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SUMMARY

The soil CO2 emission has high spatial variability because it depends strongly
on soil properties. The purpose of this study was to (i) characterize the spatial
variability of soil respiration and related properties, (ii) evaluate the accuracy of
results of the ordinary kriging method and sequential Gaussian simulation, and
(iii) evaluate the uncertainty in predicting the spatial variability of soil CO2 emission
and other properties using sequential Gaussian simulations. The study was
conducted in a sugarcane area, using a regular sampling grid with 141 points,
where soil CO2 emission, soil temperature, air-filled pore space, soil organic matter
and soil bulk density were evaluated. All variables showed spatial dependence
structure. The soil CO2 emission was positively correlated with organic matter
(r = 0.25, p < 0.05) and air-filled pore space (r = 0.27, p < 0.01) and negatively with
soil bulk density (r = -0.41, p < 0.01). However, when the estimated spatial values
were considered, the air-filled pore space was the variable mainly responsible for
the spatial characteristics of soil respiration, with a correlation of 0.26 (p < 0.01).
For all variables, individual simulations represented the cumulative distribution
functions and variograms better than ordinary kriging and E-type estimates. The
greatest uncertainties in predicting soil CO2 emission were associated with areas
with the highest estimated values, which produced estimates from 0.18 to
1.85 t CO2 ha-1, according to the different scenarios considered. The knowledge of
the uncertainties generated by the different scenarios can be used in inventories
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of greenhouse gases, to provide conservative estimates of the potential emission of
these gases.

Index terms: soil respiration, geostatistics, ordinary kriging, sequential Gaussian
simulation, sugarcane.

RESUMO: INCERTEZAS NA PREDIÇÃO DA VARIABILIDADE ESPACIAL DA
EMISSÃO DE CO2 DO SOLO E PROPRIEDADES RELACIONADAS

A emissão de CO2 do solo apresenta alta variabilidade espacial, devido à grande dependência
espacial observada nas propriedades do solo que a influenciam. Neste estudo, objetivou-se:
caracterizar e relacionar a variabilidade espacial da respiração do solo e propriedades relacionadas;
avaliar a acurácia dos resultados fornecidos pelo método da krigagem ordinária e simulação
sequencial gaussiana; e avaliar a incerteza na predição da variabilidade espacial da emissão de
CO2 do solo e demais propriedades utilizando a simulação sequencial gaussiana. O estudo foi
conduzido em uma malha amostral irregular com 141 pontos, instalada sobre a cultura de cana-
de-açúcar. Nesses pontos foram avaliados a emissão de CO2 do solo, a temperatura do solo, a
porosidade livre de água, o teor de matéria orgânica e a densidade do solo. Todas as variáveis
apresentaram estrutura de dependência espacial. A emissão de CO2 do solo mostrou correlações
positivas com a matéria orgânica (r = 0,25, p < 0,05) e a porosidade livre de água (r = 0,27, p <0,01)
e negativa com a densidade do solo (r = -0,41, p < 0,01). No entanto, quando os valores estimados
espacialmente (N=8833) são considerados, a porosidade livre de água passa a ser a principal
variável responsável pelas características espaciais da respiração do solo, apresentando correlação
de 0,26 (p < 0,01). As simulações individuais propiciaram, para todas as variáveis analisadas,
melhor reprodução das funções de distribuição acumuladas e dos variogramas, em comparação à
krigagem e estimativa E-type. As maiores incertezas na predição da emissão de CO2 estiveram
associadas às regiões da área estudada com maiores valores observados e estimados, produzindo
estimativas, ao longo do período estudado, de 0,18 a 1,85 t CO2 ha-1, dependendo dos diferentes
cenários simulados. O conhecimento das incertezas gerado por meio dos diferentes cenários de
estimativa pode ser incluído em inventários de gases do efeito estufa, resultando em estimativas
mais conservadoras do potencial de emissão desses gases.

Termos de indexação: respiração do solo, geoestatística, krigagem ordinária, simulação
sequencial gaussiana, cana crua.

INTRODUCTION

In 2005, agriculture accounted for emissions of 5.1 -
 6.1 Gt CO2-eq, representing 10-12 % of the global
emissions and making it the second largest source of
anthropogenic emissions of greenhouse gases (GHGs)
(IPCC, 2007). However, due to the complexity and
uncertainty involved in quantifying soil carbon (C)
balance, in most studies, estimates of GHG emissions
from agricultural soils are included in those related
to forestry and land use changes (IPCC, 2007). This
complexity is due to the high spatial variability (La
Scala et al., 2000; Panosso et al., 2009; Brito et al.,
2010; Teixeira et al., 2011a,b) and temporal variability
(Herbst et al., 2010; Teixeira et al., 2011a,b) in soil
CO2 emissions (FCO2).

Spatial variations in FCO2 are primarily the result
of physical, chemical and biological soil properties
such as organic matter content (Søe & Buchmann,
2005), carbon stock (Panosso et al., 2011), cation
exchange capacity (La Scala et al., 2000 ), microbial
biomass (Søe & Buchmann, 2005) and soil mineralogy
(La Scala et al., 2000).

Geostatistical analysis has been used to describe
the spatial variability of FCO2, using techniques such
as ordinary kriging (OK) and sequential Gaussian
simulation (SGS) for estimations in unsampled regions
of the study area. Although these methods both
produce interpolated values, they are considered
distinct and have different goals and results. The OK
method aims to provide the best and, therefore, the
only estimation of variables of an unsampled location,
whereas the goal of SGS is to provide values that
reproduce the characteristics and behavior of the
source data (Deutsch & Journel, 1998). Another
important feature of SGS is its ability to assess the
uncertainties associated with predictions by taking
into account equiprobable multiple stochastic
realizations. However, in OK, the variance
calculations consider only the location of the data
points and do not provide any measure of the spatial
uncertainty of these estimates, which are obtained
by SGS. Although OK is the most widely used method
for the interpolation of FCO2 values (La Scala et al.,
2000; Ohashi & Gyokusen, 2007; Panosso et al., 2009;
Brito et al., 2010), simulation has been preferred in
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several recent studies (Herbst et al., 2010, Teixeira
et al., 2011a,b), providing an alternative to the
smoothed values estimated by OK.

Because of the importance of sugarcane cultivation
in the State of São Paulo and because of the
uncertainty in the process of CO2 emission and
sequestration from agricultural soils, it is crucial to
characterize the primary factors driving FCO2. This
study aimed (i) to characterize the variability and
spatial distribution of FCO2 as well as physical and
chemical properties, such as air-filled pore space, soil
temperature, organic matter content and bulk density
(BD); (ii) to evaluate the accuracy of the results of OK
and SGS; and (iii) to determine the uncertainty in
predicting the spatial variability of the variables using
SGS.

MATERIAL AND METHODS

The study was conducted on the Fazenda Santa
Olga (21° 21' S, 48° 11' W), which belongs to the São
Martinho Mill, in Guariba, São Paulo State. According
to the Thornthwaite classification, the local climate
can be defined as B1rB’4a’ - type mesothermal humid,
with little water stress, evapotranspiration and less
than 48 % annual evapotranspiration in the summer.
The soil of the area was classified as high clay Oxisol
(Eutrustox, USDA Soil Taxonomy).

Sugarcane (Saccharum spp. var. SP86-155), in a
management system with mechanical harvesting, had
been grown for eight years on the area. At the time of
the study, the soil was devoid of vegetation and covered
with large amounts of crop residue (12 t ha-1). On
July 13, 2010, a regular grid of 60 × 60 m was installed
with 141 points, between 0.5 to 10 m away from the
installation site of PVC rings, used to assess soil CO2
emissions (La Scala et al., 2000) (Figure 1).

The FCO2 was assessed using three portable
systems (LI-COR 8100). The soil chambers were
coupled to a system that quantifies the internal
concentration of CO2 through optical absorption
spectroscopy in the infrared spectral region. Before
starting the experiment, the machines were tested
and calibrated. The evaluations were conducted in the
morning (8:00-9:30 h a.m.) over seven days, on Julian
days 195, 196, 197, 200, 201, 204 and 207 in 2010
(Teixeira et al., 2011b). Concurrently with the
assessment of FCO2 values, soil temperature was
measured with a sensor coupled to the analysis system
(LI-8100) and moisture (% volume) was measured with
a TDR (Time Domain Reflectometer) - Hydrosense
system, both in the 0-0.10 m layer. After the
evaluations, soil was sampled from the same layers
by the volumetric ring method to obtain soil BD and
total pore volume (TPV) (Embrapa, 1997). The air-
filled pore space (AFPS) was obtained by the difference
between the TVP and soil moisture. Disturbed

samples were also taken from the same sites to
determine soil organic matter, using methods
described by Raij et al. (1987). In the analysis, FCO2,
temperature and AFPS were the average values of
the seven days of evaluation.

Descriptive statistics (mean ± standard error,
standard deviation, coefficient of variation,
minimum, maximum, skewness and kurtosis) were
previously used in the description of the variables
to provide interpretations of geostatistical analysis.
The spatial variability of the variables was
determined using experimental variogram modeling
based on the theory of regionalized variables, which
is estimated by:
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where )(ˆ hγ  is the experimental semivariance for a
separation distance h, z(xi) is the property value at
point i, and N(h) is the number of pairs of points
separated by distance h. The variogram describes the
spatial continuity of the variables as a function of the
distance between two locations. In this study,
spherical, exponential and Gaussian models were
used.

The best fit to the variogram model used in the
OK method was based on the cross validation, external
validation, and the coefficient of determination (R2)
obtained for the model fit. For the variogram used in
the simulation process, only the model’s coefficient of
determination was considered, as it is a stochastic
method and validations are available only after
completing all stages of the process.

Figure 1. Sampling grid with 141 points to assess
FCO2, temperature, soil moisture and physico-
chemical soil properties. (•) Points used in the
procedure for external validation.
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For external validation, 14 randomly selected
points (10 % of the original data) (Teixeira et al.,
2011a) were removed from the sampling grid (Figure
1) before creating the variogram model. The values
observed at those points are then compared with the
values estimated by OK and simulated by SGS at those
points. In two validations (cross and external),
observed and estimated values were used to calculate
the root mean square error (RMSE).
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where n is the number of values used in the validation,
z(xi) is the property value at point i, and  ( )ˆ

ixz   is the
estimated value of the property at point i. Smaller
RMSE values indicate higher accuracy in the
estimates.

Ordinary kriging is a weighted average of the
neighboring samples, and the weights for each
neighbor are determined through structural
correlations in the data, represented by the
semivariance )(ˆ h�  as a function of h (Equation 1) and
resulting in an estimate of minimum variance. The
KB2D routine of the GSLIB - Geostatistical Software
Library (Deutsch & Journel, 1998) was used to
calculate OK estimates.

Stochastic simulations that reproduce the
distribution reference points (data) are prioritized
in relation to an optimal prediction with minimum
variance estimation (OK). Several simulation
algorithms are available. In this study, we used a
SGS. In SGS, equiprobable maps of the distribution
of variables are produced using the standard model
of the variogram. The differences between the
various outputs provide a measure of uncertainty
in the prediction of spatial data. The stages of the
SGS can be studied in more detail in Deutsch &
Journel (1998).

In this paper, 300 realizations of each variable were
considered. We randomly selected the 30th, 68th, 176th

and 214th realization of each variable to represent 300
individual simulations. We chose random realization
to maintain the characteristics of the method, as the
selection of outputs based on a specific parameter can
limit the amount of uncertainty provided by the
method. The SGS procedure was based on the SGSIM
routine in the Geostatistical Software Library
(Deutsch & Journel, 1998).

Maps of minimum, medium (E-type), maximum
and standard deviation were produced by counting
the simulated points at each location in the 300
realizations. Pearson’s analyses were conducted in the
E-type estimates to compare the spatial patterns of
the variables.

The accuracy and goodness-of-fit (G statistics) of
the probability density function provided by the
different interpolation methods were evaluated based

on the G statistics, as proposed by several authors
(Goovaerts, 2001; Herbst et al., 2010; Bourennane et
al., 2010). The simulated/estimated values and the
original data located at intervals of probability p,
defined by the limits (1-p)/2 and (1+p)/2, were
compared using ))(,(ˆ nzuF . Based on the cumulative
density function (cdf) calculated for any location u of

))(,(ˆ nzuF  and z(uj) with j = 1, ... N, the fraction of
true values falling into a series of symmetrical
probability intervals p is obtained by the equation:
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Thus, to evaluate the proximity between simulated/
estimated fractions and the data set, we calculated
the G statistic as shown below:
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For inaccurate cases in which  � pp)(� , the values
of a(p) are twice as accurate as for cases in which

� pp)(� . The best reproduction of the cdf is
represented by a G value closer to 1.

According to Goovaerts (2001), the accuracy in the
reproduction of the variogram can be evaluated by
the following equation:
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where S is the number of lags used to construct the
variogram, and 

sh )(�  is the semivariance in distance
hs calculated from the estimated/simulated values.
Values close to 0 indicate good accuracy in the
reproduction of the variogram.

To assess the quality of E-type estimates for each
variable, the generated maps were subjected to external
validation (Bourennane et al., 2010) based on the root
mean square error (RMSE) (Equation 2) and mean
error (ME) (Teixeira et al., 2011a) data by the following
equations:
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where n is the number of values used in the validation
(n=14), z(xi) is the property value at point i, ( )ˆ ixz  is
the E-type estimates at point i. For unbiased estimates,
ME should be close to zero.
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The ME and RMSE values provide, respectively,
measures of bias and accuracy in the estimates
generated, however due to the existence of different
scales between variables, a comparison of these
characteristics between them becomes inappropriate.
This problem was solved by standardization of the
indices using the standard deviations of each variable
(Table 1) (Hengl, 2007).

RESULTS AND DISCUSSION

The average soil CO2 emission (1.57 ± 0.07 μmol
m-2 s-1) in the evaluation period was lower than
reported in other studies in Oxisols for sugarcane
areas (Panosso et al., 2011), a difference that may
be related to a lack of rainfall in the days before the
experiment; high soil compaction, as indicated by
mean values of BD of 1.50 ± 0.01 g cm-3; and low
organic matter content (4.75 ± 0.05 g dm-3) (Table
1). Brito et al. (2009) evaluated soil respiration
associated with sugarcane in a green harvest
management system at different topographic
positions and found average emission values from
2.39 to 2.97 μmol m-2 s-1. High variability in
emissions, characterized by a high CV value (50.02
%), has been reported in several studies, obviating
the need for spatial characterization of this property
using geostatistics (Teixeira et al., 2011a). The
homogeneity observed in the soil temperature
(CV = 1.69 %) is most likely related to the soil being
covered with crop residues, which is characteristic
of green management (Panosso et al., 2009).

The emission was positively linearly correlated
with AFPS (r = 0.27, p < 0.01) and organic matter
content (r = 0.25, p < 0.05) and negatively correlated
with BD (r = -0.41, p < 0.01). The AFPS and BD
directly impact the process of gas transport in soil,
affecting both the entrance of oxygen, which is
necessary for aerobic microbial activity, and the output
of CO2, which is a byproduct of microbial activity.
The OM, in turn, is the primary source of energy
used by the microbes, thus explaining its positive
relationship with soil respiration.

Panosso et al. (2011) used multiple regression
analysis to model the FCO2 in sugarcane areas under
green and slash-and-burn management, and they
observed that the AFPS was selected for both models,
being responsible for 18 % of the variability of FCO2
under sugarcane cultivation. Linn & Doran (1984)
studied the effect of water-filled pores on soil respiration
and found the highest rates of emission under
conditions close to 60 % filling of the pores, at a density
of 1.40 g cm-3, conditions very different from those
obtained in our study, in which, on average, only 37
% of the pores were filled with water.

Ohashi & Gyokusen (2007) studied the spatial and
temporal variability of soil respiration in forest areas

(Cryptomeria japonica D. Don) and identified soil
compaction as a factor related to emission. Although
the present study did not find a correlation between
emissions and soil temperature, the temperature can
directly influence the production process by affecting
the dynamics of soil microorganisms. The lack of
correlation between temperature and respiration can
be attributed to the low variability in temperature
during the evaluations (Table 1).

The structure of spatial variability was
characterized by adjusting the variogram models
(Table 2). For most geostatistical techniques, such as
OK, a normal data distribution is not required;
however, normality is desired to allow the inference
of statistics such as maximum likelihood (Deutsch &
Journel, 1998). Thus, a logarithmic transformation
was used for FCO2 to correct the asymmetric values
shown in Table 1. This procedure is often used to
describe spatial FCO2 (Panosso et al., 2009; Herbst et
al., 2010; Teixeira et al., 2011b). After the FCO2
transformation, the normality of distribution was
confirmed by the Kolmogorov-Smirnov test (p > 0.15).
However, for predictions based on SGS, transformation
should be performed to ensure the normality of the
data (Table 2). After the spatial estimates are
produced, in both cases, the estimated values are re-
transformed to the original data scale again.

With the exception of temperature and BD, the
same models were obtained for the unprocessed and
processed data. For FCO2, Gaussian models were the
best fit, although in most other studies, spherical
models (Brito et al., 2010; Herbst et al., 2010; Teixeira
et al., 2011a) and exponential models (Panosso et al.,
2009) fit better. Each model describes variability in
different ways, and, along with the parameters, is
responsible for the spatial patterns of each variable.
The spherical model is appropriate for abrupt changes
in variables with large distances, and the exponential
model describes relatively irregular phenomena,
whereas the Gaussian model is adopted for regular
and continuous phenomena. Thus, the fit of the
Gaussian model to the experimental variogram of
FCO2 demonstrates that, despite the high variability
(Table 1), spatial distribution is smoothly distributed
in space. This pattern could be due to the arrangement
of points in the sampling grid used in this experiment
and to the fact that the soil was covered by crop
residues. The extremely dense sampling grid enabled
the evaluation of small-scale variables (0.50 m),
allowing the identification of similarity over short
distances.

The degree of spatial dependence was classified as
moderate for all variables, characterized by the
relation 0.25 < C0/C0+C1 < 0.75 (Cambardella et al.,
1994). By comparing the models fitted to variograms
used in SGS and OK, the similarity of the spatial
dependence values and ranges demonstrated that the
spatial structure remained even after normalization.
These results were similar to those found by Delbari
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et al. (2009) in their evaluation of the spatial
uncertainty of soil water content.

Brito et al. (2010) and Panosso et al. (2009)
studied the FCO2 in soils under sugarcane with
green harvest management and found moderate
spatial dependence structures. Herbst et al. (2010),
evaluating the FCO2 in soil without vegetation,
found dependence structures ranging from weak to
strong. The range obtained for FCO2 (27.02 m) was
similar to that found by Brito et al. (2010) for back-
slope and foot-slope topographic positions for the the
same soil type and vegetation. Panosso et al. (2009),
using a sampling grid with 60 points spaced 13.30
m apart (190 × 50 m), observed values ranging from
complete independence between the samples to near
73.2 m.

The correlation of FCO2 with the BD was closer
(r = -0.41, p < 0.01), but the high similarity between
the ranges in the variogram models fitted to FCO2
(27.02 and 25.39 m) and AFPS (30.93 and 26.50 m)
suggests a higher spatial correlation between them,
which was possibly the variable with the strongest

influence on FCO2 in this study. The BD and OM had
lower (11.28 and 12.74 m) and higher (49.72 and 46.59
m) range values, respectively, indicating a lower
spatial continuity in the BD around OM.

Each realization represents a realistic image of the
spatial distribution of the variable without the
smoothing effect created by OK (Delbari et al., 2009).
The differences between the realizations provide
alternative visual measures of the spatial uncertainty
associated with estimates (Deutsch & Journel, 1998).
The standard deviation maps represent the point
variation in all simulated realizations (n=300); in other
words, they represent the local uncertainty associated
with predictions based on observed values and the
sampling grid (Grunwald et al., 2007). Thus, the
deviations become zero at the points of observed values,
due to the conditional characteristic of the simulation
(Figure 2). There is a predominance of high FCO2
values (> 3.30 μmol m-2 s-1), in the upper right and
center of the map, whereas low values (> 1.80 μmol
m-2 s-1), are distributed throughout the area, but with
greater consistency in the upper portion of the map.

Variable Mean SE(6) SD(7) CV(8) Min(9) Max(10) Skew(11) Kurt(12) KS(13)

FCO2
(1) 1.57 0.07 0.79 50.02 0.34 4.08 0.86 0.14 < 0.01

AFPS(2) 34.21 0.44 5.22 15.26 22.95 49.15 0.14 -0.01 0.13
Temp(3) 19.40 0.03 0.33 1.69 18.50 20.33 -0.44 0.59 0.05
OM(4) 4.75 0.05 0.57 11.89 3.00 6.10 0.10 0.02 > 0.15
BD(5) 1.50 0.01 0.14 9.50 1.06 1.86 -0.25 0.39 > 0.15

Table 1. Descriptive statistics of soil CO2 emission and influential properties

n=141; (1) Soil CO2 emission (μmol m-2 s-1); (2) Air-filled pore space (%); (3) Soil temperature (ºC); (4) Organic matter content (g dm-3);
(5) Bulk density (g cm-3); (6) Standard error of the mean; (7) Standard deviation; (8) Coefficient of variation; (9) Minimum; (10)

Maximum; (11) Skewness; (12) Kurtosis; (13) p-value of Kolmogorov-Smirnov normality test.

Variable Transf(1) Model C0
(4) C0+C1

(5) A(6) C0/C0+C1
(7) R2 CV(8) EV(9)

FCO2 Ln(2) Gaus.(10) 0.15 0.31 27.02 0.50 0.90 0.79 0.42
Normal(3) Gaus. 0.68 1.19 25.39 0.57 0.90 — —

AFPS — Exp.(11) 14.88 24.89 30.93 0.60 0.99 5.02 5.11
Normal Exp.  0.60 1.07 26.50 0.56 0.99 — —

Temp — Gaus. 0.06 0.12 21.95 0.48 0.97 0.30 0.28
Normal Sph.(12) 0.46 0.83 20.20 0.56 0.73 — —

OM — Gaus. 0.19 0.40 49.72 0.48 0.88 0.50 0.50
Normal Gaus. 0.65 1.32 46.59 0.49 0.99 — —

BD — Exp.  0.01 0.02 11.28 0.66 0.81 0.13 0.14
Normal Sph.  0.69 0.98 12.74 0.71 0.76 — —

Table 2. Type of transformation used and parameters of models fitted to experimental variograms of soil
CO2 emissions (FCO2), air-filled pore space (AFPS), soil temperature (Temp), organic matter content
(OM) and soil bulk density (BD)

n=127; (1) Transformation of data distribution; (2) Natural logarithmic transformation; (3) Normal transformation; (4)Nugget effect;
(5) Sill; (6) Range (m); (7) Spatial dependence degree; (8) RMSE rates for cross-validation; (9) RMSE rates for the external validation;
(10) Gaussian model; (11) Exponential model; (12) Spherical model.
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The standard deviation map associated with the
estimation of FCO2 indicates that the deviation was
greater for areas with high estimated values, which
are more uncertain than the lowest values. This result
is similar to that reported by Grunwald et al. (2007)
for estimates of total soil phosphorus.

The various realizations randomly selected for the
spatial representation of AFPS demonstrate some
specific patterns, such as the presence of intermediate
values, 32.95 to 40.45 %, in the upper right and center
of the maps. For the soil temperature, consistently
low values (< 16.75 °C) are observed in the upper left,
whereas intermediate values (19.5 to 20.0 °C) are
observed in the central portion of the images. The
simulated values above 20.25 °C were associated with
a large uncertainty throughout the entire area.
Higher values of organic matter with high variability
predominate in the central part of the map. Although
areas with high BD values are evident in some
realizations, their predictions are highly uncertain.
For the soil temperature, the highest deviations were
associated with lower predicted values. In contrast,
for AFPS and BD, the greatest deviations were
observed in regions with lower-density samples, as

similarly found by Delbari et al. (2009). For OM, high
deviations are distributed across the entire
experimental area.

The reproduction of the cumulative probability
density functions (cdfs) and variograms of the
interpolated data were used to evaluate the accuracy
of the results provided by OK and SGS (Table 3). For
all variables, the simulations better the individual
cdfs and variograms reproduced when compared to
OK, with values of G statistics and e(g) closer to 1
and 0, respectively. Again, the statistics displayed a
high degree of similarity between the E-type estimates
and those generated by OK (Table 3 and Figure 2).
The low performance of OK in the reproduction of the
variogram and cdfs shows that it should not be used
when a reproduction of the statistics and variability
structure of the data is desired.

Ergodic fluctuations, which are small differences
between the observed values and those predicted by
SGS, are produced at each step of the simulation
procedure (Goovaerts, 2001) and play a key role in
increasing uncertainty and making the estimate
more conservative. The exact reproduction of these
functions is only advisable when measuring the

Figure 2. Spatial pattern and deviations maps based on sequential Gaussian simulation (SGS) and ordinary
kriging (OK).
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accuracy and reliability of the samples (Deutsch &
Journel, 1998).

Another factor that may influence the low
reproduction of the cdfs and the variogram by the SGS,
originates in the process of restructuring the
variogram model due to normalization and the
subsequent use of OK in the estimation of local
averages, a procedure used to circumvent the lack of
stationarity in the observed data (Deutsch & Journel,
1998). Bourennane et al. (2010) claim that all features
of the simulation, including the use of simple or
ordinary kriging, the maximum number of nodes
simulated, the search radius and the choice of upper
and lower values of interpolation, significantly affect
the quality of the results.

According to Grunwald et al. (2007), the average
represents the dominant property signal in the area,
whereas the range of possible results is characterized
by the minimum and maximum values, representing
the best and the worst possible scenario for each
variable. The FCO2 showed a mean variation in an
area from 0.36 to 3.85 μmol m-2 s-1, resulting in a
wide range of emission (from 0.18 to 1.85 t CO2 ha-1),
over a short time, in different scenarios. This wide
range, although within the limits of observed values
(Table 1), is due to the presence of areas with lower-
density samples that resulted in extremely erratic
estimates.

Considering the emissions for sugarcane
cultivation reported by De Figueiredo & La Scala
(2011) and the different estimates generated in this
work, FCO2 is the primary source of emissions in
areas with green sugarcane management and is
even higher than emissions from N fertilizers and

diesel, indicating a significant shift in the
composition of greenhouse gas emissions. The map
of the minimum FCO2 values shows significant
homogeneity in the area, whereas that generated
with the highest values is similar to the E-type
estimate and the standard deviation map (Figure
2) shows lower values at the top and bottom left
and center-right of the map.

The uncertainty associated with estimates of soil
properties, combined with the construction of different
scenarios, provides useful information on the possible
patterns of soil respiration, a property that is extremely
erratic and difficult to predict because many properties
have a direct or indirect relationship with FCO2, with
very close interval values.

By the E-type estimates, spatial relationships could
be established between FCO2 and other properties
(Figure 2). As indicated by the variogram (Table 2),
the AFPS had the highest spatial correlation (r = 0.26,
p < 0.01) with FCO2. Similarly to the AFPS, although
less intense, the correlations of OM and soil
temperature were also positive (0.13 and 0.04,
respectively, p < 0.01). The BD had a correlation of -
0.12 (p < 0.01). Although the soil temperature was
correlated with FCO2 when spatial patterns were
considered, the spatial correlation for the other
variables was lower, indicating the difficulty of
predicting the spatial FCO2 based on factors that can
influence it.

The external validation procedure is often used to
compare the quality and application of different
interpolation methods (Teixeira et al., 2011a,b);
however, in this case, the performance of E-type
estimates generated for each variable was evaluated
(Bourennane et al., 2010) (Table 4). According to the
MEs values, the estimates for the AFPS (-0.07) had
the least bias among the variables, slightly
underestimating the validation points. The FCO2 was
the variable with the greatest data underestimation,
with a MEs value of -0.48. For soil temperature and
BD, the models used in the simulation process
overestimated the validation set.

OK(6) E-type SGS(7) 30 SGS 68 SGS 176 SGS 214

G statistics
FCO2

(1) 0.26 0.25 0.28 0.28 0.53 0.48
AFPS(2) 0.38 0.27 0.29 0.66 0.64 0.69
Temp(3) 0.38 0.35 0.58 0.58 0.58 0.58
OM(4) 0.27 0.27 0.59 0.59 0.58 0.60
BD(5) 0.22 0.24 0.60 0.60 0.62 0.60

ε(γ)

FCO2 6.28 6.96 2.62 0.94 1.23 1.25
AFPS 5.61 8.38 0.30 0.18 0.20 1.22
Temp 6.16 6.54 0.16 0.32 0.13 0.25
OM 7.85 7.56 0.23 0.14 0.20 0.09
BD 8.80 7.95 0.18 0.30 0.19 0.28

Table 3. Evaluation of the goodness-of-fit (G statistics)
of the probability density function and accuracy
in the reproduction of the variogram (εεεεε(γγγγγ))

(1) Soil CO2 emission; (2) Air-filled pore space; (3) Soil temperature;
(4) Organic matter; (5) Soil bulk density; (6) Ordinary kriging; (7)

Sequential Gaussian simulation.

FCO2
(1) AFPS(2) Temp(3) OM(4) BD(5)

ME -0.38 -0.34 0.05 -0.17 0.03
MEs -0.48 -0.07 0.15 -0.30 0.21
RMSE  0.90  5.32 0.28  0.52 0.14
RMSEs  1.14  1.02 0.85  0.91 1.02

Table 4. Mean error (ME), standardized mean error
(MEs), root mean square error (RMSE),
standardized root mean square error (RMSEs),
applied to the external validation data for the E-
type maps

n=14; (1) Soil CO2 emission; (2) Air-filled pore space; (3) Soil
temperature; (4) Organic matter; (5) Soil bulk density.
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According to Hengl (2007), RMSEs values > 0.71
indicate that the models captured less than 50 % of
the variability in the points used for validation.
Although all RMSEs values were considered high, soil
temperature was the variable with the most accurate
estimates, with a value of 0.85. The soil temperature
estimates were 7.06 (OM) to 34.12 % (FCO2) more
accurate than the other variables.

CONCLUSIONS

1. The strong relationships observed between the
sampling points and spatial estimates of CO2
emissions (FCO2), bulk density and air-filled pore
space suggest the utility of these as covariates in
interpolation procedures of FCO2 to improve the
accuracy of estimates of unsampled locations.

2. The configuration of the sampling grid and the
soil covered with crop residues may have influenced
the characterization of the spatial distribution of FCO2,
temperature and OM, leading to a more homogeneous
distribution of these properties on a small scale (less
than 3 m).

3. The individual simulations maintained the
characteristics of the original data better than ordinary
kriging, reproducing the original variograms and
histograms.

4. By sequential Gaussian simulation, areas with
higher uncertainties were identified for the estimated
properties, which is particularly important for sample
designs that reduce uncertainty and thus increase
the spatial accuracy of the estimates.
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