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a b s t r a c t 

Performing effective image retrieval tasks, capable of exploiting the underlying structure of datasets still 

constitutes a challenge research scenario. This paper proposes a novel manifold learning approach that 

exploits the intrinsic dataset geometry for improving the effectiveness of image retrieval tasks. The un- 

derlying dataset manifold is modeled and analyzed in terms of a Reciprocal kNN Graph and its Connected 

Components. The method computes the new retrieval results on an unsupervised way, without the need 

of any user intervention. A large experimental evaluation was conducted, considering different image re- 

trieval tasks, various datasets and features. The proposed method yields better effectiveness results than 

various methods recently proposed, achieving effectiveness gains up to +40.75%. 

© 2017 Elsevier Ltd. All rights reserved. 
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. Introduction 

The fast and continuous growth of image collections in differ-

nt application domains has demanded the development of effec-

ive and efficient methods for retrieving the images based on their

isual content. Content-Based Image Retrieval (CBIR) [1] has estab-

ished in this scenario as a solid solution, attracting increasing in-

erest of academia and industry. The development of CBIR systems

as firstly supported by sophisticated low-level feature extraction

lgorithms, giving rise to a broad range of image features, from the

raditional global features [ 2 ] (based on shape, color, and texture

roperties) to the most recent convolution-neural-network-based

eatures [3,4] . 

Despite of the continuous and consistent development of visual

eatures in the last decades [ 2 , 5,6 ], effectively measuring the simi-

arity among images remains a challenging problem in image clas-

ification and retrieval tasks. The vast majority of image features,

ncluding the most recent, commonly measure the distance or sim-

larity between images based on pairwise comparison of feature

ectors. However, the classical pairwise distance measures, as the

uclidean distance, often fail to produce effective results in various

cenarios. Additionally, the need for appropriate ways to measure

he distance or similarity between complex data is ubiquitous in

any machine learning, pattern recognition and retrieval applica-

ions [7,8] . 
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Mainly due to this difficulties, the research focus was gradu-

lly shifted from designing low-level features to aspects related

o higher level aspects [9] . Based on this assumption, the use of

achine learning methods was quickly spread in order to asso-

iate low-level features with high-level query concepts. In image

etrieval applications, for example, several relevance feedback ap-

roaches [10–13] have been proposed. Such approaches obtain su-

ervised information through user interactions with the aim of

earning new distance measures capable of encoding user prefer-

nces. 

In this scenario, distance metric learning methods have been

emonstrating a great potential and can be considered as a

romising solution [7,8,14–16] . Metric learning can be broadly de-

ned as the transformation of data samples from the original space

o another feature space by reducing the intra-class variation and

ncreasing the inter-class variations [15] . Most of approaches are

upervised, aiming at learning a distance metric from a number of

raining samples with side information, i.e., relevance judgments

efined by pairwise constraints obtained from the users [8] . Mo-

ivated by the sparsity of training information, semi-supervised

earning approaches [13,17] were also proposed, incorporating un-

abeled data in the distance metric learning procedure [18] . 

However, in certain retrieval scenarios, the training data is

onexistent or infeasible to obtain, which leaded to the devel-

pment of unsupervised approaches. In this way, various ap-

roachess [19–25] have been put efforts in post-processing the re-

rieval results by learning a new distance on an unsupervised way.

verall, such methods aims at improving the distance measures in

http://dx.doi.org/10.1016/j.patcog.2017.05.009
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Fig. 1. Two-Moons dataset: the color of the points is assigned according to the lower distance to the highlighted query samples (triangles). Distances computed by the 

Euclidean distance in the left (a) , and using the Reciprocal kNN Graph + CCs in the right (b) , which properly considers the dataset manifold. 
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ponents. 
CBIR systems without the need of any user intervention. The cen-

tral idea consists in replacing pairwise distance measures by more

global measures [20] , capable of considering the dataset structure. 

Various unsupervised approaches are based on diffusion

process [20–22,26] and graph learning [27] methods. Other un-

supervised learning methods [25,28] have focused on exploiting

the dataset manifold, mainly due to the incapacity of pairwise

distances for considering the dataset structure. In fact, the analysis

of dataset manifold have emerged as a promising tool in differ-

ent learning scenarios [29–32] . For retrieval tasks, once images

and multimedia objects are often modeled as high dimensional

points in an Euclidean space and they often live in a much

lower-dimensional intrinsic space, discoverying and exploiting the

intrinsic manifold structure constitutes a central problem [22] .

More recently, rank-based approaches also have been attracted

a lot of attention [33,34] , since the use of ranking information

provide relevant advantages, as lowers computational efforts and

independence of distance measures. In addition, such unsupervised

approaches can be used for combining information from different

retrieval models, as Bag-of-Words (BoW) and Convolutional Neural

Networks (CNN), which have achieving high effective results

recently [35–37] . 

In this paper, a novel unsupervised manifold learning algorithm

for image retrieval is proposed by exploiting the Reciprocal k NN

Graph and its Connected Components (CCs). The algorithm models

the dataset similarity structure in a graph, based on the reciprocal

references encoded in the ranking information. The Reciprocal k NN

Graph is constructed at different depths of k , providing a multi-

level analysis. The reciprocity relationships are used for identifying

more reliable similarity information. In this way, while the edges

of the Reciprocal k NN Graph provide a strong indication of similar-

ity, the Connected Components are exploited for capturing the in-

trinsic geometry of the dataset manifold. The information encoded

in the graph and Connected Components is used to improve the

effectiveness of distance measures, giving rise a new and more ef-

fective retrieval results. 

The capacity of exploiting the geometry of the dataset manifold

for computing a new distance can be observed in Figs. 1 and 2 . In

Fig. 1 , a query sample is selected in each moon, represented by a

labeled point marked with a triangle. The color of other points are

determined according to the closest labeled point. Fig. 1 a shows a

representation of the Two-Moons dataset considering the Euclidean

distance. Once the geometry of the dataset is not considered, a

large number points are misclassified. Fig. 1 b illustrates the color

classification computed by the proposed manifold learning algo-

rithm. As we can observe, a perfect classification is produced, once
he whole geometry of the dataset is exploited. Fig. 2 presents

n analogous problem, considering the more challenger Two-Spirals

ataset. Again, the Euclidean distance fail to classify most of points

 Fig. 2 a), while the proposed manifold learning respect the dataset

anifold, producing a perfect classification ( Fig. 2 b). 

The main contributions of the proposed approach in face of the

elated work are highlighted as follows: 

• Although the reciprocal references have been broadly exploited

last years [23,24,38–40] , the proposed algorithm mainly dif-

fers from the other approaches regarding the use of Connected

Components and the graph construction at different depths of

the k -neighborhood, which enables a more gradual analysis at

different levels of similarity. More specifically regarding [23,38] ,

we can emphasize: 

– The Graph Fusion [23] also takes into account the k -

reciprocal neighborhood for building the graph, but requires

the computation of the Jaccard measure for assigning weight

to edges, while the proposed method uses only information

of reciprocal neighborhood. The Graph Fusion [23] performs

a ranking step using a transition matrix based on PageRank

or a greedy algorithm, while our proposal exploits the Con-

nected Components; 

– The reciprocal neighborhood is also exploited in [38] , which

uses a directed graph, while the propose method uses

a weighted undirected graph. Two different neighborhood

sizes ( k and k max ) are required in [38] , separating differ-

ent parts of the ranked retrieval list with different distance

measures. In opposite, the proposed method considers only

one neighborhood size, computing an uniform single mea-

sure. 
• The proposed algorithm requires lower computational efforts

than diffusion-based approaches [20–22,26] . Such methods

compute successive powers of affinity matrices, while the con-

nectivity of the proposed graph is defined in terms of only top-

k positions. On the other hand, when compared to other rank-

based approaches [33,34] , the proposed method provides a ge-

ometric and more intuitive interpretation of the data; 
• The proposed algorithm is related to the manifold learning

method based on the correlation graph [25] , which defines the

graph connectivity using different levels of correlation mea-

sures and exploits strongly Connected Components. In contrast,

the proposed method provides a simpler and more efficient for-

mulation, in terms of reciprocal references and Connected Com-
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Fig. 2. Two-Spirals dataset: the color of the points is assigned according to the lower distance to the highlighted query samples (triangles). Distances computed by the 

Euclidean distance in the left (a) , and using the Reciprocal kNN Graph + CCs in the right (b) , which properly considers the dataset manifold. 
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The proposed algorithm was evaluated through a large experi-

ental evaluation, considering various distinct image retrieval sce-

arios. Experiments were conducted on 6 public datasets and con-

idering 21 different image descriptors, including global (shape,

olor, and texture), local, and convolution-neural-network-based

eatures. Experimental results demonstrates that significant effec-

iveness gains can be obtained in various image retrieval tasks.

he proposed algorithm achieves effectiveness gains up to +40.75%,

ielding better or comparable effectiveness results than various

tate-of-the-art and recent related approaches. 

The remaining of the paper is organized as fol-

ows: Section 2 discusses the problem formulation and

ection 3 presents the unsupervised manifold learning algo-

ithm. Section 4 describes the experimental evaluation and, finally,

ection 5 draws the conclusions and discusses future work. 

. Image retrieval and rank model 

This section presents a formal definition of the image retrieval

nd ranking model considered along the paper. Let C = { img 1 ,

mg 2 , . . . , img n } be an image collection, where n denotes the size

f the collection. Let D be an image descriptor defined [41] as a

uple D = (ε, ρ) , where: 

• ε: ˆ I → R 

n is a function, which extracts a feature vector v ˆ I from

an image ˆ I ; and 

• ρ: R 

n × R 

n → R 

+ is a distance function that computes the dis-

tance between two images according to the distance between

their corresponding feature vectors. 

Therefore, a distance between two images img i , img j can be

omputed by ρ( ε( img i ), ε( img j )). For readability purposes, the no-

ation ρ( i , j ) is used along the paper to refer to the distance be-

ween images img i and img j . Notice that, although the model is

efined in terms of images, small changes can become it suitable

o many recognition problems. 

Based on the distance function ρ , a retrieval and ranking model

an be derived. For a general image retrieval task, a ranked list

q can be computed in response to a query image img q , accord-

ng to the distance function ρ . The top positions of ranked lists are

xpected to contain the most relevant images with regard to the

uery image, such that only the top- L ranked images are consid-

red, with L � n . 

The ranked list τ q can be formally defined as a permutation

 img , img , . . . , img ) of the subset C ⊂ C, which contains the L
1 2 L L 
ost similar images to query image img q , such that and |C L | = L .

 permutation τ q is a bijection from the set C L onto the set [ n L ] =
 1 , 2 , . . . , L } . For a permutation τ q , we interpret τ q ( i ) as the posi-

ion (or rank) of image img i in the ranked list τ q . If img i is ranked

efore img j in the ranked list of img q ( τ q ( i ) < τ q ( j )), then ρ( q , i ) ≤
( q , j ). 

Considering every image in the collection as a query image, a

et of ranked lists T = { τ 1 , τ 2 , . . . , τ n } can be obtained. The set

 represents a rich source of distance/similarity information about

he collection C, once the ranked lists contain the most similar im-

ges in priority order. 

The Reciprocal kNN Graph and Connected Components algorithm

iscussed in this paper aims at exploiting the ranking information

ncoded in the set T for computing a new and more effective dis-

ance function ρr , and therefore improving the effectiveness of im-

ge retrieval tasks. 

. Reciprocal kNN graph and Connected Components for 

nsupervised manifold learning 

The proposed manifold learning algorithm aims at capturing the

nderlying dataset structure by exploiting and analyzing its rank-

ng information. In opposite to distance measures, which compare

nly pairs of images, ranked lists establish a deeper relationship,

nvolving the comparison of the query image with all dataset im-

ges [34] . The ranked lists constitute a rich source of similarity in-

ormation, including the neighborhood set, which can be modeled

n terms of top- k rank positions. 

However, different from metric distance (or similarity) mea-

ures, the nearest neighbor relationships are not symmetric [38] .

hile ρ( i , j ) = ρ( j , i ), the presence of the image img j in the k -

eighborhood of img i does not imply that the img j neighborhood

ontains img i . Morever, studies [42] have shown that the improve-

ent of nearest neighborhood relationships can enhance the re-

rieval effectiveness. Recently, the k -reciprocal neighborhood has

een exploited in image retrieval [24,38–40] , once it defines a

ymmetric and solid indication of similarity, specially for small val-

es of k . 

Although more reliable, the reciprocal neighborhood defines

ess relationships among images, restricting the similarity analy-

is. Given a Reciprocal kNN Graph, where the edges indicates a re-

iprocal neighborhood relationship, the graph is often sparse, pro-

iding less information about the underlying manifold. In this sce-

ario, the Connected Components are exploited for expanding the
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neighborhood through reliable edges and, at the same time, taking

into account the dataset structure. 

Based on these concepts, the proposed algorithm models the

ranking information using a graph through four main steps: 

1. Rank normalization: first, a Rank Normalization procedure is

performed, updating the initial ranked lists according to the

ranking references; 

2. Reciprocal kNN Graph: the Reciprocal k NN Graph is con-

structed defining edges only between images with reciprocal

references at top- k positions; 

3. Connected Components: the Connected Components (CCs) are

computed and used for identifying sets of similar images; 

4. Reciprocal kNN Graph Distance: a new distance measure is

computed based on similarity information encoded in the graph

and CCs. Different depths of k are considered for the graph con-

struction, defining different levels of confidence. 

Each of the main steps of the algorithm are detailed and for-

mally defined in next sub-sections. 

3.1. Rank normalization 

Once the rank relationships are not symmetric, an image img i 
well ranked for a query img j does not imply that img j is well

ranked for a query img i . In this way, improving the symmetry of

the k -neighborhood often benefits the effectiveness of image re-

trieval methods [42] . 

Therefore, a rank normalization approach is employed consid-

ering both mutual [34] and reciprocal [38] neighborhood. While

the mutual neighborhood sums rank positions from both ranked

lists, the reciprocal neighborhood considers only the maximum,

and more reliable value. A combined rank normalized distance ρn 

is proposed, defined as: 

ρn (i, j) = τi ( j) + τ j (i ) + max (τi ( j) , τ j (i )) , (1)

where τ i ( j ) ≤ L . Based on the ρn distance, the ranked lists are up-

dated until the top- L positions using a stable sorting algorithm. 

3.2. Reciprocal kNN Graph 

The Reciprocal kNN Graph can be defined as an undirected graph

G r = ( V , E ), where the set of vertices V is given by the image col-

lection V = C and each image is represented by a node. The edge

set E is computed based on the k -reciprocal neighborhood consid-

ering different thresholds for k . 

For determining the reciprocal neighborhood, we first define a

neighborhood set. Given a query image img q , a neighborhood set

N (q, k ) that contains the k most similar images to img q can be

defined as follows: 

N (q, k ) = {S ⊆ C, |S| = k ∧ ∀ img i ∈ S, 

img j ∈ C − S : τq (i ) < τq ( j) } . (2)

Once the nearest neighbor relationships are not symmet-

ric [38,42] , the set of k -reciprocal nearest neighbors of image img q 
can be defined [38] as: 

N r (q, k ) = { img i ∈ N (q, k ) ∧ img q ∈ N (i, k ) } . (3)

Let t k denotes a threshold which defines the value of k at a

given moment of algorithm execution, the edge set E can be for-

mally defined as: 

E = { (img q , img j ) | img j ∈ N r (q, t k ) } . (4)

Therefore, we can interpret that there will be edge from img q to

img j if the images are reciprocal neighbors until the t k positions. 
.3. Connected Components 

An effective context-based measure redefines the distance

mong images by exploiting more reliable similarity information

ncoded in the dataset. In this way, the reciprocal neighborhood

rovides a strong indication of similarity [38] . 

Although very precise, only a small number of edges is created,

iving rise to a sparse and disconnected graph. However, the in-

ormation of graph connectivity can be exploited for considering

he geometry of the dataset manifold and expanding the similarity

eighborhood [43] . The Connected Components (CC) of the Recip-

ocal kNN Graph are used with this objective, allowing a increase

f similarity among images in the same CC. Therefore, the infor-

ation encoded in the CCs are used for redefining distance infor-

ation among images. 

Formally, each CC is defined as a set of images C l . Given two

ny images img i , img j ∈ C l , there is a path between img i and

mg j . Algorithms for search in graphs, both Breadth First Search

BFS) and Depth First Search (DFS) can be used for computing the

Cs. The output for the entire dataset is given by a set of CCs

 = {C 1 , C 2 , . . . , C m 

} , such that {C 1 ∪ C 2 ∪ · · · ∪ C m 

} = C and {C 1 ∩
 2 ∩ · · · ∩ C m 

} = ∅ . Notice that the threshold t k and the number of

onnected Components m are related: as it grows the value of t k ,

he graph becomes more connected, decreasing m . 

.4. Reciprocal kNN Graph CCs Distance 

Both the edges of the Reciprocal kNN Graph G r and the set of

onnected Components S encode evidences of similarity among

mages. Therefore, such information is jointly exploited to compute

 similarity score among images. The graph G r is updated for dif-

erent depths of reciprocal neighborhood. For each depth t k ≤ k ,

he similarity scores are increased, such that higher weights are

ssigned to neighbors at top positions (smaller t k values). 

Formally, a similarity scores w e (i, j) between images img i , img j 
s defined based on the graph connectivity. Each collection image

mg q ∈ C which present edges to img i and img j represent an simi-

arity increase between them. Let E ( q ) denotes the set of nodes to

hich img q has edges at a given t k , the score is defined as: 

 e (i, j) = 

k ∑ 

t k =1 

∑ 

q ∈C∧ i, j∈ E(q ) 

(k − t k + 1) . (5)

Analogously, a similarity scores w c (i, j) is defined based on in-

ormation provided by the Connected Components. The score rep-

esent a similarity increase when images img i , img j are in the same

C. The score is also defined considering different t k values, as fol-

ows: 

 c (i, j) = 

k ∑ 

tk =1 

∑ 

i, j∈ C l 
(k − t k + 1) . (6)

The final similarity score w c (i, j) is defined considering both

dges and CCs information: 

 (i, j) = w e (i, j) + w c (i, j) . (7)

Finally, a Reciprocal kNN Graph CCs Distance ρr is computed in-

ersely proportional to the similarity score, as: 

r (i, j) = 

1 

1 + w (i, j) 
. (8)

Based on the distance ρr a new and more effective set of

anked lists T r can be computed. Notice that both the input and

he output of the algorithm are defined in terms of set of ranked

ists. Therefore, the algorithm can be iteratively repeated, further

mproving the retrieval effectiveness. 
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Fig. 3. Representation of the Reciprocal kNN Graph and CCs. 
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Algorithm 1 Reciprocal kNN Graph Similarity Score. 

Require: Set of Ranked lists { τ1 , τ2 , . . . , τn } , Parameter k 
Ensure: Reciprocal kNN Graph Similarity Score w (i, j) 

1: t k ← 1 

2: G r ← buildReciprocalkNNGraph () 
3: while t k � k do 

4: G r ← updateReciprocalkNNGraph ( t k ) 
5: S ← extractConnectedComponents ( G r ) 
6: { Similarity from Graph Edges } 
7: for all img q ∈ V do 

8: for all img i , img j ∈ E(q ) do 

9: w (i, j) ← w (i, j) + (k − t k + 1) 
10: end for 
11: end for 
12: { Similarity from Connected Components } 
13: for all C l ∈ S do 

14: for all img i , img j ∈ C l do 

15: w (i, j) ← w (i, j) + (k − t k + 1) 
16: end for 
17: end for 
18: t k ← t k + 1 

19: end while 
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Let the superscript ( t ) denotes the iteration, we can define the

istance of next iteration in terms of the current similarity core: 

(t+1) (i, j) = 

1 

1 + w (i, j) (t) 
. (9) 

After the execution along T iterations, a final distance ρr can

e obtained as ρr (i, j) = ρ(T ) (i, j) , leading to a definitive set of

anked lists. 

Fig. 3 illustrates the analysis performed by the Reciprocal kNN

raph and CCs, considering the Two Moons dataset. The initial dis-

ance measure is defined by the Euclidean distance between the

oints. Three points ( i , j , and c ) are taken as examples, whose

dges are highlighted. According to the Euclidean distance, i is

earest to j , and consequently more similar to j than c . In the

roposed approach, i and c are assigned to the same connected

omponent, what leads to an increase of similarity between them.

herefore, on the contrary of the Euclidean distance, the proposed

ethod defines i more similar to c , respecting the dataset manifold

nd its geometric structure. 

.5. Reciprocal kNN Graph CCs algorithm 

A simple, yet effective and efficient algorithm can be derived for

omputing the graph-based similarity score used by the proposed

nsupervised manifold learning method. 

Algorithm 1 outlines an approach for computing the similarity

core among images. Different depths of neighboorhood, with 1 ≤
 k ≤ k , are considered in the loop of Lines 3–19. The similarity in-

rements are computed considering two situations: 

• Among set of images which composes the reciprocal adjacency

of img q (Lines 7–11); 
• Among set of images in a connected component C l (Lines 13–

17). 

Based on the similarity score, a new distance is computed and

he ranked lists are updated by a stable sorting algorithm until

he L positions. Once the Reciprocal kNN Graph is very sparse,

he time complexity required for computing the Connected Com-

onents and similarity scores is O ( n ). Other steps required for the

ethod computation, as the rank normalization or the sorting step

re restricted to the top- L positions, also leading to a O ( n ) com-

lexity. 

.6. Rank fusion 

Visual information extracted from different features encode di-

erse and complementary aspects about images. In last decades,

iverse visual retrieval approaches have been proposed [ 2 , 5,6 ],
ncluding global features, mid-level representations and convolu-

ional neural network-based. Therefore, considering different fea-

ures which produce effective rankings in isolation and are com-

lementary to each other, it is expected that a higher search ac-

uracy can be achieved by combining them [44] . Actually, various

ecent retrieval methods [23,24,44] have used fusion approaches,

chieving high-effective results in image retrieval tasks. 

In this work, the capacity of the Reciprocal kNN Graph and CCs

or discoverying the dataset manifold is also exploited for fusion

asks. Diverse features can properly discover distinct and comple-

entary parts of the dataset manifold, enhancing the effectiveness

f retrieval. For this purpose, we propose a rank fusion approach

ased on a linear combination of similarity scores computed for

ifferent f eatures at the first iteration. 

Let D = { D 1 , D 2 , . . . , D d } be a set of different image descriptors.

et w c (i, j) (1) denotes the similarity score computed for the de-

criptor D c , where the superscript (1) indicates the first iteration of

he algorithm. 

The fused similarity score w f (q, i ) (1) is defined as follows: 

 f (q, i ) (1) = 

d ∑ 

c=1 

w c (i, j) (1) . (10)

Based on a single and fused similarity score, a distance ρr ( i , j ) 
(1) 

 Eq. (9) ) can be computed, giving rise to a new set of ranked lists.

his distance is used for the next iterations of the manifold learn-

ng algorithm, computed in the same way as for a single descriptor.

. Experimental evaluation 

This section discusses the experimental evaluation conducted

or assessing the effectiveness of the proposed manifold learning

pproach. A large set of experiments were performed following a

igorous experimental protocol. The method were evaluated un-

er diverse conditions, involving different retrieval tasks, 6 public

atasets and 21 different image descriptors. 

Section 4.1 describes the datasets, features and experimental

rotocol used. Section 4.2 discusses the impact of parameter val-

es. Section 4.3 presents the experimental results for the proposed

pproach considering various shape, color, and texture descriptors.

ections 4.4 and 4.5 presents the experimental results for object
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Table 1 

Datasets used in the experimental evaluation. 

Dataset Size Type General Effectiv. 

description Measure 

MPEG-7 [45] 1,400 Shape A well known dataset composed of 1400 shapes divided in 70 classes. Commonly used for 

evaluation of post-processing methods. 

MAP, Recall@40 

Soccer [46] 280 Color Scenes Dataset composed of images from 7 soccer teams, containing 40 images per class. MAP 

Brodatz [47] 1,776 Texture A popular dataset for texture descriptors evaluation composed of 111 different textures 

divided into 16 blocks. 

MAP 

ETH-80 [48] 3280 Objects Dataset equally divided into 8 classes, with images containing one single object. MAP 

Holidays [49] 1491 Scenes Commonly used as image retrieval benchmark, the dataset is composed of 1491 personal 

holiday pictures with 500 queries. 

MAP 

UKBench [50] 10,200 Objects/Scenes Popular benchmark, composed of 2550 objects or scenes. Each object/scene is captured 4 

times from different viewpoints, distances, and illumination conditions. 

N-S Score 

Fig. 4. Samples images from six dataset considered. 
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retrieval and natural image tasks, respectively. Visual results are

analyzed in Section 4.6 and the main components of the method

are individually evaluated in Section 4.7 . Finally, experiments aim-

ing at comparing our results to state-of-the-art related methods

are presented in Section 4.8 . 

4.1. Datasets, features and experimental protocol 

The proposed manifold learning algorithm was evaluated on

six well-known public datasets, with diverse types of images, di-

verse characteristics and different sizes. Table 1 presents a sum-

mary of datasets used and Fig. 4 illustrates sample images from

each dataset. 

Several image descriptors are used, including local, global

(shape, color, and texture properties), and convolutional neural

network-based features. Table 2 describes the features used for
ach dataset. The objective is evaluate the robustness of the mani-

old learning algorithm for improving the effectiveness of different

mage features. 

All images are considered as query images for most of datasets,

xcept for Holidays [49] , which uses 500 queries for comparison

urposes. The Mean Average Precision (MAP) is used as effec-

iveness measure for most of experiments. Other evaluation mea-

ures are used for comparisons with other approaches: the N-S

core [50] is used for UKBench [50] dataset and the Recall at 40

bull’s eye score) for MPEG-7 [45] dataset. The relative gains are

eported for most of experiments. Let M b , M a be the effective-

ess measure respectively before and after the use of the mani-

old learning algorithm, the relative gain is defined as G = (M a −
 b ) /M b . Statistical paired t -tests were also conducted for assessing

he statistical significance of retrieval results before and after the

se of the proposed method. 
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Table 2 

Image descriptors considered for each dataset. 

Dataset Image Features Type 

Soccer [46] Global Color Histogram (GCH) [51] , Auto Color Correlograms (ACC) [52] , Border/Interior Pixel 

Classification (BIC) [53] 

Color 

MPEG-7 [45] Segment Saliences (SS) [54] , Beam Angle Statistics (BAS) [55] , Inner Distance Shape Context 

(IDSC) [56] , Contour Features Descriptor (CFD) [57] , Aspect Shape Context (ASC) [58] , 

Articulation-Invariant Representation (AIR) [59] 

Shape 

Brodatz [47] Local Binary Patterns (LBP) [60] , Color Co-Occurrence Matrix (CCOM) [61] , Local Activity Spectrum 

(LAS) [62] 

Texture 

ETH-80 [48] ACC [52] , BIC [53] , GCH [51] , and Color Structure Descriptor (CSD) [63] Color 

Holidays [49] Joint Composite Descriptor (JCD) [64] , Scalable Color Descriptor (SCD) [65] Color and Edge 

Directivity Descriptor Spatial Pyramid (CEED-Spy) [66,67] , ACC [52] , Convolutional Neural 

Network by Caffe [3] (CNN-Caffe), Convolutional Neural Network by OverFeat [4] 

(CNN-OverFeat) 

Color, Texture, BoVW, CNN 

UKBench [50] CEED-Spy [66,67] , Fuzzy Color and Texture Histogram Spatial Pyramid (FCTH-SPy) [67,68] , SCD [65] , 

ACC Spatial Pyramid (ACC-SPy) [52,67] , CNN-Caffe [3] ACC [52] , Vocabulary Tree (VOC) [69] 

Color, Texture, BoVW, CNN 

Fig. 5. Impact of neighborhood size and iterations on effectiveness. 
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Fig. 6. Impact of neighborhood size on nearly duplicate datasets. 
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.2. Impact of parameters 

The proposed approach consider only two parameters: k , which

efines the size of the neighborhood and T , which indicates the

umber of iterations. The algorithm also consider the value L ,

hich determines the size of ranked list and a trade-off between

ffectiveness and efficiency. In all experiments, the value of L is

efined in terms of k , as L = 4 × k . 

An experiment was conducted aiming at analyzing the impact

f k and T on effectiveness results. The MPEG-7 [45] and the

FD [57] shape descriptor were considered for the experiment. The

AP is used as effectiveness measure, evaluated in function of k

nd T . 

Fig. 5 illustrates the MAP results according to different values of

 and T . It can be observed a small variation for different iterations,

ndicating that the most expressive effectiveness gains are obtained

t the first iteration. Additionally, a large red region demonstrates

he robustness of the method to different parameters settings. 

For most of experiments, we report the effectiveness scores in

wo scenarios: using fixed parameters values ( k = 20 and T = 1) 1 

nd using the best parameter combination in predefined intervals

 k in [5,40] and T in [1,5]). The objective is to demonstrate the po-

ential of the method for obtaining high effectiveness gains and, at

ame time, evaluate the method in adverse situations, when there

s no information about the retrieval task. 
1 For UKBench and Holidays datasets, parameters are defined as k = 5 and T = 2 

ue to the small number of images per class. 

s  

l

 

 

An experiment was also conducted in order to evaluate the ef-

ectiveness of the proposed method according to different values

f k on all the six datasets. The most effective descriptor on each

ataset was used in the experiment and the parameter k was var-

ed in the interval [0,40]. The results are organized according to

he type of dataset: nearly duplicate and general datasets, as also

uggested by other works [23] . Figs. 6 and 7 illustrates the results

or nearly duplicate and general datasets, respectively. The vertical

ed lines indicate the parameter values used in the experiments. 

In general, a similar behavior can be observed on most of

atasets. The effectiveness results presents an instability at the be-

inning of the curve, which subsequently reaches an stabilization.

n nearly duplicate datasets the stabilization occurs for lower val-

es (around k = 5 ) and on general datasets for higher values of k

around k = 20 ). 

.3. Shape, color, and texture retrieval 

The effectiveness of the proposed manifold learning algorithm

s first evaluated in general image retrieval tasks, considering

hape, color, and texture features. The results are described as fol-

owing: 

• Shape retrieval: The experiments for shape retrieval consider-

ing the MPEG-7 [45] dataset and six different descriptors are
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Table 3 

Reciprocal kNN Graph Distance and CCs for various image retrieval tasks. Mean Average Precision (MAP) 

considering shape, color, and texture features. 

Descriptor Dataset Original Rec. kNN Rec. kNN Best Relative Stat. 

score Graph CCs Graph CCs params: gain sig. 

(MAP) k = 20; T = 1 Best params k; T 99% 

Shape descriptors 

SS [54] MPEG-7 37.67% 47.84% 53.02% 30; 3 + 40.75% •
BAS [55] MPEG-7 71.52% 82.30% 84.08% 25; 3 + 17.56% •
IDSC [56] MPEG-7 81.70% 89.65% 91.26% 23; 3 + 11.70% •
CFD [57] MPEG-7 80.71% 92.33% 93.83% 25; 2 + 16.26% •
ASC [58] MPEG-7 85.28% 92.62% 93.57% 23; 3 + 9.72% •
AIR [59] MPEG-7 89.39% 97.17% 97.81% 37; 2 + 9.42% •

Color descriptors 

GCH [51] Soccer 32.24% 33.53% 34.90% 40; 2 + 8.25% •
ACC [52] Soccer 37.23% 40.91% 44.94% 40; 2 + 20.71% •
BIC [53] Soccer 39.26% 42.85% 45.99% 40; 2 + 17.14% •

Texture descriptors 

LBP [60] Brodatz 48.40% 50.82% 51.77% 17; 2 + 6.96% •
CCOM [61] Brodatz 57.57% 64.27% 66.68% 21; 3 + 15.82% •
LAS [62] Brodatz 75.15% 80.57% 81.97% 18; 3 + 9.08% •

Fig. 7. Impact of neighborhood size on general datasets. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 

Reciprocal kNN Graph Distance + CCs for rank aggregation tasks con- 

sidering shape, color, and texture retrieval tasks. 

Descriptor Type Dataset Parameters Score 

(MAP) 

CFD [57] Shape MPEG-7 – 80.71% 

ASC [58] Shape MPEG-7 – 85.28% 

AIR [59] Shape MPEG-7 – 89.39% 

CFD + ASC Shape MPEG-7 k = 20; T = 1 97.68% 

CFD + ASC Shape MPEG-7 k = 25; T = 2 99.18% 

CFD + AIR Shape MPEG-7 k = 20; T = 1 99.32% 

CFD + AIR Shape MPEG-7 k = 37; T = 2 100% 

AIR + ASC Shape MPEG-7 k = 20; T = 1 99.16% 

AIR + ASC Shape MPEG-7 k = 37; T = 2 99.89% 

CFD + ASC+AIR Shape MPEG-7 k = 20; T = 1 99.79% 

CFD + ASC+AIR Shape MPEG-7 k = 37; T = 2 100% 

ACC [52] Color Soccer – 37.23% 

BIC [53] Color Soccer – 39.26% 

BIC + ACC Color Soccer k = 20; T = 1 43.19% 

BIC + ACC Color Soccer k = 40; T = 2 46.05% 

CCOM [61] Texture Brodatz – 57.57% 

LAS [62] Texture Brodatz – 75.15% 

LAS + CCOM Texture Brodatz k = 20; T = 1 81.49% 

LAS + CCOM Texture Brodatz k = 18; T = 3 84.72% 
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presented in Table 3 . Significant positive gains can observed for

all descriptors, ranging from +9.42% to +40.75% . For example,

the effectiveness of SS [54] shape descriptor was improved from

37.67% to 53.02%. 2 

• Color retrieval: The experiments involving color retrieval were

conducted on Soccer dataset [46] , considering three different

descriptors. Table 3 presents the experimental results, where

positive gains were obtained for all color descriptors, ranging

from +8.25% to +20.71%. 
• Texture retrieval: Table 3 also presents the effectiveness re-

sults obtained for three different texture descriptors on the Bro-

datz [47] dataset. We can observe positive gains ranging from

+6.96% to +15.82%. The obtained gains are statistical significant

for all considered descriptors. 

Notice that effectiveness scores obtained by fixed parameters

values and the best parameters combination are very similar,

demonstrating the robustness of the proposed approach to param-

eters settings. 
2 The relative gains reported refer to the results obtained by the best parameters. 

f  

c  

p

The proposed manifold learning algorithm was also evaluated

or rank fusion tasks, on shape, color, and texture retrieval. Two

isual descriptors are considered for color and texture, and three

or shape retrieval, selected according to the best effectiveness re-

ults in isolation. 

Table 4 presents the results for rank fusion tasks, considering

xed parameter values ( k = 20 and T = 1) and the best combina-

ion of parameters of the best descriptor. The original MAP results

btained by each descriptor in isolation are also reported for com-

arison purposes. As it can be observed, very high effective results

re obtained. Considering texture retrieval, the fusion of descrip-

ors with MAP scores of 57.57% and 75.15% leads to 84.72%. For

hape retrieval, a MAP score of 100% is obtained, which indicates

erfect retrieval results. 

.4. Object retrieval 

Experiments conducted for object retrieval tasks considered

our color descriptors on the ETH-80 [48] dataset. All experiments

onsidered fixed values of parameters ( k = 20 and T = 1). Table 5

resents the MAP scores of each descriptor. 
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Table 5 

Reciprocal kNN Graph Distance + CCs on ETH-80 [48] dataset. 

Descriptor Score Rec kNN Relative Stat. sig. 

(MAP) Graph CCs gain 99% 

BIC [53] 49.72% 53.08% + 6.76% •
ACC [52] 48.50% 52.22% + 7.67% •
CSD [63] 48.46% 52.08% + 7.47% •
GCH [51] 41.62% 43.87% + 5.41% •

Table 6 

Reciprocal kNN Graph Distance + CCs on UKBench [50] 

dataset. 

Descriptor N-S Rec kNN Relative 

Score Graph CCs gain 

JCD [64] 2.79 2.97 + 6.45% 

CEED-SPy [66,67] 2.81 3.09 + 9.96% 

FCTH-SPy [67,68] 2.91 3.18 + 9.27% 

SCD [65] 3.15 3.36 + 6.67% 

CNN-Caffe [3] 3.31 3.60 + 8.76% 

ACC [52] 3.36 3.59 + 6.85% 

VOC [69] 3.54 3.76 + 6.21% 

VOC + ACC – 3.88 + 9.60% 

VOC + CNN-Caffe – 3.89 + 9.89% 

ACC + CNN-Caffe – 3.85 + 8.76% 

VOC + ACC+CNN-Caffe – 3.93 + 11.02% 
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Table 7 

Reciprocal kNN Graph Distance + CCs on the Holidays [49] dataset. 

Descriptor Original Rec kNN Relative 

MAP Graph CCs gain 

JCD [64] 52.83% 53.69% + 1.63% 

SCD [65] 54.26% 56.50% + 4.13% 

FCTH-SPy [67,68] 55.42% 58.92% + 6.32% 

CEED-SPy [66,67] 56.09% 59.02% + 5.22% 

CNN-Caffe [3] 64.09% 68.47% + 6.83% 

ACC [52] 64.29% 68.80% + 7.02% 

CNN-OverFeat [4] 82.59% 84.99% + 2.91% 

ACC + CEED-SPy – 71.90% + 11.84% 

ACC + CNN-Caffe – 78.93% + 22.77% 

ACC + CNN-Caffe + CNN-Overfeat – 85.73% + 3.80% 

ACC + CNN-OverFeat – 86.19% + 4.35% 
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Positive gains were obtained for, ranging from +5.41% to +7.67%.

tatistical significance can be observed for all descriptors. The MAP

cores are improved, for example, from 48.50% to 52.22%. 

.5. Natural image retrieval 

The proposed method was also evaluated in natural image re-

rieval tasks, considering two popular datasets, commonly used

s benchmark in image retrieval tasks: the University of Ken-

ucky Recognition Benchmark - UKBench [50] and the Holi-

ays [49] dataset. 

The UKBench dataset is composed of 2550 objects or scenes

aptured 4 times from different viewpoints, totalling 10,200 im-

ges. The N-S score is used as evaluation measure, computed be-

ween 1 and 4, which corresponds to the number of relevant im-

ges among the first four image returned. Due to the small number

f images per class, the UKBench [50] dataset is very challenger for

nsupervised manifold learning and post-processing methods. 

Different descriptors were considered, including various color

nd color/texture global descriptors, extracted by the LIRE frame-

ork [67] . Local descriptors are also exploited, using the rank posi-

ions 3 obtained by a vocabulary tree based retrieval (VOC) [50,69] , 

hich uses SIFT features. Convolution neural networks features

re extracted from the 7th layer using the Caffe framework [3] .

 4096-dimensional CNN-Caffe descriptor was considered for each

nput image resized of 256 × 256 pixels, and the Euclidean dis-

ance was used for computing the rankings. 

Table 6 presents the results obtained by the proposed method

n UKBench [50] dataset. Significant positive gains are obtained,

eaching +9.96%. For example, the N-S score obatined by CNN-

affe [3] f eature was im proved from 3.31 to 3.60. Even more re-

arkable results can be observed for fusion tasks, reaching a N-S

core of 3.93 . The relative gains are computed in comparison with

he best descriptor in isolation. 

The experiments conducted on the Holidays [49] dataset con-

idered analogous conditions. Instead of local descriptors, we used

ther CNN feature: Overfeat [4] . Once the number of relevant im-
3 http://research.rutgers.edu/ ∼shaoting/image _ search.html (As of September 

016). 

d  

a  

b  

d

ges per class is smaller, unsupervised manifold learning tasks

re even challenger. Table 7 presents the results on the Holi-

ays [49] dataset. Effectiveness gains can be observed for all fea-

ures, reaching a MAP score of 86.19% of the fusion of ACC color

nd CNN-Overfeat features. 

.6. Qualitative and visual analysis 

Once the quantitative results demonstrated significant gains for

ffectiveness results, this section conduct a qualitative analysis us-

ng visual representations for evaluating the impact of the use of

he proposed manifold learning algorithm. 

First, we analyzed the impact of the proposed manifold algo-

ithm on distance distribution using a bidimensional representa-

ion of a dataset before and after the execution of the algorithm.

or the representation, two arbitrary images are selected, named as

eference images. Next, all collection images are represented in the

idimensional space, such that their position is defined according

o their distance to the reference images. Formally, given two ref-

rence images img i and img j and an image img l that is represented

n the bidimensional space, the position ( x , y ) of img l is defined as

 ρ( img i , img l ), ρ( img j , img l )). 

Fig. 8 (a) illustrates the reference images ( “tree-13”, “tree-7”).

ig. 8 (b) illustrates the distance distribution obtained by the

FD [57] shape descriptor from the MPEG-7 [45] dataset. Similar

mages to the reference images are illustrated in red circles and

emaining images in blue. As we can observe, similar and non-

imilar images (red circles and blue crosses) are mixed in the dis-

ance space. Fig. 8 (c) illustrates the distance after the execution of

he proposed manifold learning algorithm. Notice the capacity of

he proposed algorithm of considering the dataset manifold, which

ncreases the separability between similar and non-similar images.

The visual effect of the new distance distribution on image re-

rieval tasks is showed in Fig. 9 . Visual retrieval results obtained by

FD [57] shape descriptor on MPEG-7 [45] dataset before and after

he use of the algorithm are illustrated. Three queries are consid-

red ( tree-13 , tree-7 and turtle-29 ) and are represented with green

orders. Incorrect retrieval results are illustrated with red borders.

he precision of retrieval at top-20 positions was improved from

alues between 15% and 20% to 100% after the use of the manifold

earning algorithm. 

The impact of the dataset manifold in the effectiveness of image

etrieval tasks is illustrated in Figs. 10 and 11 . Each point represent

ne image of MPEG-7 [45] dataset. The x -coordinate represents the

nitial average precision obtained by SS [54] and CFD [57] shape

escriptors. The y -coordinate is defined by the average precision

fter the use of the proposed manifold learning algorithm. As can

e observed, the vast majority of points are located above the main

iagonal, representing the effectiveness gains in retrieval results. 

http://research.rutgers.edu/~shaoting/image_search.html
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a

b c

Fig. 8. Impact of the algorithm on distances distribution for similar reference images: (a) Similar reference Images img i and img j ( tree-13.gif and tree-7.gif ) from the MPEG- 

7 [45] dataset; (b) Original distances distribution given by CFD [57] shape descriptor; (c) Distances distribution defined by the Rec. kNN Graph + CCs algorithm. 

Fig. 9. Retrieval results before and after the algorithm for two different queries using the CFD [57] shape descriptor. Query images are represented with green borders and 

wrong images with red borders. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. Gains of precision: SS [54] . 

 

 

 

 

 

Fig. 11. Gains of precision: CFD [57] . 
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The benefits of the use of the algorithm is also analyzed on the

UKBench [50] dataset, considering different f eatures. Fig. 12 illus-

trates the retrieval results obtained by ACC [52] , VOC [69] , CNN-

Caffe [3] , and by the proposed manifold learning algorithm. Rele-

vant images are represented with green borders. We can observe
hat, even based on low-effective results given by the features, the

lgorithm produces perfect top-4 rankings. 

.7. Analysis of algorithm components 

An experiment was conducted to evaluate the main compo-

ents of the proposed method in isolation, aiming at measuring
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Fig. 12. Visual retrieval examples on UKBench [50] dataset. 
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Table 8 

Impact of different algorithm components on effectiveness. 

Descriptor Dataset Original Only Only Full 

MAP edges CCs algorithm 

CFD [57] MPEG-7 80.71% 90.06% 88.73% 92.33% 

AIR [59] MPEG-7 89.39% 96.94% 55.84% 97.17% 

ACC [52] Soccer 37.23% 40.54% 33.43% 40.91% 

BIC [53] Soccer 39.26% 42.09% 32.97% 42.85% 

CCOM [61] Brodatz 57.57% 64.05% 50.83% 64.27% 

LAS [62] Brodatz 75.22% 79.71% 76.34% 80.57% 

ACC [52] ETH-80 48.52% 49.03% 52.42% 52.22% 

BIC [53] ETH-80 49.76% 50.27% 53.83% 53.08% 

ACC [52] Holidays 64.29% 66.60% 66.85% 69.47% 

CNN-OverFeat [4] Holidays 82.59% 84.69% 84.50% 85.09% 

FCTH-SPy [67,68] UKBench 77.81% 80.53% 79.07% 81.82% 

VOC [69] UKBench 91.14% 94.03% 93.63% 94.82% 

Average 66.12% 69.88% 64.04% 71.22% 

Table 9 

Comparison with post-processing methods on the MPEG-7 [45] dataset. 

Shape descriptors (Bull’s eye score) 

CFD [57] – 84.43% 

IDSC [56] – 85.40% 

ASC [58] – 88.39% 

AIR [59] – 93.67% 

Post-processing methods 

Algorithm Descriptor(s) Bull’s eye 

score 

Contextual Dissimilarity Measure [42] IDSC [56] 88.30% 

Graph Transduction [70] IDSC [56] 91.00% 

Self-Smoothing Operator [22] IDSC [56] 92.77% 

Local Constr. Diff. Process [26] IDSC [56] 93.32% 

Shortest Path Propagation [27] IDSC [56] 93.35% 

Mutual kNN Graph [71] IDSC [56] 93.40% 

SCA [19] IDSC [56] 93.44% 

Rec. kNN Graph CCs IDSC [56] 93.62% 

Index-Based Re-Ranking [72] CFD [57] 92.85% 

Correlation Graph [43] CFD [57] 94.27% 

RL-Sim [34] CFD [57] 94.27% 

Rec. kNN Graph CCs CFD [57] 96.51% 

Generic Diffusion Process [21] ASC [58] 93.95% 

Index-Based Re-Ranking [72] ASC [58] 94.09% 

Correlation Graph [43] ASC [58] 95.22% 

Local Constr. Diff. Process [26] ASC [58] 95.96% 

Rec. kNN Graph CCs ASC [58] 96.04% 

Tensor Product Graph [20] ASC [58] 96.47% 

RL-Sim [34] AIR [59] 99.94% 

Tensor Product Graph [20] AIR [59] 99.99% 

Generic Diffusion Process [21] AIR [59] 100% 

Neighbor Set Similarity [73] AIR [59] 100% 

Rec. kNN Graph CCs AIR [59] 100% 
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heir individual contributions to the effectiveness gains. The exper-

ment was conducted on the six datasets, considering the most ef-

ective descriptor and the descriptor which presented the higher

ffectiveness gain on each dataset. Three different scenarios are

onsidered: ( i ) only similarity information provided by the edges

f the Rec. kNN Graph; ( ii ) only information obtained from Con-

ected Components; and ( iii ) the full algorithm, considering both

nformation, including rank normalization. Table 8 presents the ex-

erimental results, with the best results for each descriptor high-
ighted in bold. The full algorithm yielded the best scores for most

f descriptors, outperformed by CCs on only one dataset. However,

n opposite to the edges results, the CCs results are very unsta-

le to different descriptors-datasets. Such behavior and the higher

verage results obtained by the full algorithm indicate the comple-

entarity of the Rec. kNN Graph and CCs information. 

.8. Comparison with other approaches 

The proposed method is also evaluated in comparison with

arious state-of-the-art unsupervised learning methods and re-

ently proposed retrieval approaches. Experiments were conducted

n three image datasets: MPEG-7 [45] , Holidays [49] and UK-

ench [50] , which are popular datasets commonly used as bench-

ark for image retrieval and post-processing methods. 

Table 9 presents the results on the MPEG-7 [45] dataset in com-

arison with several state-of-the-art post-processing methods. The
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Table 10 

Comparison with state-of-the-art on the Holidays [49] dataset. 

MAP scores for recent retrieval methods. 

Jégou Tolias Qin Zheng Zheng Li 

et al. [49] et al. [74] et al. [75] et al. [76] et al. [77] et al. [78] 

75.07% 82.20% 84.40% 85.20% 85.80% 89.20% 

MAP scores for the proposed method 

Baseline: Proposed: 

Descriptor Graph Rec. kNN 

Fusion [23] Graph CCs 

ACC 66.42% 68.80% 

CNN-Caffe 66.79% 68.47% 

CNN-Overfeat 83.79% 84.99% 

ACC + CNN-Caffe 71.02% 78.93% 

ACC + CNN-Overfeat 76.55% 86.19% 

ACC + CNN-Caffe+CNN-Overfeat 80.06% 85.73% 

Table 11 

Comparison with state-of-the-art on the UKBench [50] dataset. 

N-S scores for recent retrieval methods 

Zheng Qin Wang Zhang Zheng Bai Xie 

et al. [79] et al. [38] et al. [80] et al. [23] et al. [44] et al. [19] et al. [81] 

3.57 3.67 3.68 3.83 3.84 3.86 3.89 

N-S scores for the proposed method 

Baseline: Proposed: 

Descriptor Graph Rec. kNN 

Fusion [23] Graph CCs 

ACC 3.48 3.59 

CNN 3.45 3.60 

VOC 3.67 3.76 

ACC + CNN 3.70 3.88 

ACC + VOC 3.78 3.88 

VOC + CNN 3.78 3.89 

ACC + VOC+CNN 3.86 3.93 
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MPEG-7 dataset is very frequently used as benchmark for unsu-

pervised post-processing methods in the literature. The bull’s eye

score (Recall@40), which counts all matching shapes within the

top-40 ranked images, is used as evaluation measure. The proposed

approach is evaluated in comparison with diverse post-processing

methods considering the same features, given by four shape de-

scriptors: IDSC [56] , ASC [58] , CFD [57] , and AIR [59] . We can

observe that the proposed algorithm achieves the best scores for

most of them, including a bull’s eye score of 100% achieved for

the AIR [59] descriptor. 

Table 10 shows the MAP scores obtained on the Holi-

days [49] dataset, in comparison with various recent image re-

trieval approaches. Once different features are used by the com-

pared approaches, a comparison considering the same features

used by our method is also included. The Graph Fusion [23] , which

is a recent and relevant unsupervised related method, is used as

baseline. The parameters settings was followed the same values

used by the proposed method ( k = 5 ) and fusion tasks was per-

fomed by the graph density variation [23] . As we can observe, the

effectiveness results are very high, superior to the most of consid-

ered methods. 

Table 11 presents the results obtained by the proposed mani-

fold learning algorithm results on the UKBench [50] dataset. The

UKBench [50] dataset is often used as benchmark for both general

retrieval approaches and unsupervised post-processing methods.

Analogous to the Holidays dataset, a comparison with the Graph

Fusion [23] method using the same features is also presented. The

proposed Rec. kNN Graph + CCs algorithm yielded a N-S scores of

3.93 , the best score in comparison with other recent state-of-the-

art methods. 
. Conclusions 

A novel unsupervised manifold learning algorithm is proposed

n this paper, employing a graph-based approach to consider the

eometry of the dataset in order to learn a new distance. The pro-

osed Reciprocal kNN Graph exploits the Connected Components

o analyze the information encoded in the reciprocal ranking ref-

rences. In this way, a simple but effective algorithm is derived for

ecomputing the distance among images taking into account the

ataset manifold. 

A broad experimental evaluation was conducted, involving var-

ous experiments, different retrieval tasks and several datasets and

mage features. Experimental results demonstrated the robustness

f the method, once significant effectiveness gains were achieved

n diverse retrieval scenarios, considering 6 different datasets and

1 image features. Very high retrieval performance was reached

n various datasets traditionally used as benchmark. The method

as also evaluated in comparison with state-of-the-art methods,

chieving superior effectiveness results to most of considered ap-

roaches. 

Future work focuses on the investigation of the use of the pro-

osed approach for improving the accuracy of classification tasks. 
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