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1. Introduction

When modeling dynamic phenomena, researchers have traditionally used model
in which either continuous or discrete time is considered like for instance in the
differential and difference equations.

In recent years it became clear that for a more accurate description of
phenomena it is necessary to go beyond this dichotomy in scales time.

Nowadays, several examples in which more general time scales appear, can
be found in the literature [1-4].

With the purpose of deal with this situation S. Hilger introduced in 1990 the
calculus on time scales (or on measure chains), see [11]. This kind of calculus
showed the possibility to manage dynamic equations considering a very wide
range of time scales transforming in this way the differential and difference
calculus into special cases of a more general one. Examples of time scales are
the real numbers, the integers, the sets having cluster points or even such as a
Cantor set.

Regarding integral calculus on time scales the literature includes, among
others, the Riemann delta and nabla-integral [8], alfa-integral [9], the Lebesgue
and nabla-integrals [7], and the Henstock-Perron-Kurzweil [16] ones.

Considerations on Fredholm and Volterra integral systems using general
time scales were done in [17] and [14].

In 2009, Mozyrska-Pawluszewicz-Torres, [15] defined and presented some
initial properties for the Riemann-Stieltjes integral in the numerical case, open-
ing in this way the possibility to develop the theory of Fredholm and Volterra-
Stieltjes integral equations on time scales, even in Banach spaces. However, we
still have some difficulties inherent to this kind of integrals when dealing with
dynamic equations in which non-continuous functions may appear.

This situation call, in this way, for a more general vision on the subject and
it is reflected by the necessity to consider a more general notion of integral,
extending the Riemann-Stieltjes one. Such extension, still in the numerical
case, is proposed in Section 4 below.

This paper is organized as follows: in Section 2 we introduce the Riemann-
Stieltjes integrals. In Section 3 we show important gap in the theory of the
Riemann-Stieltjes integrals when considering discontinuous functions. In Sec-
tion 4 we define the odd-meshed filter integral. A comparison between these
two types of integrals is done in Section 5. Finally, in Section 6 we give an
application in a dynamic equation, considering a boundary value problem and
in the 7-th one we point future perspectives when using this kind of integral.
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2. The Riemann-Stieltjes (RS) Integral on Time Scales

From now we will be taking the notations and results presented in [15]. For
general definitions, results and notations, see also [5], [11].

Let T be a time scale (that is: a closed non-void subset of IR) with a, b ∈ T,
a < b and I = [a, b]T, where [a, b]T denotes [a, b]

⋂

T in IR).

Definition 2.1. A partition of I is any finite ordered subset

P = {a = t0 < t1 < · · · < tn = b} ⊆ [a, b]T .

The length of P is denoted by |P | = n. We will be denoting by ℘ the class
of all partitions of I. Note that it is defined the relation P ≥ Q for P,Q ∈ ℘

meaning: P ⊇ Q.
The definition of the Riemann-Stieltjes integral over I is done in [15] by using

the notion of the upper and lower Darboux-Stieltjes integrals. The Riemann-
Stieltjes integral of f respect to g over I is denoted by

∫ b

a
f�g.

We reproduce here the definition of such Riemann-Stieltjes integral, done
in [15]:

Let g be a strictly increasing real-valued function on the interval I. Then
for the partition P ∈ ℘ define, both:

g(P ) = {g(a) = g(t0), g(t1), . . . , g(tn−1), g(tn) = g(b)} ⊂ g(I) ,

and
∆gj = g(tj) − g(tj−1) .

Note that g(P ) is a partition of [g(a), g(b)]T .
Take f a real-valued and bounded function on the interval I. Let P =

{t0, t1, . . . , tn} ∈ ℘.

Definition 2.2. The upper and lower Darboux-Stieltjes sums with respect
to g, are:

(the upper) U(P ; f ; g) =

n
∑

j=1

sup
[tj−1,tj ]I

f(t)∆gj , (2.1)

(the lower) L(P ; f ; g) =
n

∑

j=1

inf
[tj−1,tj ]I

f(t)∆gj . (2.2)

Definition 2.3. The upper Darboux-Stieltjes -integral of f with re-
spect to function g in I is the number infP∈℘ U(P ; f ; g) and the lower one
is supP∈℘ L(P ; f ; g).
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If both the values are the same, then the Riemann-Stieltjes integral is de-
fined and its value is this common value.

3. Remarks on the Riemann-Stieltjes (RS) Integral

At a first glance we observe an important fact in the definition of the Riemann-
Stieltjes integral. It concerns the using of this kind of integrals on systems in
which f and g are not continuous on I.

In fact:

Proposition 3.1. Let

I = [−1, 1]T = H∪−H ∪ {0},

where

H =

{

1

2k
; k ∈ IN∗

}

,

and define

g(t) =

{

1 + t, t ∈ H ∪ {0},
t, otherwise,

(3.1)

and

f(t) =

{

1, t ∈ H ∪ {0},
0, otherwise.

(3.2)

Then we have:
∫ 1
−1 f(t)�g(t) does not exist.

Proof. The two first equalities are immediate from the definition of the
Riemann-Stieltjes integral. For the third one observe that for any interval
[− 1

2r , 1
2s ] with r, s ∈ IN we get in the upper and lower Darboux-Stieltjes sums

of f to g, that:

sup
[− 1

2r , 1

2s ]T

f(t).

(

1 +
1

2s
+

1

2r

)

=

(

1 +
1

2s
+

1

2r

)

,

inf
[− 1

2r , 1

2s ]T

f(t).

(

1 +
1

2s
+

1

2r

)

= 0 ,

respectively.

A more incisive example in this direction will be done in Section 6 below.
With the intention of – among other arguments – avoid such inconvenience

just described in Proposition 3.1, we introduce another integral of the Riemann-
Stieltjes type, extending properly the Riemann-Stieltjes integral.
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4. The Odd-Meshed (OM) Integral on Time Scales

We are going to define an integral inspired by the Dushnik integral, defined by
B. Dushnik in 1931, see [10], p. 96.

Let as above, ℘ be the class of all partitions of I = [a, b]T.
Let us take a subset of ℘, ℘∗, where P̂ ∈ ℘∗ if and only if |P̂ | is an odd

number, and define the relation Q̂ � R̂ in ℘∗ fulfilling both conditions:

1. Q̂ ⊇ R̂,

2. the odd-indexed points t2k+1 (k = 0, 1, 2, . . . , n − 1) in R̂ = {a = t0 <

t1 < · · · < t2n = b} ⊆ [a, b]T are also odd-indexed points τ2r+1 (r =
0, 1, 2, . . . ,m − 1) in Q̂ = {a = τ0 < τ1 < · · · < τ2m = b} ⊆ [a, b]T
(m ≥ n).

Definition 4.1. For the functions f and g, the (Cauchy) sum associated
to P̂ ∈ ℘∗ of f relatively to g is the number (if finite)

σ
P̂
(f ; g) =

|P̂ |−1

2
∑

i=0

[g(t2i+2) − g(t2i)].f(t2i+1) . (4.1)

We define the odd meshed integral of f relatively to g, and write OM −
∫

[a,b]T
·∆sg(s).f(s), or then simply

∫

[a,b]T
·∆sg(s).f(s), the following limit (if

existing):
∫

[a,b]T

·∆sg(s).f(s) = lim
P̂∈℘∗

σ
P̂
(f ; g) , (4.2)

where lim
P̂∈℘∗ σ

P̂
(f ; g) = z means: for every neighborhood V of z, there exists

P̂V ∈ ℘∗ such that for every P̂ ∈ ℘∗ with P̂ � P̂V , we must have σ
P̂
(f ; g) ∈ V .

Remark 4.1. Normally we will be treating discontinuous functions, and
then the scale T must to be enumerable, at least. Despite of this, we define
∫

[a,b]T
·∆sg(s).f(s) for T having an (finite) even number of points, as being the

value RS −
∫ b

a
f�g.

Remark 4.2. From now on,

1. we will be considering only the ∆ part (concerning the delta derivative)
implicit in �,

2. we will be using the more suggestive notations
∫

[a,b]T
∆sg(s).f(s) instead

of the considered above
∫ b

a
f�g, and
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3. we will be referring to
∫

[a,b]T
∆sg(s).f(s) or

∫

[a,b]T
·∆sg(s).f(s), as the RS

or OM-integral, respectively.

In the coming theorem we establish classes of functions f and g for which
there exists the OM-integral. Let us before define:

Definition 4.2. The function f is said to be regulated if it has only
discontinuities of the first kind in its domain.

Definition 4.3. Let T be a time scale with a, b ∈ T and I = [a, b]T, ℘

the class of all partitions of I and consider P = {t0, t1, . . . , tn} ∈ ℘. Define the
number VP (g) =

∑n
t=1 ‖g(t1) − g(ti−1)‖.

We say that g : I → X is of bounded variation in I if VI(g)P∈℘ = supVP (g) <

∞.

Theorem 4.1. Let f, g : I → IR. If f is regulated and g is of bounded
variation on I then there exists

∫

[a,b]T
.∆sg(s).f(s).

Proof. If f is a regulated function on I, then it is well known that f must
be bounded on I.

In the Cauchy sum associated to P̂ ∈ ℘∗ of f relatively to g, (4.1), we see
in an immediate way that σ

P̂
(f ; g) ≤ VI(g)maxI f = constant < ∞, and then

according (4.2) we get the result in the theorem.

5. Connections between
∫

[a,b]T
∆sg(s).f(s) and

∫

[a,b]T
·∆sg(s).f(s)

In this section we will be showing that if the RS-integral there exists then the
OM-integral exists too. Further, the OM-integral extends properly the RS-
integral.

Theorem 5.1. The existence of the RS-integral implies the existence of
the OM-integral.

Proof. In an immediate way we see that if
∫

[a,b]T

∆sg(s).f(s)

is defined, then
∫

[a,b]T

·∆sg(s).f(s)

is defined too, and we get:
∫

[a,b]T

∆sg(s).f(s) =

∫

[a,b]T

·∆sg(s).f(s) .
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In fact: observe both

1. for a sequence of points t2i, t2i+1, t2i+2 in the partition P̂ ∈ ℘∗ ⊆ ℘, we
have

[g(t2i+2) − g(t2i)] .f(t2i+1)

= [g(t2i+2) − g(t2i+1)].f(t2i+1) + [g(t2i+1) − g(t2i)].f(t2i+1)

and

2. for every q ∈ [r, s]T : [g(ts) − g(tr)]. infσ∈[r,s]T f(σ) ≤ [g(ts) − g(tr)].f(q)
and [g(ts) − g(tr)]. supσ∈[r,s]T f(σ) ≤ [g(ts) − g(tr)].f(q).

Gathering the stated in 1 and 2, we get that the upper and the lower
Darboux-Stieltjes sums for P̂ decreases or increases, respectively, when consid-
ering the Cauchy sum (4.1) in the OM-integral. In this way we get that in fact,
if

∫

[a,b]T
∆sg(s).f(s) exists then

∫

[a,b]T
·∆sg(s).f(s) exists too.

Further, we have

Theorem 5.2. The OM-integral extends properly the RS-integral.

Proof. As shown in Section 3 above when considering f and g as in (3.2)
and (3.1) respectively, we have that

∫

[−1,1]T

∆sg(s).f(s)

does not exist. But on other hand
∫

[−1,1]T

·∆sg(s).f(s) = 1 .

To see this, just define an initial partition of I say: Q̂ = {−1, 0, 1} and
observe that all refinements P̂ of Q̂ that preserve the point 0 as an odd-indexed
element will maintain the value of σ

P̂
(f ; g) constantly equal to 1.

6. The OM-Integral and Discontinuous Dynamic Equations

We shall investigate the following boundary value problem (BVP) for t ∈ I =
[−1, 1]T = H ∪−H ∪ {0},







x∆∆ + A(t)x∆ = h(t),
x(−1) = 0,
x(1) = 1,

(6.1)
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where

A(t) =

{

1, if t ≥ 0,
0, if t < 0,

(6.2)

and h(t) satisfies

∫

[−1,t]T

(t − s)h(s)ds +
t + 1

2
(

1 −
∫

I[(1 − s)h(s)ds]
) =

{

1, if t > 0,
0, otherwise.

(6.3)

It is known that

Theorem 6.1. (see [13], [3]) The BVP (6.1) can be represented by a
Fredholm-Stieltjes integral equation

x(t) =

∫

I

(·)∆sα(t, s).x(s) = m(t), t ∈ I, (6.4)

with (·)∆s denoting either ∆s if the RS-integral is considered or ·∆s if we
consider the OM one, where

α(t, s) =











t − 1

2
[A(s) + (s + 1)A∆(s)], if t > s,

t + 1

2
[A(s) + (s − 1)A∆(s)], if t < s,

(6.5)

and

m(t) =

∫

[−1,t]T

(t − s)h(s)ds +
t + 1

2
[

1 −
∫

I
[(1 − s)h(s)ds]

] .

Theorem 6.2. If in (6.4) we have the OM-integral then we can show that

x(t) =

{

1, if t > 0,
0, otherwise,

is a solution of the problem (6.1). On the other hand oberve that it is not
possible to represent this solution with the RS-integral.

Proof. The delta derivative of the function A in (6.2) (on time scales), A∆,
satisfies A∆(t) = 0 for every t ∈ I.

Then α in (6.5) is the function:

α(t, s) =



























for t > s :

{

t − 1

2
, if s ≥ 0,

0, if s < 0,

for t < s :

{

t + 1

2
, if s ≥ 0,

0, if s < 0,
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showing in this way that by using

x(t) =

{

1, if t > 0,
0, otherwise,

the integral term in (6.4) is equal to zero, since we are using .∆s in the integral.

But m(t) =

{

1, if t > 0,
0, otherwise,

and then x(t) = m(t), and in this way such

function x is a solution of the initial BVP(6.1).
Ending the proof of the theorem: if, on the contrary the RS-integral is

considered in (6.4) then, in the same way that in the example in Section 3
above, we see that

∫

[−1,0]T

∆sα(t, s).x(s) = 0, t ∈ I,

and
∫

[0,1]T

∆sα(t, s).x(s) = 0, t ∈ I,

but
∫

I
∆sα(t, s).x(s) t ∈ I,

does not exist.

7. Conclusion and Perspectives by Considering the OM-Integral in
Dynamic Equations

When considering the time scale T = IR, the OM-integral coincides with the
Dushnik integral one, as shown in [3].

This version arises when we are looking for linear equations of the form

y + ky = f ,

where y, f are elements of a general Banach space F ([a, b],X). It is well known
(see [12]) that if the function k is causal then taking F ([a, b],X) being the set
of all regulated functions the operator k has a simple characterization

(ky)(t) =

∫

[a,t]T

·∆sK(t, s).y(s).

The operator K in the numerical case X = IR is of bounded variation in the
second variable and the bilinearity linking y and K is just the Dushnik integral.
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Then we are able in this way to handle a wide class of Fredholm-Stieltjes integral
equations on spaces of discontinuous functions (see [3]).

Due to all that, we see that a very good perspective for a future use of
the OM-integral in discontinuous dynamic equations on general time scales, is
open.
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