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We report for the first time effects of altering the amount of Pd supported on high-surface

area carbon (Pd/C). Cyclic voltammetry in 0.1 M H2SO4 using Pd/C electrocatalysts with

distinct metal-to-carbon ratio, Pd black and a Pd wire electrodes reveals unambiguously

metal loading effects, such as a decrease in the peak potential for the reduction of palla-

dium oxide (PdO), an increase of the charges of desorption of hydrogen, and formation/

reduction of PdO with the Pd content. Such effects need to be taken into account when

designing Pd-based Fuel Cells electrocatalysts.

© 2018 Hydrogen Energy Publications LLC. Published by Elsevier Ltd. All rights reserved.
Introduction

Carbon-supported palladium nanoparticles (Pd/C) has been

considered as a potential substitute for Platinum-based elec-

trocatalysts in Direct Formate Fuel Cells and Direct Formic

Acid Fuel Cells, as described in detail in some reviews [1e3].

Despite the several studies showing its catalytic activity

towards the electrochemical oxidation of formic acid/formate

[4e6], ethanol [7e9] and also for the reduction of molecular

oxygen (oxygen reduction reaction, ORR) [10e12], it is sur-

prising that very little attention has been given to the
p.br (E.G. Ciapina).

ons LLC. Published by Els
fundamental electrochemical behavior of carbon-supported

Pd-containing materials in the absence of any electro-active

species, that is, solely in the supporting electrolyte.

With respect to supported metal electrocatalysts, studies

mainly carried out with Pt-based materials have shown that

several parameters may, in principle, affect the overall

observed electrochemical response, such as size, morphology,

and loading of the metal crystallites onto the support phase

[13e18]. However, due to the lack of a detailed study in the

literature regarding the behavior of nano-sized Pd particles

anchored in high surface area carbon, we decided to
evier Ltd. All rights reserved.
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investigate the effect of themetal loading on current-potential

characteristics of Pd/C electrocatalysts by cyclic voltammetry.

By keeping the same preparation procedure, it was synthe-

sized Pd/C samples with distinct amounts of Pd anchored on

carbon. Herein, wewill show for the first time that the amount

of Pd loaded on carbon results in significant changes in the

cyclic voltammetric behavior, clearly exhibiting metal loading

effects.
Experimental

Pd nanoparticleswere prepared by a similarmethod described

by Lima et al. [19]. Briefly, the procedure is based on the

reduction of an aqueous solution of PdCl2 (Sigma-Aldrich) by

excess of aqueous NaBH4 (Sigma-Aldrich) in the presence so-

dium citrate (Sigma-Aldrich). Adequate amounts of high sur-

face area carbon (Vulcan XC-72R, Cabot Co.) previously

suspended in ultra-pure water were added to obtain the

desired metal-to-carbon ratio. All reagents were used as-

received with the exception of the high-surface area carbon,

treated with diluted HNO3 for 12h and washed thoroughly

several times with deionized water to remove possible

metallic impurities as in Ref. [20]. A sample of unsupported Pd

powder (Pd black) was prepared by a similar methodology of

the Pd/C electrocatalysts. Further details are given in the

Supplementary Material.

The amount of Pd anchored on carbon was evaluated by

means of Thermogravimetric (TG) analysis. X-Ray diffraction

was used to estimate the average crystallite size of the pre-

pared Pd/C and Pd black particles, found to be 8.1 nm and

10.9 nm, respectively. Transmission Electron Microscopy

(TEM) images were obtained to visualize the agglomeration of

the Pd/C materials. Apparatus, TG curves, XRD profiles, and

TEM images are shown in Supplementary Material, Fig. S1.

Electrochemical measurements were carried out in con-

ventional three-electrode cell. Pd/C and Pd black electro-

catalysts were studied by the thin-film electrode method

reported elsewhere [21]. Typically, 2.0 mg of the powder was

dispersed in 4.0 mL of isopropyl alcohol in ultrasonic bath

followed by deposition of aliquots of the suspension onto a

mirror-finished glassy carbon electrode (5.0 mm diameter)

embedded in PTFE (Teflon®). No binder (such as Nafion®) was

used to avoid possible contaminants from the polymer. A Pd

wire (Johnson Matthey, geometric area of 0.256 cm2) was also

used as the working electrode to serve as comparison. A

platinum wire (area z23 cm2) was used as the counter elec-

trode. All potentials were measured against an Ag/AgCl

(3 mol L�1 in NaCl) reference electrode. Measurements were

performed in 0.1mol L�1 H2SO4 (Merck) purged with N2 (White

Martins, analytical grade 5.0) during the whole experiment.

Aqueous solutions were prepared with ultrapure water

(18.2 MU cm, Gehaka, model Master All). A PAR 283 potentio-

stat controlled by the Power Suite software was used for data

acquisition. As usually done, each electrode was cycled 10

times at 50 mV s�1 between �0.21 V and 0.8 V before experi-

ments. The uncompensated solution resistance was esti-

mated to be about 20 Ohms by the current-interruption

method. Voltammetric charges were calculated by using our

recent free software ADVC [22].
Results and discussion

The cyclic voltammetric (CV) profile of the Pd/C electro-

catalysts containing distinct metal-to-carbon ratios, Pd black,

and Pd wire in 0.1 mol L�1 H2SO4 are shown in Fig. 1. From a

qualitative viewpoint, an increase in the amount of Pd loaded

on carbon resulted in a CV profile exhibiting higher currents

coming from the adsorption/desorption of hydrogen

(�0.21 < E < 0.1 V), palladium oxide formation/reduction PdO

processes (E > 0.4V), and minor response from the carbon

phase (0.1 < E < 0.4 V). The Pd bulk electrode (Fig. 1f) shows a

substantial different behavior compared to the nano-sized Pd

electrodes. Particularly with respect to the hydrogen region, a

sharp increase in the cathodic current is observed (generally

ascribed to the coupling of adsorption/absorption and evolu-

tion of hydrogen), along with its large anodic counterpart

(oxidation of hydrogen). The later extends towards the whole

positive-going scan, superimposing that of the formation of

PdO. To avoid the interference of the hydrogen oxidation

currents, a CV scan with restricted potential window (from 0.2

to 0.9 V) was used.

The first worth noting difference between the materials is

the peak potential for the reduction of palladium oxide (PdO)

as function of the metal loading (Fig. 2a), where a clear trend

can be observed. Beginning with the value of the Pd wire of

EPdO ¼ 0.53 V (plotted as 0%), as the amount of Pd anchored on

carbon is increased it is observed a decrease in the peak po-

tential for the PdO reduction, seeming to approach the value

of EPdO ¼ 0.42 V for the Pd black sample (plotted as 100%). The

potential difference among all investigated electrodes was

about 110 mV, highlighting a significant shift in the PdO

reduction energetics. In other words, as the amount of Pd on

carbon is increased, the reduction of oxides appears to be

more irreversible. The same trend is found by using different

upper potential limits, such as 0.8 and 1.0 V (See, Supple-

mentary Material, Figs. S3 and S4).

Quantitative information regarding the processes of for-

mation and reduction of PdO and the desorption of hydrogen

(PdeHdesorption) was obtained after normalization of the cor-

responding voltammetric charges by the electrochemical

active area determined by the PdeH formation charges

(negative-going scan) assuming a normalization factor of

205 mC cm�2 of Pd, as in Ref. [23]. All values are depicted in

Fig. 2bed. Although such method is not recommended for

bulk Pd electrodes due to the coupling of hydrogen adsorption,

absorption and evolution, such procedure was already used

for nano-sized Pd electrodes given that some separation

among adsorption/absorption and evolution can be found

[23e25]. In fact, if a slower scan rate is used (i.e., 10mV s�1 and

5 mV s�1), it seems that adsorption/absorption and evolution

are indeed taking place at distinct potential window (Fig. S5).

A trend seems to exist between the PdO reduction peak and

their corresponding charges (Fig. 2b): the higher the charge of

the PdO reduction, the lower the reduction peak potential.

Consequently, the correlation suggests stronger palladium-

oxygen interactions as the amount of PdO increases. The

PdO formation and reduction charges also exhibited a clear

dependence on the amount of Pd loaded on the carbon sup-

port, as shown in Fig. 2c. Taking the Pd wire as the reference
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https://doi.org/10.1016/j.ijhydene.2018.07.137


Fig. 1 e Cyclic voltammograms obtained for Pd/C electrocatalysts containing distinct amounts of Pd loaded on carbon, Pd

black and Pd wire as indicated. Scan rate ¼ 50 mV s¡1, 0.1 mol L¡1 H2SO4, room temperature (22 �C). Currents for Pd wire

obtained between 0.2 V and 0.9 V were multiplied by 4 (as indicated).

Fig. 2 e Metal loading effects on Pd/C: (a) The peak potential for the reduction of PdO as function of the metal loading; (b) the

PdO reduction peak potential as function of the PdO formation charge; (c) Charges involved in the process of PdO formation

and reduction as function of the metal loading; (d) charges involved in the process of hydrogen desorption as function of the

metal loading.
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point, the charges initially increases and then approaches the

value of z270 mC cm�2 exhibited for the Pd black sample. The

large difference in the charges of Pd black and Pd wire is likely

caused by a higher amount of surface defects and
uncoordinated atoms in the former, due to size effects, which

is known to bind oxygen more strongly [26]. The charges

involved in desorption of hydrogen (Fig. 2d) also showed an

increase with themetal loading but significant lower to that of

https://doi.org/10.1016/j.ijhydene.2018.07.137
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obtained for the Pd black electrode. The bulk Pd sample (Pd

wire) was not included in the plot since it was one order of

magnitude higher (about 1780 mC cm�2) than those observed

for the nanostructure Pd samples.

Given no similar study is available for Pd/C, a comparison

will be made with results obtained for Pt/C reported on liter-

ature [17,27,28]. The most stinking fact is that the observed

trends for Pd/C shown in Fig. 2a are the opposite to that of

found for Pt/C electrocatalysts, where a decrease in the over-

potential for the reduction of PtOH is observed as the metal

content is increased [27e29], and an invariant behavior of the

hydrogen desorption profile (charge) with the metal loading is

found [17]. For Pt/C, the alteration of the adsorptive properties

observed as the Pt content on carbon is increased was

explained by a change in the potential drop across the elec-

trode/electrolyte interface caused by a decrease in the edge-

to-edge distance of adjacent particles [27,28]. Given that Pd/C

and Pt/C behaves differently it is clear that metal loading ef-

fects are far from being understood and requires further

investigation, specially in the context of Fuel Cells.
Summary

To the best of our knowledge, we showed for the first time that

the electrochemical behavior of Pd/C electrocatalysts in

0.1 mol L�1 H2SO4 clearly depends on the amount of Pd

anchored in the carbon support. Our major findings can be

summarized as follow: (i) the energetics of the PdO formation/

reduction is affected by the amount of Pd in the support,

exhibiting higher overpotential for PdO reduction as the Pd

content is increased, and; (ii) the charges related to the for-

mation/reduction of PdO and of the PdeH desorption in-

creases with the metal loading. Consequently, metal-loading

effects has to be taken into account when designing Pd-based

Fuel Cells electrocatalysts.
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