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a b s t r a c t 

We present a clustering-based interactive approach to multivariate data analysis, motivated by the spe- 

cific needs of scintillation data. Ionospheric scintillation is a rapid variation in the amplitude and/or phase 

of radio signals traveling through the ionosphere. This spatial and time-varying phenomenon is of great 

interest since it affects the reception quality of satellite signals. Specialized receivers at strategic regions 

can track multiple variables related to this phenomenon, generating a database of observations of re- 

gional ionospheric scintillation. We introduce a visual analytics solution to support analysis of such data, 

keeping in mind the general applicability of our approach to similar multivariate data analysis situations. 

Taking into account typical user questions, we combine visualization and data mining algorithms that 

satisfy these goals: (i) derive a representation of the variables monitored that conveys their behavior in 

detail, at multiple user-defined aggregation levels; (ii) provide overviews of multiple variables regarding 

their behavioral similarity over selected time periods; (iii) support users when identifying representative 

variables for characterizing scintillation behavior. We illustrate the capabilities of our proposed frame- 

work by presenting case studies driven directly by questions formulated by collaborating domain experts. 

© 2017 Elsevier Ltd. All rights reserved. 
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1. Introduction 

Ionospheric scintillation is an atmospheric phenomenon that af-

fects measurements obtained by Global Navigation Satellite Sys-

tems (GNSS) such as the Global Positioning System (GPS, U.S.A.),

Global Navigation Satellite System (GLONASS, Russia), Galileo (Eu-

ropean Union) and BeiDou Navigation Satellite System (BDS,

China). It results from amplitude attenuation and phase shifts in

GNSS radio signals as they propagate through regions of the iono-

sphere with irregular electron densities [1] . When scintillation oc-

curs GNSS receivers may experience a complete loss of lock on the

affected signals, i.e, there can be a discontinuity in the phase track-

ing loop [2] , as well as a degradation in the accuracy of the mea-

surements from a given satellite [3] . Such effects preclude satellite

availability for positioning purposes, degrade the positional accu-

racy and may lead to service outages at critical circumstances, los-

ing track of one or more satellites. In critical circumstances, the
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ositioning service can be lost when a minimum number of satel-

ites are not successfully tracked by the receiver [4] . 

Latin America, and in particular regions in Brazil located around

he magnetic equator are severely affected by a frequent and

trong amplitude scintillation [5,6] . Consequently, applications that

ely on GNSS technology and require full availability and accuracy

or their operation – such as Precise Point Positioning (PPP), Real

ime Kinematic (RTK) applied to land surveying in agriculture and

ifferential GNSS applied to offshore oil surveying – may face sig-

ificant and potentially damaging issues. Analyzing the occurrence

atterns of scintillation and understanding their causes is essential

n order to gather elements for addressing its effects. 

A network of Ionospheric Scintillation Monitor Receivers

ISMRs) has been operating in Brazil since 2011 to monitor the

henomenon [2] , supported by projects CIGALA (Concept for Iono-

pheric Scintillation Mitigation for Professional GNSS in Latin

merica) and CALIBRA (Countering GNSS high Accuracy applica-

ions Limitations due to Ionospheric disturbances in Brazil) 1 . 
1 Both projects have been funded by the European Commission under the frame- 

ork of the FP7-GALILEO-2009-GSA and FP7-GALILEO-2011-GSA-1a, respectively. 
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The ISMRs include GNSS capabilities specially designed to pro-

ide scintillation metrics. A typical receiver - PolaRxS PRO, man-

factured by Septentrio - monitors 62 variables computed every

inute from data sampled at high rates (50 Hz), plus eight ad-

itional variables are calculated every minute. Thus, 70 variables

elated to scintillation are continuously measured and computed

very minute for all 187 satellites tracked, which include 32 GPS

atellites. Data collection occurs at 12 monitoring stations spa-

ially distributed in Brazil. The resulting database records an ex-

ressive volume of historical observations of the temporal behavior

f scintillation indices and related variables, where each observa-

ion consists of measurements of multiple variables at a particular

ime. 

This data, which we refer to as the ISMRs database, has been

vailable to experts for some time and visualization tools have al-

eady been developed to support data analysis [4] . Nonetheless,

omain experts still lack additional support for exploratory data

nalysis to study the interplay between the multiple variables and

heir role in characterizing scintillation behavior [7] . We intro-

uce a visual analytics approach to support exploration of his-

orical ionospheric scintillation data. It integrates multiple visual-

zation and data mining techniques into a visual exploration loop

hat allows scintillation scientists to gain an understanding of how

he multiple variables tracked are related over short and extended

ime periods, and how they relate to observed behavior of scintil-

ation measures. 

The driving requirements guiding the design and development

f our solution approach were: (i) To define a representation of

he variables monitored that conveys their behavior in detail, at

ultiple user-defined aggregation levels; (ii) to provide overviews

f multiple variables regarding their behavioral similarity over se-

ected time periods; (iii) to support users when identifying rep-

esentative variables for characterizing scintillation behavior. These

equirements have been addressed by integrating various visualiza-

ion techniques and mining algorithms. 

A so-called time matrix visualization shows the behavior of a

articular variable over a time period, while still allowing a user

o inspect specific individual values. The visualization can be cre-

ted directly from the recorded values or from values aggregated

or user-defined temporal units, to support observation of extended

ime periods. A small multiples time matrix visualization simulta-

eously depicting a subset of user-selected target variables is also

hown, where the individual matrix views are spatially grouped

o highlight the similar/dissimilar temporal behaviors of groups of

ariables. A similarity map visualization of the variables is pro-

ided as well, complementing and summarizing the small multi-

les view. These multiple views are coordinated and analysts can

xplore them jointly to identify representative subsets of variables

o characterize scintillation behavior, and assess feature subspaces

n relation to scintillation measures by means of classification al-

orithms. 

We contribute new strategies for visualizing time-varying mul-

ivariate data sets. These strategies allow experts studying the

onospheric scintillation phenomenon to utilize alternative ap-

roaches for exploring a large database of historical observations.

ur approaches complement existing ones [4] by focusing on

he global temporal relationships between the multiple variables

racked, rather than on their individual behavior in isolation. 

The paper is structured as follows: Section 2 discusses related

ork on visual analytics applied to feature selection problems and

n visual analytics of time-varying multivariate data. We also re-

iew previous contributions that addressed analysis of collected

cintillation data. In Section 3 we describe in details the iono-

pheric scintillation data and the preprocessing steps. Our visual

nalytics approach, comprising feature extraction, clustering, indi-

idual visualization and global visualization of data variables is de-
cribed in Section 5 . In Section 6 we illustrate possible applica-

ions of the proposed visual exploration solution to plausible data

nalysis scenarios and assess its capability to inform the relevant

ariables for explaining ionospheric scintillation. Conclusions and a

iscussion are provided in Section 7 . 

. Related work 

Previous research efforts related to the topics addressed in this

aper are found in the fields of feature selection assisted by visu-

lization and visualization of multivariate time-varying data. Also

elevant is previous work in mining and visualization of iono-

pheric scintillation data. 

.1. Visual feature selection 

Algorithms for analysis and visualization of multidimensional

ata typically face the problem known as the curse of dimension-

lity [8] , which hampers a clear interpretation of the role of in-

ividual variables (data features) and their interaction in produc-

ng the data patterns. High-dimensional data is likely to be de-

cribed by redundant variables and feature selection algorithms

re widely employed for dimension reduction. The challenge is to

dentify a reduced subset of features sufficient to describe the in-

rinsic data space and determine data behavior [9] . The best possi-

le subset would include a minimum number of features that con-

ribute mostly to accuracy of a classifier or a regressor [10] . 

Razente et al. [11] advocate that integrating dimension reduc-

ion techniques with visualization strategies offers great potential

o support analysts in tasks of identifying representative data at-

ributes. Several research contributions couple interactive graphi-

al representations with feature selection processes in favor of im-

roved understanding of data behavior. 

Some authors approach visual feature selection relying on sta-

istical techniques and distances combined with visualizations [12–

5] . Whereas some contributions are domain specific, e.g., the

IDEAN system [15] integrates several coordinated visual represen-

ations to assist feature selection in a chemoinformatics problem,

thers provide general-purpose visual interfaces for feature subset

election. One example is SmartStripes [14] , developed for diagnos-

ic purposes, providing interactive refinement of automatic feature

ubset selection techniques, considering the interplay between dif-

erent feature and entity subsets. Some systems [12,13] implement

anking-based visual strategies to identify similarities among vari-

bles. 

Other contributions [16–18] concern the problem of analyzing

nd comparing different variable subspaces, and subspace clus-

ering for the analysis of high-dimensional data, as reviewed by

iu et al. [19] . Approaches such as representative factor genera-

ion [17] and dimension projection matrix/tree [18] allow interac-

ive exploration of both data variables and data observations in or-

er to investigate how variables are related. Typically, time-varying

ultivariate features are not explicitly handled. 

Our approach is also a contribution in visual feature selection

nd analysis of feature subspaces, but it incorporates the dynamics

f temporal variations into the process. As scintillation is a sea-

onal phenomenon, the role of different variables in characterizing

ts behavior changes along time. We contribute a solution for vi-

ual feature subspace analysis in time-varying data sets, which also

ives analysts the capability of including their domain knowledge

nto the investigation. 

.2. Visualization of time-varying multivariate data 

Multivariate time-varying data plays an important role in many

pplication domains and poses multiple challenges to visualiza-
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Table 1 

Categorization of S4 index intensity by Tiwari 

(2011) [32] . 

S4 values Scintillation Categorization 

S 4 ≥ 1.0 High 

0.5 < S 4 < 1.0 Moderate 

S 4 ≤ 0.5 Low 
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tion designers [20] . The continuous collection of multiple variables

typically results in bulky data sets that exhibit complex behavior,

making the design of visual interfaces to guide specialists in search

of relevant data patterns particularly challenging. 

Several classical multivariate visualization techniques have been

employed to convey time-related information, e.g., Parallel Coordi-

nates [21] used in connection with an algorithm to identify im-

portant temporal trends in multivariate scientific data sets [22] , or

combined with histograms to quantify visual properties and reduce

visual overload in time-varying volume data [23] . 

Small multiple visualizations rely on the repetition of the same

design structure to summarize and compare variables [24] . Cor-

related multiples [25] is a method that adopts a spatially coher-

ent placement of the multiples views, where their relative dis-

tances reflect their dissimilarities. It has been applied to uni-

variate data from three different domains, namely stock market

trends, census demographics and climate modeling, in order to

assess changes over the years and identify common trends and

similar years. TimeSpiral [26] is a visualization system combin-

ing multiple views to assist users in analyzing and exploring pe-

riodic trends and correlations in multivariate time-series data.

It supports data aggregation at multiple levels, e.g., changing a

time interval, time span or time granularity. These systems are

suitable for simultaneous investigation of a reduced number of

variables. 

VIMTEX has been designed to assist geologists observing tem-

poral relationships in multivariate data describing concentrations

of chemical compounds [27] . It uses Parallel Coordinates for a mul-

tivariate, time-varying view of the data, combined with a density

view to show univariate temporal distribution and a small multi-

ples matrix view which shows bivariate correlations as time-series.

The interactive system Falcon [28] coordinates time-oriented and

statistical views for users to explore temporal and statistical pat-

terns in multiple time-varying variables associated with 3D print-

ing processes. 

Several systems have been introduced for climate and cli-

mate modeling data analysis. Vismate is a visual analytics sys-

tem for exploring climate changes in P.R. China at different spatio-

temporal scales [29] . It uses land surface observations collected

by meteorological observation stations, and combines three vi-

sualizations: (i) A Global Radial Map using K-means clustering;

(ii) a Time-Series Discs using multiple time-series and trian-

gular HeatMaps around a center point; and (iii) an Anomaly

Detection Scatterplot based on Principal Components Analysis.

The Similarity Explorer [30] combines small multiples visualiza-

tions and coordinated views for visual comparison of the out-

puts resulting from simulations of multiple climate models. The

tool supports spatio-temporal exploration focusing on the analy-

sis of correlations between climate models with respect to any

variable. 

We also present a domain-specific solution for scintillation data

that includes several strategies available in existing systems. For

example, similarly to known solutions [25,30] we adopt a small

multiples visualization and a consistent placement strategy to dis-

play groups of related variables; and we consider arbitrary time

periods of different granularity levels by means of user-defined

data aggregations [26] . Our solution, however, supports the simul-

taneous investigation of many variables and satisfies specific re-

quirements of scintillation experts. It provides the ability to inspect

and explore scintillation data aggregated over different temporal

scales, to investigate the behavior of variables individually or in

groups, and to explore alternative feature spaces for characteriz-

ing the scintillation phenomenon. Although the introduced system

is domain-specific, it supports tasks that are also applicable to the

analysis of other multivariate time-varying data in other domains,

as discussed in Section 7 . 
o
.3. Analysis of ionospheric scintillation data 

The so-called S4 index of scintillation amplitude is often used

o measure the intensity of ionospheric scintillation. It is computed

s the standard deviation of the signal intensity normalized by its

ean [31] . Signal intensity must be measured at high rates for the

ndex to detect rapid fluctuations. Currently, there is no consis-

ency concerning the categorization of the severity of scintillation

s measured by the S4 index, Table 1 describes one well-accepted

ategorization. 

Several authors applied data mining techniques to collected

cintillation data, e.g., Rezende et al. [7] devised a method that

ombines a bagging method, which uses bootstrap to randomly

enerate several samples from an original sample, with decision

rees to predict the S4 index with one or more hours of an-

ecedence. Lima et al. [33] presented a correlation analysis of oc-

urrences of ionospheric scintillation registered in two stations at

ifferent locations in Brazil. They used a classification and regres-

ion decision tree (CART) from the S4 index. Another recently pub-

ished technique [34] uses neural networks to predict two levels

f scintillation: strong or not strong (low/moderate). Analyses are

ypically supported by simple univariate time series visualizations. 

Ackah et al. [35] investigated records of the S4 and vertical TEC

VTEC) indices in a West African equatorial region. The presented

ethod visually represents the time series as grids where a col-

mn represents a daily hour, a row represents a particular day, and

rid cell color maps an index (S4 or VTEC) at the corresponding

ay/hour. We have adopted similar grid representations as well to

onvey variable values measured over a time range. 

The ISMR Query Tool [4,36] is an integrated software platform

pecifically developed for the ISMRs database. It includes four vi-

ualizations of the S4 index: a scatter-plot view of data from one

r multiple satellites over a time period, a calendar view, a Iono-

pheric Pierce Point (IPP) representation, aggregated time series vi-

ualizations obtained with the SAX approach; and a horizon chart

isualization of one or multiple variables. However, it does not

ocus on multivariate analysis or on the interplay of the many

ariables characterizing the scintillation phenomenon. Our solution

omplements that previous effort by providing strategies to inspect

nd compare the historical behavior of multiple variable subspaces

n relation to several ionospheric indices, including, but not limited

o, the S4 index. 

. Data description and processing 

Scintillation observations recorded in the ISMRs database result

rom monitoring 187 GNSS satellites tracked by receivers placed in

2 monitoring stations distributed in Brazil, indicated in the map

n Fig. 1 . As mentioned in Section 1 , observations recorded in the

ata base consist of minute-by-minute measurements (or compu-

ations) of 70 variables, for each satellite tracked. The set of obser-

ations can be interpreted as multivariate time series of numerical

alues describing multiple scintillation indices (46 variables), mea-

ures of the S4 index (12 variables), measures of the SigmaPhi in-

ex (three variables), time stamps (seven variables), and indicators

f a satellite’s spatial orientation (two variables). 
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Fig. 1. Locations of CIGALA and CALIBRA stations in Brazil. PRU1 and PRU2 stations 

are located in the State of São Paulo. 
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Table 2 

High-level analysis questions identified in collaboration with 

domain experts. 

Q1 Which variables tracked show similar behavior over 

a target time period? 

Q2 How do variables relate to each other 

and to the scintillation indices? 

Q3 Besides the S4, what (minimal) subset of variables 

suffices to characterize scintillation? 

Q4 Do the same variables tracked by different satellites 

show similar behavior? 
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The scintillation indices describe standard deviation of phase

omputed over different time intervals; average and standard de-

iation of code/carrier divergence; spectral strength and spectral

lope of detrended phase; averaged signal-to-noise ratio; and ab-

olute and differential total electron content. The S4 indices mea-

ure amplitude scintillation in different bands, as the standard de-

iation of the detrended signal intensity (total S4), the thermal

oise correction of the amplitude scintillation (S4 correction), and

he corrected indices (corrected S4). The SigmaPhi indices measure

hase scintillation in different bands as the standard deviation of

he detrended carrier phase from received GPS signals. The time

tamps group consists of the lock time (synchronization time) be-

ween satellites and receiver in different bands and GPS time. The

irection indicator group refers to satellite azimuth and elevation

ngles relative to the receiver. When retrieving observations it is

onvenient to apply an elevation cut-off to disregard data from

ower satellites, which are more susceptible to noise or multi-path

ffects [37] . 

We can formally describe the scintillation data set as an in-

tance of a time-varying data set with n variables { x 1 , x 2 , x 3 , ...,

 n }, each described by a sequence of time-stamped numerical val-

es, i.e., 

 i = { x t 1 
i 
, x t 2 

i 
, x t 3 

i 
, . . . , x 

t k 
i 
} . (1)

 data observation o 

(t) is defined as a vector consisting of the val-

es of p selected variables, p ≤ n , taken at a time t , i.e., 

 

(t ) = [ x t 1 , x 
t 
2 , x 

t 
3 , . . . , x 

t 
p ] . (2)

e also define aggregated data observations o 

(t se ) as a vector of p

alues, i.e., 

 

(t se ) = [ x t se 

1 
, x t se 

2 
, . . . , x t se 

p ] , (3)

ut now each x t se 
i 

is a value resulting from an aggregation function

 applied to the values of x i in a time interval [ t s , t e ], i.e., 

 

t se 

i 
= f (x t s 

i 
, x 

t s +1 

i 
, x 

t s +2 

i 
, . . . , x t e 

i 
) . (4)

Many aggregation functions are possible, e.g., maximum, min-

mum, average, median or standard deviation. From the previous

efinitions, scintillation observations (aggregated or not) can be

escribed by distinct variable subspaces, according to the interests

f the analyst. 

Since variables have values on different dynamic ranges, with

eans and variances on different orders of magnitude, data ranges

re linearly normalized to the interval [0,1] prior to performing any

urther processing. 
The case studies presented in Section 6 consider data recorded

t two stations, PRU1 and PRU2, located at Presidente Prudente, in

he State of SÃ£o Paulo, see Fig. 1 . For practical reasons, we down-

oaded data from the ISMRs database to a local relational database.

o far we have explored data from the 32 satellites in the GPS con-

tellation, which is currently the world’s most widely employed

atellite navigation system [38] . Nonetheless, the solution we de-

cribe is applicable to observations provided by any satellite or

onitoring station. 

Missing values are quite common and need special treatment.

n some cases, they characterize satellite behavior, due to satel-

ites having different orbital periods, and sometimes they are due

o reception errors. We consider one of three strategies for han-

ling the missing-value problem: (i) If a value at a particular time

oint is missing, but values are known for its previous and sub-

equent time points, its value will be linearly interpolated from

he neighboring values; (ii) if values for a whole day are missing,

ut values are known for its previous and subsequent days, val-

es for the day will be linearly interpolated from the correspond-

ng neighboring values from the previous and subsequent days, ac-

ounting for the time shift; (iii) if the previous cases do not ap-

ly, values will not be estimated and the respective entries remain

nknown. 

. Driving questions and goals 

In partnership with domain expert collaborators we identified

rototypical data analysis questions that cannot be answered with

xisting tools. These questions, listed in Table 2 , suggest that analy-

is should be able to inspect the temporal behavior of both individ-

al variables and of groups of related variables, as well as investi-

ate which variables are most relevant to characterize the behavior

f the diverse scintillation indices measured. 

The ability to provide answers to these questions defined the

equirements for visualization design. Our collaborators were in-

erested not only in inspecting a global overview of variables’ be-

avior, but wanted to be able to identify specific values and time

oints along the exploration. Thus, it was important to capture

he multivariate nature and temporal behavior without losing de-

ail, e.g., being able to probe specific values. Keeping this in mind,

ach matrix visualization uses enough display space to convey the

etails over time, whereas the small multiples view provides the

verview and ability to compare variables in terms of their behav-

or. The similarity maps are also a proper choice to convey a global

iew of the relationships between variables in terms of their tem-

oral behavior. Therefore, our design efforts concentrated on pro-

iding complementary views of multivariate relationships and al-

owing users to explore representative variable sub-spaces in rela-

ion to scintillation behavior. In Section 6 , we demonstrate the sys-

em’s resources by means of three exploration cases conducted to

xemplify how it can be helpful to finding answers to such ques-

ions. 
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Fig. 2. Overview of the data processing and interface functionalities (listed in the menu, labeled A). Initially, a query panel (B) allows one to retrieve a subset of observations 

for a time range, described by a subset of variables (sixteen being selected in the example). The regions labeled C and D describe the underlying data processing steps: values 

are normalized and a time matrix representation is derived for each variable (C). Each time matrix is described as a multidimensional feature vector, and feature vectors 

are clustered into groups of variables that exhibit similar behavior over the observed time range (D). Multiple coordinated visualizations can be explored: region E shows 

a small multiples time matrix view of all variables, whereas region F shows a similarity map (projection) view, with variables represented as circles. The color mapping in 

the matrix headers and circles reflect the variables’ assigned cluster. Region G shows functions to modify the cluster model or select other projection techniques. Standard 

timeline views of four user-selected variables are shown that reveal seasonal patterns (H, I), and classification and regression functions are also available (J). 
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5. Visual analytics solution 

We have integrated mining and visualization techniques into a

framework to support experts in the investigation of the tempo-

ral behavior of data observations, as defined by Eq. (2) or ( 3 ) in

Section 3 . Observations described by alternative variable subspaces

can be inspected focusing on the time-varying behavior of either

individual variables or groups of variables. This flexibility is a key

strength in supporting extensive data exploration tasks considering

multiple time periods and temporal scales, as well as alternative

variable subspaces for characterizing the phenomenon. 

The introduced system combines a small multiples visualiza-

tion component that conveys the temporal behavior of each vari-

able with clustering and multidimensional projection techniques in

a consistent representation of the data observations, in order to

convey temporal patterns and highlight representative variables for

characterizing the observed scintillation behavior, as measured by

the pertinent indices. 

The system is provided as a web application developed using

Java and Java Server Pages (JSP) on the server-side, PostgreSQL

9.3.9 as database, and HTML5, CSS and Javascript on the client-side.

SQL functions with subscripts are employed to retrieve aggregated

data values relative to a specified time period. 

In the following, we provide an overview of the data explo-

ration functionalities and describe the visualizations and the steps

involved in creating them. 

5.1. Overview of the visual analytics system 

Fig. 2 provides an overview of the steps involved in creating the

visualizations and the interface functions for exploring the data.

The main interface menu is shown in the region labeled A. Initially,

the user issues a query against the database by specifying a target

time period for retrieval (initial and final days) and what subset of

variables describe the observations (region B). (It is possible to se-

lect all variables.) The query must also specify (i) the source satel-

lite(s) from which measurements must be recovered and an eleva-

tion angle cutoff; the time span for data aggregation, considering

that observations are recorded by minute and may be aggregated

over arbitrary time spans (10 minutes, one hour, one day, etc.); and

(iii) the aggregation function to summarize the values for the se-
ected time span (e.g., average, median, standard deviation, mini-

um value, or maximum value). 

The regions labeled C and D in the figure refer to the underlying

ata processing steps. The time matrices are created as temporal

epresentations of each variable, where each entry stores a single

possibly aggregated) normalized value (region C) relative to the

efined time span, providing the basis for a detailed view of each

ndividual variable over time and a small multiples visualization of

ubsets of variables. 

The time matrices are represented by multidimensional feature

ectors, which are input to a clustering algorithm (region D) to

dentify groups of variables that show similar behavior over the

bserved time period. From these representations multiple visual-

zations are created for data exploration: region E shows a small

ultiples visualization of the time matrices relative to each vari-

ble observed (with header colors indicating their corresponding

luster), whereas region F shows a similarity map view of all vari-

bles, created from their multidimensional feature vectors. Each

ircle represents a variable, colored to indicate its cluster. Both

iews can be inspected and manipulated to refine the current clus-

er model to reflect user knowledge and beliefs. Region G shows

nformation regarding the quality of the clustering and functions to

odify the cluster model or select other projection techniques for

he similarity map. Region H shows that four variables have been

ser-selected, for which timeline views are displayed (region I) re-

ealing seasonal patterns. It is possible to apply classifiers and re-

ressions to the scintillation indices (J). Iterative data analysis with

hese multiple coordinated visualizations, combined with results of

lustering, classification and regression algorithms, allow experts

o assess the role of different variable sub-spaces as representative

escriptors of the behavior of the ionospheric scintillation indices. 

.2. Time matrix visualizations 

A time matrix representation summarizes the temporal behav-

or of a particular variable for a user-defined observed period. As

he user may choose to aggregate a range of observed values, a

ime matrix maps the values of a variable along a certain period

nd at a given time granularity, from minutes to hours or even

ays. Each matrix entry represents a single numerical value, either

s recorded in the database or derived according to Eq. (4) , apply-

ng an aggregation function over a range of values. 
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Fig. 3. Time matrix visualization of variable ( phi01l1 ). Daily data (0 0:0 0h-23:0 0h) 

from GPS satellite 1 at station PRU2, from June 1 to 30, 2014. In this example, cells 

depict the maximum value observed over a 30-minute interval (user choice of ag- 

gregation function and time span). Each row depicts values for a day and each col- 

umn shows values for the same thirty-minute period, on different days. Areas in 

gray depict matrix cells with missing values, and cells enclosed by a red border 

show interpolated data. The matrix border in cyan indicates a high rate of missing 

data. (For interpretation of the references to color in this figure legend, the reader 

is referred to the web version of this article.) 
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Fig. 4. Another time matrix visualization of the same variable ( phi01l1 ), now de- 

picting monthly data from January 1 to December 31, 2014. In this example, each 

cell depicts the median value observed over a day. Each row shows daily values ob- 

served along a specific month and each column shows values relative to the same 

sequential day along the 12 months. Regions marked A and B show the detail labels 

overlaid when the mouse is placed over the indicated cells (shown separately for 

clarity). 

Fig. 5. Heated-Object colormap [39] . (For interpretation of the references to color 

in this figure legend, the reader is referred to the web version of this article.) 
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Each time matrix has a corresponding visualization ( Figs. 3 and

 ) which is split into two areas. The header area shows the vari-

ble’s name, its assigned cluster (also indicated by the header and

order color), the satellite from which observations have been re-

rieved, the observation period, the minimum and maximum val-

es recorded over that period and the rate (percentage over total)

f missing data before and after interpolation. 

The main area is split into cells depicting corresponding matrix

ntries. Values are color-mapped using the heated-object colormap

39] , where brighter colors map to lower values and darker colors

ap to higher ones ( Fig. 5 ). 

Cells that show interpolated data are highlighted by a red bor-

er, and cells depicting unknown entries (missing data) are shown

n gray without a border. The border of a time matrix may be high-

ighted in cyan to indicate it has a missing data rate above a user-

efined threshold (say, above 50%). Our choice of colors is based

n red and cyan being recommended colors to catch viewer atten-

ion [40] . They are also complementary hues [39] . Of course, these

hoices may not be ideal in all situations. 

In the examples, cells show the maximum value observed

ithin a 30-minute interval ( Fig. 3 ) and the median value observed

ver a day ( Fig. 4 ). Hovering over a cell causes a label to show

p with detailed information about the cell’s corresponding entry:

ate, recorded value and aggregation function and time span. This

s illustrated for the two extreme cells of the time matrix depicted

n Fig. 4 . 

We compute a feature vector from each time matrix, formed

y the five standard statistical moments computed from the ma-

rix, i.e., mean, standard deviation, skewness, kurtosis, and unifor-

ity. The statistical moments capture the properties of the prob-

bility distributions that characterize the variables’ behavior over

he observed time period. Matrix entries with missing values are

gnored in the computation of statistical moments. However, there

s an option for including the percentage of missing data as an ex-
ra feature in the matrix feature vector, as in some situations such

 variable should be clearly identified as an outlier. 

We cluster feature vectors in order to group variables based

n global similarity of their observed behavior. We offer a choice

etween K-means, Bisecting K-means, or X-means clustering algo-

ithms and use the Euclidean distance between feature vectors as

 measure of their dissimilarity. The advantage of X-means clus-

ering [41] is the fact that it does not require specifying a desired

umber of clusters a priori , as it learns this number as the one

hat yields the best Bayesian information criterion. Users may re-

ssign variables to clusters or create new clusters based on their

xpert perception of joint similarity, e.g., after inspection of time

atrix views and similarity maps of variables, as described in the

ext Subsection. The alternative cluster models can convey insight

o analysts attempting to identify relevant variables and variable

ubspaces for further investigation with classification or regression

lgorithms. 

Time matrix visualizations shown in Figs. 3 and 4 can be

iewed individually or as a small multiples visualization of all

ueried variables, as shown in Fig. 7 B, where views are spatially

rranged according to their assigned clusters. A combo box, shown

n the header area of each matrix view, allows analysts to change

he corresponding variable’s cluster assignment, in case they dis-

gree with the automatic assignment. A measure of cluster quality,

he silhouette coefficient [42] , is informed. Silhouette values are in

he range [ −1 , +1] , where higher values indicate a cluster model

ith higher cohesion and separability. Values are updated when-

ver the current cluster model changes. Silhouette coefficients pro-

ide analysts with an objective measure of cluster quality, which

ay be helpful when investigating and comparing alternative clus-
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Fig. 6. Neighborhood Preservation curves depicting precision of similarity maps of 

the 70 variables obtained with four distinct techniques. 
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ter models and being unsure about a model’s suitability. Indeed,

the analyst’s perception of relevance and similarity of a variable’s

behavior may be different from the one inferred by automatic clus-

tering. Our approach encourages investigating alternatives, where

users’ knowledge is more important for defining the assignment of

variables to clusters than silhouette measure values. 

At this stage, we have generated, possibly with user interven-

tion, clusters of variables that behave similarly for an observation

period. For subspace analysis purposes, the variables corresponding

to the medoids of clusters are initially assumed to be the ideal set

of representatives for describing the corresponding observations.

Nonetheless, analysts can modify the default choice of representa-

tive variables by designating a different variable as a cluster’s rep-

resentative, done by ticking a checkbox shown in the correspond-

ing time matrix view. For example, the ticked checkbox of variable

phi01l1 in Figs. 3 and 4 indicates that it is the cluster represen-

tative. This can be achieved either by default, because this vari-

able is the medoid of a cluster, or it is a user’s choice. Flexibility

in defining the cluster model and picking representative variables

is important in situations where analysts want to compare alter-

native feature subspaces to characterize scintillation behavior well.

Our system supports a similarity map visualization of variables, de-

scribed next. 

5.3. Similarity map of variables 

Similarity map visualizations of the variables can help special-

ists assessing, and possibly modifying, the clustering results ac-

cording to their appreciation of similarity in variable behavior. A

similarity map depicts a two-dimensional (2D) space embedding

of the m -dimensional ( m = 5 or m = 6 ) feature vectors describ-

ing the variables’ time matrices, in which 2D point distances are

used as proxies to the point distances in the original 6-dimensional

space [43,44] . Therefore, “more similar” variables (as described by

their corresponding time matrix) are placed closer in the 2D map,

whereas more “dissimilar” ones are placed farther apart. 

The 2D embedding is computed with the IDMAP multidimen-

sional projection [44] (we used an implementation by the authors).

IDMAP combines two techniques: (i) it generates an initial map-

ping with Fastmap [45] , and (ii) iteratively improves point place-

ments using the Force Scheme strategy [43] , recovering informa-

tion lost in the initial projection. Pairwise Euclidean distances are

used to define the dissimilarities between feature vectors. Similarly

to time matrix visualization, circles can be highlighted with a cyan

border to indicate missing data above a threshold. 

One such similarity map is illustrated in Fig. 7 A. Each colored

circle depicts a variable and its associated cluster, preserving the

same color coding of the clusters adopted in the small multiples

matrix view. Circle borders in cyan map variables with over 50%

missing data prior to interpolation. 

The map conveys the overall similarity between variables and

their implicit groupings, regardless of their explicit cluster as-

signments. Therefore, it helps analysts in identifying the “natu-

ral” group neighborhoods. This is the reason for showing the map

view in connection with the small multiples matrix view: inspect-

ing both in combination provides the analyst with insights needed

to decide whether the explicit cluster assignments should be mod-

ified and alternative cluster models should be investigated. 

Several projection techniques can be employed to obtain the

similarity maps. Our choice of IDMAP was based on performing a

comparative analysis of maps obtained with different multidimen-

sional projection techniques. We employed Neighborhood Preser-

vation (NP) [46] curves to compare techniques regarding their pre-

cision in preserving multidimensional neighborhoods. One such

comparison is illustrated in Fig. 6 . For varying neighborhood sizes

k , the NP curve is computed as follows: The k -nearest neighbor
ets of each data point in multidimensional and projected space

re obtained, and their overlapping rate is computed, yielding val-

es in the interval [0, 1]. The average precision values for all data

oints for the considered range of k are plotted. The resulting

urves will approach maximum precision as k increases, but some

echniques can achieve high precision even for smaller values of k .

Fig. 6 shows the NP curves of similarity maps computed

ith IDMAP and three alternative projection techniques, namely

astmap [45] , Least Squares Projection [47] and Principal Compo-

ent Analysis [48] , for the data investigated in the first case study

iscussed in Section 6 . Clearly, IDMAP yields precision rates supe-

ior to LSP and comparable to those obtained by classic approaches

uch as Fastmap and PCA. Our experiments have indicated that

DMAP usually preserves neighborhood well for this data. 

. Use cases and results 

Experts can use the proposed framework to interactively ex-

lore recorded scintillation data over different temporal ranges

nd scales, from multiple perspectives. We limit our discussion to

he selected motivating examples raised by the questions listed in

able 2 . 

.1. Identifying variables with similar temporal behavior (Q1) 

Data for this study was obtained by sampling the maximum

alues recorded at the station (PRU1), over one-hour periods each

ay in January 2014 (0 0:0 0 h–11:0 0 h), with an elevation cutoff

f 30 degrees, yielding 354,727 observations described by 70 vari-

bles. We considered data from satellite GPS 1. The X-means clus-

ering of all 70 variables generated six clusters, with a silhouette

oefficient of 0.478, which indicates a high-quality clustering re-

ult. The composition of the clusters may be observed inspecting

oth the similarity map of variables and the small multiples time

atrices views, shown in Fig. 7 , in which the cluster assignment is

ndicated by the color of circles or time matrices, respectively. 

While the map provides an overview of the variables’ global

imilarities, the small multiples view details their temporal be-

avior, making it possible to verify the actual behavior of cluster

embers and assess their (dis)similarities. Cluster C1 (light blue)

ontains 12 variables, and it is possible to observe two sub-groups

n the map: a cohesive group of nine variables and another sub-

roup of three variables t_l1 , t_l2c_e5a and t_e5b not very close

o each other, but their time matrices showing quite similar be-

avior. In the pink cluster (C2, with 7 variables), variables sig-

accd_l1 , sigmaccd_l2c_e5a and sigmaccd_l5_e5b show similar be-

avior, slightly different from other cluster members. The time ma-
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Fig. 7. Variables describing ionospheric scintillation observations (satellite GPS 1, January 1–31 2014, PRU1 station): (A) IDMAP similarity map view, with each circle depicting 

one of the 70 variables; and (B) small multiple time matrices view of the same variables, with each cell showing the maximum value recorded over a one-hour interval 

along each day (0 0:0 0 h–11:0 0 h). Each row of a time matrix depicts values along one day. (For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 
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Fig. 8. IDMAP similarity map view of the same 70 variables depicted in Fig. 7 A, in 

which circle colors reflect an alternative (user-adjusted) cluster model (12 clusters). 

(For interpretation of the references to color in this figure legend, the reader is 

referred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3 

Classification accuracy of observations described by three 

distinct variable subspaces. 

Technique 58 var. (a) 8 var. (b) 12 var. (c) 

J48 96.43% 97.50% 97.69% 

Mult. Percep. 96.42% 97.52% 97.85% 

Fig. 9. A five-day sample (from January 7 to 11, 2014, 0 0:0 0 h–11:0 0 h) of the 

normalized time series of aggregated values (maximum over 1 h intervals) for 

two representative variables sigmaccd_l5_e5b and phi03l1 , and the variable target 

s4_corrected , where a daily pattern is clearly observed. 
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trices of the 16 variables in the red cluster (C3) show remark-

ably similar behavior. In cluster C4 (orange), which groups 19 vari-

ables, we notice that p_l1 , p_l2c_e5a and p_l5_e5b behave differ-

ently from the others. This can be also observed in the simi-

larity map, where the circles representing these three variables

are slightly apart from the main group of orange circles. Clus-

ter C5 (dark green) groups two variables related to time (day of

week and week number), whereas the variables azim and eleva-

tion , which indicate spatial orientation of satellites, are grouped

together into cluster C6 (light rose). The neon green cluster (C7,

with nine variables), observed in the map, is also split into

two subgroups: one formed by variables avg_cn0_l1 , avg_cn0_l2 ,

avg_cn0_l5_e5b and f2nd_tec_cn0 ; another formed by variables

l1_locktime , l2_e5a_locktime and l5_e5b_locktime . When observing

their corresponding time matrices one notices that these latter

variables show a distinct behavior from the others in this cluster.

Also distinctive in this group is the time variable tow , placed in the

map somewhere in between this subgroup and the dark blue clus-

ter C8. The time matrices of variables in cluster C8 show that they

behave similarly, and they are indeed placed close in the map. 

These two visualizations when viewed in combination provide

useful information for the analyst to adjust the cluster model ob-

tained with X-means. The variables’ cluster assignment can be

modified using the combo box provided in its time matrix view.

The ability to identify clusters of variables with similar behavior is

important when investigating answers to the questions discussed

next. 

Considering the remarks above, the cluster model was mod-

ified as follows: cluster C1 (light blue) was split into two sub-

groups formed by the cohesive group of nine variables and by

the three disperse variables, respectively; cluster C2 (pink) was

also split into two groups (formed by variables sigmaccd_l1 , sig-

maccd_l2c_e5a and sigmaccd_l5_e5b in a group; and the remain-

ing variables in the other); cluster C4 (orange) was split into two

groups (one sub-group with variables p_l1 , p_l2c_e5a and p_l5_e5b

and another sub-group with the remaining variables); cluster C7

was split into two subgroups (one formed by variables avg_cn0_l1 ,

avg_cn0_l2 , avg_cn0_l5_e5b and f2nd_tec_cn0 and the other by the

remaining variables); and variable tow was re-assigned to cluster

C8 (blue). The adjusted cluster model, shown in Fig. 8 , is formed

by 12 clusters and has an improved silhouette coefficient of 0.597.

This modified clustering more appropriately represents a user’s “vi-

sion” of the scenario, and can yield better classification results, as

discussed next. 

6.2. Identifying the relationships between S4 indices and other 

variables (Q2) and relevant variables to scintillation (Q3) 

Proceeding from the previous study and in order to investi-

gate how the multiple tracked variables relate with the S4 in-

dices, we compared the results of classifiers on the set of obser-

vations described by three alternative subspaces of variables, tak-

ing S4_corrected as target variable and the Tiwari categorization

as ground truth. The three sub-spaces considered for describing

the observations are formed by (a) all 58 monitored variables that

are not directly derived or theoretically associated with measures
f the S4 index (obtained discarding the 12 variables included in

luster C4, depicted in Fig. 7 ); (b) the representative variables de-

ned by the cluster medoids resulting from X-means (eight vari-

bles) clustering, also depicted in Fig. 7 ; and (c) the representative

ariables (medoids) defined by the user-adjusted cluster model,

hown in Fig. 8 , obtained after observing and interacting with the

isualizations. 

The X-means clustering of all 70 variables ( Fig. 7 ) generated

ight clusters, and their corresponding medoids are the vari-

bles: si_l5_e5b , dtec_6045 , phi03l1 , wn , azim , tow , avgccd_l2c_e5a

nd numerator_si_l2c_e5a . The user-adjusted clustering ( Fig. 8 )

as twelve clusters, with medoids: si_l5_e5b , dtec_6045 , phi03l1 ,

n , azim , avgccd_l2c_e5a , numerator_si_l2c_e5a , sigmaccd_l5_e5b ,

2nd_tec_locktime , avg_cn0_l2 , p_l5_e5b and t_l2c_e5a . 

Classifier accuracy is summarized in Table 3 , confirming that

oth subspaces of variables derived with X-Means and user-

djusted are indeed appropriate to characterize scintillation behav-

or. According to the scintillation experts, this is a relevant result,

s e.g., the eight variables from subset (b) could be monitored us-

ng conventional geodesic receivers available, for example, from the

razilian Network for Continuous Monitoring of the GNSS Systems

RBMC), rather than the highly specialized and more costly ISMRs.

n other words, it would be possible to track scintillation with good

recision monitoring a reduced number of variables that may be

racked with cheaper receivers. 

The behavior of such variables in relation to the S4 indices can

e further investigated by studying the normalized line graphs of

he aggregated data represented in the time matrices. For instance,

ig. 9 shows a sample of the normalized time series describing two

epresentative variables sigmaccd_l5_e5b and phi03l1 , and the tar-

et variable s4_corrected during five days in January 2014, where

aily patterns are clearly observable. Patterns are also noticeable

hen observing graphs depicting other representative variables,

onsidering other choices of aggregation function, time spans and

ime intervals (not shown). 

.3. Comparing the behavior of observations from multiple satellites 

Q4) 

Identifying groups of satellites more susceptible to scintillation

ver a region is particularly relevant to derive specific strategies

or dealing with this effect on GNSS positioning. A typical task

ould be concerned with inspecting scintillation values recorded

rom multiple GPS satellites, and observe their consistency. This
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Fig. 10. (A) IDMAP similarity map and (B) Small Multiple Time Matrices view of values of index S4_corrected recorded at the 32 GPS satellites (January 1 - December 31, 

2015). Matrix cells show average values over daily periods along each month. Numeric labels in the similarity map identify the satellites. 
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nalysis may consider, for example, the S4_corrected index, which

easures amplitude scintillation computed without ambient noise

ffects. 

We considered observations of the S4_corrected index recorded

t the PRU2 station from January to December 2015, which were

ggregated by taking the average value recorded over daily inter-

als. This query resulted in 1,775,039 observations from the 32

PS satellites, which were K-Means clustered picking k = 8 (which

ielded the best silhouette coefficient, equal to 0.498, from all clus-

er models obtained with k in [2,15]). The resulting clustering (C1

o C8 identified by colors) is shown in the small multiples time

atrix view in Fig. 10 . 

These clusters reveal distinct patterns of amplitude scintilla-

ion, which is typically more severe from November to March. This

s confirmed by the time matrices, where the initial and/or final

ows (corresponding to the first and last months of the year) show

igher averages (darker colors). The three satellites in the white

luster were seemingly less affected by scintillation over this pe-

iod. The affected satellites at a particular GPS station will change

ccording to the spatial dynamics of both their fixed orbital peri-

ds and the ionospheric irregularities. Time matrix views of four

atellites (4, 8, 10, 26) depicting over 28% missing data are high-

ighted (cyan borders). Occurrence of missing data may be related

o scintillation susceptibility of a certain satellite because strong

cintillation may cause loss of lock and, as a consequence, inabil-

ty to track some variables. If this is the case, data is missed over

hort periods (typically a few minutes). One notices that these four

atellites display extensive periods of missing data, more likely a
 t  
onsequence of satellite unavailability, e.g., due to maintenance or

eplacement operations in the GPS constellation. 

. Conclusions and future work 

We have introduced and described an interactive visualization

ystem for exploratory data analysis of ionospheric scintillation

ata, which are multidimensional and time-varying. Our integra-

ive system approach supports the characterization of temporal

elationships between variables associated with the scintillation

henomenon. Scintillation scientists can use our system to pose

ueries for a target time period and assisted by multiple visu-

lizations integrated with analytical algorithms for clustering and

lassification can interact with the data and visualizations to find

nswers to their questions and formulate new scientific hypothe-

es. Our system is an additional and complementary system to cur-

ently available systems [36] . 

We have presented detailed case studies, conducted in partner-

hip with our collaborating domain experts (co-authors of this pa-

er) to provide supporting scenarios where the system can be em-

loyed effectively to discover relevant information about the scin-

illation phenomenon. Our integrated visual analytics approach al-

ows a user to identify different clusters of variables with quite

imilar temporal behavior over a target period. We have shown

hat the subspace defined by the set of medoids, being representa-

ives of each group, suffice to characterize the behavior of the phe-

omenon. These representative variables show periodic patterns

hat can be assessed at different time scales. We also explored the
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variable S4_corrected tracked by the 32 GPS satellites, identifying

groups of satellites in which this particular variable exhibits similar

behavior and also outliers that could be of interest to the domain

specialists. The case studies are illustrative of how the system can

assist experts in gaining further insight into the historical behavior

of scintillation. Additional experiments and studies of observations

collected at other stations over longer time periods will be con-

ducted to validate and further refine the described framework. 

We plan to provide similarity maps of observations linked with

variable visualizations, making it possible to perform interactions

to identify and interpret relevant patterns. As a simple approach

linear interpolation can be used, but it would be interesting to

investigate possibly other, higher-order interpolation schemes and

analyze how they impact the data analysis [49] . 

We will address scalability of our approaches and their im-

plementation to ensure real-time interactive performance for very

large data sets and complex queries. Finally, the proposed analyt-

ics strategies are applicable to other domains where large time-

varying multivariate data arise and must be understood. Specifi-

cally, any multivariate observational data set recorded periodically

can be explored with the described visualizations when there is a

need to understand and correlate variable subspaces and temporal

variation. We are currently generalizing the system and will apply

it to stock market and air quality data sets. 
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