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Abstract – In this paper, static electrically charged black-hole solutions with cosmological con-
stant are investigated in an Einstein-Hilbert theory of gravity with additional quadratic curvature
terms. Beside the analytic Schwarzschild (Anti-) de Sitter solutions, non-Schwarzschild (Anti-)
de Sitter solutions are also obtained numerically by employing the shooting method. The results
show that there exist two groups of asymptotically (Anti-) de Sitter spacetimes for both charged
and uncharged black holes. In particular, it was found that for uncharged black holes the first
group can be reduced to the Schwarzschild (Anti-) de Sitter solution, while the second group is
intrinsically different from a Schwarzschild (Anti-) de Sitter solution even when the charge and
the cosmological constant become zero.

Copyright c© EPLA, 2016

Though Einstein’s general relativity has been exten-
sively tested at the highest achievable experimental preci-
sion up to date, gravity is not a renormalizable quantum
field theory from the theoretical viewpoint. A possible at-
tempt to solve the problem of the non-renormalizability
of general relativity is to include higher-order corrections
that become important at higher energy [1]. In this con-
text, general relativity can be viewed as an effective low-
energy field theory, which is understood to be largely
independent of the details in higher energy scales. It can
be shown when all possible quadratic curvature invariants
are added to the Einstein-Hilbert action, a renormalizable
theory is achieved at the cost of the presence of the ghost
modes [2]. Thus the study of the properties of such higher-
derivative gravity could shed light on the ongoing efforts
to understand the nature of gravity.

In order to better understand such a new theory of grav-
ity, it seems of considerable interest to investigate the be-
haviour of black-hole solutions, since they are fundamental
objects in general relativity. Such studies have also been

(a)E-mail: lk314159@hotmail.com
(b)E-mail: wlqian@usp.br
(c)E-mail: alan@unifei.edu.br
(d)E-mail: eabdalla@usp.br

performed in other theories of gravity containing higher-
order curvature corrections with well-defined coefficients,
such as Lovelock theory [3]. Moreover, the question of
stability of charged black holes is relevant and has been
intensively studied recently in recent years [4,5].

Recently, Lü et al. found, numerically, a non-
Schwarzschild solution in a theory of gravity with a
quadratic Weyl scalar on action [6,7], and revealed that
this higher-derivative gravity possesses additional static
spherically symmetric black-hole solution compared to
Einstein’s general relativity. We also showed in [8] that
electrically charged static solutions in this theory are also
characterized by two groups of solutions. These solutions
reduce, respectively, to Schwarzschild black hole and non-
Schwarzschild black hole solutions, when the charge of
the black hole goes to zero. Surprisingly the Reissner-
Nordström metric is not a solution of the field equations
when the coefficients of the higher-derivative terms do
not vanish.

Being first introduced by Einstein to describe a static
universe and later abandoned by himself after Hubble ob-
serves the expansion of the universe, the cosmological con-
stant is a measure of the value of the energy density of the
vacuum of space and could be a candidate to explain the
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expansion. In addition, the discovery of the accelerating
universe after 1990 from distant supernovae implies that
more than half of the energy density of the universe can
be attributed to the unkown so-called dark energy. Thus,
while poorly understood at a fundamental level, the con-
cept of cosmological constant was revived and is, by far,
the simplest possible form of dark energy. Another im-
portant motivation in studying spacetimes with cosmo-
logical constant, namely negative one, is the AdS/CFT
correspondence [9]. Therefore, it seems to be interest-
ing to investigate the properties of the non-Schwarzschild
black-hole solutions with the presence of the cosmologi-
cal constant. In this letter, we carry out a study of the
(Anti-) de Sitter electrically charged black-hole solutions
in higher-derivative gravity.

The action of higher-derivative gravity in Einstein-
Hilbert theory with quadratic curvature scalars and with
electromagnetic field and the cosmological constant Λ can
be written as

L = γR − 2Λ − αCμνρσCμνρσ + βR2 − κFμνFμν , (1)

where Fμν = ∇μAν − ∇νAμ is the electromagnetic ten-
sor, Cμνρσ is the Weyl tensor, α, β, γ and κ are coupling
constants.

According to the analysis in [6,8,10], (non-)charged
black-hole solutions without cosmological constant are in-
dependent of the βR2 term since the additional terms on
the action are traceless. Here, this condition is broken
because of the introduction of the cosmological constant.
However, we set β = 0 for the sake of convenience. Thus,
the resulting field equations are given by

Rμν − 1
2
gμνR − Λgμν − 4αBμν − 2κTμν = 0, (2)

∇μFμν = 0. (3)

where the trace-free Bach tensor Bμν and energy-
momentum tensor of electromagnetic field Tμν are
defined as

Bμν =
(
∇ρ∇σ +

1
2
Rρσ

)
Cμρνσ, (4)

Tμν = FαμFα
ν − 1

4
gμνFαβFαβ . (5)

For a static black hole with spherical symmetry, the metric
has the form

ds2 = −h(r)dt2 +
dr2

f(r)
+ r2dθ2 + r2 sin2(θ)dϕ2. (6)

By substituting eq. (6) into the field equations, we arrive
at the differential equations

rh [rf ′h′ + 2f (rh′′ + 2h′)]
+ 4h2

(
rf ′ + f − 1 + 2Λr2

)
− r2fh′2 = 0, (7)

f ′′ +
r2fh′2 + 2rfhh′ + 4(f − 1 + 2Λr2)h2

2rfh (rh′ − 2h)
f ′

− 3hf ′2

4fh − 2rfh′ + 8Λ
h − fh − rfh′ − Λr2h

3f(2h − rh′)

−
r3fh′ +

(
r2f − r2 + Λr4 + κQ2

0

)
h

αr2f (rh′ − 2h)

− r3fh′3 − 3r2fhh′2 − 8(f − 1)h3

2r2h2 (rh′ − 2h)
= 0, (8)

A′
t +

√
h

f

Q0

r2
= 0, (9)

where Q0 is the electric charge of the black hole. Impos-
ing standard physical boundary conditions implies that
At(r) → 0 at the cosmological horizon rc (infinity) in an
asymptotically (Anti-) de Sitter spacetime. Besides, it is
easy to verify that, for uncharged spacetimes, the analytic
Schwarzschild (Anti-) de Sitter black-hole solutions sat-
isfy the above field equations. However, this is not true
for charged spacetimes. It can be shown straightforwardly
that the Reissner-Nordström (Anti-) de Sitter metric does
not satisfy the above field equations when α �= 0. The
same condition was pointed out in [8] for the case without
cosmological constant.

In what follows we apply the shooting method to
numerically study the Schwarzschild as well as non-
Schwarzschild solutions and their generalizations. We can
set α = 1

2 and κ = 1 without losing generality. After that,
we expand the functions h(r) and f(r) around the event
horizon r0 as follows:

h(r) = h1(r − r0) + h2(r − r0)2 + h3(r − r0)3 + · · · ,
f(r) = f1(r − r0) + f2(r − r0)2 + f3(r − r0)3 + · · · ,

(10)

where fi and hi are constant coefficient. Since we can
always rescale the time coordinate by the transformation
t → t

const for any positive constant C, then C × h(r) is
always a solution of the field equations if h(r) itself is a
solution of the corresponding equations. Therefore, we
may choose f1 = h1 for the sake of simplicity. By substi-
tuting eq. (10) into the field equations, all hj and fj with
j ≥ 2 can be expressed in terms of f1, for example, h2 and
f2 are given by

h2 =
1 − 2f1r0

r2
0

+
r2
0 − f1r

3
0 − κQ2

0

8αf1r3
0

−
(

5
3

+
1

3f1r0
+

3r0

8αf1

)
Λ +

r0Λ2

3f1
,

f2 =
1 − 2f1r0

r2
0

− 3
r2
0 − f1r

3
0 − κQ2

0

8αf1r3
0

−
(

3 − 1
f1r0

− 3r0

8αf1

)
Λ − r0Λ2

f1
.

(11)

Now we are in the position to calculate the numerical
black-hole solutions of the field equations.

For the case of asymptotically de Sitter black holes
(Λ > 0) we fix Λ = 0.01 for the sake of convenience. Let
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Fig. 1: (Colour online) Schwarzschild de Sitter black hole and non-Schwarzschild de Sitter black hole for r0 = 1, r0 = 2 and
r0 = 3. We have f(r) = h(r) = fSdS(r) for the Schwarzschild de Sitter case, and f(r) = fβ(r) and h(r) = hβ(r) for the
non-Schwarzschild de Sitter case. Group-I solution (left) and group-II solution (middle, right).

Fig. 2: (Colour online) Numerical charged de Sitter solutions f(r), h(r) and At(r) belonging to group I with r0 = 1, 2, 3 and
Q0 = Qc

2
.

Fig. 3: (Colour online) Numerical charged de Sitter solutions group I (near the extreme case) of f(r), h(r) and At(r) with
r0 = 1, 2, 3 and Q0 = 0.99Qc, where Qc is the charge of the extreme de Sitter black hole (see eq. (12)).

us first study the case when Q0 = 0, which corresponds
to the uncharged black holes. As mentioned above, the
Schwarzschild de Sitter metric is an exact solution of the
field equations. The non-Schwarzschild de Sitter solutions
were found numerically by the following procedure. Since
the de Sitter black hole has an event horizon and a cos-
mological horizon, f and h should satisfy the boundary
conditions to attain zero at both horizons. From the form
of eq. (10), it is obvious that the above first boundary con-
dition at the event horizon is automatically satisfied, and
the second boundary condition at the cosmological hori-
zon is used as the criterion of the initial value of f1 in the
shooting method.

At this point we shall introduce a classification to the
black-hole solutions that will be used throughout paper.
The Schwarzschild (Anti-) de Sitter solutions and those
that can be reduced to the Schwarzschild (Anti-) de Sit-
ter solutions under specific conditions are referred to as
group-I solution. Similarly, the non-Schwarzschild (Anti-)
de Sitter solutions as well as those can be reduced to the

non-Schwarzschild (Anti-) de Sitter solutions under spe-
cific conditions are referred to as group II.

The (non-)charged asymptotically de Sitter black-hole
solutions found are shown in figs. 1, 2, 3, 4 for some given
values of r0 and Q0.

When Q0 = 0 and α �= 0, we have two groups of solu-
tions, such that group-I solutions reduce to Schwarzschild
de Sitter black hole and group-II solutions reduce to non-
Schwarzschild de Sitter black hole, respectively. In fig. 1,
one finds that the difference between Schwarzschild de Sit-
ter black hole and non-Schwarzschild de Sitter black hole
increases as r0 increases. In particular, the cosmological
horizons are larger for non-Schwarzschild de Sitter black
hole than for Schwarzschild de Sitter black hole. Besides,
it is noted that h �= f for non-Schwarzschild de Sitter black
holes.

When Q0 �= 0 and α �= 0, we can also separate the so-
lutions into two groups, which reduce to Schwarzschild de
Sitter black hole and non-Schwarzschild de Sitter black
hole, respectively as Q0 → 0. In fig. 2 some charged
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Fig. 4: (Colour online) Charged de Sitter solutions belonging to group II. Displayed are f(r), h(r) and At(r) with r0 = 1, 2, 3
and Q0 = 1, 2, 20.

Fig. 5: (Colour online) Schwarzschild and non-Schwarzschild Anti-de Sitter black holes for r0 = 1, r0 = 2 and r0 = 3. We have
f(r) = h(r) = fASdS(r) for the Schwarzschild Anti-de Sitter case, and f(r) = fβ(r) and h(r) = hβ(r) for the non-Schwarzschild
Anti-de Sitter case.

asymptotic de Sitter solutions are presented for different
values of r0 and Q0 = Qc

2 .
For group I we found that there is a maximal physical

value of the charge which is attained when the black hole
becomes an extreme de Sitter black hole. This critical
value is given by

QdS
c =

r0√
3κ

√
(r2

0Λ − 1)(8αΛ − 3) , (12)

and the extreme solution is reached imposing, addition-
ally, f1 = 0. In fig. 3 we show some examples of the above
results. It is noteworthy that it is very difficult to directly
calculate numerically the extreme case, so that we only
study the case where the charge Q0 is very close to the

extreme value Qc. In the plots, we choose Q0 = 0.99Qc.
We note that the difference between f(r) and h(r) de-
creases with decreasing r0. In fig. 4 we have the group-
II solutions. It turns out that group II does not have
an upper limit of the charge differently from group I.
This interesting propriety was already pointed out in [8]
for the case without cosmological constant. For both
groups of solutions, although they can be reduced to the
(non-)Schwarzschild de Sitter black hole at zero charge
limit, none of them has Reissner-Nordström de Sitter met-
ric as valid solution. It can be related with a non-trivial
coupling between the electric charge and the geometry
through Weyl scalar and that appears in eq. (11).

For the case of asymptotically de Anti-de Sitter black
holes (Λ < 0) there is not cosmological horizon. Thus,
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Fig. 6: (Colour online) Anti-de Sitter solutions belonging to group I. We display f(r), h(r) and At(r) with r0 = 1, 2, 3 and
Q0 = 0.99Qc,

Qc
2

, where Qc is the charge of the extreme Anti-de Sitter black hole.

Fig. 7: (Colour online) Numerical Anti-de Sitter solutions group II of f(r), h(r) and At(r) with r0 = 1, 2, 3 and Q0 = 1, 2, 20.

the conditions used previously that f and h vanish at the
cosmological horizon is no more valid and this implies that
one has to adopt the boundary condition at infinity as the
criterion of the shooting method.

Since it is known that f and h approach asymptoti-
cally the form r2 as r → ∞, we introduce the coordinate
transformation z = r0

r , so that the function of f and h
become f = f(z) and h = h(z) where 0 ≤ z ≤ 1. When

z = 1, the corresponding radial coordinate is the event
horizon r0, and z = 0 corresponds to r → ∞. Therefore,
with this transformation it is possible to apply the bound-
ary conditions at finite values of z = 0 and z = 1. In our
calculations, the condition that f and h are proportional
to z−2 at z = 0 is used as the criterion for the shooting
method: at z = 0, the functions z2f(z) and z2h(z) should
be positive and their derivatives with respect to z should
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vanish. We show the resulting Anti-de Sitter black hole in
figs. 5, 6, 7.

Without loss of generality, we set Λ = −1. Similar to
case of de Sitter spacetime, we find that the field equa-
tions possess two groups of solutions, which reduce to
Schwarzschild Anti-de Sitter and non-Schwarzschild Anti-
de Sitter black holes, respectively as Q0 → 0. We show the
uncharged Anti-de Sitter solutions in fig. 5. It is observed
that the difference between Schwarzschild Anti-de Sitter
and non-Schwarzschild Anti-de Sitter black holes increases
as r0 increases.

Again, the Reissner-Nordström Anti-de Sitter metric is
not a solution of the field equations, while the group-I
solutions reduce to Schwarzschild Anti-de Sitter black hole
as Q0 → 0. Surprisingly, for this theory of gravity, an
“extreme” Anti-de Sitter black-hole solution is possible.

The critical charge QAdS
c of the “extreme” Anti-de Sitter

black hole for group I is determined by

QAdS
c =

r0√
3κ

√
(r2

0|Λ| + 1)(8α|Λ| + 3) . (13)

However, for the group-II solutions, no maximal charge is
found. We show numerical solutions for groups I and II in
fig. 6 and fig. 7, respectively.

In this letter, we investigated (Anti-) de Sitter electri-
cally charged static black-hole solutions of Einstein-Weyl
gravity. Two groups of solutions were found for the theory.
Group I is characterized by an upper limit for the black
hole’s charge corresponding to the extreme (Anti-) de Sit-
ter black hole, while group II does not possess any max-
imal charge. These conclusions are consistent with the
results found in [6,8]. Recently, the quasinormal modes
of non-Schwarzschild solutions have been studied in [11]
and it was shown that the black-hole spacetime is stable.
It is therefore interesting to investigate the quasinormal

modes and stability of the charged static solutions of
Einstein-Weyl theory in (Anti-) de Sitter spacetime. In
particular the latter may have important implications on
the AdS/CFT correspondence since the non-Schwarzschild
AdS black hole could be a new thermal state in CFT.
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