UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO unesp PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS ( ZOOLOGIA) AS ASAS DAS FORMIGAS (HYMENOPTERA: FORMICIDAE): Estudo comparativo e Chaves de identificação das castas aladas STEFANO MARCO CANTONE Dezembro - 2019 UNIVERSIDADE ESTADUAL PAULISTA “JÚLIO DE MESQUITA FILHO” INSTITUTO DE BIOCIÊNCIAS – RIO CLARO unesp Stefano Marco Cantone AS ASAS DAS FORMIGAS (HYMENOPTERA: FORMICIDAE): Estudo comparativo e Chaves de identificação das castas aladas Orientador: Prof. Dr. Claudio José Von Zuben Rio Claro, 2019 Tese apresentada ao Instituto de Biociências do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Doutor em Ciências Biológicas (Zoologia). Cantone, Stefano Marco C232a As asas das formigas (Hymenoptera: Formicidae): estudo comparativo e chaves de identificação das castas aladas / Stefano Marco Cantone. -- Rio Claro, 2019 604 p. : il., tabs., fotos. Tese (doutorado) - Universidade Estadual Paulista (Unesp), Instituto de Biociências, Rio Claro Orientador: Claudio José Von Zuben 1. Asas formigas. 2. Padrões evolutivos. 3. Sistemática de Formicidae. 4. Hymenoptera 5. Chave identificação. I. Título. Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca do Instituto de Biociências, Rio Claro. Dados fornecidos pelo autor(a). Essa ficha não pode ser modificada. 1 Dedicatória Para meus pais Vito e AnnaMaria 2 Agradecimento Agradeço o Professor Doutor Claudio José Von Zuben pela orientação, discussões e disponibilidade durante esse processo. Agradeço ao Programa de Pós-graduação em Zoologia do Instituto de Biociências de Rio Claro pela oportunidade. O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Código de Financiamento 001. 3 AS ASAS DAS FORMIGAS (HYMENOPTERA: FORMICIDAE): Estudo comparativo e Chaves de identificação das castas aladas Stefano Marco Cantone SUMÁRIO Resumo.................................................................................................................. 4 Abstract................................................................................................................. 4 Introdução............................................................................................................. 5 Referências………………………………………………………………………………………………………. 6 Capítulo 1: The Hindwings of Ants: A Phylogenetic Analysis…..………………………… 8 Abstract……………………………………………………………………………………………………………. 8 Introduction……………………………………………………………………………………………………… 9 Materials and Methods…………………………………………………………………………………….. 9 Results……………………………………………………………………………………………………………… 10 Discussion………………………………………………………………………………………………………… 18 Conclusion……………………………………………………………………………………………………….. 20 References………………………………………………………………………………………………………. 20 Capítulo 2: Evolutionary patterns in Ants' fore wings (Hymenoptera:Formicidae)…………….. 22 Abstract……………………………………………………………………………………………………………. 22 Introduction……………………………………………………………………………………………………… 22 Materials and Methods…………………………………………………………………………………….. 23 Results……………………………………………………………………………………………………………… 23 Discussion………………………………………………………………………………………………………… 34 Conclusion……………………………………………………………………………………………………….. 38 References………………………………………………………………………………………………………. 40 Anexo 1 Winged Ants, The Male - Dichotomous key to genera of winged ♂♂ ants in the World - Behavioral ecology of mating flight…………………………………………………….. 45 Anexo 2 Winged Ants, The Queen - Dichotomous key to genera of winged ♀♀ ants in the World - The Wings of Ants: morphological and systematic relationships…… 46 Conclusões……………………………………………………………………………………………………… 46 4 Resumo Este estudo fornece uma visão geral do conhecimento atual sobre as asas e sobre algumas características morfológicas da casta alada de formigas do mundo todo. No estudo das asas anteriores e posteriores (Capitulos 1 e 2), è apresentada uma visão geral da distribuição das diferentes morfologias das asas da família Formicidae. Foram observadas 4 difererentes tipologias de asas anteriores com três modalidades de redução das veias e três tipologias diferentes de asas posteriores. Nas asas anteriores das espécies cretáceas de Formicidae possuíam asas de tipologia I e, este tipologia esta presente em quase todas as subfamílias existentes em percentual de gêneros diferentes. Asas anteriores de tipologia I são sempre ausentes nos gêneros das subfamílias Agroecomyrmecinae (espécies fósseis com asas de tipologia I), Apomyrminae, Formicinae, Leptanillinae e Martialinae onde a tipologia I é sempre ausente. Nas subfamílias Ponerinae, Myrmeciinae, Pseudomirmecinae, Ectatomminae e Heteroponerinae, as asas anteriores não apresentam redução significativa (tipologia I> 50%), enquanto nas demais subfamílias o padrão evolutivo mostra uma redução significativa (tipologia I <50%), com uma redução das veias relevante em alguns gêneros das subfamílias Leptanillinae, Proceratiine, Formicinae e Myrmicinae. As asas posteriores das espécies encontradas no Cretáceo apresentam uma tipologia I com ou sem lobo jugal. O lobo jugal representa um caráter plesiomórfico na ordem Hymenoptera. Na família Formicidae o lobo jugal está presente apenas nas asas posteriores de tipologia I e é encontrado em alguns gêneros existentes pertencentes às subfamílias: Ponerinae, Paraponerinae, Myrmeciinae e Ectatomminae. As chaves dicotômicas das castas aladas (Anexos 1 e 2) representam o primeiro estudo taxonômico que analisa e compara as castas aladas da maioria dos gêneros (297 sobre 334) presentes em todos os Continentes, oferecendo uma ferramenta útil na primeira identificação dos indivíduos alados. Palavras-chaves: Asas formigas, Padrões evolutivos, Sistemática de Formicidae, Hymenoptera, Chave identificação. Abstract This study provides an overview of current knowledge about wings and some morphological characteristics of the winged ant variety from around the world. In the study of the anterior and posterior wings (Chapters 1 and 2), an overview of the distribution of the different morphologies of wings of the family Formicidae is presented. Four different types of anterior wings were observed, with three types of vein reduction and three different types of posterior wings. The previous wings of the Cretaceous species of Formicidae had wings of type I and this type is present in almost all existing subfamilies in a percentage of different genera. Previous wings of type I are always absent in the genera of the subfamilies Agroecomyrmecinae (fossil species with wings of type I), Apomyrminae, Formicinae, Leptanillinae and Martialinae where type I is always absent. In the subfamilies Ponerinae, Myrmeciinae, Pseudomirmecinae, Ectatomminae and Heteroponerinae, the anterior wings do not show a significant reduction (typology I> 50%), while in the other subfamilies the evolutionary pattern shows a significant reduction (typology I <50%), with a reduction of relevant veins in some genera of the subfamilies Leptanillinae, Proceratiine, Formicinae and Myrmicinae. The posterior wings of the species found in the Cretaceous have a typology I with or without a jugal lobe. The jugal lobe represents a plesiomorphic character in the order Hymenoptera. In the Formicidae family, the jugal lobe is present only in the posterior wings of type I and is found in 5 some existing genera belonging to the subfamilies: Ponerinae, Paraponerinae, Myrmeciinae and Ectatomminae. The dichotomous keys of the winged castes (Annexes 1 and 2) represent the first taxonomic study that analyzes and compares the winged castes of most genera (297 over 334) present in all the Continents, offering a useful tool in the first identification of the winged individuals. Keywords: Ant wings, Evolutionary patterns, Formicidae systematics, Hymenoptera, Identification key. Introdução As formigas são insetos eussociais que formam colônias compostas por indivíduos com diferentes morfologias e funções. A abundância e o comportamento das formigas em todos os habitats terrestres são muitos conhecidos, já que esses insetos desempenham múltiplas funções ecológicas em todos os níveis tróficos, contribuindo para a aeração e fertilização do solo, dispersando sementes, realizando varias interações interespecíficas trofobióticas e mutualísticas com artrópodes e plantas, predando uma grande variedade de invertebrados e cultivando fungos (Wheeler, 1910; Hölldobler e Wilson, 1990, 2009). As formigas estão presentes em todos os ecossistemas terrestres e são sensíveis às mudanças de habitat, mostrando variações na estrutura da comunidade e, portanto, são úteis como bioindicadoras (Folgarait, 1998; Andersen et al. 2002; Ribas et al. 2012; Xavier et al. 2014). Em uma colônia de formigas, os indivíduos cooperam no cuidado das proles. São encontrados indivíduos estéreis e férteis e há sempre uma sobreposição de pelo menos duas gerações que contribuem para as diversas atividades da colônia. Os indivíduos que formam uma colônia de formigas são especializados morfologicamente e etologicamente, às vezes em maneira extremas, constituindo as castas. Uma colônia de formigas é dividida, na maioria das espécies, em duas castas: 1) fêmeas estéreis: chamadas operárias, isomórficas ou polimórficas, sempre ápteras, que realizam atividades de defesa, construção de ninhos, cuidados da prole e busca de alimentos; 2) castas férteis: representadas por fêmeas férteis e machos. As fêmeas férteis são classificadas em: i) aladas isomórficas ou polimórficas (macro e micro) chamadas Queen ou Gyne; ii) ápteras, isomórficas ou polimórficas, com características morfológicas similares às fêmeas aladas chamadas Ergatogyne; iii) ápteras isomórficas chamadas Gamergate e, iv) ápteras isomórficas com um gaster muito desenvolvido, mostrando uma extrema especialização na produção de ovos, chamadas Dichthadiiform ou Subdichthadiiform. Os machos são sempre alados, exceto em casos muito raros, onde são ápteros e chamados Ergatoid (Hölldobler e Wilson, 2009). As asas nas formigas, duas anteriores e duas posteriores, têm uma importante função de facilitar o encontro entre os sexos no voo nupcial. Após o acasalamento, as fêmeas aladas perdem as asas e os machos morrem. O conhecimento sobre a distância percorrida neste voo ainda é incipiente, mas a perda de asas nas rainhas sugere uma curta distância de dispersão da colônia (Helms, 2018). A função dos voos nupciais é facilitar o encontro dos parceiros sexuais favorecendo o fluxo gênico, tarefa em que os machos são os únicos responsáveis nas espécies com fêmeas ápteras (Hölldobler e Wilson, 1990, 2009). Predominam duas estratégias de voo nupcial: i) os machos são atraídos pelo feromônio produzido pelas fêmeas, comportamento conhecido como síndrome de chamada das fêmeas (female calling syndrome); b) machos e fêmeas se agregam, comportamento conhecido como síndrome de agregação do machos (male aggregation syndrome), (Hölldobler e Wilson, 1990, 2009; Heinze e Kazuki, 1995). Nas regiões temperadas do Hemisfério Norte, o voo nupcial ocorre principalmente nos meses mais quentes, principalmente entre os meses de junho e outubro, 6 mostrando alta sincronia entre populações da mesma espécie (Kannowski 1961; Hölldobler 1976; Gomez e Abril 2012; Cantone 2017, 2018). Em regiões tropicais, o voo nupcial pode ocorrer durante todo o ano ou apenas durante alguns meses, dependendo da espécie (Kusnezov, 1962; Pfeiffer e Linsenmair 1997; Torres et al. 2000; Kaspari et al., 2001; Cantone 2017, 2018). O voo nupcial pode ocorrer em diferentes horas do dia ou da noite e é espécie-específico. Suas características adaptativas incluem: a) estimulação sexual intraespecífica; b) exclusão de outras espécies da atividade copulatória, c) sincronização do voo; d) regulação do grau de dispersão (Wilson, 1957). A periodicidade do voo de acasalamento também está relacionada a variáveis ambientais climáticas (Dunn et al. 2007) e tróficas que influenciam, em muitas espécies, a produção e o comportamento da casta alada (Ruppel e Heinze 1999; Helms e Kaspari 2014, Cantone 2018a). A grande diversidade de espécies de formigas e de seus nichos ecológicos cria dificuldades no monitoramento da diversidade. As formigas ocupam ambientes subterrâneos e arbóreos e as castas operárias, encontradas no chão, representam aproximadamente 50-60% da diversidade real (Agosti et al. 2000). A captura de indivíduos pertencentes à casta alada oferece a possibilidade de registrar a presença de espécies arbóreas e subterrâneas e de outras espécies com colônias constituídas por poucos indivíduos, que são difíceis de coletar. Além disso, a casta alada oferece a possibilidade de registrar a fenologia reprodutiva das espécies. O objetivo inicial do presente estudo foi produzir uma chave dicotômica para facilitar a identificação das castas aladas (♂♂ e ♀♀) no nível de gênero. Este estudo baseia-se na maioria dos gêneros pertencentes a todas as 17 subfamílias atualmente conhecidas no mundo: nos machos alados de 260 gêneros (Cantone 2017, Anexo 1) e nas fêmeas aladas de 244 gêneros (Cantone 2018, Anexo 2). Na formulação das chaves dicotômicas dos gêneros, foram escolhidas algumas características morfológicas das castas aladas, que são encontradas na maioria das descrições publicadas e, em particular, estudando as características morfológicas das asas anterior e posterior, que representam os primeiros caracteres das chaves dicotômicas. Também, para cada gênero estudado, foram fornecidas referências bibliográficas para que seja possível confirmar a identificação taxonômica usando outras características morfológicas. Essa primeira edição, das chaves dicotômicas de identificação das formigas aladas, representa uma ferramenta simples para uma primeira identificação. Posteriormente, um estudo aprofundado foi dedicado à morfologia das asas de formigas, destacando os padrões evolutivos nos níveis de gêneros, subfamílias e clados. No Capítulo 1 (Cantone & Von Zuben 2019), são apresentadas as asas posteriores e no Capítulo 2 (Cantone & Von Zuben), as asas anteriores. Nestes dois estudos, as asas são descritas morfologicamente e classificadas, efetuando análise do ponto de vista sistemático e evolutivo nos gêneros atuais e fósseis. Referências Agosti D., Mayer J. D., Alonso L. E. and Schultz T. R. (2000) Ants: Standard methods for measuring and monitoring biodiversity. Edited Donat Agosti et al.; ISBN 1-56098-858-4; 1-56098- 885-1. Andersen A. N., Hoffmann B. D., Müller W. J., & Gryffiths A. D. (2002) Using ants as bioindicators in land management: simplifying assessment of ant community responses. Journal of Applied Ecology, 39, 8-17. Cantone S. (2017) Winged Ants - The Male. Dichotomous key to genera of winged ♂♂ ants in the World; Behavioral ecology of mating flight. Stefano Cantone editor, Catania, Italy, ISBN: 979122002394-8, pp. 1-318. 7 Cantone S. (2018) Winged Ants -The Queen. Dichotomous key to genera of winged ♀♀ ants in the World; The Wings of Ants: morphological and systematic relationships. Stefano Cantone editor, Catania, Italy, ISBN: 9791220037075, pp. 1-244. Cantone S. (2018a) Winged Ants in the city of São Paulo, Brazil: analysis of the mating flight. International Journal of Entomology Research, Vol. 3, Issue 6: 47-54, ISSN: 2455-4758. Cantone S. and Von Zuben C. J. (2019) The Hindwings of Ants: A Phylogenetic Analysis, Psyche, Article ID7929717. Dunn R. R., Parker C. R., Geraghty M. and Sanders N. J. (2007) Reproductive phenologies in a diverse temperate ant fauna. Ecological Entomology, 32, 135-142. Folgarait P.J. (1998) Ant biodiversity and its relationship to ecosystem functioning: a review. Biodiversity Conservation, v.7, p. 1221-1244. Gomez C. and Abril S. (2012) Nuptial flights of the seed-harvester ant Messor barbarus (Linnaeus, 1767) (Hymenoptera: formicidae) in the Iberian Penisula: synchrony, spatial scale and weather conditions. Myrmecological News, 16: 25-29. Heinze J. and Tsuji Kazuki (1995) Ant Reproductive Strategies. Researches Population Ecology, 37(2), 135-149. Helms, J. A. (2018) “The flight ecology of ants (Hymenoptera: Formicidae)”. Myrmecological News, 26: 19-30. Helms J.A. & Kaspari M. (2014) Found or Fly: Nutrient loading of dispersing ant queen decreases metric of flight ability (Hymenoptera: Formicidae). Myrmecological News 19, 85-91. Hölldobler B. (1976) The behavioral ecology of mating in harvester ants (Hymenoptera: Formicidae: Pogonomyrmex). Behav. Ecol. Sociobiol. I, 405-423. Hölldobler, B., Wilson (2009) The Super Organism. W. W. Norton & Company, New York – London. pp. 522. Hölldobler, B., Wilson, E.O. (1990) The Ants. Cambridge: The Belknap Press of Harvard University Press, 1990, 732p. Hölldobler, B., Wilson (2009) The Super Organism. W. W. Norton & Company, New York – London. pp. 522. Kannowski P. B. (1961) The flight activities of Formicine ants. Estratto dal Volume XII, Atti IV Congresso U.I.E.I.S. – Pavia. Kaspari M., Pickering J., Longino J.T and Windsor D. (2001) The phenology of a Neotropical ant assemblage: evidence for continuous and overlapping reproduction. Behav. Ecol. Sociobiol., 50: 382-390. Kusnezov N. (1962) El vuelo nupcial de las hormigas. Acta Zoologica Lilloana, tomo 18, 385-442. Pfeiffer M. and Linsenmair E. (1997) Reproductive synchronization in the Tropics: the circa- semiannual rhythm in the nuptial flight of the giant ant Camponotus gigas Latreille (Hymenoptera, Formicidae). Ecotropica, 3: 21-32. Ribas C. R., Campos R. B.F., Schmidt F. A. & Solar R. R.C. (2012) Ants as Indicators in Brazil: A review with Suggestions to Improve the Use of Ants in Environmental Monitoring Programs. Psyche, doi: 10.1155/2012/636749. Rüppell O. & Heinze J. (1999) Alternative reproductive tactics: the case of size polymorphism in winged ant queens. Insectes Sociaux 46: 6-17. Torres J. A., Snelling R. R. and Canals M. (2000) Seasonal and Nocturnal Periodicities in Ant Nuptial Flights in the Tropics (Hymenoptera: Formicidae). Sociobiology, Vol. 37, n° 3B. Wheeler W. M. (1910) Ants, their structure, development and behavior. Columbia University Biological Series IX. pp 273, 284, fig. 155. Wilson E. O. (1957) The organization of nuptial flight of the ant Pheidole sitarches Weeler. Psyche, 64 (2): 46-50. Xavier A., Xim C. & Javier R. (2014) Ant functional responses along environmental gradients. Journal of Animal Ecology, doi.org/10.1111/1365-2656.12227 https://doi.org/10.1111/1365-2656.12227 8 Capítulo 1 Psyche Volume 2019, Article ID 7929717, 11 pages https://doi.org/10.1155/2019/7929717 Research Article The Hindwings of Ants: A Phylogenetic Analysis Stefano Cantone and Claudio José Von Zuben Department of Zoology, São Paulo State University, Rio Claro, SP, Brazil Correspondence should be addressed to Stefano Cantone; cantonestefano@gmail.com Received 11 February 2019; Accepted 27 March 2019; Published 14 April Academic Editor: Jan Klimaszewski 2019 Copyright © 2019 Stefano Cantone and Claudio José Von Zuben. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Abstract In this study, we compare and analyze different ant taxa hindwing morphologies with phylogenetic hypotheses of the Family Formicidae (Hymenoptera). The hindwings are classified in three Typologies based on progressive veins reduction. This analysis follows a revision of the hindwing morphology in 291 extant and eight fossil genera. The distribution of different Typologies was analyzed in the two Clades: Formicoid and Poneroid. The results show a different distribution of Typologies, with a higher genera percentage of hindwings of Typology I in the Clade Poneroid. A further analysis, based on genetic affinities, was performed by dividing the Clades into Subclades, showing a constant presence of hindwings of Typology I in almost all the Subclades, albeit with a different percentage. The presence of hindwings of Typology I (hypothesized as more ancestral) in the Subclades, indicates the genera that could be morphologically more similar to their ancestral ones. This study represents the first revision of the ants' hindwings, showing an overview of the distribution of different Typologies. https://doi.org/10.1155/2019/7929717 mailto:cantonestefano@gmail.com https://creativecommons.org/licenses/by/4.0/ https://creativecommons.org/licenses/by/4.0/ 9 Introduction The wings in ants are present only in the winged reproductive caste and have the important function of promoting the meeting between two sexes for mating. Wings are used exclusively for the nuptial flight and after mating winged Queens lose these structures and the winged male dies. The knowledge about the distance traveled in this flight is unknown, but the loss of wings in the queens suggests a short distance of dispersion [15, 27]. Wing dimensions are directly proportional to body size, but vein structure has no relation to body size. In fact, wings with "complete" vein morphology are described in small body species and wings with reduced vein morphology in large ants [7, 8, 23]. Thus, the evolutionary pathway of the wing vein structure is independent of body size, representing an important character in phylogenetic studies. In addition, in some genera described vein structure varies between species and in some species in the forewing between males and queens, showing a venational evolution in progress [6, 7, 8, 12, 21]. The stability of wing vein structure is also confirmed by the constancy and permanence for millions of years as described in fossils from the Cretaceous and Eocene ants. In particular, in the Eocene epoch, most of the extinct species described have been classified in extant genera or subfamilies, and wing morphology is similar or equal, representing an important characteristic in the identification of fossil winged forms and widely used by various scientists. In comparative studies on ant wings, more attention was given to the forewings, assuming an evolutionary history based on wing morphology [6, 7, 8, 9, 12, 23, 24]. The different morphology of the wing veins is an important characteristic in the evolutionary history of the genera within the Subfamilies, Tribe or Group-genera identified by phylogenetic hypotheses based on molecular genetic analysis and sophisticated statistical analysis. The first brief and incomplete analysis of the hindwings of ants was made by Kusnezov [17], who shows the different morphologies present in some genera. Recently, a broader review was made by Cantone [7, 8], which classifies ant hindwings in three Typologies based on progressive wing vein reduction. The objective of this study is to analyze and compare the hindwing vein structure with phylogenetic hypotheses, in the most ant genera, in order to present a distribution overview of the different hindwing morphologies in the family Formicidae. Materials and Methods Hindwings morphology was analyzed in 299 genera, of which 291 were extant and eight fossils. This analysis is based on the study and revision of extant genera of winged males in 260 genera [7] and winged Queens in 244 genera [8]. Hindwings were classified into three Typologies, based on progressive wing vein reduction. The terminology of hindwings venation follows Yoshimura and Fisher [26] and Serna et al. [25]. Fossil specimen hindwings were examined from deposits or ambers in Cretaceous and Eocene epochs, has been based on genera belonging to the extinct Subfamilies Sphecomyrminae, Formiciinae and on some extinct genera currently included in Incertae Sedis. The study and description of hindwing morphology were based on the study of photos available on the AntWeb website and personal Cantone collection of Winged Ants, as well as 10 being based on the review of scientific articles related to species descriptions. A Leica MZ8 stereoscope was utilized and hindwings photos were taken in order to show some examples of different Typologies. The phylogenetic analysis based on the comparation between hindwing typologies and phylogenetic hypotheses based on molecular genetic analysis that divides the family Formicidae into two Clade and into groups of genera [5, 19, 20]. Results Hindwings Typologies classification Hindwings of Typology I (Figure 1) In this Typology, hindwings have a more complete venation within the Family Formicidae. Basal and subbasal cells and media 2 vein are always present. They differ in the presence/absence of the jugal lobe. Alternative morphology with media 1+2 vein, that is, for the first time, described and denominated as “azteca type”. The hindwings of Typology I, are present in some genera of Subfamilies Amblyoponinae, Dolichoderinae, Dorylinae, Ectatomminae, Heteroponerinae, Myrmeciinae, Ponerinae, Paraponerinae. In the Subfamilies Myrmicinae and Pseudomyrmicinae only some species present hindwings of Typology I: Solenopsis bicolor Emery, described with hindwings of Typology I “azteca type” [17, 1], representing a rare and unique case in the subfamily Myrmicinae; Pseudomyrmex gracilis, described with hindwings of Typology I without jugal lobe by Kusnezov [17], and some species of the genus Tetraponera representing rare case in the subfamily Pseudomyrmecinae (see Figure 1). The jugal lobe is present in some genera of the Subfamilies Ponerinae, Ectatomminae, Mirmeciinae and Paraponerinae. The hindwings of Typology I with jugal lobe are described in 38 genera, and the hindwings of Typology I without jugal lobe are described in 43 genera belonging to 10 Subfamilies (see Table 2). In seven genera of the Subfamily Ponerinae the hindwings are not described, therefore, assuming to be of Typology I, they will be analyzed both in genera with or without jugal lobe (see Notes Table 2), [7, 8]. Hindwings of Typology II (Figure 2) In this Typology II, the hindwings differ from Typology I due to the absence of the media 2 vein and the absence of jugal lobe. They are present in the genera of Subfamilies Amblyoponinae, Aneuretinae, Agroecomyrmecinae, Dolichoderinae, Dorylinae, Ectatomminae, Heteroponerinae, Formicinae, Myrmicinae, Ponerinae, Proceratiinae and Pseudomyrmecinae. The hindwings of Typology II are described in 177 genera [7, 8]. Hindwings of Typology III (Figure 3) In this Typology, there is a drastic reduction of veins with a reduced or absent anal vein and the subbasal cell absent. The subfamily Leptanillinae exhibits an extreme case of 11 structural reduction, with the basal and subbasal cells absent. The hindwings of Typology III are present in the genera of Subfamilies Amblyoponinae, Apomirminae, Dolichoderinae, Dorylinae, Leptanillinae, Martialinae, Myrmicinae and Proceratiinae. The hindwings of Typology III are described in 41 genera [7, 8]. Hindwings of extinct ants in the Cretaceous and Eocene The oldest fossil ants were found in ambers or sediments of the Late Cretaceous, between 110-75 million years ago (Ma) in North America (Canadian amber ca. 78-79 Ma; New Jersey amber, ca. 94-90 Ma); in Botswana (Orapa, Tutorian deposit ca. 90 Ma); in Russia (Siberia ca. 85 Ma); in France (Charentes, ca. 100 Ma); and in Myanmar (Burmese amber, ca. 99 Ma). The species in which the hindwings are described were classified in the extinct Subfamily Sphecomyrminae or in some genera classified as Incertae Sedis in the Cretaceous. Hindwing are known from 10 species, of seven genera of Cretaceous ants. In nine species the hindwings are of Typology I and the anal area is not visible, not showing the presence/absence of the jugal lobe; the only case described by Perfilieva [22, 23] is Armania robusta hindwing with jugal lobe. Only a male belonging to the genus Camelomecia has the hindwings of Typology II, but the identification is uncertain [3]. Figure 4 show the wings of the fossil species of the Cretaceous divided by geographical region; the drawings of the wings described have been modified in the dimensions by the original descriptions. In the Eocene, the greatest number of ant fossils were found, all of them classified as belonging to current Subfamilies and, in many species, to extant genera. In these cases, all the species described through the winged caste have wings comparable by morphology to extant genera. A single case is the extinct genus Titanomyrma (Formicium) belonging to the Subfamily Formiciinae with fossils dating back to the early-middle Eocene (48-41 Ma). The hindwings of the genus Titanomyrma can be classified in Typology I without jugal lobe. These fossil species have been encountered in Germany (Eckfeld/Messel shale) and in USA (Green River Formation) [2, 16]. In Figure 5 the hindwings of genus Titanomyrma (Formicium), as described by Lutz (16), with modified drawings in the dimensions. 12 13 14 15 Phylogenetic analysis of the ants’ hindwings According to the phylogenetic hypothesis, based on molecular genetic analysis, made by Brady et al. [5], Morreau et al. [19] and Morreau and Bell [20], the Family Formicidae is divided into two Clades: Poneroid and Formicoid. The Subfamilies Leptanillinae and Martialinae present an independent evolutionary path. The Clade Poneroid is divided into three phylogenetically distinct groups: the first group includes the genera of the Subfamilies Ponerinae, Paraponerinae and Agroecomyrmecinae, that in this analysis we called Subclade Poneroid 1; the second group includes the genera of the Subfamily Amblyoponinae, that we called Subclade Poneroid 2; the third group includes the genera of the Subfamily Proceratiinae, that we called Subclade Poneroid 3. Thus, in this analysis the Poneroid Clade is divided into three phylogenetically distinct Subclades. The Clade Formicoid, in the hypothesis of Brady et al. [5], Morreau et al. [19] Morreau and Bell [20], is divided into three phylogenetically separate groups: the first group comprises the genera of the Subfamily Dorylinae, that in this analysis we called Subclade Formicoid 1; the second group includes the genera of the Subfamilies Myrmeciinae, Pseudomyrmecine, Dolichoderinae and Apomyrminae, which we called Subclade Formicoid 2; and the third group includes the genera of Subfamily Ectatomminae, Heteroponerinae, Myrmicinae and Formicinae, which we called Subclade Formicoid 3. So in this analysis also the Clade Formicoid is divided into three phylogenetically distinct Subclades. Table 1 shows the number of genera in each Clade and Subclade with the corresponding hindwing Typologies. Figure 6 shows the percentages related to the genera, for each Typology, in the two Clades. Figure 7 represents, with graphs, the percentages related to genera for each Typology in the six Subclades. 16 17 18 Discussion The hindwings of the species encountered in the Cretaceous (100-75 Ma) present a Typology I with or without jugal lobe. From these few data, it can be said that the hindwings of Typology I represent the most ancestral morphology [6, 17]. The jugal lobe represents a plesiomorphic character in the Order Hymenoptera. Unfortunately, in the hindwings of the Cretaceous, the proximal part of the anal area is not described because it is not visible or deteriorated, therefore the presence/absence of the jugal lobe remains unknown. The jugal lobe is present only in the hindwings of Typology I and is found in some extant genera belonging to the Subfamilies: Ponerinae, Paraponerinae, Myrmeciinae and Ectatomminae [4, 7, 8]. Both in the Subfamily Formicinae and Myrmicinae, individuals were found in fossil deposits dating back to the Cretaceous, respectively the genus Kyromyrma [14] and Afromyrma [11] but, unfortunately, the wings are not known. Other specimens encountered in Cretaceous deposits have been included in the current Subfamilies, but hindwings are still unknown: Cananeuretus occidentalis (Subfamily Aneuretinae; [13]); Chronomyrmex medicinehatensis and Eotapinoma macalpini (Subfamily Dolichoderine [10, 18]); Canapone dentata (Subfamily Ectatomminae [10]); Afropone oculata, A. orapa (Subfamily Ponerinae [11]). In the two Clades, Poneroid and Formicoid, there is a clear difference in the results, with a much higher percentage of hindwings with Typology I in the Clade Poneroid (78%) compared to the Clade Formicoid (13%) (Figure 6). By analyzing the hindwings in each Subclade, it is noted that Typology I shows very high occurrences in the Subclades Poneroid 1 (92%), Formicoid 1 (69%) and Poneroid 2 (39%) and minor in the Subclades Formicoid 2 (18%) and Formicoid 3 (4%) (Figure 7). In addition, the hindwings of Typology I with jugal lobe are only present in the Subclades: Poneroid 1 (65%), Formicoid 2 (5%) and Formicoid 3 (1%). In the Subclade Formicoid 3, the entire Subfamily Formicinae presents only hindwings of Typology II and the Subfamily Myrmicinae only hindwings of Typology II and Typology III (with the unique exception known in the species Solenopsis bicolor with hindwing “azteca type”). The hypothesis that a reduction in the structure of the hindwing veins occurred in the course of evolution, assumes that from hindwings of Typology I, with/without jugal lobe, are subsequently evolved the other Typologies. This could be confirmed of the presence of genera with hindwings of Typology I in all most representative Subclade (see Table 1). The genera, for each Subclade, which have hindwings of Typology I are listed in Table 2 with relative notes. Only in the Subclades Poneroid 3 (Subfamily Proceratiinae), which is represented by just three genera, are not known hindwings of Typology I. 19 20 Conclusion This study represents the first hindwings revision of the Family Formicidae, showing an overview of the different distribution of Typologies. In the future, a more in-depth study at the level of Subfamily and Tribe would give a more comprehensive view. In fact, within each Typology we can identify various differences in the morphology of the veins, such as the presence/absence of the anal 2 vein or radial 1 vein [8]. Thus, these data could be useful with comparative analyzes between morphological, behavioral and molecular genetic characteristics, in order to improve and develop new phylogenetic hypotheses for the Subfamily, Tribe or Group-genera level. Conflicts of Interest The authors declare that they have no conflicts of interest. Data Availability statement The data supporting this taxonomic review are from previously reported studies and datasets, which have been cited and available from the corresponding author upon request. Funding Statement This research received support from the development agency Capes and CNPq (Brazil). References [1] AntWeb (2018) Photos CASENT0904619 Solenopsis bicolor Emery; owned by Museo di Scienze Naturali di Genova, Italy; syntype Carebarella bicolor punctatorugosa ♀. www.antweb.org. [2] Archibald S. B., Johnson K. R., Mathewes R. W. and Greenwood D. R. (2011) Intercontinental dispersal of giant thermophilic ants across the Artic during early Eocene hyperthermals. Proc. R. Soc. B 278, 3679-3686. [3] Barden P. and Grimaldi D. A. (2016) Adaptative Radiation in Socially Advanced Stem- Group Ants from the Cretaceous. Current Biology 26, 515-521. [4] Boudinot B. E. (2015) Contributions to the knowledge of Formicidae (Hymenoptera, Aculeata): a new diagnosis of the family, the first global male-based key to subfamilies, and a treatment of early branching lineages. European Journal of Taxonomy 120: 1-62. [5] Brady S. G., Schultz T. R., Fisher B. and Ward P. S. (2006) Evaluating alternative hypotheses for the early evolution and diversification of ants. PNAS 103: 18172-18177. [6] Brown W. L. and Nutting W. L. (1949) Wings venation and the phylogeny of the Formicidae (Hymenoptera). American Entomology Society, Vol. 75, n° 3-4, pp. 113-132. [7] Cantone S. (2017) Winged Ants - The Male. Dichotomous key to genera of winged ♂♂ ants in the World; Behavioral ecology of mating flight. Stefano Cantone editor, Catania, Italy, ISBN: 979122002394-8, pp. 1-318. [8] Cantone S. (2018) Winged Ants -The Queen. Dichotomous key to genera of winged ♀♀ ants in the World; The Wings of Ants: morphological and systematic relationships. Stefano Cantone editor, Catania, Italy, ISBN: 9791220037075, pp. 1-244. [9] Delange-Darchen B. (1973) Evolution de l’aile chez les fourmis Crematogaster (Myrmicinae) d’Afrique. Insectes Sociaux, Vol. 20, N° 3. http://www.antweb.org/ 21 [10] Dlussky G. M. (1999) New ants (Hymenoptera, Formicidae) from Canadian amber. Paleontological Journal 4, 409-412. [11] Dlussky G. M., Brothers D. J. and Rasnitsyn A. (2004) The first Late Cretaceous ants (Hymenoptera: Formicidae) from southern Africa, with comments on the origin of the Myrmicinae. Insect Syst. Evol. 35: 1-13. [12] Emery C. (1913) La nervulation de l’aile anterieure des Formicides. Revue Suisse de Zoologie, Vol. 21, n° 15. [13] Engel M. S. and Grimaldi D. A. (2005) Primitive new ants in Cretaceous Amber from Myanmar, New Jersey, and Canada (Hymenoptera: Formicidae). Novitates American Museum, N° 3485, 23pp. [14] Grimaldi D. and Agosti D. (2000) A formicine in New Jersey Cretaceous amber (Hymenoptera: Formicidae) and early evolution of the ants. PNAS, Vol. 97, n° 25. [15] Hölldobler, B., Wilson, E.O. (1990) The Ants. Cambridge: The Belknap Press of Harvard University Press, 1990, 732p. [16] Lutz H. (1986) Eine neue Unterfamilie der Formicidae ( Insecta: Hymenoptera) aus dem mittel-eozanen Olschiefer der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen). Senckenbergiana lethaea, 67, ¼, 177-218. [17] Kusnezov N. (1962) El ala posterior de las hormigas. Acta Zoologica Lilloana, tomo XVIII, pags. 367-378. [18] McKellar R. C., Glasier J. R. N. and Engel M. S. (2013) New ants (Hymenoptera: Formicidae: Dolichoderinae) from Canadian Late Cretaceous amber. Bulletin of Geosciences, Vol. 88, 3. [19] Morreau C. S., Bell C. D., Vila R., Archibald S. B., Pierce N. E. (2006) Phylogeny of the Ants: Diversification in the Age of Angiosperms. Science, Vol. 312, pp. 101-103. [20] Morreau C. S. and Bell C. D. (2013) Testing the Museum versus cradle Troplical biological diversity hypothesis: phylogeny, diversification, and ancestral biogeographic range evolution of the ants. Evolution 67-8: 2240-2257. [21] Perfilieva K. S. (2000) Wing venation anomalies in sexual individuals of ants (Hymenoptera, Formicidae) with different strategies of mating behavior. Entomological Review, Vol. 80, n° 9, pp. 1181-1188. [22] Perfilieva K. S. (2002) Wing Venation in Army ants (Hymenoptera, Formicidae) and its importance for phylogeny. Zoologicheskii Zhurnal 81: 1239-1250. [23] Perfilieva K. S. (2010) Trend in Evolution of Ant Wing Venation (Hymenoptera, Formicidae). Entomological Review, vol. 90, n° 7. [24] Ogata K. (1991) A generic synopsis of the Poneroid complex of the family Formicidae in Japan (Hymenoptera). Part II. Subfamily Myrmicinae. Bull. Inst. Agr., Kyushu Univ. 14: 61- 149. [25] Serna F., Bolton B. and MacKay W. (2011) Pn the morphology of Procryptocerus (Hymenoptera: Formicidae). Some comments and corrigenda. Zootaxa 2923: 67-68. 26] Yoshimura M. and Fisher B. (2011) A revision of male of the Malagasy region (Hymenoptera: Formicidae): Key to genera of the subfamily Dolichoderinae. Zootaxa 2794: 1-34. [27] Wheeler W. M. (1910) Ants - Their structure, development and behavior. Columbia University Biological Series IX. 22 Capítulo 2 Evolutionary patterns in Ants' forewings (Hymenoptera: Formicidae) Stefano Cantone and Claudio José Von Zuben Department of Zoology, São Paulo State University, Rio Claro, SP, Brazil Correspondence should be a addressed to Stefano Cantone: cantonestefano@gmail.com Key words: ant wings, evolutionary patterns, winged ants, venation reduction modes Abstract This study analyzes the forewing venations in the family Formicidae (Hymenoptera). Forewing venations has been studied in most extant genera and in Cretaceous and some Eocene fossil species. These have been classified in four Types and the venation reduction can occur with three Modes. The distribution of the different types and venation reduction modes is examined at different taxonomic levels, based on recent phylogenetic hypotheses. These analyses show that, in millions of years of evolutionary history, a forewing venation reduction has been favored, but with different evolutionary patterns among taxa. The two clades and relative six subclades, differ in the venation reduction patterns. An analysis at the subfamily level shows that in some subfamilies the venation reduction patterns is insignificant, while in others is considerable, furthermore the venation reduction modes highlight different evolutionary patterns between the subfamilies and genera. This study of forewings in ants provides additional information regarding the evolutionary history of the family Formicidae and represents a contribution to future phylogenetic interpretations. Introduction Wings in ants are present only in the fertile caste, queens and males, and have an important function to facilitate the meeting between the sexes in the nuptial flight. After mating, queens lose their wings and males die [1, 2]. Comparative studies on the ants’ forewings have been published by various authors, describing the variation in patterns of wing venation [3, 4, 5, 6, 7, 8, 9, 10, 11]. The fore wing dimensions and even the shape can be related to body size, but the venation patterns have not been shows to be related to body size. In fact, in large ants, such as the winged of the genera Atta and Camponotus, the forewings venation is strongly reduced, whereas in some small ants, as for example in the males of Leptomyrmex burwelli [12] and in the genus Ponera [13], the forewings have “complete” venation. However, in some species belonging to the same genus, different venation patterns can be observed, such as within the genera Aphaenogaster and Crematogaster [7, 14]. In some species differences can occur between the winged queen and male, such as in the genera Linepithema and Dorymyrmex where, a greater degree of venation reduction is observed in males [15, 16]. Furthermore, in some species different venation patterns have been described between individuals of the same sex and species, as for example in the genus Lasius [17], and anomalous veins have been observed in some specimens [16, 18]. In all these cases we could say mailto:cantonestefano@gmail.com 23 that it is present a venational evolution in progress [4, 5]. Most genera have highly conserved patterns of fore wing venation, which is confirmed by the wing descriptions in fossil ants from Cretaceous and Eocene. All extinct species of the Eocene, except those belonging to the subfamily Formiciinae, have been classified in extant genera or subfamilies and have a similar or equal forewing venation, showing how the fore wings are undoubtedly important for identification and also for phylogenetic analysis. This study analyzes the forewing venations and the venation reduction modes in the family Formicidae, examining the evolutionary patterns that would be involved. Material and methods This study of the ants’ forewings is based on 291 extant and 10 fossil genera, with a study of the winged males in 260 genera [15] and winged queens in 244 genera [16]. As well, available photos on the Antweb site and winged specimens from the Cantone personal collection were studied. The different forewing venations are divided into four types, based on a progressive venation reduction with a consequent reduction of cells number. The terminology, of the veins and cells, follows Emery [4], Brown and Nutting [5], Hölldobler and Wilson [19], Dlussky et al. [20], Perfilieva [10, 11], and Antropov et al. [21]. Furthermore, the venation reduction mode has been analyzed following the same criterion used by other authors [8, 10], but with some distinctions, describing three different venation reduction modes. The phylogenetic analysis used for mapping the distribution of the fore wing types and venation reduction modes, is based on Brady et al. [22], Morreau et al. [23] and Ward et al. [24]. Our analysis is carried on the main poneroid and formicoid clades and their subset subfamily-level group (subclade). Results Classification of the forewing Types The forewings are classified into four Types, considering the presence/absence of some cells formed by the meeting of veins and cross-veins. Type I: We regard this as being “complete” venation, with two Submarginal cells, Discoidal cell and Marginal cell always present (Fig. 1). In some genera, the Submarginal cells can be partially separated due to the reduction of the 2+3Rs vein, such as in the genera Myrmica and Aenictogiton (Fig. 1H). In the winged queens, fore wings of Type I were observed in 81 genera, belonging to 12 subfamilies, and in the winged males of 73 genera, belonging to 12 subfamilies (Fig. 11). The 1r-rs cross-vein is a feature of some Cretaceous fossil species (see below, Fig. 5). In extant taxa, it is rarely present and occurs in reduced form in some species: Euponera sikorae ♀ [25], Platythyrea sp., Myrmecia sp., Rhytidoponera sp., Cheliomyrmex nortoni [5, 25], Pachycondyla striata (Fig. 1B), Aphaenogaster rhaphidiiceps ♀ [26], Messor sp. [25], Ectatomma planidens [27]. Type II: One Submarginal cell, Discoidal cell and Marginal cell (Fig. 2). In the winged queens the forewing of Type II was recorded in 109 genera, belonging to 11 subfamilies and in 116 winged male genera, belonging to 11 subfamilies (Fig. 11), [15, 16]. The venation pattern differs, among genera and in some species belonging to the same genus, for venation reduction modes. The 24 venation reduction can occur with three modes, which are described later, with the explanation of the dual terminology: 2Rs+M/3M and 3+4M/4M, (Fig. 2A). Type III: One Submarginal cell, no Discoidal cell and Marginal cell (Fig. 3). In the winged queens this type was recorded in 96 genera, belonging to six subfamilies and, in 97 winged males genera, belonging to seven subfamilies (Fig. 11), [15, 16]. In some species the 2A or 1Rs veins are absent (Fig. 3F-N). The venation reduction can occur with three modes, which are described later explaining the dual terminology: 1+2Rs+M/3M, 3+4M/4M (Fig.3A). Type IV: No Submarginal cells and no Discoidal cells (Fig. 4). In this latter type there is a drastic venation reduction. In the subfamily Leptanillinae there is an extreme veins reduction with just one vein (Fig. 4A), [28, 29, 30, 31, 32]. In the winged queens the forewings of Type IV were recorded in seven genera, belonging to three subfamilies and, in 22 winged males genera, belonging to six subfamilies (Fig. 11), [15, 16]. 25 Fig. 1: Forewings of Type I. Cells: Basal, Subbasal, Submarginal, Marginal, Discoidal and Pterostigma; Veins: A: Anal; C: Costa; Cu: Cubital; M: Media; Rs: Radial sector; R: Radius. Cross-veins: cu-a: cubitus-anal; m-cu: media-cubitus; rs-m: radial sector-media; r-rs: radial-radial sector. A: Neivamyrmex ♂ sp.; B: Pachycondyla striata ♂; C: Anochetus ♂ sp. 62; D: Dolichoderus lamellosus ♀; E: Eciton quadriglume; F: Ectatomma ♂ sp. 395; G: Dolichoderus lamellosus ♂; H: Gnamptogenys ♂ sp. 336; L: Leptogenys ♂ sp.; M: Linepithema fuscum ♂; N: Hypoponera ♀ sp. 146; O: Paraponera clavata ♂; P: Pheidole ♂ sp. 199; 150; Q: Odontomachus ♂ sp. R: Acanthostichus ♂ sp. 381; S: Acanthoponera ♂ sp. 405; T: Pseudomyrmex gracilis ♂. The forewing dimensions, not comparable. Photos: by Cantone collection. 26 Fig. 2: Forewings of Type II. Cells: Basal, Subbasal, Submarginal, Marginal, Discoidal and Pterostigma. Veins: A: Anal; C: Costa; Cu: Cubital; M: Media; Rs: Radial sector; R: Radius. Cross-veins: cu-a: cubitus-anal; m-cu: media-cubitus; rs-m: radial sector-media; r-rs: radial- radial sector. A: Azteca instabilis ♀; B: Procryptocerus ♂ sp. 460; C: Linepithema humile ♂; D: Proceratium ♂ sp.; E: Typhlomyrmex ♀ sp. 155; F: Megalomyrmex ♂ sp. 280; G: Crematogaster ♀ sp. 4; H: Gnamptogenys ♂ sp. 32; I: Formica rufa ♀; L: Tranopelta gilva ♂; M: Solenopsis ♀ sp. 455. The forewing dimensions, not comparable. Photos: by personal Cantone collection. 27 Fig. 3: Forewings of Type III. Cells: Basal, Subbasal, Submarginal, Marginal and Pterostigma. Veins: A: Anal; C: Costa; Cu: Cubital; M: Media; Rs: Radial sector; R: Radius. Cross-veins: cu-a: cubitus-anal; rs-m: radial sector-media; r-rs: radial-radial sector. A: Acromyrmex sp. ♀; B: Dorymyrmex pyramycus ♀; C: Nylanderya sp. 8 ♀; D: Camponotus sp. 42 ♀; E: Myrmelachista sp. 18 ♀; F: Atta sexdens ♂; G: Brachymyrmex sp. 41 ♀; H: Wasmannia sp. 99 ♂; I: Cyphomyrmex sp. 3 ♂; L: Proceratium silaceum ♀ and M: Proceratium catio ♀ by Baroni Urbani and De Andrade [33]; N: Apterostigma sp. ♂. ♀: queen; ♂: male. The forewing dimensions, not comparable. Photos: by personal Cantone collection. Fig. 4: Forewings of Type IV. Cells: Basal, Subbasal, Marginal and Pterostigma. Veins: A: Anal; C: Costa; Cu: Cubital; M: Media; Rs: Radial sector; R: Radius. Cross- veins: cu-a: cubitus-anal; r-rs: radial-radial sector. A: Leptanilla africana ♂ by Baroni Urbani [30]; B: Dorymyrmex pyramicus ♂. The forewing dimensions, not comparable. Photos: by personal Cantone collection. 28 Forewings of the Cretaceous ants and subfamily Formiciinae The oldest fossil ants date back to Late Cretaceous. Figure 5 shows the fore wings of Cretaceous species which have been entirely described. These species have been classified in the extinct subfamily Sphecomyrminae, in extinct Incertae sedis and in the subfamily Ponerinae. All the forewings are described with venation of Type I, except a male of the genus Camelomecia, of doubtful identification, which presents forewing of Type II (Fig. 5L). Some features can be highlighted: i) complete or reduced 1r-rs cross-vein in the genera Armania, Baikuris, Gerontoformica and Orapia belonging to the subfamily Sphecomyrminae, and in the genus Camelomecia (Fig. 5A-B-D-E-F-M-N-P); ii) the cu-a cross-vein is distal to 1M vein in the genus Orapia (Fig. 5F); iii) the Marginal cell is always closed; iv) based on the fore wing venation, the genus Camelomecia probably does not belong to the family Formicidae. In the Eocene epoch has been found a large number of species, most classified in the current subfamilies and in extant genera. These species have fore wing venations similar to the extant species. An exception is represented by the genera Tytanomyrma and Formicium, belonging to the extinct subfamily Formiciinae, with fossils dating back to the middle Eocene. In these genera the forewings have a venation of Type I (Fig. 6), for which a morphometric study was done by Katzke et al. [34]. The forewings of Formiciinae species have very long Marginal cell appendiculate and very small Submarginal cells. Some features were highlighted: i) a strong reduction of the 1Rs+M vein, which in T. gigantea is absent, but with the presence of the 2Rs+M vein (Fig. 6B); ii) a strong reduction of 2+3Rs vein in T. gigantea; iii) an extreme reduction of the rs-m cross-vein in T. gigantea and F. berryi (Fig. 6B-D); iv) the cu-a cross-vein is distal from 1M vein in T. gigantea (Fig 6B); v) the 1r- rs cross-vein is present in F. mirabile (Fig. 6E). Fig. 5: Forewings of the Cretaceous ants: A: Armania robusta by Perfilieva [10]; B: Baikuris mandibularis, C: Baikuris casei by Grimaldi et al. [35]; D: Baikuris maximus by Perrichot [36]; E: Orapia rayneri, F: Orapia minor by Dlussky et al. [20]; G: Sphecomyrma ? by Grimaldi et al. [35]; H: Afropone oculata by Dlussky et al. [20]; I: Camelomecia janovitzi, L: Camelomecia sp.?, M: Camelomecia sp., N: Gerontoformica sp. by Barden and Grimaldi [37]; O: Haidomyrmodes mammuthus by Perrichot et al. [38]; P: Baikuris mirabilis by Perfilieva [39]. Modified drawing sizes and not comparable. 29 Venation reduction mode in the forewings The forewing venation reduction was initially studied by Emery [4] identifying two venation patterns: “solenopsis type” (Figs. 2A, 3A) and “formica type” (Figs. 2B, 3B). Subsequently, Brown and Nutting [5] describes the veins and cross-veins that determine the venation reduction, indicating the reduction and loss of the rs-m and m-cu cross-veins and, 2M, 3M, 2+3Rs veins. A first classification of the fore wing venation reduction has been described by Kusnezov [6] but, other in- depth studies have been published by Ogata [8] and Perfilieva [10, 11], which classified the venation reduction in four or five reduction class. In this study, using the same criteria of the aforementioned authors but, with some distinctions the forewing venation reduction was described, starting from the loss of 1r-rs cross-vein, which is present in Cretaceous ants and very rare in extant species and, from subsequent reduction and loss of the 2M vein (Fig. 7). The loss of the 2M vein can generate the 2Rs+M vein, a consequence of the 2+3Rs and 3M veins shrinking (Figs. 1D-G-P-T; 7A1). Furthermore, the shrinking of 4Rs vein determines an alignment of the 2r-rs and rs-m cross-vein. With the aim of carrying out a phylogenetic analysis, the fore wings of Type IV were excluded and the vein reduction were described and classified in three modes: Mode A, Mode B and Mode C: Mode A: with this modality, the venation is reduced from Type I to Type II with loss of the rs-m cross-vein, observing a long 3+4M vein (Figs. 2B; 7A2), moreover, the 2Rs+M vein lengthens, with the shrinking of the 2+3Rs vein (Figs. 2E-G-H-L-M; 7A1-A3). The further reduction in Type III occur with loss of the m-cu cross-vein (Figs. 3B-E-N; 7A4). Mode B: with this modality, the venation reduction from Type I to Type II occurs with loss of the 2+3Rs vein, by forming a large Submarginal 1+2 cell. The 4Rs vein tends to shrink with consequent alignment between the 2r-rs and rs-m cross-veins (Figs. 2D; 7B-B2). In some genera, particularly in the subfamily Dorylinae, the rs-m cross-vein is absent, presenting a Submarginal cell open (Fig. 7B1- B4). The further venation reduction in Type III occurs with loss of the m-cu cross-vein, observing a long 1Rs+M-3M vein (Fig. 3M; Fig. 7B3). Mode C: with this venation reduction mode, a venation structure is formed, called "formica type" by Emery [4], (Figs. 2A-C-F-I; 3A-C-D-F-G-H-I-L). This venation structure can be reached following three different vein reduction modes (Fig. 7C): i) with a strong shrinkage and loss of the 2+3Rs, 3M, 4Rs veins and rs-m cross-vein (Fig. 1D-G, Fig. 7C-C1), forming a fore wing of Type II Fig. 6: Forewings of the subfamily Formiciinae. Cell: Marginal appendiculate; Vein: M: Media Rs: Radial sector; Cross-veins: 1r-rs: radial-radial sector; rs-m: radial sector-media, cu-a: cubitus-anal. A: Tytanomyrma (Formicium) simillima by Lutz, [40]; B: Tytanomyrma (Formicium) gigantea by Lutz, [40]; C: Formicium brodiei by Lutz, [40]; D: Formicium berryi by Lutz, [40]; E: F. mirabile by Lutz, [41]. Modified drawing sizes and not comparable. 30 with long 2Rs+M vein (Fig. 7C2), with the further loss of the m-cu cross-vein, a 1+2Rs+M vein is formed (Fig. 7C3); ii) with the loss of the rs-m cross-vein and strong shrinkage and loss of the 2+3Rs vein, a long 2Rs+M vein is formed (Fig. 7A-A3-CA3), the further loss of the m-cu cross- vein, a 1+2Rs+M vein is formed (Fig. 7CA4); iii) with the loss of the 2+3Rs vein and subsequent strong shrinkage of the rs-m cross-vein and 4Rs vein (Fig. 7B-B2-CB2), the further loss of the m-cu cross-vein, a long 1Rs+M-3M vein is formed (Fig. 3L; Fig. 7CB3). A similar venation pattern is observed in the forewings of Type I of the fossil species Tytanomyrma gigantea, T. simillima and Formicium berryi (Formiciinae), representing the unique example of Type I with venation "formica type" (Fig. 6A-B-D). In relation to Mode C, not knowing the vein reduction mode, the double terminology was utilized in Figs. 2A and 3A: 2Rs+M/3M, M3+4/4M, 1+2Rs+M/3M. Fig. 7: Representation of the venation reduction modes in the ants’ forewings. The red vein, indicate the lost veins. The green vein, indicate strong shrinkage or lost veins. Veins: Rs: Radial sector; M: Media. Cross-vein: r-rs: radial-radial sector; m-cu: media-cubitus; rs- m: radial sector-media. 31 Phylogenetic analysis of the forewing types and venational reduction modes The Family Formicidae is divided into two clades, poneroid and formicoid, with the subfamilies Leptanillinae and Martialinae represented as two independent taxa [22, 23, 42, 43]. As analyzed in a previous study on the ants’ hind wings [44], the poneroid clade is divided into three phylogenetically distinct subclades: i) Poneroid 1, which includes the subfamilies Ponerinae, Paraponerinae and Agroecomyrmecinae; ii) Poneroid 2, which includes the subfamilies Amblyoponinae and Apomyrminae; iii) Poneroid 3, which includes the subfamily Proceratiinae. Also the formicoid clade is divided into three phylogenetically distinct subclades: i) Formicoid 1, which includes the subfamily Dorylinae; ii) Formicoid 2, which includes the subfamilies Myrmeciinae, Pseudomyrmecine, Dolichoderinae and Aneuretinae; iii) Formicoid 3, which includes the subfamilies Ectatomminae, Heteroponerinae, Myrmicinae and Formicinae. In the present analysis, the forewing Types of males and queens are separately examined, since in some genera show differences between the sexes. Furthermore, the distribution of the types is expressed in genera percentage and number at the level of family, clades and subclades (Figs. 8, 9, 10, 11). The distribution of the venation reduction modes is also expressed in genera percentage at the level of family, clade and subclade in the most representative subfamilies and in the tribes of the subfamily Myrmicinae (Figs. 12, 13, 14). Fig. 8: The forewing Types distribution in the family Formicidae, poneroid clade and formicoid clade, expressed in genera percentage. ♀: queen, ♂: male 32 Fig. 9: The forewing Types distribution in the poneroid subclades, expressed in genera percentage. ♀: queen, ♂: male Fig. 10: The forewing Types distribution in the formicoid subclades, expressed in genera percentage. ♀: queen, ♂: male Fig. 11: The forewing Types in the subfamilies, expressed in genera number. ♀: queen; ♂: male. 33 Fig. 12: The venation reduction modes distribution at the level of family, clade and subclade, expressed in genera percentage. Fig. 13: The venation reduction modes distribution in the most representative subfamilies, expressed in genera percentage. Fig. 14: The venation reduction modes distribution in the subfamily Myrmicinae tribes, expressed in genera percentage. 34 Discussion Forewing evolutionary patterns at the Family and Clade level In the family Formicidae, most genera show forewings of Type II (37% ♀, 40% ♂) and Type III (33% ♀, 29% ♂), (Fig. 8). Based on current knowledge, the Cretaceous ant forewings were of Type I (Fig. 5), therefore it can be affirmed that, during millions of years of evolutionary history, a reduction in the ants' forewings has been favored, in fact the percentage of extant genera with forewings of Type I is just 27% in queens and 25% in males (Fig. 8). In the analysis at the clade level is evident the difference of the fore wing Types distribution between clades, indeed the poneroid clade show a high genera percentage with fore wings of Type I (75% ♀; 73% ♂), against a low percentage in the formicoid clade (15% ♀, 14% ♂), highlighting that in the family Formicidae, the greatest forewing venation reduction occurred in the formicoid clade (Fig. 8). In the family Formicidae, most genera have a venation reduction with Mode C (35%), although the Mode A (28%) is more observed, while the Mode B (8%) is poorly represented (Fig. 12). The analysis at the clade level, show how the venation reduction with Mode C is predominant in the formicoid clade (42%) compared to poneroid clade (2%), (Fig. 12). In the poneroid clade there is a greater tendency to venation reduction with Mode B (12%) compared to Mode A (7%), whereas in the formicoid clade the venation reduction with Mode A (32%) is greater than with Mode B (8%), (Fig. 12). Thus, this analysis shows clearly different evolutionary patterns in the two clades. Forewing evolutionary patterns at the subclades, subfamilies and tribes level Poneroid 1: In this subclade, almost all genera have forewings of Type I (95%), only for two genera are described forewings of Type II (Fig. 9). The venation reduction occurs exclusively with Mode A (Figs. 7, 12). In the subfamily Ponerinae, all genera studied have fore wings of Type I, except the genus Thaumatomyrmex, which has forewings of Type II and venation reduction with Mode A [45], (Figs. 11, 13). The cu-a cross-vein is always proximal to the 1M vein. In the genus Hypoponera, the forewings of most species are distinguished by a Submarginal 2 cell with 2+3Rs and 3M long and parallel veins (Fig. 1N) and, similar feature can be found in the fore wings of some species of the genera Ectomomyrmex [46] and Ponera [13]. In the genus Dinoponera, the Submarginal 1 cell is small, compared to other genera of the subfamily Ponerinae [47, 48]. As mentioned above, the 1r-rs cross-vein is present in some species of the genera Euponera, Plathytyrea and Pachycondyla. The Marginal cell is always closed and, in some species appendiculate. The Marginal cell in some genera closes with a marked curve, such as in the genera Hypoponera (Fig 1N), Ponera [13], Myopias [49], Hagensia, Pseudoponera and in some species of Euponera [46] and Leptogenys (Fig 1L). A relatively short Marginal cell is described in the genera Platythyrea and Plectroctena [46]. In the subfamily Paraponerinae, the genus Paraponera have forewings of Type I and, differs, from most ponerine genera, due to the greater distance between the 2r-rs and rs-m cross-veins, thus forming a larger Submarginal 2 cell (Fig. 1P). The cu-a cross-vein is proximal to the 1M vein. In the subfamily Agroecomyrmecinae, the genus Tatuidris has forewings of Type II and venation reduction with Mode A [50], (Fig. 7A2). The cu-a cross-vein is proximal to the 1M vein. In the fossil species Agroecomyrmex duisburgi [51], encountered in Baltic 35 amber in the Eocene epoch, and Eulithomyrmex rugosus [52], found in shales of Florissant, Colorado (USA) in the Miocene epoch, the forewings are of Type I. Poneroid 2: In this subclade most genera present forewings of Type II (50% ♀, 61% ♂), (Fig. 9). The venation reduction is more evident in males (77%) compared to queens (64%), (Fig. 9, Table 1 supplementary material). The venation reduction mainly occurs with Mode B (50%) compared to Mode A (8%), (Fig. 12). In the subfamily Amblyoponinae, most genera have forewings of Type II (Fig. 11) and, the venation reduction exclusively occurs with Mode B (55%), (Fig. 13). In the genus Adetomyrma the rs-m cross-vein is absent and the Marginal cell is open [53], (Fig. 7B4); in all other genera the Marginal cell is closed and in some species is appendiculate. The cu-a cross-vein is proximal to the 1M vein. In the subfamily Apomirminae, the genus Apomyrma has forewings of Type II. The cu-a cross vein is distal to the 1M vein and the Marginal cell closed. The venation reduction occurs with Mode A [54]. Poneroid 3: This subclade is represented by the subfamily Proceratiinae, where 40% of the genera have forewings of Type III (Fig. 9). In the genus Proceratium are described forewings of Types I, II and III [33]; the genus Discothyrea has fore wings of Type III [55, 56] and the genus Probolomyrmex has forewings of Type IV [57, 58], (Fig. 11). The venation reduction occurs with Mode B and Mode C in the genus Proceratium (Figs. 2D, 3L-M) and in some species the 4M vein is absent [33]. In the genus Discothyrea the venation reduction occurs with Mode A [56], (Figs. 12, 13). The cu-a cross-vein is proximal to the 1M vein. Lattke [59], comparing some morphological characteristics of the antennas, mandibles and body, hypothesizes that the fossil genus Bradoponera is the ancestral of the genus Dyscothyrea. The forewings of the genus Bradoponera show a venation reduction with Mode A [60], confirming the similarity with the genus Dyscothyrea and distinguishing it from the genus Proceratium which, even in the Late Eocene fossil species, has venation reduction with Mode B [60]. Furthermore, Yoshimura and Fisher [56] describe a new genus from a male PRm01, which has forewings of Type III and venation reduction with Mode A. Formicoid 1: This subclade includes genera of the subfamily Dorylinae. Most genera present forewings of Type II (67% ♀, 57% ♂). The fore wings of Types III and IV are described in males of the genera Leptanilloides and Syscia [61, 62, 63, 64], (Figs. 10, 11; Table 2 supplementary material). In the genera Cylindromyrmex, Aenictogiton and Acanthostichus the 2+3Rs vein is reduced (Fig. 1R), [64]. The Marginal cell is closed in the genera: Cheliomyrmex, Cerapachys, Chrysapace, Cylindromyrmex, Eciton, Labidus, Neocerapachys, Nomamyrmex, Neivamyrmex and Sphynctomyrmex; in the other genera the Marginal cell is open. The cu-a cross-vein is distal to the 1M vein in the genera Aenictus, Cheliomyrmex, Dorylus (in some species the cu-a is proximal to the 1M [65]), Eciton, Labidus, Neivamyrmex and Nomamyrmex [9]; instead, in all other genera the cu-a is proximal to the 1M (Table 2 supplementary material). The genus Cheliomyrmex occasionally displays the 1r-rs cross-vein [5]. The venation reduction occurs with Mode B (35%) and Mode A (31%), (Figs. 12, 13; Table 2 supplementary material). In addition, the 2+3Rs vein and rs-m cross- vein are absent in the genera Eburopone, Lioponera, Ooceraea, Sphynctomyrmex, Simopone and Yunodorylus (Fig. 7B4), [64]. In these genera, the loss of rs-m cross-vein (Mode A) could have occurred before and, subsequently the loss of 2+3Rs, as seems to happen in the genera Simopone and Yunodorylus. In this analysis they are classified (although there is still doubt) as venation reduction of Mode B, giving more importance to the loss of the 2+3Rs vein. Formicoid 2: In this subclade there is a marked difference in the venation reduction between males (70%) and queens (42%), in fact, the forewings of Type I are present mostly in queens (58%) than in males (30%); moreover, the forewings of Type IV are present just in male (11%), (Fig. 10, Table 36 3 supplementary material). Mostly the venation reduction occurs with Mode C (37%) compared to Mode A (14%), (Fig. 12, Table 4 supplementary material). In the subfamily Mirmeciinae the forewings are of Type I. In the genus Nothomyrmecia the cu-a cross-vein is distal to the 1M vein [66], whereas in the genus Myrmecia is proximal [11]. In the forewings of Mirmeciinae Eocene fossils, only in the species Avitomyrmex mastax [67] and in two species Incertes sedis the cu-a cross-vein is distal to the 1M [11]. In some species of the genus Myrmecia the 1r-rs cross-vein is present [5, 65]. The Marginal cell is always closed. In the subfamily Pseudomyrmecinae most genera have forewings of Type I (75%), only some species of the genus Tetraponera have fore wings of Type II and, the venation reduction occur with Mode A (Figs. 11, 13). The cu-a cross-vein is proximal to the 1M vein and, the Marginal cell is closed. In the subfamily Aneuretinae, the genus Aneuretus has forewings of Type I. The cu-a cross-vein is proximal to the 1M vein and the Marginal cell closed [68]. In the subfamily Dolichoderinae 43% of the genera have forewings of Type I. The venation reduction occurs more with Mode C (43%) compared to Mode A (14%), (Figs. 11, 13). The venation reduction occurs with Mode A in the genera Arnoldius, Bothriomyrmex, Chronoxenus, Dorymyrmex and Forelius (Table 4 supplementary material). The Marginal cell is open in the genera Chronoxenus, Dorymyrmex and Forelius. In the genera Dorymyrmex and Leptomyrmex are described forewings with Types I, III and IV, and some species have rare vein reduction: i) in some species of the genus Dorymyrmex the two Submarginal cells are present, but the m-cu cross-vein is absent [4, 6, 69]; ii) in some species of the genus Leptomyrmex the 2r-rs cross-vein is absent [12, 70]. Formicoid 3: In this subclade most genera have forewings of Type II (43% ♀, 40% ♂) and Type III (46% ♀, 46% ♂), just 8% have forewings of Type I and, the Type IV prevails in males (6%) compared to queens (3%), (Fig. 10). In most genera the venation reduction occurs with Mode C (50%) compared to Mode A (37%) and Mode B (4%), (Fig. 12). The subfamily Ectatomminae has forewings of Type I in the genera Ectatomma, Gnamptogenys and Rhytidoponera (Fig 1F-H) and Type II in the genera Gnamptogenys and Typhlomyrmex (Figs. 2E-H; 11, 13, Table 5 supplementary material). The venation reduction occurs with Mode A and B in the genus Gnamtogenys (Figs. 1H, 2H), [5] and with Mode A in the genus Typhlomyrmex (Figs. 2E, 13). Only in the genus Typhlomyrmex the cu-a cross-vein is distal to the 1M vein (Fig. 2E); moreover, in the genus Rhytidoponera occasionally displaying the 1r-rs cross-vein [5]. The subfamily Heteroponerinae has forewings of Type I in the genera Acanthoponera and Heteroponera. The cu-a cross-vein is proximal to the 1M vein. In the subfamily Formicinae most genera have fore wings of Type III (Fig. 11, Table 5 supplementary material). The venation reduction mainly occurs with Mode C (90%) and, rarely with Mode A (4%) and Mode B (4%), (Fig. 13). In fact, most species of the genera Polyergus and Cataglyphis have venation reduction with Mode C, but in the species Cataglyphis fossilis and Polyergus nigerrimus would seem that the venation reduction occurs with Mode B, since the rs-m cross-vein does is not still completely reduced (Fig. 11B2), [71, 72]; instead there is a venation reduction with mode A in the genera Acropyga (Mode C is also observed) and Myrmelachista (Fig. 3E, Table 5 supplementary material). The cu-a cross-vein is proximal to the 1M vein. In the subfamily Myrmicinae the forewings of Type I represent just 9% of the genera (Fig. 13). The forewings of Type IV are described in the genera Acanthognathus, Adelomyrmex, Cardiocondyla, Crematogaster, Eurhopalotrix, Mycocepurus, Recurvidris, Strumigenys, Temnothorax, Vollenhovia and Xenomyrmex (Fig. 11). The venation reduction mainly occurs with Mode A (50%) compared to Mode C (38%) and Mode B (3%), (Fig. 13). An analysis of the forewings at the tribe level, shows that in the tribes Pogonomyrmecini and Myrmicini the venation 37 reduction occurs with Mode B, while in the other tribes occurs with Mode A and C in accordance with the phylogenetic hypothesis by Ward et al. [24], (Fig. 14, Table 6 supplementary material). The tribe Pogonomirmecini presents forewings of Type I in the genera Hylomyrma and Pogonomyrmex and Type II in the genera Pogonomyrmex [6, 73] and Patagonomyrmex [74]. In the tribe Myrmicini the genera Myrmica and Manica have forewings of Type I with the 2+3Rs vein reduced and, Type II (Fig. 14), [75]. In the tribe Stenammini 40% of the genera have forewings of Type I and, the venation reduction occurs with Mode A (30%) and with Mode C (30%), (Fig. 14). In the genus Stenamma the venation reduction is observed with Mode A and C [76]. In the tribe Solenopsidini just 10% of the genera have forewings of Type I, in fact they are present in Solenopsis tridens [77] and in the genus Stegomyrmex [78]. The venation reduction occur with Mode A (58%) and with Mode C (32%). In some genera there is a venation reduction with Mode A and C, such as the genera Monomorium [79, 80], Megalomyrmex [81, 82] and Rogeria [83], (Fig. 14, Table 6 supplementary material). In the tribe Attini, just the genus Pheidole has forewings of Type I (Fig. 1P). The venation reduction occurs with Mode A (47%) and Mode C (50%). The genera that show venation reduction with Mode A and C are: Cephalotes, Mycetophylax, Mycetosoritis, Myrmicocrypta and Trachymyrmex (Fig. 14, Table 6 supplementary material). In the genus Apterostigma 1Rs vein is absent (Fig. 3N). In the tribe Crematogastrini the forewing of Type I is absent. The venation reduction occurs with Mode A (60%) and Mode C (40%). The genera Crematogaster, Temnothorax and Tetramorium have a venation reduction with Mode A and C (Fig. 14, Table 6 supplementary material). The figure 15 summarizes the very few genera that present two rare features in the forewing venation: i) presence of 1r-rs cross-vein; ii) cu-a cross-vein distal to the 1M vein. These rare features are present in almost all subclades and ancestral ants. The 1r-rs cross-vein is absent in the subclades poneroid 2 and 3. The cu-a cross-vein distal to 1M vein is observed in all formicoid subclades, instead in the poneroid clade is observed just in the genus Apomyrma. 38 Conclusion Synthesizing this study, in figure 16 we show an overview of the forewing evolutionary patterns. This study can be concluded emphasizing some aspects: i) the Cretaceous species of Formicidae had forewings of Type I and, this Type is present in all the extant subfamilies, except in the subfamilies Agroecomyrmecinae (fossil species have forewings of Type I), Apomyrminae, Formicinae, Leptanillinae and Martialinae (Figs. 11, 13); ii) in Ponerinae, Myrmeciinae, Pseudomirmecinae, Ectatomminae and Heteroponerinae, the forewing venation has no significant reduction (Type I > 50%), instead in the other subfamilies the forewing evolutionary pattern shows a significant reduction (Type I < 50%), with a very strong venation reduction in Leptanillinae, Proceratiine, Formicinae and Myrmicinae (Figs. 11, 13); iii) in the poneroid clade, the venation reduction with Mode C occurs only in the genus Proceratium, whereas in the formicoid clade reduction of this Mode occurs in most genera of the subfamilies Formicinae, Dolichoderinae and Myrmicinae (Fig. 13). Finally, this contribution, on some aspects of the ants’ forewings, provides additional information regarding the evolutionary history of Formicidae and, it is expected that be useful to future phylogenetic interpretations. Fig. 15: Rare features in the forewings of the family Formicidae. 1M: 1Media; 1r-rs: 1 radial-radial sector; †: extinct. 39 Fig. 16: Overview of the forewing Types and venation reduction Modes, in the family Formicidae. 40 Data Availability The data supporting this taxonomic review are from previously studies and datasets, which have been cited and are available from the corresponding author upon request. Conflicts of Interest The authors declare that they have no conflicts of interest. Acknowledgments This research received support from the development agency CAPES and CNPq (Brazil). References [1] W. M. Wheeler, Ants - Their Structure, Development and Behavior. Columbia University, Biological Series IX, 1910. [2] J. A. Helms, “The flight ecology of ants (Hymenoptera: Formicidae)”. Myrmecological News, 26: 19-30, 2018. [3] C. Emery, “Saggio di un ordinamento naturale dei Mirmicidei”, Bull. Soc. Ent. Ital., vol. 9, pp. 67-84, 1877. [4] C. Emery, “La nervulation de l’aile anterieure des Formicides”, Revue Suisse de Zoologie, Vol. 21, n° 15, 1913. [5] W. L. Brown and W. L. Nutting, “Wings venation and the phylogeny of the Formicidae (Hymenoptera)”, American Entomology Society, Vol. 75, n° 3-4, pp. 113-132, 1950. [6] N. Kusnezov, “Tendencias evolutivas de las hormigas en la parte austral de Sud America- La fauna Mirmecologica de Bolivia”, Folia Universitaria, N° 6, Cochabamba, Bolivia, 1953. [7] B. Delange-Darchen, “Evolution de l’aile chez les fourmis Crematogaster (Myrmicinae) d’Afrique”, Insectes Sociaux, Vol. 20, N° 3, 1973. [8] K. Ogata, “A generic synopsis of the Poneroid complex of the family Formicidae in Japan (Hymenoptera) - Part II, Subfamily Myrmicinae”, Bull. Inst. Agr., Kyushu Univ. 14: 61-149, 1991. [9] K. S. Perfilieva, “Wing Venation in Army ants (Hymenoptera, Formicidae) and its importance for phylogeny”, Zoologicheskii Zhurnal 81: 1239-1250, 2002. [10] K. S. Perfilieva, “Trends in Evolution of Ant Wing Venation (Hymenoptera, Formicidae)”, Entomological Review, vol. 90, n° 7, 2010. [11] K. S. Perfilieva, “The Evolution of Diagnostic Characteres of Wing Venation in Representatives of the Subfamily Myrmeciinae (Hymenoptera, Formicidae)”. Entomological Review, Vol. 95, N° 8, 2015. [12] B. E. Boudinot, R. S. Probst, C. R. Brandao, R. M. Feitosa and P. S. Ward, “Out of the Neotropics: newly discovered relictual species sheds light on the biogeographical history of spider ants (Leptomyrmex, Dolichoderinae, Formicidae)”. Systematic Entomology, 41, 658-671, 2016. [13] C-M. Leong, B. Guenard, S-F. Shiao and C-C. Lin, “Taxonomic revision of the genus Ponera Latreille, 1804 (Hymenoptera: Formicidae) of Taiwan and Japan with a key to East Asian species”, Zootaxa 4594 (1): 001-086, 2019. [14] C. Emery, “Definizione del genere Aphaenogaster e partizione di esso in sottogeneri. Parapheidole e Novomessor”, Nota, Estratto dal rendiconto delle sessioni della R. Accademia delle Scienza dell’Istituto di Bologna, 21 marzo 1915. [15] S. Cantone, “Winged Ants, The Male - Dichotomous key to genera of winged ♂♂ ants in the World - Behavioral ecology of mating flight”, Stefano Cantone editor, Catania, Italy, ISBN: 979122002394-8, pp. 1-318, 2017. 41 [16] S. Cantone, “Winged Ants, The Queen - Dichotomous key to genera of winged ♀♀ ants in the World - The Wings of Ants: morphological and systematic relationships”. Stefano Cantone editor, Catania, Italy, ISBN: 9791220037075, pp. 1-244, 2018. [17] K. S. Perfilieva, “Some aspect of wing morphology of ants (Hymenoptera: Formicidae)”, Conference Paper, 2007. [18] K. S. Perfilieva, “Wing venation anomalies in sexual individuals of ants (Hymenoptera, Formicidae) with different strategies of mating behavior”, Entomological Review, Vol. 80, n° 9, pp. 1181-1188, 2000. [19] B. Hölldobler, E.O. Wilson, “The Ants”, Cambridge: The Belknap Press of Harvard University Press, 1990, 732p, 1990. [20] G. M. Dlussky, D. J. Brothers and A. P. Rasnitsyn, “The first Late Cretaceous ants (Hymenoptera: Formicidae) from southern Africa, with comments on the origin of the Myrmicinae”, Insect Syst. Evol. 35: 1-13, 2004. [21] A. V. Antoprov, S. A. Belokobylskij, S. G. Compton, G. M. Dlussky, A. I. Khalaim, V. A. Kolyada, M. A. Kozlov, K. S. Perfilieva and A. P. Rasnitsyn, “The wasps, bees and ants (Insecta: Vespida=Hymenoptera) from the Insect Limestone (Late Eocene) of the Isle of Wight, UK”, Earth and Environmental Science Transactions of the Royal Society of Edinburgh, 104, 335-446, 2014. [22] S. G. Brady, T. R. Schultz, B. Fisher and P. S. Ward, “Evaluating alternative hypotheses for the early evolution and diversification of ants”. PNAS 103: 18172-18177, 2006. [23] C. S. Morreau, C. D. Bell, R. Vila, S. B. Archibald, N. E. Pierce, “Phylogeny of the Ants: Diversification in the Age of Angiosperms”. Science, Vol. 312, pp. 101-103, 2006. [24] P. S. Ward, S. G. Brady, B. L. Fisher and T. R. Schultz, “The evolution of myrmicine ants: phylogeny and biogeography of a hyperdiverse ant clade (Hymenoptera: Formicidae)”, Systematic Entomology, 40, 61-81, 2015. [25] Antweb, Photos: Euponera sikorae CASENT0063893; Myrmecia auriventris ♂ CASENT0902789; Messor sp. Afrc-za02♀ CASENT0812035, Messor wasmanni♀ CASENT0281210. 2019, www.antweb.com. [26] K. V. Arnoldi, “Obersicht der gattung Aphaenogaster (Hymenoptera, Formicidae) der UDSSR”, Zoologicheskii Zhurnal, 55: 1019-1026, 1976. [27] W. W. Kempf, “Miscellaneous Studies on Neotropical Ants (Hymenoptera, Formicidae)”, Studia Entomologica, Vol. 3, fasc. 1-4, 1960. [28] G. C. Wheeler and E. W. Wheeler, “Two new ants from Java”, Psyche, Vol. 37, N° 3, 1930. [29] B. Petersen, “Some novelties in presumed males of Leptanillinae (Hym., Formicidae)”, Entomologiske Meddeleiser, 36: 577-598, 1968. [30] Baroni Urbani C., “Materiali per una revision della sottofamiglia Leptanillinae Emery (Hymenoptera: Formicidae)”, Entomologica Basiliensia, 2, 1977. [31] K. Ogata, M. Terayama and K. Masuko, “The ant genus Leptanilla discovery of the worker- associated male of L. japonica and a description of a new species from Taiwan (Hymenoptera: Formicidae: Leptanillinae)”, Systematic Entomology, 20, 27-34, 1995. [32] R. Ballarin, “The genus Leptanilla Emery, 1870 in Sicily (Hymenoptera: Formicidae)”, Myrmecological News, 12, 129-132, 2009. [33] C. Baroni Urbani and M. L. De Andrade, “The ant Genus Proceratium in the extant and fossil record (Hymenoptera: Formicidae)”, Monografie, Museo Regionale di Scienze Naturali, Torino; ISSN 1121-7545, ISBN 88-86041-52-7, 2003. [34] J. Katzke, P. Barden, M. Dehon, D. Michez and T. Wappler, “Giant ants and their shape: revealing relationships in the genus Titanomyrma with geometric morphometrics”, PeerJ, DOI 10.7717/peerj.4242, 2018. [35] D. Grimaldi, D. Agosti and J. M. Carpenter, “New and Rediscovered Primitive Ants (Hymenoptera: Formicidae) in Cretaceous Amber from New Jersey, and Their Phylogenetic Relationships”, American Museum Novitates, N° 3208, pp. 24, 1997. http://www.antweb.com/ 42 [36] V. Perrichot, “A new species of Baikuris (Hymenoptera: Formicidae: Specomyrminae) in mid- Cretaceous amber from France”, Cretaceous Research 52: 585-590, 2014. [37] P. Barden and D. A. Grimaldi, “Adaptative Radiation in Socially Advanced Stem-Group Ants from the Creataceous”, Current Biology 26, 515-521, 2016. [38] V. Perrichot, A. Nel, D. Neraudeau, S. Lacau, T. Guyot, “New fossil ants in French Cretaceous amber (Hymenoptera: Formicidae)”, Naturwissenschaften, 95: 91-97, 2008. [39] K. S. Perfilieva, “New Data on the Wing Morphology of the Cretaceous Sphecomyrminae Ants (Hymenoptera: Formicidae)”, Paleontological Journal, Vol. 45, N° 3, pp. 275-283, 2009. [40] H. Lutz, “Eine neue Unterfamilie der Formicidae (Insecta: Hymenoptera) aus dem mittel- eozanen Olschiefer der “Grube Messel” bei Darmstadt (Deutschland, S-Hessen)”, Senckenergiana lethaea, 57 (1/4): 177-218, 1986. [41] H. Lutz, “Systematische und palokologlsche Untersuchungen an Insekten aus dem Mittel- Eozan der Grube Messel bei Darmastadt”, Courier Forsch Inst. Senckenberg, 124: 1-165, 1990. [42] C. Rabeling, J. M. Brown and M. Verhaagh, “Newly discovered sister lineage sheds light on early ant evolution”, PNAS, Vol. 105, n° 39, pp. 14913-14917, 2008. [43] M. L. Borowiec, C. Rabeling, S. G. Brady, B. L. Fisher, T. R. Schultz, W. S. Ward, “Compositional heterogeneity and outgroup choice influence the internal phylogeny of the ants”, Molecular Phylogenetics and Evolution 134, 111-121, 2019. [44] S. Cantone and C. J. Von Zuben, “The Hindwings of Ants: A Phylogenetic Analysis”, Psyche, Article ID7929717, 2019. [45] W. W. Kempf, “A descoberta do primeiro macho do genero Thaumatomyrmex Mayr (Hymenoptera, Formicidae)”, Rev. Brasil. Ent. 1: 47-52, 1954. [46] Antweb, Photos: Ectomomyrmex overbecki FOCOL0958; Myopias kuehni♀ CASENT0102462, M. latinoda CASENT0903922; H. havilandi SAM-HYM-C001445B, Hagensia peringueyi SAM-HYM-C011643A; Euponera ivolo CASENT0050330, E. nosy CASENT0082630, E. wroughtonii CASENT0902478; Platythyrea arthuri, CASENT0442287, P. bicuspis, CASENT138492, P. modesta SAM-HYM-C000992A, P. schultzei CASENT0900573; Plectroctena mandibularis SAM-HYM-C007208B, P. lygaria CASENT0104134. 2019a, www.antweb.com. [47] P. A. Lenhart, S. Y. Dash, W. P. Mackay, “A revision of the giant Amazonian ants of the genus Dinoponera (Hymenoptera, Formicidae), Journal of Hymenoptera, 31: 119-164, 2013. [48] M. E. Escarraga, J. E. Lattke and C. O. Azevedo, “Discovery or the Dinoponera lucida male (Hymenoptera, Formicidae), a threatened giant ant from the Atlantic rain forest”, Zootaxa 4347(1): 128-136, 2017. [49] R. S. Probst, B. Guenard, B. E. Boudinot, “Toward understanding the predatory ant genus Myopias (Formicidae: Ponerinae), including a key to global species, male-based generic diagnosis, and new species description”, Sociobiology, 62(2): 192-212, 2015. [50] D. A. Danoso, “Additions to the taxonomy of the armadillo ants (Hymenoptera, Formicidae, Tatuidris)”. Zootaxa 3503: 61-81, 2012. [51] W. M. Wheeler, “The Ants of the Baltic Amber”, Schriften d. Physikal.-okonom. Gesellshaft. Jahrgang LV: 1-142, 1915. [52] F. M. Carpenter, “The fossil ants of North America”, Bulletin of the Museum of Comparative Zoology at Harvard College, Vol. LXX, n° 1, 1930. [53] M. Yoshimura and B. Fisher, “A revision of the Malagasy endemic genus Adetomyrma (Hymenoptera: Formicidae: Amblyoponinae)”, Zootaxa 3341: 1-31, 2012. [54] W. L. Brown, H. Gotwald and J. Levieux, “A new genus of Ponerine ants from West Africa (Hymenoptera: Formicidae) with ecological notes”, Psyche, Vol. 77, n° 3, 1970. [55] K. Ogata, “A generic synopsis of the Poneroid complex of the family Formicidae in Japan (Hymenoptera), Part I, Subfamilies Ponerinae and Cerapachyinae”, ESAKIA, n° 25, pp. 97-132, 1987. [56] M. Yoshimura and B. Fisher, “A revision of male ants of the Malagasy region (Hymenoptera: Formicidae): key to genera of the subfamily Proceratiinae”, Zootaxa 2216: 1-21, 2009. http://www.antweb.com/ 43 [57] R. W. Taylor, “A monographic revision of the rare tropicopolitan ant genus Probolomyrmex Mayr (Hymenoptera: Formicidae)”, Trans. R. ent. Soc. Lond. 117 (12), pp. 345-365, 1965. [58] K. Eguchi, M. Yoshimura and S. Yamane, “The Oriental species of the ant genus Probolomyrmex (Insecta: Hymenoptera: Formicidae: Proceratiinae)”, Zootaxa 1376: 1-35, 2006. [59] J. E. Lattke, “Phylogenetic relationships and classification of ectatommine ant (Hymenoptera: Formicidae)”, Ent. Scand. Vol. 25:1, 1994. [60] G. M. Dlussky, “The ant Subfamilies Ponerinae, Cerapachyinae and Pseudomyrmecinae (Hymenoptera, Formicidae) in the Late Eocene Amber of Europe”, Paleontological Journal, Vol. 43, N° 9, pp. 1043-1086, 2009. [61] P. S. Ward, “The ant genus Leptanilloides: discovery of the male and evaluation of phylogenetic relationships based on DNA sequence data. Advance in ant systematic (Hymenoptera: Formicidae)”, homage to E. O. Wilson-50 years of contributions. Memoirs of the American Entomological Institute, 80, 2007. [62] M. L. Borowiec and J. T Longino, “Three new species and reassessment of the rare Neotropical ant genus Leptanilloides (Hymenoptera, Formicidae, Leptanilloidinae)”, ZooKeys 133:19-48, 2011. [63] J. A. Macgown, T. L. Schiefer and M. G. Branstetter, “First record of the genus Leptanilloides (Hymenoptera: Formicidae: Dorylinae) from the United States”, Zootaxa 4006 (2) 392-400, 2015. [64] M. L. Borowiec, “Generic revision of the ant subfamily Dorylinae (Hymenoptera, Formicidae)”, ZooKey 608: 1-280, 2016. [65] Antweb, Photos of Dorylus acutus, D. aethiopicus, D. attenuathus, D. brevis, D. buyssoni, D. diadema, D. distinctus, D. fimbriatus, D. fuscipennis, D. katanensis, D. leo, D. montanus, D. orientalis, D. savage. 2019b, www.antweb.com. [66] R. W. Taylor, “Nothomyrmecia macrops: A living-fossil ant rediscovered”, Science, Vol. 201, pp. 979-985, 1978. [67] S. B. Archibald, S. O. Cover and C. S. Moreau, “Bulldog ants of the Eocene Okanagan Highlands and History of the Subfamily (Hymenoptera: Formicidae: Myrmeciinae)”, Ann. Entomol. Soc. Am., 99 (3): 487-523, 2006. [68] E. O. Wilson, T. Eisner, G. C. Wheeler and J. Wheeler, “Aneuretus simoni Emery, a major link in ant evolution”, Bulletin of the Museum of Comparative Zoology at Harvard College, Vol. 115, N° 3, 1956. [69] N. Kusnezov, “Die Dolichoderinen-Gattungen Von Sud-Amerika (Hymenoptera, Formicidae)”, Sonderdruck aus “Zoolofischer Anzeiger” Bd. 162, Heft 1/2, 1959. [70] C. Emery, “Le formiche dell’ambra siciliana”, Memorie della Reale Accademia delle Scienze dell’Istituto di Bologna, Tomo I, Serie V, 1891. [71] P. L. Marikovskiy, “A new ant, Polyergus nigerrimus Marik., sp. N., (Hymenoptera, Formicidae) and some features of its biology”, Entomologischeskae Obozrenie, 42: 110-114, 1963. [72] Antweb: Cataglyphis fossilis ♂ CASENT0912197, Polyergus nigerrimus ♀, CASENT173340. 2019c, www.antweb.com. [73] N. Kusnezov, “El Genero Pogonomyrmex Mayr. (Hymenoptera, Formicidae)”, Acta Zoologica Lilloana, tomo XI, pp. 227-333, 1951. [74] R. A. Jonson and C. S. Moreau, “A new genus from souther Argentina and souther Chile, Patagonomyrmex (Hymenoptera: Formicidae)”, Zootaxa 4139 (1): 001-031, 2016. [75] Z. Czekes, A. G. Radchenko, S. Csosz, A. Szasz-Len, I. Tausan, K. Benedek and B. Marko, “The genus Myrmica Latreille, 1804 (Hymenoptera: Formicidae) in Romania: distribution of species and key for their identification”, Entomologica romanica 17: 29-50, 2012. [76] M. G. Branstetter, “Revision of the Middle American clade of the ant genus Stenamma Westwood (Hymenoptera, Formicidae, Myrmicinae)”, ZooKey 295: 1-277, 2013. [77] G. Ettershank, “A generic revision of the World Myrmicinae related to Solenopsis and Pheidologeton (Hymenoptera: Formicidae)”, Aust. J. Zool., 14, 73-171, 1966. http://www.antweb.com/ http://www.antweb.com/ 44 [78] J. L. Machado Diniz, “Revisão sistematica daTribo Stegomyrmicini com a descrição de uma nova especie (Hymenoptera, Formicidae)”, Revista bras. Ent., 34(2): 277-295, 1990. [79] B. E. Heterick, “Revision of the Australian ants of the genus Monomorium (Hymenoptera: Formicidae)”, Invertebrate Taxonomy, 15, 353-459, 2001. [80] B. E. Heterick, “A revision of the Malagasy ants Belonging to genus Monomorium Mayr, 1855 (Hymenoptera: Formicidae)”, Proceedings of the Califormia Academy of Science, Vol. 57, N° 3, pp. 69-202, 2006. [81] B. E. Boudinot, T. P. Sumnicht and R. M. Adams, “Central American ants of the genus Megalomyrmex Forel (Hymenoptera: Formicidae): six new species and keys to workers and males”, Zootaxa 3732 (1): 001-082, 2013. [82] C. R. Brandão, “Systematic revision of the Neotropical ant genus Megalomyrmex Forel (Hymenoptera: Formicidae: Myrmicinae) with the description of thirteen new species”, Arq. Zool. S. Paulo, 31 (5): 411-481, 1990. [83] C. Kugler, “Revision of the Ant Genus Rogeria (Hymenoptera: Formicidae) with Descriptin of the Sting Apparatus”, J. HYM. RES., Vol. 3, pp. 77-89, 1994. 45 Anexo 1 Cantone Stefano (2017): “Winged Ants, The Male - Dichotomous key to genera of winged ♂♂ ants in the World - Behavioral ecology of mating flight”, Stefano Cantone editor, Catania, Italy, ISBN: 979122002394-8, pp. 1-318. Anexo 2 Cantone Stefano (2018): “Winged Ants, The Queen - Dichotomous key to genera of winged ♀♀ ants in the World - The Wings of Ants: morphological and systematic relationships”. Stefano Cantone editor, Catania, Italy, ISBN: 9791220037075, pp. 1-244. 46 Conclusões Este estudo fornece uma visão geral do conhecimento atual sobre as asas e sobre algumas características morfológicas da casta alada de formigas do mundo todo. No estudo das asas anteriores e posteriores (Capitulos 1 e 2), è apresentada uma visão geral da distribuição das diferentes morfologias das asas anteriores e posteriores da família Formicidae, que fornece dados que podem ser úteis para futuras análises comparativas levando em conta características genéticas, morfológicas e comportamentais, a fim de melhorar e desenvolver novas hipóteses filogenéticas nos diferentes níveis taxonômicos. Foram observadas 4 difererentes tipologias de asas anteriores com três modalidades de redução das veias e três tipologias diferentes de asas posteriores. Nas asas anteriores das espécies cretáceas de Formicidae possuíam asas de tipologia I e, este tipologia esta presente em quase todas as subfamílias existentes em percentual de gêneros diferentes. Asas anteriores de tipologia I são sempre ausentes nos gêneros das subfamílias Agroecomyrmecinae (espécies fósseis com asas de tipologia I), Apomyrminae, Formicinae, Leptanillinae e Martialinae onde a tipologia I é sempre ausente. Nas subfamílias Ponerinae, Myrmeciinae, Pseudomirmecinae, Ectatomminae e Heteroponerinae, as asas anteriores não apresentam redução significativa (tipologia I> 50%), enquanto nas demais subfamílias o padrão evolutivo mostra uma redução significativa (tipologia I <50%), com uma redução das veias relevante em alguns gêneros das subfamílias Leptanillinae, Proceratiine, Formicinae e Myrmicinae. As asas posteriores das espécies encontradas no Cretáceo apresentam uma tipologia I com ou sem lobo jugal. O lobo jugal representa um caráter plesiomórfico na ordem Hymenoptera. Na família Formicidae o lobo jugal está presente apenas nas asas posteriores de tipologia I e é encontrado em alguns gêneros existentes pertencentes às subfamílias: Ponerinae, Paraponerinae, Myrmeciinae e Ectatomminae. As chaves dicotômicas das castas aladas (Anexos 1 e 2) representam o primeiro estudo taxonômico que analisa e compara as castas aladas da maioria dos gêneros (297 sobre 334) presentes em todos os Continentes, oferecendo uma ferramenta útil na primeira identificação dos indivíduos alados. Espera-se que esta contribuição cientifica seja útil para um avanço do conhecimento taxonômico e na interpretação da história evolutiva da família Formicidae. 0 Winged Ants The Male ♂ Dichotomous key to genera of winged ♂♂ ants in the World Behavioral Ecology of Mating flight Stefano Cantone 1 All rights reserved. This book or any portion thereof may not be reproduced or used in any manner whatsoever without the express written permission of the publisher except for the use of brief quotations in a book review. Stefano Cantone Editor, Catania, Italy ISBN 979-12-200-2394-8 ISBN-A 10.979.12200/23948 Copyright© Stefano Cantone, 2017 First Printing, 2017 www.wingedant.com cantonestefano@gmail.com Original text translation from Italian to English by Sarah Roberta Gonçalves sarah.goncalves@gmail.com 2 Winged Ants The Male ♂♂ The purpose of the job is to earn free time Aristotele Stefano Cantone: Italian biologist, with experience in ethological and entomological studies 3 Index 1. Introduction p. 5 2. Dichotomous key to genera of w