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It is shown that a spin-1/2 fermion coupled to the axially symmetric electromagnetic vector potential has the
same matrix structure as that one for the planar Dirac oscillator. In particular, the planar Dirac oscillator can be
interpreted as a charged particle minimally coupled to a transverse homogeneous magnetic field.
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1. Introduction

The Dirac oscillator is an exactly solvable model consist-
ing in a nonminimal coupling prescription in the Dirac
equation with the resulting equation linear in both mo-
mentum and position operators [1]. Recently, much in-
terest has been generated on the planar Dirac oscilla-
tor. In particular, has been investigated the bound-state
spectrum and its degeneracy [2]- [3], and applications
to quantum optical phenomena [4]- [5]. Addition of a
transverse uniform magnetic field has triggered further
investigations related to the Aharonov-Bohm [6]- [7] and
Aharonov-Bohm-Coulomb effects [8], coherent states [9],
optical models [10]- [12] and graphene [7], [13]- [18].
It should be mentioned that the authors of Refs. [10]
and [11] have correctly recognized that the planar Dirac
oscillator immersed in a transverse homogeneous mag-
netic field can be mapped on a pure planar Dirac oscilla-
tor.

The present work shows in a simple way the exact
equivalence between the planar Dirac oscillator and the
problem of a charged particle minimally coupled to a
transverse magnetic field. Beyond a content interesting
and easy to deal with by graduate students in Physics,
this result is of great importance to help to clear up
disagreements relating to the bound states and its degen-
eracy, to assist the mapping of the planar Dirac oscillator
onto quantum optical models and graphene, and to assert
the appropriate chirality of the system needed to look
into the critical magnetic field and the possible chiral-
ity quantum phase transition relevant to applications in
quantum optical models and graphene.
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2. Dirac equation with an axially
symmetric electromagnetic vector
potential

In the Minkowski space-time, the behavior of a spin-
1/2 fermion of mass m and electric charge q interacting
with a stationary magnetic field is governed by the Dirac
equation

i
∂Ψ
∂t

= HΨ =
[−→α ·

(−→p − q
−→
A

)
+ βm

]
Ψ, (1)

with −→p = −i
−→
∇ (in natural units ~ = c = 1). Here we

have used the minimal coupling prescription
−→p → −→p − q

−→
A. (2)

The magnetic field is described by
−→
B = −→

∇ ×
−→
A , and the

matrices −→α and β can be represented as

−→α =
(

0 −→σ
−→σ 0

)
, β =

(
I2×2 0

0 −I2×2

)
. (3)

where I2×2 is the 2 × 2 unit matrix and −→σ = (σ1, σ2, σ3).
The spinor Ψ has four components and the 2 × 2 Pauli
matrices obey the fundamental relation

σiσj = δijI2×2 + i

3∑
k=1

εijkσk, (4)

where δij is the Kronecker delta and εijk is the Levi-
Civita symbol. In cylindrical coordinates (ρ, ϕ, x3) one
has ρ = |−→ρ | =

√
x2

1 + x2
2 and ϕ = arctan(x2/x1) with

coordinate unit vectors

ρ̂ = cos ϕ ê1 + sin ϕ ê2

ϕ̂ = − sin ϕ ê1 + cos ϕ ê2 (5)
ê3 = ê3,
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and
−→
∇ = ρ̂

∂

∂ρ
+ ϕ̂

ρ

∂

∂ϕ
+ ê3

∂

∂x3
. (6)

The axially symmetric electromagnetic vector potential
−→
A = Aϕ(ρ) ϕ̂ (7)

gives a transverse magnetic field
−→
B = B(ρ) ê3, (8)

with
B(ρ) = 1

ρ

d [ρAϕ(ρ)]
dρ

. (9)

Use of the axially symmetric electromagnetic vector po-
tential allows the Hamiltonian to be written as

H = −iαρ
∂

∂ρ
− iαϕ

(
1
ρ

∂

∂ϕ
− iqAϕ

)
− iα3

∂

∂x3
+ βm,

(10)
where αρ = −→α · ρ̂ and αϕ = −→α · ϕ̂, with

σρ = −→σ · ρ̂ =
(

0 e−iϕ

e+iϕ 0

)
,

σϕ = −→σ · ϕ̂ =
(

0 −e−iϕ

e+iϕ 0

)
. (11)

3. The exact equivalence with the planar
Dirac oscillator

It is remarkable that Aϕ(ρ) in the second term of the
Hamiltonian (multiplied by αϕ) expressed by (10) can be
moved to the first term (multiplied by αρ). This happens
because σϕ = iσρσ3 in such a way that αϕ = iαρΣ3.
Here,

Σ3 =
(

σ3 0
0 σ3

)
. (12)

Therefore, the Hamiltonian expressed by (10) can also
be written as

H = −iαρ

(
∂

∂ρ
+ qΣ3Aϕ

)
− iαϕ

1
ρ

∂

∂ϕ
− iα3

∂

∂x3
+ βm,

(13)
or equivalently,

H = −→α · (−→p − iqΣ3Aϕ ρ̂) + βm. (14)

This is an extraordinary result. The Hamiltonian ex-
pressed by (14) has the same matrix structure as that
one of the planar Dirac oscillator but with a more general
radial potential function due to the more general form for
the axially symmetric electromagnetic vector potential
Aϕ(ρ). The problem of a charged particle minimally cou-
pled to a transverse magnetic field and the planar Dirac
oscillator become indistinguishable when the transverse
magnetic field is uniform (Aϕ = Bρ/2) and the cyclotron
frequency |q|B/(2m) is identified with the frequency of
the Dirac oscillator.

4. Final remarks

For short, we showed that the planar Dirac oscillator for
an electrically charged particle can be interpreted as the
problem describing a spin-1/2 fermion minimally coupled
to a transverse homogeneous magnetic field. Hence, their
bound-state spectra and degeneracies are undoubtedly
the same. Applications of the planar Dirac oscillator to
describe quantum optical phenomena are also equivalent
to applications of a transverse homogeneous magnetic
field. Addition of a transverse uniform magnetic field to
a planar Dirac oscillator clearly appears to be redundant.
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