8	1543	1649,0	1778	1652,0
15	2637	2643,8	1736	1649,0	1528	1652,0
16	2633	2637,8	1708	1649,0	1757	1652,0
17	2639	2637,8	1502	1649,0	1576	1652,0
18	2641	2637,8	1736	1649,0	1782	1652,0
19	2629	2637,8	1684	1649,0	1513	1652,0
20	2651	2637,8	1571	1649,0	1768	1652,0
21	2643	2637,8	1739	1649,0	1557	1652,0
22	2627	2637,8	1684	1649,0	1703	1652,0
23	2637	2637,8	1570	1649,0	1564	1652,0
24	2628	2637,8	1775	1649,0	1743	1652,0
25	2636	2637,8	1625	1649,0	1579	1652,0
26	2623	2637,8	1583	1649,0	1681	1652,0
27	2635	2637,8	1737	1649,0	1641	1652,0
28	2631	2637,8	1664	1649,0	1680	1652,0
29	2629	2637,8	1605	1649,0	1597	1652,0
30	2639	2637,8	1746	1649,0	1666	1652,0
31	2649	2637,8	1568	1649,0	1701	1652,0
32	2626	2637,8	1612	1649,0	1621	1652,0
33	2643	2637,8	1730	1649,0	1638	1652,0
34	2632	2637,8	1674	1649,0	1630	1652,0
35	2630	2637,8	1542	1649,0	1691	1652,0
36	2639	2637,8	1730	1649,0	1596	1652,0
37	2635	2637,8	1696	1649,0	1662	1652,0
38	2637	2637,8	1528	1649,0	1684	1652,0
39	2626	2637,8	1721	1649,0	1627	1652,0
			C			

Tempo	1ª usinage	m inserto C	2ª usinage	em inserto C	3ª usinage	m inserto C
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2641	2637,8	1691	1649,0	1686	1652,0
41	2640	2637,8	1600	1649,0	1552	1652,0
42	2649	2637,8	1648	1649,0	1771	1652,0
43	2645	2637,8	1684	1649,0	1534	1652,0
44	2653	2637,8	1593	1649,0	1769	1652,0
45	2626	2637,8	1588	1649,0	1565	1652,0
46	2641	2637,8	1716	1649,0	1806	1652,0
47	2642	2637,8	1644	1649,0	1503	1652,0
48	2647	2637,8	1548	1649,0	1794	1652,0
49	2628	2637,8	1710	1649,0	1522	1652,0
50	2644	2637,8	1621	1649,0	1849	1652,0
51	2645	2637,8	1595	1649,0	1507	1652,0
52	2642	2637,8	1736	1649,0	1806	1652,0
53	2639	2637,8	1684	1649,0	1506	1652,0
54	2640	2637,8	1568	1649,0	1776	1652,0
55	2639	2637,8	1753	1649,0	1463	1652,0
56	2646	2637,8	1629	1649,0	1802	1652,0
57	2637	2637,8	1582	1649,0	1499	1652,0
58	2636	2637,8	1708	1649,0	1791	1652,0
59	2646	2637,8	1737	1649,0	1451	1652,0
60	2636	2664,3	1588	1649,0	1824	1689,7
61	2675	2664,3	1708	1649,0	1652	1689,7
62	2668	2664,3	1635	1649,0	1739	1689,7
63	2665	2664,3	1592	1649,0	1654	1689,7
64	2659	2664,3	1653	1649,0	1720	1689,7
65	2665	2664,3	1700	1649,0	1633	1689,7
66	2665	2664,3	1524	1649,0	1655	1689,7
67	2682	2664,3	1691	1649,0	1739	1689,7
68	2672	2664,3	1706	1649,0	1594	1689,7
69	2673	2664,3	1528	1649,0	1710	1689,7
70	2667	2664,3	1664	1649,0	1571	1689,7
71	2672	2664,3	1707	1649,0	1769	1627,0
72	2663	2664,3	1490	1649,0	1423	1627,0
73	2664	2664,3	1685	1649,0	1789	1627,0
74	2665	2664,3	1720	1649,0	1595	1627,0
75	2638	2664,3	1603	1649,0	1737	1627,0
76	2647	2597,0	1592	1649,0	1566	1627,0
77	2546	2597,0	1712	1649,0		
78			1603	1649,0		
79			1578	1649,0		
80			1704	1649,0		
81			1644	1649,0		
82			1598	1649,0		
			Continua			

Tempo	1ª usinage	m inserto C	2ª usinage	m inserto C	3ª usinage	m inserto C
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
83			1749	1649,0		
84			1673	1649,0		
85			1577	1649,0		
86			1695	1649,0		
87			1672	1649,0		
88			1568	1649,0		
89			1625	1649,0		
90			1814	1689,8		
91			1594	1689,8		
92			1663	1689,8		
93			1786	1689,8		
94			1599	1689,8		
95			1713	1689,8		
96			1750	1689,8		
97			1585	1689,8		
98			1738	1689,8		
99			1703	1689,8		
100			1551	1689,8		
101			1756	1689,8		
102			1647	1647,3		
103			1559	1647,3		
104			1713	1647,3		
105			1579	1647,3		
106			1582	1647,3		
107			1791	1647,3		

Fonte: Autor

APÊNDICE K – Potências: PTFE com inserto D

PTFE - Politetrafluoretileno

Tempo	18 ucinago	m inserto D	- Politetraflu	m inserto D	2ª ucinago	m inserto D
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00	2672	2668,1	1668	1670,0	1579	1681,5
01	2681	2668,1	1593	1670,0	1764	1681,5
02	2676	2668,1	1746	1670,0	1616	1681,5
03	2668	2668,1	1645	1670,0	1729	1681,5
04	2671	2668,1	1625	1670,0	1609	1681,5
05	2663	2668,1	1795	1670,0	1698	1681,5
06	2673	2668,1	1607	1670,0	1800	1681,5
07	2655	2668,1	1663	1670,0	1545	1681,5
08	2660	2668,1	1749	1670,0	1813	1681,5
09	2663	2668,1	1535	1670,0	1453	1681,5
10	2672	2668,1	1725	1670,0	1844	1681,5
11	2672	2668,1	1700	1654,1	1505	1668,2
12	2669	2668,1	1587	1654,1	1828	1668,2
13	2664	2668,1	1722	1654,1	1523	1668,2
14	2664	2668,1	1641	1654,1	1793	1668,2
15	2667	2668,1	1614	1654,1	1635	1668,2
16	2653	2649,0	1713	1654,1	1696	1668,2
17	2672	2649,0	1601	1654,1	1647	1668,2
18	2661	2649,0	1632	1654,1	1617	1668,2
19	2668	2649,0	1782	1654,1	1773	1668,2
20	2652	2649,0	1602	1654,1	1558	1668,2
21	2665	2649,0	1635	1654,1	1777	1668,2
22	2662	2649,0	1705	1654,1	1561	1668,2
23	2664	2649,0	1645	1654,1	1863	1668,2
24	2653	2649,0	1624	1654,1	1485	1668,2
25	2658	2649,0	1701	1654,1	1851	1668,2
26	2663	2649,0	1630	1654,1	1496	1668,2
27	2672	2649,0	1658	1654,1	1877	1668,2
28	2659	2649,0	1706	1654,1	1534	1668,2
29	2661	2649,0	1638	1654,1	1804	1668,2
30	2662	2649,0	1657	1654,1	1526	1668,2
31	2652	2649,0	1714	1654,1	1807	1668,2
32	2668	2649,0	1676	1654,1	1557	1668,2
33	2664	2649,0	1571	1654,1	1699	1668,2
34	2670	2649,0	1707	1654,1	1624	1668,2
35	2647	2649,0	1660	1654,1	1716	1668,2
36	2658	2649,0	1569	1654,1	1670	1668,2
37	2653	2649,0	1710	1654,1	1605	1668,2
38	2656	2649,0	1658	1654,1	1703	1668,2
39	2649	2649,0	1621	1654,1	1639	1668,2

Tempo	1º usinage	m inserto D	2ª usinage	m inserto D	3ª usinage	m inserto D
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	2664	2649,0	1715	1654,1	1675	1668,2
41	2638	2649,0	1604	1654,1	1579	1668,2
42	2659	2649,0	1629	1654,1	1773	1668,2
43	2652	2649,0	1743	1654,1	1542	1668,2
44	2656	2649,0	1524	1654,1	1778	1668,2
45	2655	2649,0	1672	1654,1	1467	1668,2
46	2645	2649,0	1730	1654,1	1837	1668,2
47	2647	2649,0	1519	1654,1	1484	1668,2
48	2655	2649,0	1729	1654,1	1842	1668,2
49	2653	2649,0	1678	1654,1	1484	1668,2
50	2652	2649,0	1515	1654,1	1866	1668,2
51	2647	2649,0	1710	1654,1	1519	1668,2
52	2651	2649,0	1595	1654,1	1788	1668,2
53	2664	2649,0	1657	1654,1	1524	1668,2
54	2653	2649,0	1724	1654,1	1782	1668,2
55	2645	2649,0	1618	1654,1	1577	1668,2
56	2652	2649,0	1669	1654,1	1656	1668,2
57	2649	2649,0	1547	1654,1	1668	1668,2
58	2647	2649,0	1616	1654,1	1642	1668,2
59	2650	2649,0	1723	1654,1	1856	1688,3
60	2637	2649,0	1662	1674,3	1527	1688,3
61	2661	2649,0	1652	1674,3	1819	1688,3
62	2650	2649,0	1774	1674,3	1580	1688,3
63	2654	2649,0	1625	1674,3	1775	1688,3
64	2651	2649,0	1666	1674,3	1542	1688,3
65	2648	2649,0	1705	1674,3	1829	1688,3
66	2648	2649,0	1572	1674,3	1579	1688,3
67	2651	2649,0	1769	1674,3	1769	1688,3
68	2647	2649,0	1670	1674,3	1550	1688,3
69	2644	2649,0	1602	1674,3	1819	1688,3
70	2646	2649,0	1709	1674,3	1555	1688,3
71	2640	2649,0	1599	1628,2	1764	1658,7
72	2652	2649,0	1544	1628,2	1541	1658,7
73	2642	2649,0	1714	1628,2	1830	1658,7
74	2650	2649,0	1651	1628,2	1473	1658,7
75	2648	2649,0				
76	2650	2649,0				
77	2650	2649,0				
78	2643	2649,0				
79	2639	2649,0				
80	2642	2649,0				
81	2645	2649,0				
82	2642	2649,0				
			Continua			

Tempo	1ª usinage	m inserto D	2ª usinagem inserto D		3ª usinagem inserto D		
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	
83	2641	2649,0					
84	2641	2649,0					
85	2644	2649,0					
86	2639	2649,0					
87	2648	2649,0					
88	2638	2649,0					
89	2651	2649,0					
90	2650	2649,0					
91	2641	2649,0					
92	2645	2649,0					
93	2648	2649,0					
94	2638	2649,0					
95	2642	2649,0					
96	2628	2649,0					
97	2644	2649,0					
98	2641	2649,0					
99	2643	2649,0					
100	2637	2649,0					
101	2642	2649,0					
102	2651	2649,0					
103	2636	2649,0					
104	2643	2649,0					
105	2641	2649,0					
106	2646	2649,0					
107	2642	2649,0					
108	2646	2649,0					
109	2635	2649,0					
110	2645	2649,0					
111	2636	2649,0					
112	2643	2649,0					
113	2641	2649,0					
114	2629	2649,0					
115	2647	2649,0					
116	2644	2649,0					
117	2640	2649,0					
118	2637	2649,0					
119	2638	2649,0					
120	2659	2670,2					
121	2660	2670,2					
122	2678	2670,2					
123	2670	2670,2					
124	2665	2670,2					
125	2674	2670,2					

Tempo	1ª usinage	m inserto D	2ª usinage	m inserto D	3ª usinagem inserto D	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
126	2664	2670,2				
127	2685	2670,2				
128	2674	2670,2				
129	2669	2670,2				
130	2669	2670,2				
131	2675	2670,2				
132	2671	2670,2				
133	2674	2670,2				
134	2668	2670,2				
135	2668	2670,2				
136	2644	2640,5				
137	2637	2640,5				

Fonte:autor

APÊNDICE L – Potências: PEEK com inserto A

PEEK - Polieteretercetona

Tempo	1ª usinago	m inserto A	- Polieteret	ercetona m inserto A	2ª usinago	m inserto A
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00	1823	1823,9	1221	1222,1	1334	1332,7
01	1824	1823,9	1213	1222,1	1341	1332,7
02	1821	1823,9	1228	1222,1	1340	1332,7
03	1826	1823,9	1217	1222,1	1328	1332,7
04	1824	1823,9	1220	1222,1	1322	1332,7
05	1827	1823,9	1220	1222,1	1338	1332,7
06	1823	1823,9	1225	1222,1	1334	1332,7
07	1821	1823,9	1226	1222,1	1320	1332,7
08	1823	1823,9	1223	1222,1	1335	1332,7
09	1823	1823,9	1220	1222,1	1334	1332,7
10	1826	1823,9	1231	1222,1	1339	1332,7
11	1823	1823,9	1217	1219,0	1341	1332,7
12	1827	1823,9	1223	1219,0	1326	1332,7
13	1821	1823,9	1211	1219,0	1331	1332,7
14	1826	1823,9	1220	1219,0	1331	1332,7
15	1824	1823,9	1214	1219,0	1329	1332,7
16	1824	1820,0	1228	1219,0	1325	1328,2
17	1825	1820,0	1214	1219,0	1328	1328,2
18	1820	1820,0	1219	1219,0	1339	1328,2
19	1819	1820,0	1218	1219,0	1329	1328,2
20	1820	1820,0	1214	1219,0	1330	1328,2
21	1815	1820,0	1213	1219,0	1319	1328,2
22	1819	1820,0	1227	1219,0	1330	1328,2
23	1817	1820,0	1213	1219,0	1335	1328,2
24	1823	1820,0	1225	1219,0	1332	1328,2
25	1817	1820,0	1215	1219,0	1326	1328,2
26	1823	1820,0	1210	1219,0	1337	1328,2
27	1818	1820,0	1229	1219,0	1328	1328,2
28	1824	1820,0	1214	1219,0	1328	1328,2
29	1826	1820,0	1224	1219,0	1329	1328,2
30	1821	1820,0	1224	1219,0	1323	1328,2
31	1823	1820,0	1217	1219,0	1328	1328,2
32	1822	1820,0	1224	1219,0	1340	1328,2
33	1821	1820,0	1225	1219,0	1328	1328,2
34	1821	1820,0	1219	1219,0	1331	1328,2
35	1821	1820,0	1210	1219,0	1341	1328,2
36	1819	1820,0	1226	1219,0	1332	1328,2
37	1821	1820,0	1213	1219,0	1337	1328,2
38	1817	1820,0	1219	1219,0	1328	1328,2
39	1817	1820,0	1211	1219,0	1332	1328,2

Tempo segundos	1ª usinage	m inserto A	2ª usinage	m inserto A	3ª usinage	3ª usinagem inserto A	
	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	
40	1820	1820,0	1223	1219,0	1333	1328,2	
41	1819	1820,0	1223	1219,0	1334	1328,2	
42	1819	1820,0	1214	1219,0	1320	1328,2	
43	1818	1820,0	1220	1219,0	1333	1328,2	
44	1827	1820,0	1218	1219,0	1335	1328,2	
45	1826	1820,0	1223	1219,0	1328	1328,2	
46	1820	1820,0	1207	1219,0	1328	1328,2	
47	1818	1820,0	1224	1219,0	1326	1328,2	
48	1818	1820,0	1217	1219,0	1331	1328,2	
49	1820	1820,0	1214	1219,0	1332	1328,2	
50	1825	1820,0	1205	1219,0	1332	1328,2	
51	1825	1820,0	1225	1219,0	1330	1328,2	
52	1814	1820,0	1212	1219,0	1334	1328,2	
53	1815	1820,0	1221	1219,0	1332	1328,2	
54	1814	1820,0	1209	1219,0	1321	1328,2	
55	1824	1820,0	1222	1219,0	1323	1328,2	
56	1821	1820,0	1215	1219,0	1328	1328,2	
57	1819	1820,0	1217	1219,0	1320	1328,2	
58	1817	1820,0	1220	1219,0	1322	1328,2	
59	1810	1820,0	1210	1219,0	1321	1328,2	
60	1862	1891,3	1270	1219,0	1327	1328,2	
61	1903	1891,3	1284	1292,3	1330	1328,2	
62	1902	1891,3	1301	1292,3	1320	1328,2	
63	1896	1891,3	1290	1292,3	1323	1328,2	
64	1901	1891,3	1294	1292,3	1335	1328,2	
65	1906	1891,3	1308	1292,3	1325	1328,2	
66	1901	1891,3	1282	1292,3	1320	1328,2	
67	1900	1891,3	1296	1292,3	1329	1328,2	
68	1896	1891,3	1291	1292,3	1327	1328,2	
69	1890	1891,3	1288	1292,3	1328	1328,2	
70	1894	1891,3	1289	1292,3	1323	1328,2	
71	1843	1891,3	1237	1217,6	1320	1328,2	
72	1839	1822,7	1213	1217,6	1326	1328,2	
73	1832	1822,7	1215	1217,6	1336	1328,2	
74	1818	1822,7	1216	1217,6	1326	1328,2	
75	1818	1822,7	1209	1217,6	1323	1328,2	
76	1815	1822,7	1213	1217,6	1328	1328,2	
77	1814	1822,7	1219	1217,6	1323	1328,2	
78					1333	1328,2	
79					1329	1328,2	
80					1320	1328,2	
81					1321	1328,2	
82					1328	1328,2	

Tempo	1ª usinage	m inserto A	2ª usinage	m inserto A	3ª usinagem inserto A	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
83					1329	1328,2
84					1327	1328,2
85					1320	1328,2
86					1321	1328,2
87					1327	1328,2
88					1330	1328,2
89					1328	1328,2
90					1375	1395,8
91					1409	1395,8
92					1406	1395,8
93					1403	1395,8
94					1402	1395,8
95					1404	1395,8
96					1400	1395,8
97					1396	1395,8
98					1410	1395,8
99					1410	1395,8
100					1337	1395,8
101					1337	1331,3
102					1346	1331,3
103					1328	1331,3
104					1319	1331,3
105					1326	1331,3

Fonte: Autor

APÊNDICE M – Potências: PEEK com inserto B

PEEK - Polieteretercetona

Tempo	1ª usinage	MEEK m inserto B	- Polieteret	ercetona m inserto B	3ª usinage	m inserto B
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00	1765	1763,6	1172	1170,6	1280	1278,3
01	1767	1763,6	1168	1170,6	1283	1278,3
02	1765	1763,6	1170	1170,6	1277	1278,3
03	1764	1763,6	1174	1170,6	1281	1278,3
04	1764	1763,6	1166	1170,6	1278	1278,3
05	1763	1763,6	1178	1170,6	1277	1278,3
06	1763	1763,6	1165	1170,6	1289	1278,3
07	1764	1763,6	1170	1170,6	1274	1278,3
08	1761	1763,6	1175	1170,6	1275	1278,3
09	1766	1763,6	1169	1170,6	1280	1278,3
10	1764	1763,6	1168	1170,6	1279	1278,3
11	1762	1763,6	1162	1168,1	1273	1278,3
12	1763	1763,6	1162	1168,1	1277	1278,3
13	1766	1763,6	1160	1168,1	1280	1278,3
14	1763	1763,6	1175	1168,1	1274	1278,3
15	1758	1763,6	1167	1168,1	1275	1278,3
16	1756	1766,2	1153	1168,1	1267	1272,0
17	1758	1766,2	1171	1168,1	1266	1272,0
18	1757	1766,2	1159	1168,1	1273	1272,0
19	1758	1766,2	1160	1168,1	1271	1272,0
20	1753	1766,2	1160	1168,1	1269	1272,0
21	1761	1766,2	1169	1168,1	1277	1272,0
22	1758	1766,2	1161	1168,1	1273	1272,0
23	1756	1766,2	1165	1168,1	1269	1272,0
24	1757	1766,2	1159	1168,1	1265	1272,0
25	1756	1766,2	1168	1168,1	1265	1272,0
26	1753	1766,2	1178	1168,1	1276	1272,0
27	1752	1766,2	1244	1168,1	1278	1272,0
28	1760	1766,2	1190	1168,1	1268	1272,0
29	1754	1766,2	1161	1168,1	1269	1272,0
30	1753	1766,2	1166	1168,1	1264	1272,0
31	1760	1766,2	1182	1168,1	1272	1272,0
32	1758	1766,2	1169	1168,1	1269	1272,0
33	1754	1766,2	1169	1168,1	1258	1272,0
34	1758	1766,2	1178	1168,1	1267	1272,0
35	1759	1766,2	1177	1168,1	1271	1272,0
36	1759	1766,2	1188	1168,1	1268	1272,0
37	1754	1766,2	1155	1168,1	1259	1272,0
38	1766	1766,2	1166	1168,1	1268	1272,0
39	1785	1766,2	1162	1168,1	1268	1272,0

Segundos Pt-Avg (W) Pot med. eq. Pt-Avg (W) Pot med. eq. Pt-Avg (W) Pot med. eq. 40 1778 1766.2 1174 1168.1 1270 1272.0 41 1776 1766.2 1158 1168.1 1263 1272.0 42 1780 1766.2 1159 1168.1 1266 1272.0 43 1778 1766.2 1153 1168.1 1266 1272.0 44 1780 1766.2 1155 1168.1 1264 1272.0 45 1774 1766.2 1157 1168.1 1264 1272.0 46 1771 1766.2 1157 1168.1 1260 1272.0 48 1770 1766.2 1162 1168.1 1260 1272.0 49 1776 1766.2 1163 1168.1 1267 1272.0 50 1772 1766.2 1168 1168.1 1267 1272.0 51 1777	Tempo	1ª usinage	m inserto B	2ª usinage	m inserto B	3ª usinage	m inserto B
40 1778 1766.2 1174 1168.1 1270 1272.0 41 1776 1766.2 1158 1168.1 1263 1272.0 42 1780 1766.2 1159 1168.1 1266 1272.0 43 1778 1766.2 1151 1168.1 1266 1272.0 44 1780 1766.2 1153 1168.1 1266 1272.0 44 1780 1766.2 1153 1168.1 1266 1272.0 45 1774 1766.2 1155 1168.1 1266 1272.0 45 1774 1766.2 1155 1168.1 1264 1272.0 46 1771 1766.2 1157 1168.1 1261 1272.0 47 1778 1766.2 1156 1168.1 1261 1272.0 48 1770 1766.2 1165 1168.1 1260 1272.0 49 1776 1766.2 1164 1168.1 1267 1272.0 50 1772 1766.2 1168 1168.1 1267 1272.0 50 1772 1766.2 1168 1168.1 1267 1272.0 51 1777 1766.2 1168 1168.1 1257 1272.0 52 1779 1766.2 1168 1168.1 1257 1272.0 52 1779 1766.2 1168 1168.1 1255 1272.0 53 1772 1766.2 1164 1168.1 1267 1272.0 55 1773 1766.2 1162 1168.1 1266 1272.0 56 1775 1766.2 1162 1168.1 1266 1272.0 56 1775 1766.2 1162 1168.1 1266 1272.0 57 1772 1766.2 1173 1168.1 1267 1272.0 57 1772 1766.2 1163 1168.1 1267 1272.0 56 1775 1766.2 1163 1168.1 1266 1272.0 56 1775 1766.2 1163 1168.1 1266 1272.0 57 1772 1766.2 1173 1168.1 1265 1272.0 57 1772 1766.2 1173 1168.1 1265 1272.0 57 1772 1766.2 1173 1168.1 1265 1272.0 58 1774 1766.2 1167 1168.1 1265 1272.0 57 1772 1766.2 1173 1168.1 1268 1272.0 59 1775 1766.2 1167 1168.1 1268 1272.0 59 1775 1766.2 1167 1168.1 1268 1272.0 60 1783 1766.2 1127 1168 1168.1 1268 1272.0 61 1827 1834.6 1232 1244.8 1269 1272.0 61 1827 1834.6 1247 1244.8 1274 1272.0 66 1834 1834.6 1241 1244.8 1271 1272.0 66 1834 1834.6 1241 1244.8 1271 1272.0 66 1834 1834.6 1241 1244.8 1274 1272.0 66 1834 1834.6 1241 1244.8 1274 1272.0 69 1841 1834.6 1251 1244.8 1274 1272.0 69 1841 1834.6 1251 1244.8 1274 1272.0 69 1841 1834.6 1251 1244.8 1274 1272.0 69 1841 1834.6 1251 1244.8 1274 1272.0 69 1841 1834.6 1251 1244.8 1274 1272.0 67 1851 1834.6 1261 1270 1270 1280 1272.0 77 1280 1272.0 12	-	J		_		_	
41 1776 1766.2 1158 1168.1 1263 1272.0 42 1780 1766.2 1159 1168.1 1266 1272.0 43 1778 1766.2 1159 1168.1 1266 1272.0 43 1778 1766.2 1153 1168.1 1266 1272.0 45 1774 1766.2 1155 1168.1 1266 1272.0 45 1774 1766.2 1155 1168.1 1264 1272.0 46 1771 1766.2 1157 1168.1 1261 1272.0 47 1778 1766.2 1157 1168.1 1261 1272.0 47 1778 1766.2 1162 1168.1 1260 1272.0 49 1776 1766.2 1164 1168.1 1260 1272.0 50 1772 1766.2 1163 1168.1 1267 1272.0 50 1777 1766.2 1168 1168.1 1267 1272.0 50 1777 1766.2 1168 1168.1 1257 1272.0 51 1777 1766.2 1168 1168.1 1278 1272.0 52 1779 1766.2 1168 1168.1 1278 1272.0 53 1772 1766.2 1164 1168.1 1278 1272.0 53 1772 1766.2 1164 1168.1 1267 1272.0 54 1770 1766.2 1164 1168.1 1267 1272.0 55 1773 1766.2 1164 1168.1 1267 1272.0 55 1773 1766.2 1162 1168.1 1265 1272.0 55 1773 1766.2 1162 1168.1 1265 1272.0 56 1775 1766.2 1163 1168.1 1267 1272.0 56 1775 1766.2 1163 1168.1 1267 1272.0 56 1775 1766.2 1163 1168.1 1267 1272.0 57 1772 1766.2 1163 1168.1 1267 1272.0 57 1772 1766.2 1163 1168.1 1267 1272.0 57 1772 1766.2 1173 1168.1 1265 1272.0 57 1772 1766.2 1173 1168.1 1265 1272.0 58 1774 1766.2 1167 1168.1 1265 1272.0 58 1774 1766.2 1168 1168.1 1265 1272.0 58 1775 1766.2 1168 1168.1 1265 1272.0 58 1775 1766.2 1168 1168.1 1268 1272.0 59 1775 1766.2 1168 1168.1 1268 1272.0 59 1775 1766.2 1168 1168.1 1268 1272.0 59 1775 1766.2 1168 1168.1 1268 1272.0 59 1775 1766.2 1168 1168.1 1268 1272.0 59 1775 1766.2 1168 1168.1 1268 1272.0 59 1775 1766.2 1168 1168.1 1268 1272.0 59 1775 1766.2 1168 1169 1170.9 128 1272.0 59 1272.0 5			1766,2		1168,1		1272,0
1780		1776	1766,2	1158	1168,1	1263	1272,0
1778		1780	1766,2	1159	1168,1	1266	1272,0
45 1774 1766,2 1155 1168,1 1264 1272,0 46 1771 1766,2 1157 1168,1 1261 1272,0 47 1778 1766,2 1162 1162,1 1168,1 1260 1272,0 48 1770 1766,2 1176 1168,1 1260 1272,0 49 1776 1766,2 1164 1168,1 1267 1272,0 50 1772 1766,2 1163 1168,1 1257 1272,0 51 1777 1766,2 1168 1168,1 1257 1272,0 52 1779 1766,2 1171 1168,1 1255 1272,0 53 1772 1766,2 1164 1168,1 1267 1272,0 54 1770 1766,2 1164 1168,1 1267 1272,0 55 1773 1766,2 1164 1168,1 1267 1272,0 55 1773 1766,2 1164 1168,1 1267 1272,0 56 1775 1766,2 1163 1168,1 1267 1272,0 57 1772 1766,2 1163 1168,1 1265 1272,0 58 1774 1766,2 1173 1168,1 1265 1272,0 58 1774 1766,2 1171 1168,1 1265 1272,0 59 1775 1766,2 1163 1168,1 1265 1272,0 60 1783 1766,2 1167 1168,1 1268 1272,0 61 1827 1834,6 1232 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1243 1244,8 1271 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1247 1244,8 1274 1272,0 66 1834 1834,6 1247 1244,8 1274 1272,0 67 1828 1834,6 1247 1244,8 1274 1272,0 68 1837 1834,6 1247 1244,8 1274 1272,0 69 1841 1834,6 1251 1244,8 1274 1272,0 69 1841 1834,6 1261 1271 1244,8 1278 1272,0 70 1851 1834,6 1261 1271 1244,8 1278 1272,0 71 1832 1834,6 1261 1271,0 1272,0 72 1798 1781,6 1169 1170,9 1272 1272,0 73 1787 1781,6 1169 1170,9 1279 1272,0 74 1785 1781,6 1169 1170,9 1279 1272,0 75 1768 1781,6 1169 1170,9 1279 1272,0 77 78 1280 1272,0 78 1281 1272,0 79 1270 1272,0 80 1282 1272,0 81 1284 1272,0		1778	1766,2	1171	1168,1	1271	1272,0
46 1771 1766,2 1157 1168,1 1261 1272,0 47 1778 1766,2 1162 1168,1 1279 1272,0 48 1770 1766,2 1176 1168,1 1260 1272,0 49 1776 1766,2 1163 1168,1 1267 1272,0 50 1772 1766,2 1163 1168,1 1257 1272,0 51 1777 1766,2 1168 1168,1 1257 1272,0 52 1779 1766,2 1168 1168,1 1278 1272,0 53 1772 1766,2 1164 1168,1 1255 1272,0 54 1770 1766,2 1164 1168,1 1266 1272,0 55 1773 1766,2 1164 1168,1 1266 1272,0 56 1775 1766,2 1163 1168,1 1266 1272,0 57 1772 1766,2 1163 1168,1 1266 1272,0 58 1774 1766,2 1173 1168,1 1265 1272,0 58 1774 1766,2 1173 1168,1 1265 1272,0 59 1775 1766,2 1173 1168,1 1265 1272,0 59 1775 1766,2 1167 1168,1 1268 1272,0 60 1783 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1243 1244,8 1271 1272,0 64 1830 1834,6 1241 1244,8 1271 1272,0 65 1833 1834,6 1241 1244,8 1274 1272,0 66 1834 1834,6 1247 1244,8 1274 1272,0 67 1828 1834,6 1241 1244,8 1274 1272,0 68 1837 1834,6 1266 1244,8 1274 1272,0 69 1841 1834,6 1267 1272,0 1851 1834,6 1267 1272,0 1851 1834,6 1267 1272,0 1851 1834,6 1267 1272,0 1851 1834,6 1267 1272,0 1851 1834,6 1267 1272,0 1851 1834,6 1267 1272,0 1852 1833,6 1160 1170,9 1272 1272,0 170 1851 1834,6 1200 1170,9 1272 1272,0 171 1832 1834,6 1169 1170,9 1272 1272,0 172 1798 1781,6 1169 1170,9 1279 1272,0 173 1787 1781,6 1169 1170,9 1279 1272,0 176 1770 1781,6 1169 1170,9 1279 1272,0 177 178 1781,6 1169 1170,9 1279 1272,0 178 1787 1781,6 1169 1170,9 1279 1272,0 179 1288 1272,0 179 1272,0 179 1272,0 179 1272,0 179 1272,0 179 1272,0 179 1272,0 179 1272,0 170 1770 1781,6 1155 1170,9 1279 1272,0 170 1272,0 171 1832 1284 1272,0 172,0 173 1770 1770 1781,6 1155 1170,9 1279 1272,0 179 1270 1272,0 170 1770 1781,6 1155 1170,9 1279 1272,0 170 1280 1272,0 1851 1284 1272,0 1280 1272,0 1281 1272,0 1272,0 1281 1272,0 1272,0 1282 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0 1272,0	44	1780	1766,2	1153	1168,1	1266	1272,0
47 1778 1766,2 1162 1168,1 1279 1272,0 48 1770 1766,2 1176 1168,1 1260 1272,0 49 1776 1766,2 1163 1168,1 1267 1272,0 50 1772 1766,2 1163 1168,1 1257 1272,0 51 1777 1766,2 1168 1168,1 1278 1272,0 52 1779 1766,2 1164 1168,1 1278 1272,0 53 1772 1766,2 1164 1168,1 1255 1272,0 54 1770 1766,2 1164 1168,1 1267 1272,0 55 1773 1766,2 1162 1168,1 1267 1272,0 56 1775 1766,2 1163 1168,1 1266 1272,0 57 1772 1766,2 1163 1168,1 1265 1272,0 58 1774 1766,2 1173 1168,1 1265 1272,0 58 1774 1766,2 1171 1168,1 1265 1272,0 59 1775 1766,2 1171 1168,1 1265 1272,0 59 1775 1766,2 1167 1168,1 1268 1272,0 60 1783 1766,2 1168 1168,1 1268 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1243 1244,8 1271 1272,0 64 1830 1834,6 1247 1244,8 1271 1272,0 65 1833 1834,6 1247 1244,8 1274 1272,0 66 1834 1834,6 1247 1244,8 1274 1272,0 67 1828 1834,6 1247 1244,8 1274 1272,0 68 1837 1834,6 1247 1244,8 1274 1272,0 69 1841 1834,6 1261 1244,8 1274 1272,0 69 1841 1834,6 1261 1244,8 1274 1272,0 70 1851 1834,6 1261 1244,8 1274 1272,0 71 1832 1834,6 1261 1274, 1244,8 1274 1272,0 72 1798 1781,6 1261 170,9 1273 1272,0 73 1787 1781,6 1169 1170,9 1273 1272,0 74 1785 1781,6 1169 1170,9 1280 1272,0 75 1768 1781,6 1169 1170,9 1280 1272,0 76 1770 1781,6 1272,0 78 1280 1272,0 78 1281 1272,0 79 1272,0 80 1284 1272,0 81 1284 1272,0	45	1774	1766,2	1155	1168,1	1264	1272,0
48 1770 1766,2 1176 1168,1 1260 1272,0 49 1776 1766,2 1164 1168,1 1267 1272,0 50 1772 1766,2 1163 1168,1 1257 1272,0 51 1777 1766,2 1168 1168,1 1278 1272,0 52 1779 1766,2 1161 1168,1 1255 1272,0 53 17772 1766,2 1164 1168,1 1267 1272,0 54 1770 1766,2 1162 1168,1 1266 1272,0 55 1773 1766,2 1162 1168,1 1266 1272,0 56 1775 1766,2 1163 1168,1 1266 1272,0 57 1772 1766,2 1173 1168,1 1265 1272,0 58 1774 1766,2 1173 1168,1 1265 1272,0 59 1775 1766,2 1171 1168,1 1265 1272,0 59 1775 1766,2 1167 1168,1 1268 1272,0 60 1783 1766,2 1167 1168,1 1268 1272,0 60 1783 1766,2 1188 1168,1 1268 1272,0 61 1827 1834,6 1232 1244,8 1265 1272,0 62 1833 1834,6 1243 1244,8 1269 1272,0 63 1834 1834,6 1243 1244,8 1271 1272,0 64 1830 1834,6 1247 1244,8 1271 1272,0 65 1833 1834,6 1247 1244,8 1274 1272,0 66 1834 1834,6 1247 1244,8 1274 1272,0 67 1828 1834,6 1247 1244,8 1274 1272,0 68 1837 1834,6 1247 1244,8 1274 1272,0 69 1841 1834,6 1266 1244,8 1274 1272,0 69 1841 1834,6 1266 1244,8 1274 1272,0 69 1841 1834,6 1266 1244,8 1274 1272,0 70 1851 1834,6 1266 1244,8 1274 1272,0 71 1832 1834,6 1160 1170,9 1273 1272,0 72 17798 1781,6 1169 1170,9 1279 1272,0 73 1787 1781,6 1169 1170,9 1279 1272,0 75 1768 1781,6 1169 1170,9 1279 1272,0 77 1785 1781,6 1155 1170,9 1279 1272,0 78 1280 1272,0 79 1280 1272,0 80 1284 1272,0 81	46	1771	1766,2	1157	1168,1	1261	1272,0
49 1776 1766,2 1164 1168,1 1267 1272,0 50 1772 1766,2 1163 1168,1 1257 1272,0 51 1777 1766,2 1188 1168,1 1278 1272,0 52 1779 1766,2 1171 1168,1 1255 1272,0 53 1772 1766,2 1162 1168,1 1267 1272,0 54 1770 1766,2 1162 1168,1 1265 1272,0 55 1773 1766,2 1163 1168,1 1265 1272,0 56 1775 1766,2 1173 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1265 1272,0 57 1772 1766,2 1167 1168,1 1265 1272,0 57 1772 1766,2 1167 1168,1 1268 1272,0 58 1774 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 <td< th=""><th>47</th><th>1778</th><th>1766,2</th><th>1162</th><th>1168,1</th><th>1279</th><th>1272,0</th></td<>	47	1778	1766,2	1162	1168,1	1279	1272,0
50 1772 1766,2 1163 1168,1 1257 1272,0 51 1777 1766,2 1168 1168,1 1278 1272,0 52 1779 1766,2 1171 1168,1 1255 1272,0 53 1772 1766,2 1164 1168,1 1267 1272,0 54 1770 1766,2 1162 1163,1 1266 1272,0 55 1773 1766,2 1173 1168,1 1267 1272,0 56 1775 1766,2 1171 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1268 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 129 1244,8 1265 1272,0 61 1827 1834,6 1232	48	1770	1766,2	1176	1168,1	1260	1272,0
51 1777 1766,2 1168 1168,1 1278 1272,0 52 1779 1766,2 1171 1168,1 1255 1272,0 53 1772 1766,2 1164 1168,1 1267 1272,0 54 1770 1766,2 1162 1168,1 1266 1272,0 55 1773 1766,2 1163 1168,1 1267 1272,0 56 1775 1766,2 1173 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1265 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1261 1272,0 62 1833 1834,6 1243	49	1776	1766,2	1164	1168,1	1267	1272,0
52 1779 1766,2 1171 1168,1 1255 1272,0 53 1772 1766,2 1164 1168,1 1267 1272,0 54 1770 1766,2 1162 1168,1 1256 1272,0 55 1773 1766,2 1163 1168,1 1267 1272,0 56 1775 1766,2 1173 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1265 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1168 1168,1 1268 1272,0 61 1827 1834,6 1232 1244,8 1265 1272,0 61 1827 1834,6 1242 1244,8 1271 1272,0 63 1834 1834,6 <td< th=""><th>50</th><th>1772</th><th>1766,2</th><th>1163</th><th>1168,1</th><th>1257</th><th>1272,0</th></td<>	50	1772	1766,2	1163	1168,1	1257	1272,0
53 1772 1766,2 1164 1168,1 1267 1272,0 54 1770 1766,2 1162 1168,1 1256 1272,0 55 1773 1766,2 1163 1168,1 1267 1272,0 56 1775 1766,2 1173 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1265 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1168 1168,1 1268 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 61 1827 1834,6 1232 1244,8 1271 1272,0 63 1834 1834,6 1242 124,8 1274 1272,0 64 1830 1834,6 1247	51	1777	1766,2	1168	1168,1	1278	1272,0
54 1770 1766,2 1162 1168,1 1256 1272,0 55 1773 1766,2 1163 1168,1 1267 1272,0 56 1775 1766,2 1173 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1265 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1242 1244,8 1271 1272,0 63 1834 1834,6 1242 1244,8 1274 1272,0 65 1833 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241	52	1779	1766,2	1171	1168,1	1255	1272,0
55 1773 1766,2 1163 1168,1 1267 1272,0 56 1775 1766,2 1173 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1265 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1247 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1274 1272,0 66 1834 1834,6 1251	53	1772	1766,2	1164	1168,1	1267	1272,0
56 1775 1766,2 1173 1168,1 1265 1272,0 57 1772 1766,2 1171 1168,1 1265 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1242 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1274 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266	54	1770	1766,2	1162	1168,1	1256	1272,0
577 1772 1766,2 1171 1168,1 1265 1272,0 58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1242 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1274 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1267	55	1773	1766,2	1163	1168,1	1267	1272,0
58 1774 1766,2 1167 1168,1 1268 1272,0 59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1242 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1274 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1261 1274,8 1278 1272,0 70 1851 1834,6 <td< th=""><th>56</th><th>1775</th><th>1766,2</th><th>1173</th><th>1168,1</th><th>1265</th><th>1272,0</th></td<>	56	1775	1766,2	1173	1168,1	1265	1272,0
59 1775 1766,2 1168 1168,1 1268 1272,0 60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1242 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1251 1244,8 1274 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 72 1798 1781,6 <td< th=""><th>57</th><th>1772</th><th>1766,2</th><th>1171</th><th>1168,1</th><th>1265</th><th>1272,0</th></td<>	57	1772	1766,2	1171	1168,1	1265	1272,0
60 1783 1766,2 1229 1244,8 1265 1272,0 61 1827 1834,6 1232 1244,8 1269 1272,0 62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1242 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1280 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 <td< th=""><th>58</th><th>1774</th><th>1766,2</th><th>1167</th><th>1168,1</th><th>1268</th><th>1272,0</th></td<>	58	1774	1766,2	1167	1168,1	1268	1272,0
61	59	1775	1766,2	1168	1168,1	1268	1272,0
62 1833 1834,6 1243 1244,8 1271 1272,0 63 1834 1834,6 1242 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1280 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 75 1768 1781,6 1155 1170,9 1279 1272,0 76 1770 1781,6 <td< th=""><th>60</th><th>1783</th><th></th><th>1229</th><th>1244,8</th><th>1265</th><th>1272,0</th></td<>	60	1783		1229	1244,8	1265	1272,0
63 1834 1834,6 1242 1244,8 1273 1272,0 64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1280 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 75 1768 1781,6 1155 1170,9 1279 1272,0 78 1280 1271 1	61	1827	1834,6	1232	1244,8	1269	1272,0
64 1830 1834,6 1247 1244,8 1274 1272,0 65 1833 1834,6 1241 1244,8 1280 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 75 1768 1781,6 1155 1170,9 1279 1272,0 76 1770 1781,6 1282 1277 1272,0 78 1281 1270 1272,0	62	1833		1243	1244,8	1271	1272,0
65 1833 1834,6 1241 1244,8 1280 1272,0 66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1155 1170,9 1279 1272,0 77 1280 1277 1272,0 1272,0 78 1281 1277 1272,0 80	63					1273	1272,0
66 1834 1834,6 1251 1244,8 1274 1272,0 67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 75 1768 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1155 1170,9 1279 1272,0 76 1770 1781,6 1281 1272,0 78 1281 1272,0 79 1270 1272,0 80 1284 1272,0 80 1284	64		1834,6		1244,8		
67 1828 1834,6 1266 1244,8 1276 1272,0 68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1155 1170,9 1282 1272,0 78 1280 1272,0 1280 1272,0 78 1281 1272,0 80 1284 1272,0 80 1284 1272,0 81 1284 1272,0 82 1271 1272,0 1271 127	65					1280	
68 1837 1834,6 1247 1244,8 1284 1272,0 69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1280 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1155 1170,9 1279 1272,0 76 1770 1781,6 1282 1272,0 78 1280 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0	66						
69 1841 1834,6 1251 1244,8 1278 1272,0 70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1155 1170,9 1282 1272,0 76 1770 1781,6 1277 1272,0 78 1280 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
70 1851 1834,6 1202 1170,9 1273 1272,0 71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1155 1170,9 1282 1272,0 76 1770 1781,6 1277 1272,0 78 1280 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
71 1832 1834,6 1160 1170,9 1272 1272,0 72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1155 1170,9 1282 1272,0 76 1770 1781,6 1277 1272,0 78 1281 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
72 1798 1781,6 1169 1170,9 1288 1272,0 73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1282 1272,0 76 1770 1781,6 1277 1272,0 78 1280 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
73 1787 1781,6 1169 1170,9 1280 1272,0 74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1282 1272,0 76 1770 1781,6 1277 1280 1272,0 78 1281 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
74 1785 1781,6 1155 1170,9 1279 1272,0 75 1768 1781,6 1282 1272,0 76 1770 1781,6 1277 1272,0 78 1280 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
75 1768 1781,6 1282 1272,0 76 1770 1781,6 1277 1272,0 77 1280 1272,0 78 1281 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
76 1770 1781,6 1277 1272,0 77 1280 1272,0 78 1281 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0				1155	1170,9		
77 1280 1272,0 78 1281 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
78 1281 1272,0 79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0		1770	1781,6				
79 1270 1272,0 80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
80 1288 1272,0 81 1284 1272,0 82 1271 1272,0							
81 1284 1272,0 82 1271 1272,0							
82 1271 1272,0							
-							
	82			Continue		12/1	12/2,0

Tempo	1ª usinage	m inserto B	2ª usinage	m inserto B	3ª usinagem inserto B	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
83					1281	1272,0
84					1278	1272,0
85					1279	1272,0
86					1286	1272,0
87					1271	1272,0
88					1286	1272,0
89					1276	1272,0
90					1304	1272,0
91					1339	1349,2
92					1351	1349,2
93					1342	1349,2
94					1345	1349,2
95					1350	1349,2
96					1349	1349,2
97					1354	1349,2
98					1360	1349,2
99					1363	1349,2
100					1339	1349,2
101					1288	1270,4
102					1267	1270,4
103					1260	1270,4
104					1268	1270,4
105					1269	1270,4

Fonte: Autor

APÊNDICE N – Potências: PEEK com inserto C PEEK - Polieteretercetona

Tempo	1ª usinagem inserto C		2ª usinage	2ª usinagem inserto C		3ª usinagem inserto C	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	
00	1751	1743,3	1161	1161,5	1270	1263,2	
01	1744	1743,3	1160	1161,5	1257	1263,2	
02	1746	1743,3	1159	1161,5	1262	1263,2	
03	1745	1743,3	1167	1161,5	1269	1263,2	
04	1747	1743,3	1162	1161,5	1264	1263,2	
05	1746	1743,3	1160	1161,5	1257	1263,2	
06	1738	1743,3	1162	1161,5	1260	1263,2	
07	1744	1743,3	1173	1161,5	1266	1263,2	
08	1742	1743,3	1159	1161,5	1262	1263,2	
09	1740	1743,3	1154	1161,5	1265	1263,2	
10	1741	1743,3	1160	1161,5	1259	1263,2	
11	1744	1743,3	1160	1155,6	1266	1263,2	
12	1740	1743,3	1154	1155,6	1262	1263,2	
13	1744	1743,3	1156	1155,6	1269	1263,2	
14	1738	1743,3	1155	1155,6	1258	1263,2	
15	1743	1743,3	1156	1155,6	1263	1263,2	
16	1740	1737,6	1151	1155,6	1253	1260,8	
17	1739	1737,6	1156	1155,6	1255	1260,8	
18	1732	1737,6	1158	1155,6	1257	1260,8	
19	1733	1737,6	1155	1155,6	1258	1260,8	
20	1735	1737,6	1158	1155,6	1255	1260,8	
21	1740	1737,6	1148	1155,6	1255	1260,8	
22	1734	1737,6	1156	1155,6	1257	1260,8	
23	1736	1737,6	1163	1155,6	1265	1260,8	
24	1738	1737,6	1160	1155,6	1263	1260,8	
25	1736	1737,6	1154	1155,6	1257	1260,8	
26	1736	1737,6	1156	1155,6	1258	1260,8	
27	1735	1737,6	1156	1155,6	1261	1260,8	
28	1732	1737,6	1155	1155,6	1250	1260,8	
29	1733	1737,6	1156	1155,6	1254	1260,8	
30	1734	1737,6	1159	1155,6	1262	1260,8	
31	1732	1737,6	1157	1155,6	1252	1260,8	
32	1731	1737,6	1153	1155,6	1256	1260,8	
33	1731	1737,6	1159	1155,6	1250	1260,8	
34	1726	1737,6	1152	1155,6	1260	1260,8	
35	1729	1737,6	1150	1155,6	1252	1260,8	
36	1733	1737,6	1154	1155,6	1255	1260,8	
37	1728	1737,6	1155	1155,6	1246	1260,8	
38	1746	1737,6	1158	1155,6	1258	1260,8	
39	1742	1737,6	1156	1155,6	1258	1260,8	

Tempo	1ª usinage	m inserto C	2ª usinagem inserto C		3ª usinagem inserto C	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
40	1763	1737,6	1154	1155,6	1256	1260,8
41	1751	1737,6	1154	1155,6	1267	1260,8
42	1751	1737,6	1153	1155,6	1255	1260,8
43	1751	1737,6	1157	1155,6	1272	1260,8
44	1754	1737,6	1157	1155,6	1257	1260,8
45	1744	1737,6	1156	1155,6	1260	1260,8
46	1751	1737,6	1156	1155,6	1248	1260,8
47	1744	1737,6	1157	1155,6	1261	1260,8
48	1748	1737,6	1150	1155,6	1251	1260,8
49	1733	1737,6	1151	1155,6	1253	1260,8
50	1738	1737,6	1154	1155,6	1258	1260,8
51	1732	1737,6	1162	1155,6	1251	1260,8
52	1733	1737,6	1156	1155,6	1263	1260,8
53	1734	1737,6	1159	1155,6	1248	1260,8
54	1730	1737,6	1157	1155,6	1267	1260,8
55	1732	1737,6	1152	1155,6	1258	1260,8
56	1733	1737,6	1158	1155,6	1257	1260,8
57	1736	1737,6	1155	1155,6	1255	1260,8
58	1733	1737,6	1159	1155,6	1251	1260,8
59	1735	1737,6	1157	1155,6	1260	1260,8
60	1736	1737,6	1153	1155,6	1253	1260,8
61	1810	1812,4	1247	1246,9	1260	1260,8
62	1807	1812,4	1245	1246,9	1250	1260,8
63	1818	1812,4	1249	1246,9	1258	1260,8
64	1811	1812,4	1249	1246,9	1258	1260,8
65	1815	1812,4	1258	1246,9	1255	1260,8
66	1811	1812,4	1255	1246,9	1256	1260,8
67	1813	1812,4	1239	1246,9	1257	1260,8
68	1812	1812,4	1242	1246,9	1258	1260,8
69	1818	1812,4	1248	1246,9	1247	1260,8
70	1809	1812,4	1238	1246,9	1261	1260,8
71	1787	1739,0	1166	1162,8	1263	1260,8
72	1743	1739,0	1184	1162,8	1265	1260,8
73	1739	1739,0	1154	1162,8	1258	1260,8
74	1726	1739,0	1162	1162,8	1268	1260,8
75	1725	1739,0	1156	1162,8	1270	1260,8
76	1727	1739,0	1155	1162,8	1262	1260,8
77	1725	1739,0			1280	1260,8
78					1272	1260,8
79					1288	1260,8
80					1278	1260,8
81					1264	1260,8
						•

Tempo	1ª usinagem inserto C		2ª usinagem inserto C		3ª usinagem inserto C	
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
83					1278	1260,8
84					1289	1260,8
85					1269	1260,8
86					1272	1260,8
87					1275	1260,8
88					1280	1260,8
89					1281	1260,8
90					1284	1336,6
91					1342	1336,6
92					1348	1336,6
93					1341	1336,6
94					1347	1336,6
95					1340	1336,6
96					1343	1336,6
97					1341	1336,6
98					1342	1336,6
99					1348	1336,6
100					1326	1336,6
101					1276	1258,3
102					1247	1258,3
103					1252	1258,3

Fonte: Autor

APÊNDICE O – Potências: PEEK com inserto D

PEEK - Polieteretercetona

 Tempo	1 8 ucinago	m inserto D	- Polieteret	ercetona m inserto D	28 usinaga	m inserto D
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.
00	1749	1749,3	1171	1167,2	1268	1269,1
01	1752	1749,3	1170	1167,2	1272	1269,1
02	1753	1749,3	1162	1167,2	1268	1269,1
03	1749	1749,3	1167	1167,2	1264	1269,1
04	1749	1749,3	1164	1167,2	1271	1269,1
05	1750	1749,3	1171	1167,2	1275	1269,1
06	1747	1749,3	1163	1167,2	1268	1269,1
07	1751	1749,3	1168	1167,2	1268	1269,1
08	1751	1749,3	1168	1167,2	1273	1269,1
09	1746	1749,3	1163	1167,2	1268	1269,1
10	1749	1749,3	1174	1167,2	1270	1269,1
11	1747	1749,3	1167	1161,8	1268	1269,1
12	1749	1749,3	1163	1161,8	1273	1269,1
13	1746	1749,3	1158	1161,8	1265	1269,1
14	1751	1749,3	1160	1161,8	1265	1269,1
15	1749	1749,3	1168	1161,8	1269	1269,1
16	1753	1735,8	1160	1161,8	1263	1262,8
17	1747	1735,8	1164	1161,8	1269	1262,8
18	1739	1735,8	1164	1161,8	1259	1262,8
19	1746	1735,8	1159	1161,8	1263	1262,8
20	1742	1735,8	1167	1161,8	1265	1262,8
21	1744	1735,8	1164	1161,8	1264	1262,8
22	1739	1735,8	1173	1161,8	1267	1262,8
23	1746	1735,8	1156	1161,8	1255	1262,8
24	1740	1735,8	1157	1161,8	1265	1262,8
25	1744	1735,8	1159	1161,8	1268	1262,8
26	1740	1735,8	1167	1161,8	1264	1262,8
27	1740	1735,8	1162	1161,8	1260	1262,8
28	1740	1735,8	1162	1161,8	1260	1262,8
29	1735	1735,8	1162	1161,8	1269	1262,8
30	1741	1735,8	1167	1161,8	1261	1262,8
31	1731	1735,8	1160	1161,8	1264	1262,8
32	1735	1735,8	1165	1161,8	1260	1262,8
33	1736	1735,8	1160	1161,8	1262	1262,8
34	1736	1735,8	1167	1161,8	1260	1262,8
35	1729	1735,8	1167	1161,8	1254	1262,8
36	1729	1735,8	1164	1161,8	1262	1262,8
37	1733	1735,8	1167	1161,8	1260	1262,8
38	1733	1735,8	1154	1161,8	1261	1262,8
39	1743	1735,8	1166	1161,8	1262	1262,8

Tempo	1ª usinage	m inserto D	2ª usinage	m inserto D	3ª usinagem inserto D		
segundos	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	Pt+_Avg [W]	Pot. med. eq.	
40	1737	1735,8	1158	1161,8	1257	1262,8	
41	1743	1735,8	1159	1161,8	1260	1262,8	
42	1744	1735,8	1165	1161,8	1258	1262,8	
43	1741	1735,8	1166	1161,8	1266	1262,8	
44	1732	1735,8	1157	1161,8	1266	1262,8	
45	1736	1735,8	1169	1161,8	1263	1262,8	
46	1732	1735,8	1157	1161,8	1265	1262,8	
47	1732	1735,8	1162	1161,8	1260	1262,8	
48	1733	1735,8	1156	1161,8	1262	1262,8	
49	1731	1735,8	1161	1161,8	1261	1262,8	
50	1725	1735,8	1158	1161,8	1261	1262,8	
51	1730	1735,8	1159	1161,8	1266	1262,8	
52	1725	1735,8	1159	1161,8	1263	1262,8	
53	1724	1735,8	1166	1161,8	1262	1262,8	
54	1731	1735,8	1159	1161,8	1262	1262,8	
55	1728	1735,8	1165	1161,8	1263	1262,8	
56	1728	1735,8	1154	1161,8	1264	1262,8	
57	1725	1735,8	1155	1161,8	1264	1262,8	
58	1730	1735,8	1162	1161,8	1268	1262,8	
59	1726	1735,8	1155	1161,8	1275	1262,8	
60	1732	1814,9	1203	1245,8	1334	1357,9	
61	1828	1814,9	1258	1245,8	1359	1357,9	
62	1823	1814,9	1253	1245,8	1355	1357,9	
63	1828	1814,9	1267	1245,8	1364	1357,9	
64	1827	1814,9	1246	1245,8	1364	1357,9	
65	1827	1814,9	1252	1245,8	1353	1357,9	
66	1831	1814,9	1258	1245,8	1368	1357,9	
67	1828	1814,9	1261	1245,8	1371	1357,9	
68	1830	1814,9	1259	1245,8	1365	1357,9	
69	1826	1814,9	1257	1245,8	1368	1357,9	
70	1825	1814,9	1187	1245,8	1336	1357,9	
71	1771	1814,9	1167	1164,3	1284	1265,2	
72	1732	1728,6	1165	1164,3	1265	1265,2	
73	1731	1728,6	1166	1164,3	1257	1265,2	
74	1730	1728,6	1153	1164,3	1268	1265,2	
75	1725	1728,6	1166	1164,3	1258	1265,2	
76	1725	1728,6			1257	1265,2	
77					1267	1265,2	

Fonte: Autor

APÊNDICE P - Rugosidade PEUAPM: 1ª Usinagem

PEUAPM - Primeira usinagem com a ferramenta A - Korloy com raio de 0,4 mm.

PEUAPM - Primeira usinagem com a ferramenta D - Dormer com raio de 0,8 mm.

PEUAPM - Prmeira usinagem com a ferramenta B - Korloy com raio de 0,8 mm.

APÊNDICE Q - Rugosidade PEUAPM: 2ª Usinagem

PEUAPM - Segunda usinagem com a ferramenta B Korloy com raio de 0,8 mm.

PEUAPM - Segunda usinagem com a ferramenta A Korloy com raio de 0,4 mm.

1ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:32

T1 Pxx-150 150 -4

Lt 5.600 mm

Ls GS 2.5 µm

Lc GS 0.800 mm

Ra 1.878 µm

Rt 16.0 µm

2ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:33

T1 Pxx-150 150 -4

Lt 5.600 mm

Ls GS 2.5 µm

Lc GS 0.800 mm

Ra 1.968 µm

Rt 14.1 µm

3ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:34
T1 Pxx-150 150 -4
Lt 5.600 mm

Ls GS 2.5 µm
Lc GS 0.800 mm

Ra 2.1145 µm

1ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:35
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 1.823 µm
Rt 11.1 µm

2ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:36
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 1.822 µm
Rt 10.7 µm

3ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:36

Ti Pxx-150 150 -4

Lt 5.600 mm

Ls GS 2.5 µm

Lc GS 0.800 mm

Ra 1.823 µm

Rt 10.4 µm

APÊNDICE R - Rugosidade PEUAPM: 3ª Usinagem

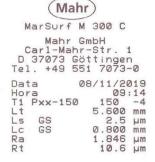
PEUAPM - Terceira usinagem com a ferramenta A Korloy com raio de 0,4 mm. PEUAPM - Terceira usinagem com a ferramenta B Korloy com raio de 0,8 mm.

1ª medição

MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0
Data 08/11/2019
Hora 09:12
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 1.964 µm
Rt 11.1 µm

2ª medição


(Mahr)

MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:13
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Ra 2.067 µm
Rt 15.5 µm

3ª medição

1ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:15

T1 Pxx-150 150 -4
Lt 5.600 mm

Ls GS 2.5 µm

Lc GS 0.800 mm

Ra 1.672 µm

Rt 12.0 µm

2ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:16

T1 Pxx-150 150 -4
Lt 5.600 mm

Ls GS 2.5 µm

Lc GS 0.800 mm

Ra 1.873 µm

Rt 13.4 µm

3ª medição

APÊNDICE S - Rugosidade POM: 1ª Usinagem

POM - Primeira usinagem com a ferramenta A - Korloy com raio de 0,4 mm.

1ª medição	2ª medição	3ª medição
* Mahr	Mahr	Mahr
MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0	MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0	MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0
Data 24/10/2019 Hora 09:24 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.798 µm Rz 4.00 µm Rmax 4.55 µm Rt 4.63 µm	Data 24/10/2019 Hora 09:25 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.781 µm Rz 3.93 µm Rmax 4.50 µm Rt 4.79 µm	Data 24/10/2019 Hora 09:25 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.757 µm Rz 3.99 µm Rmax 4.69 µm Rt 4.69 µm

POM - Primeira usinagem com a ferramenta C - Dormer com raio de 0,4.

1ª medição Mahr MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0	2ª medição Mahr MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0	3ª medição Mahr MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0
Data 24/10/2019 Hora 09:26 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Ra 1.202 µm Rz 8.78 µm Rmax 10.5 µm Rt 11.2 µm	Data 24/10/2019 Hora 09:27 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 μm Lc GS 0.800 mm Ra 1.277 μm Rz 8.64 μm Rmax 10.3 μm Rt 10.3 μm	Data 24/10/2019 Hora 09:27 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 1.347 µm Rz 8.10 µm Rmax 8.39 µm Rt 9.63 µm

APÊNDICE T - Rugosidade POM: 1ª Usinagem

POM - Primeira usinagem com a ferramenta D - Dormer com raio 0,8 mm.

1ª medição	2º medição	3ª medição
Mahr	Mahr	Mahr
MarSurf M 300 C	MarSurf M 300 C	MarSurf M 300 C
Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0	Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0	Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0
Data 24/10/2019 Hora 09:28 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 μm Lc GS 0.800 mm Ra 0.764 μm Rz 4.90 μm Rmax 5.64 μm Rt 5.89 μm	Data 24/10/2019 Hora 09:29 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.704 µm Rz 4.59 µm Rmax 5.22 µm Rt 5.80 µm	Data 24/10/2019 Hora 09:29 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.671 µm Rz 4.80 µm Rx 5.15 µm Rt 5.30 µm

POM - Primeira usinagem com a ferramenta B - Korloy com raio 0,8.

1ª medição	2ª medição	3ª medição
Mahr MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen	Mahr MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1	Mahr MarSurf M 300 C Mahr GmbH Carl-Mahr-Str. 1
Tel. +49 551 7073-0 Data 24/10/2019 Hora 09:30 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.471 µm Rz 2.83 µm Rmax 3.18 µm Rt 3.63 µm	D 37073 Göttingen Tel. +49 551 7073-0 Data 24/10/2019 Hora 09:31 Ti Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.429 µm Rz 2.88 µm Rmax 3.44 µm Rt 3.75 µm	D 37073 Göttingen Tel. +49 551 7073-0 Data 24/10/2019 Hora 99:32 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 0.408 µm Rz 3.01 µm Rx 3.65 µm Rt 4.11 µm

APÊNDICE U - Rugosidade POM: 2ª Usinagem

POM - Segunda usinagem com a ferramenta A Korloy com raio de 0,4 mm.

1ª medição

(Mahr)

MarSurf M 300 C

Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:01
T1 Pxx-150 150 -4
Lt 5.600 mm
Lc GS 0.800 mm
Ra 0.788 µm
Rt 4.54 µm

2ª medição

(Mahr)

MarSurf M 300 C

Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:02
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Ra 0.805 µm
Rt 4.80 µm

3ª medição

Mahr

MarSurf M 300 C

Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0 Data 08/11/2019 Hora 09:02 T1 Pxx-150 150 -4 Lt 5.600 mm

Hora 09:02
T1 Pxx-150 150 -4
t 5.600 mm
L5 GS 2.5 µm
Lc GS 0.8000 mm
Ra 0.762 µm
Rt 5.000 µm

POM - Segunda usinagem com a ferramenta C Dormer com raio de 0,4 mm.

1ª medição

Mahr

MarSurf M 300 C

Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0

Data 08/11/2019 Hora 09:04 T1 Pxx-150 150 -4 Lt 5.600 mm Ls GS 2.5 µm Lc GS 0.800 mm Ra 1.264 µm Rt 12.7 µm

2ª medição

(Mahr)

MarSurf M 300 C

Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:04
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 1.331 µm
Rt 11.0 µm

3ª medição

(Mahr)

MarSurf M 300 C

Mahr GmbH Carl-Mahr-Str. 1 D 37073 Göttingen Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:05
T1 Pxx-150 150 -4
tt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 1.310 µm
Rt 12.0 µm

APÊNDICE V - Rugosidade POM: 2ª Usinagem

POM - Segunda usinagem com a ferramenta D Dormer com raio de 0,8 mm. POM - Segunda usinagem com a ferramenta B Koroy com raio de 0,8 mm.

1ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1
D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:06

T1 Pxx-150 150 -4

Lt 5.600 mm

Ls GS 2.5 µm

Lc GS 0.800 mm

Ra 0.829 µm

Rt 6.65 µm

2ª medição

Mahr

MarSurf M 300 C

Mahr GmbH

Carl-Mahr-Str. 1

D 37073 Göttingen

Tel. +49 551 7073-0

Data 08/11/2019

Hora 09:06

T1 Pxx-150 150 -4

Lt 5.600 mm

Ls GS 2.5 µm

Lc GS 0.800 mm

Ra 0.849 µm

Rt 6.49 µm

3ª medição

1ª medição

MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0

Data 08/11/2019
Hora 09:09
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Cs 0.800 mm
Ra 0.461 µm
Rt 2.97 µm

2ª medição

3ª medição

APÊNDICE W - Rugosidade POM: 3ª Usinagem

POM - Terceira usinagem com a ferramenta A Korloy com raio de 0,4 mm.

1ª medição

Mahr

MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0
Data 08/11/2019
Hora 08:51
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.736 µm
Ra 0.736 µm
Rt 4.33 µm

2ª medição

Mahr

MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0
Data 08/11/2019
Hora 08:51
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 0.765 µm
Rt 4.60 µm

3ª medição

(Mahr)

MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0
Data 08/11/2019
Hora 08:52
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 0.800 µm
Rt 5.23 µm

POM - Terceira usinagem com a ferramenta C Dormer com raio de 0,4 mm.

1ª medição

Mahr)
MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0
Data 08/11/2019
Hora 08:54
Ti Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Rd 1.270 µm
Rd 1.270 µm
Rt 9.31 µm

2ª medição

(Mahr)

MarSurf M 300 C

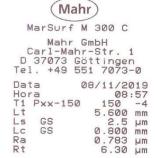
Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0
Data 08/11/2019
Hora 08:54
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0800 mm
Ra 1.473 µm
Rt 12.3 µm

3ª medição

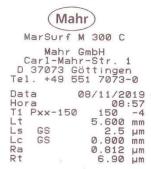
(Mahr)

MarSurf M 300 C

Mahr GmbH
Carl-Mahr-Str. 1
D 37073 Göttingen
Tel. +49 551 7073-0
Data 08/11/2019
Hora 08:54
T1 Pxx-150 150 -4
Lt 5.600 mm
Ls GS 2.5 µm
Lc GS 0.800 mm
Ra 1.439 µm
Rt 12.8 µm


APÊNDICE X - Rugosidade POM: 3ª Usinagem

POM - Terceira usinagem com a ferramenta D Dormer com raio de 0,8 mm.


1ª medição

2ª medição

3ª medição

POM - Terceira usinagem com a ferramenta B Korloy com raio de 0,8 mm

1ª medição

2ª medição

3ª medição

ANEXO A - Manual Minipa ET-5061C

PROPOSTA TÉCNICA

ANALISADOR DE ENERGIA MODELO: ET-5061C

CARACTERÍSTICAS

Visualização em Tempo Real

Parâmetros Gerais da Rede

Tensão, Corrente, Frequência, Potências, Energias, Cos ϕ , Flicker, Picos de Tensão e Transientes, Assimetria, THD%, Harmônicos, Sequência de Fase.

Forma de Onda dos Sinais

Tensões, Correntes, Histogramas Harmônicos. *Diagrama Vetorial*

Tensões, Correntes.

Registro

Parâmetros

Cada parâmetro geral + energia Número de Parâmetros Selecionáveis Máximo 251

Período de Integração

1, 2, 5, 10, 30seg. 1, 2, 5, 10 15, 30, 60min. *Capacidade da Memória (15Mbytes)*

Para análises maiores que 3 meses, 251 parâmetros @15min.

Display

TFT Retro-Iluminado Touch Screen.

1/4" VGA (320 x 240).
Contraste variável.

Sistema Operacional e Memória

Sistema Operacional

Windows CE

Memória interna

15Mbytes, expansível por Compact Flash.

USB (Host e Client), Compact Flash.

Normas Aplicadas

Segurança do Instrumento

IEC / EN61010-1 CAT IV 600V para terra (Máx.

1000V entre as entradas)

Documentação Técnica

IEC / EN61187

Segurança dos Acessórios de Medida

IEC / EN61010-031, IEC / EN61010-2-032

Qualidade da Rede Elétrica

IEC / EN50160

Qualidade da Potência Elétrica

IEC / EN61000-4-30 Classe B

Flicker

IEC / EN61000-4-15, IEC / EN50160

Assimetria

IEC / EN61000-4-7, IEC / EN50160

Dupla Isolação

Grau de Poluição 2

IP 50

шшш.minipa.com.br

MINIPA DO BRASIL LTDA.

Matriz: Av. Carlos Liviero, 59 - Vila Liviero - 04186-100 São Paulo - SP - Tel: +55 11 5078-1850 Filial: Rua Dona Francisca, 8300 - Bloco 4 - Módulo A - 89219-600 Joinville - SC - Tel: +55 47 3467-8444

ET-506IC

PROPOSTA TÉCNICA

Alimentação

Fonte de Alimentação Interna
Bateria recarregável Li-INO 3,7V, autonomia >3
horas

Fonte de Alimentação Externa Adaptador AC/DC, código A0055 100~240VAC / 50-60Hz - 5VDC, 1,5A. Auto desligamento

Após 5 minutos inativo (sem o adaptador externo).

Ambiente

Temperatura de Referência para Calibração 23°C ±5°C Ambiente de Operação 0°C ~ 40°C RH <80% Altitude Máxima: 2000m. Ambiente de Armazenamento -10°C ~ 60°C RH <80%

Características Mecânicas

Dimensões 235(A) x 165(L) x 75(P)mm Peso (incluindo bateria) Aprox. 1,0kg

EMC

Este instrumento está em conformidade com as prescrições da diretiva européia 2006/95/CE (LVD) relativa a baixa tensão e EMC 2004/108/CE.

Garantia

Válida por 24 (vinte e quatro) meses a partir da data da aquisição.

APLICAÇÕES

A ferramenta certa para avaliar e analisar os diversos parâmetros da energia elétrica em ambientes industriais, comerciais e residências. É um instrumento que possibilita a exibição instantânea no display *TFT Retro-lluminado Touch Screen*, com armazenamento de dados em sua memória interna ou através de um dispositivo de armazenamento removível. Está de acordo com normas internacionais para realizar testes de qualidade de energia, fornecendo um conjunto completo de acessórios, incluindo 4 garras de corrente flexíveis e 5 garras de tensão.

SEGURANÇA

Este instrumento está de acordo com a norma IEC/EN61010-1, Categoria IV 600V de Sobretensão. Como determinado pela a norma de segurança NR-10, utilize sempre equipamentos de proteção individual.

GERAL

A precisão é especificada como ±(% leitura + número de dígitos) para temperatura 23°C ±5°C e umidade relativa <60%.

Ciclo de calibração recomendado de 1 ano.

TENSÃO True-RMS AC+DC Fase-Neutro / Fase-Terra - Fase Única / Sistema Trifásico

- Faixas: 0 ~ 600V
- Precisão: ± (0,5%+2Díg)
- Resolução: 0,1V
- Impedância de Entrada: 10MΩ
- Máximo Fator de Crista = 2
- Valores de tensão < 2,0V são considerados como zero pelo instrumento.
- O instrumento é conectável com TP externo com relação selecionável de 1:3000.

TENSÃO True-RMS AC+DC Fase-Fase -Sistema Trifásico

- Faixas: 0 ~ 1000V
- Precisão: ± (0,5%+2Díg)
- Resolução: 0,1V
- Impedância de Entrada: 10MΩ
- Máximo Fator de Crista = 2
- Valores de tensão < 2,0V são considerados como zero pelo instrumento.
- O instrumento é conectável com TP externo com relação selecionável de 1:3000.

www.minipa.com.br

MINIPA DO BRASIL LTDA.

Matriz: Av. Carlos Liviero, 59 - Vila Liviero - 04186-100 São Paulo - SP - Tel: +55 11 5078-1850 Filial: Rua Dona Francisca, 8300 - Bloco 4 - Módulo A - 89219-600 Joinville - SC - Tel: +55 47 3467-8444

PROPOSTA TÉCNICA

ANOMALIAS de Tensão Fase-Neutro - Fase Única / Sistema Trifásico 4 fios

• Faixas: 0 ~ 600V Precisão: ± (1,0%+2Díg) Resolução: 0,2V

• Precisão do Tempo (50Hz): ±10ms

Resolução do Tempo (50Hz): 10ms

Máximo Fator de Crista = 2

 Valores de tensão < 2,0V são considerados como zero pelo instrumento

 O instrumento é conectável com TP externo com relação selecionável de 1:3000

Limiar selecionável entre ±1% a ±30%

CORRENTE True-RMS AC com Garra Transdutora Padrão STD

• Faixas: 0,0 ~ 1000mV Precisão: ±(0,5%+0,06%FS)

Resolução: 0,1mV

Impedância de Entrada: 510kΩ

Proteção de Sobrecarga: 5V

• Máximo Fator de Crista = 3

 Valores de corrente < 0,1% FS s\u00e3o considerados como zero pelo instrumento.

Obs: Medidas realizadas com tensão de saída =1VAC com corrente nominal medida pela garra.

CORRENTE True-RMS AC com Garra Transdutora Flex - Faixa 3000A

Faixas: 0 ~ 3000A

Precisão: ±(0,5%+0,06%FS)

Resolução: 0,1A

Impedância de Entrada: 510kΩ

• Proteção de Sobrecarga: 5V

Máximo Fator de Crista = 3

• Valores de corrente < 5A são considerados como zero pelo instrumento.

Obs: Medidas realizadas com garra flexível HTFLEX33.

ANOMALIAS de Tensão Fase-Fase - Sistema Trifásico 3 fios

• Faixas: 0 ~ 1000V

Precisão: ± (1,0%+2Díg)

Resolução: 0,2V

Precisão do Tempo (50Hz): ±10ms

Resolução do Tempo (50Hz): 10ms

Máximo fator de crista = 2

 Valores de tensão < 2,0V são considerados como zero pelo instrumento

 O instrumento é conectável com TP externo com relação selecionável de 1:3000

Limiar selecionável entre ±1% a ±30%

CORRENTE True-RMS AC com Garra Transdutora Flex - Faixa 300A

• Faixas: 0,0 ~ 49,9A / 50,0 ~ 300,0A

 Precisão: 0,0 ~ 49,9A ±(0,5%+0,24%FS) $50.0 \sim 300.0A \pm (0.5\% + 0.06\% FS)$

Resolução: 0,1A

Impedância de Entrada: 510kΩ

Proteção de Sobrecarga: 5V

Máximo Fator de Crista = 3

 Valores de corrente < 1A são considerados como zero pelo instrumento.

Obs: Medidas realizadas com garra flexível HTFLEX33.

CORRENTE DE PARTIDA (INRUSH)

Faixas: De acordo com o tipo da garra

Precisão: ± (1,0%+0,4%FS)

• Resolução: De acordo com o tipo da garra

• Precisão do Tempo (50Hz): ±10ms

• Resolução do Tempo (50Hz): 10ms

Máximo Fator de Crista = 3

• Número Máximo de Eventos Registrados: 1000

*HTFLEX33: Diâmetro máximo admissível do condutor 178 mm.

PICOS DE TENSÃO - Fase-Terra - Fase Única / Sistema Trifásico Precisão do Tempo de Faixa (V) Resolução (V) Precisão Tempo (50Hz) Detecção (50Hz) -1000 ~ -100V 78μs ~ 2,5ms 1 ± (2,0%+60Díg) 100 ~ 1000V (SLOW) ±10ms -6000 ~ -100V 20μs ~ 160μs 15 ± (10%+100Díg) (FAST) 100 ~ 6000V

• Limiar Selecionável entre 100 ~ 5000V

Número Máximo de Eventos: 20000

шшш.minipa.com.br

MINIPA DO BRASIL LTDA.

Matriz: Av. Carlos Liviero, 59 - Vila Liviero - 04186-100 São Paulo - SP - Tel: +55 11 5078-1850 Filial: Rua Dona Francisca, 8300 - Bloco 4 - Módulo A - 89219-600

Joinville - SC - Tel: +55 47 3467-8444

PROPOSTA TÉCNICA

POTÊNCIA - Fase única / Sistema Trifásico (@Cosφ>0,5 e Vmis>60V, garra tipo STD)

Parâmetros [W, VAr, VA]	Escala Completa da Garra	Faixa [W, VAr, VA]	Precisão	Resolução [W, VAr, VA]
Potência Ativa Potência Reativa Potência Aparente	FS ≤ 1A	0,0 ~ 999,9 1,000 ~ 9,999k		0,1 0,001k
	1A< FS ≤ 10A	0,000 ~ 9,999k 10,00 ~ 99,99k	. (4.00/ LCD)	0,001k 0,01k
	10A < FS ≤ 100A	0,00 ~ 99,99k 100,0 ~ 999,9k	±(1,0%+6D)	0,01k 0,1k
	100A < FS ≤ 3000A	0,0 ~ 999,9k 1,000 ~ 9,999M		0,1k 0,001M

Para garra STD

Vmis: Tensão de referência para medição de potência

FS = Escala completa

ENERGIA - Fase única/Sistema Trifásico (@Cosφ>0,5 e Vmis>60V, garra tipo STD)

Parâmetros [Wh, VArh, VAh]	Escala Completa da Garra	Faixa [Wh, VArh, VAh]	Precisão	Resolução [Wh, VArh, VAh]
Energia Ativa Energia Reativa Energia Aparente	FS ≤ 1A	0,0 ~ 999,9 1,000 ~ 9,999k		0,1 0,001k
	1A< FS ≤ 10A	0,000 ~ 9,999k 10,00 ~ 99,99k	. (4.00(. cD)	0,001k 0,01k
	Appropriate Control of the Control o	0,00 ~ 99,99k 100,0 ~ 999,9k	±(1,0%+6D)	0,01k 0,1k
	100A < FS ≤ 3000A	0,0 ~ 999,9k 1,000 ~ 9,999M		0,1k 0,001M

Para garra STD

Vmis: Tensão de referência para medição de potência

FS = Escala completa

FREQUÊNCIA

Faixa	Precisão	Resolução
42,5Hz ~ 69,0Hz	±(0,2%+1D)	0,1Hz

FATOR DE POTÊNCIA (@Cosφ) - Fase única a Sistema Trifásico

Faixa	Precisão	Resolução
0,20 ~ 0,50	1,0	0,01
0,50 ~ 0,80	0,7	
0,80 ~ 1,00	0,6	

Faixa	Precisão	Resolução
DC ~ 25 ^a	±(5,0%+5D)	0,1V / 0,1A
26° ~ 33°		
34ª ~ 49ª		

FLICKER (@Cosφ) - Fase única / Sistema

- Parâmetros: Pst1', Pst e Plt
- Faixas: 0,0 ~ 10,0
- Precisão: Cumprimento a EN50160
- Resolução: 0,1

шшш.minipa.com.br

MINIPA DO BRASIL LTDA.

Matriz: Av. Carlos Liviero, 59 - Vila Liviero - 04186-100 São Paulo - SP - Tel: +55 11 5078-1850 Filial: Rua Dona Francisca, 8300 - Bloco 4 - Módulo A - 89219-600 Joinville - SC - Tel: +55 47 3467-8444

PROPOSTA TÉCNICA

INTERFACE / SOFTWARE

- Cabo de Conexão USB
- Idioma: Inglês
- Requisitos:

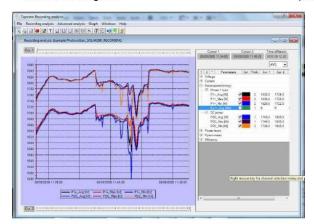
Pentium III 500 MHz

HD com no mínimo 100Mb livre

Driver de CD-ROM

Porta USB

Monitor com resolução mínima de 800 x 600


- · Compatibilidade: Windows 2000 Service Pack 4, XP Service Pack 2, Vista, Win7
- Funções Disponíveis: Tabela de Registro Cursores Gráfico de Registro

Mínimo, Máximo e Média de Registro

- · Arquivos: *.xls / *.pdf
- Impressão: Gráfico / Tabela

Atenção: o software TOPVIEW requer que em seu PC estejam instalado os seguintes componentes da Microsoft

- Windows Installer 3.0 ou superior
- Internet Explorer 5.01 ou superior
- MDAC v 2.7 ou superior
- Framework 2.0 ou superior
- Activesync 3.8 ou superior (Win2k, WinXP)
- Windows Mobile Device Center 6.1 ou superior (Vista, Win7)

ACESSÓRIOS

- 1. Bolsa para Transporte
- 2. Alça para Transporte
- 3. Bateria Recarregável Li-ION 3,7V (Instalada)
- 4. Adaptador Externo AC/DC
- 5. Conjunto de 5 Pontas de Prova com Garra Jacaré
- 6. Garra de Corrente HTFLEX33D para 4 Correntes
- 7. Manual do Usuário em CD-ROM
- 8. Cabo USB e CD-ROM com Software
- 9. Caneta para "Touch Screen"
- 10. Guia Rápido de Uso
- 11. Manual de Uso para Garra HTFLEX33D

ACESSÓRIOS OPCIONAIS / REPOSIÇÃO

Entre em contato conosco para obter peças de substituição e acessórios opcionais para seu instrumento de medição.

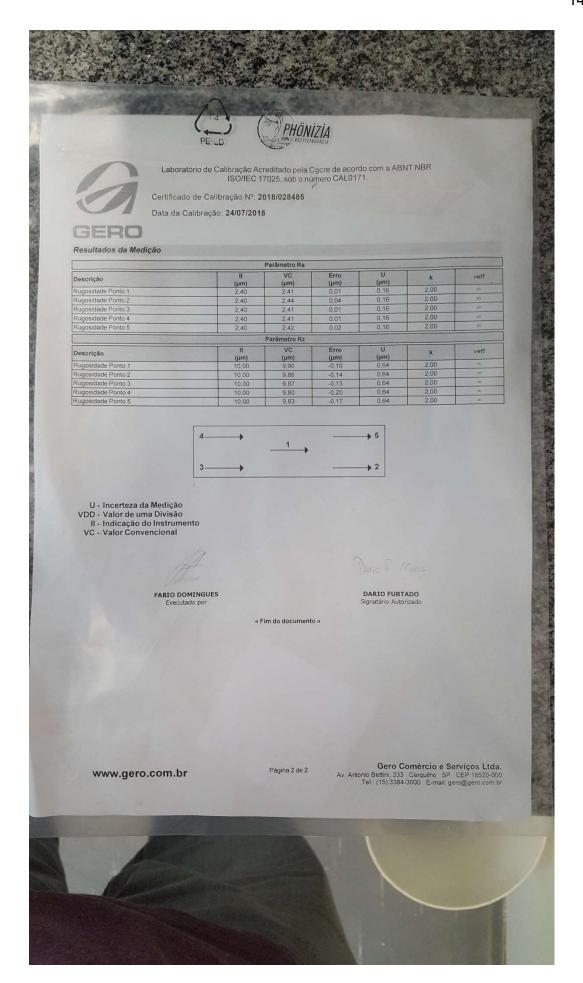
Utilize sempre acessórios originais Minipa.

- 1. Garra de Corrente HTFLEX33D para 4 Corren-
- 2. Manual de Uso para Garra HTFLEX33D.
- 3. Certificado de Calibração

Especificações sujeitas a alterações sem prévio aviso. Figuras meramente ilustrativas

шшш.minipa.com.br

MINIPA DO BRASIL LTDA.


Matriz: Av. Carlos Liviero, 59 - Vila Liviero - 04186-100 São Paulo - SP - Tel: +55 11 5078-1850 Filial: Rua Dona Francisca, 8300 - Bloco 4 - Módulo A - 89219-600 Joinville - SC - Tel: +55 47 3467-8444

5/5

ANEXO B – Certificado de calibração do Rugosímetro

