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ABSTRACT 

Brazil stands out worldwide for its high grain production in areas of direct sowing. The 
objective of this study was to simulate and assess the relationship of soil organic carbon 
content and nitrogen, crop yield, and biomass of two crop sequences under the no-tillage 
system in a subtropical region of São Paulo, Brazil, using CSM-CROPGRO-Soybean and 
CSM-CERES-Maize models. The modeling was carried out considering the 
meteorological conditions of Jaboticabal, SP, Brazil. The treatments consisted of 
combining two summer crops (maize and soybean) with maize cultivation as a winter 
crop. The average biomass and productivity for corn were 15594 kg ha−1 and 5996 kg 
ha−1, respectively, and for soybeans they were 5905 kg ha−1 and 3441 kg ha−1, 
respectively. For soil organic carbon and nitrogen, a small variation was observed 
between years, and in addition there was a decline in their levels after a year with low 
biomass production. In our study, the RMSE and MAPE values between the observed and 
simulated productivity by the model were 2.21 kg ha−1 and 44.24%, respectively. The 
analysis of main components for the cultivation of corn explained 83.9% of the 
variability, and for the cultivation of soy, 93.5%. Among the tested models, the 
CROPGRO was the one with the best accuracy.  

 
 
INTRODUCTION 

The no-tillage system (NTS) has been presented as 
an alternative to mitigate the emission of greenhouse gases 
(GHG) arising from agricultural practices (Lal, 2015; Bayer 
et al., 2016; Paustian et al., 2016; De Araújo Santos et al., 
2019). It is considered a low carbon agriculture system, 
resulting in increases in soil carbon stocks after some years 
of its implementation (Lal, 2015; De Araújo Santos et al., 
2019; Silva et al., 2019). Besides, the NTS is also 
characterized by improving the physical, chemical, and 
biological structure of the soil (Raphael et al., 2016; 
Rosolem et al., 2016; Calonego et al., 2017). 

However, some studies have reported that in the 
NTS, the increase in organic matter will only be effective 
when a species that is efficient in biological nitrogen 
fixation process is incorporated into the crop rotation 
(Rosolem et al., 2016). It is estimated that for every 10 units 
of carbon sequestered in the soil, there is a need to 
immobilize one unit of nitrogen (Six et al., 2002). 

Aiming at the feasibility of employing decision 
support systems in different regions and climates, 
computational models seem to be a valuable alternative to 
estimate the amount of carbon and organic nitrogen in the 
soil, depending on climatic conditions and cultural and soil 
management practices, in a given period (Weber et al., 
2016). The decision support system for agrotechnology 
transfer (DSSAT) is widely used to simulate crop yield, 
development, and income. The residual component of soil 
organic matter (SOM) of the CENTURY model was 
incorporated into the DSSAT, allowing for simulations 
and for conducting long-term sustainability analyses (Liu 
et al., 2017).  

The objective of this study was to simulate and 
assess the relationship of soil organic carbon content and 
nitrogen, crop yield and crop biomass of two sequencing 
crops (soybeans and maize) under the NTS in a subtropical 
region of São Paulo, Brazil, using the CSM-CROPGRO-
Soybean and CSM-CERES-Maize models. 
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MATERIAL AND METHODS 

Location and characterization of the experimental area 

This experiment was carried out in the municipality 
of Jaboticabal, SP, at the coordinates 21°15′22′′ S and 
48°18′58′′ O at 550 m altitude, during July and August 2016 
for the 2015/2016 agricultural year. The climate of the 
region, according to the classification of Thornthwaite 
(1948), is of the B1rB’4a’, humid mesothermal, with little 
water deficiency, presenting an average annual temperature 
of 22.2°C with the average of the hottest month being over 
22ºC and the average coldest month being above 18ºC. 
There is an average annual precipitation of 1.425 mm, with 
higher volumes from October to March (Rolim & 
Aparecido, 2016). 

The soil was classified as eutrophic Red Latosol, 
clay texture (Santos et al., 2013). Since 2001, the area has 
been under the NTS and the results presented in this study 
correspond to the years 2003 to 2016. Before the 
implementation of the system, it was used for the production 
of soybeans and corn in a conventional soil tillage system 
for 25 years. 

The treatments consisted of a combination of two 
sequences of summer crops with one winter crops. For the 
summer, there was either monoculture of maize (Zea mays 
L.) (MM) or soybean (Glycine max L.) (SS), and maize was 
the winter crop. For more information on the crop 
treatments and experimental design, consult Marcelo et al., 
(2009), De Araújo Santos et al., (2019) and Xavier et al., 
(2020).  

Modeling procedures and input variables  

The CROPGRO (Jones et al., 2001), CERES (Jones 
& Kiniry, 1986) and CENTURY (Parton et al., 1994) 
models were applied to simulate crop yield, crop biomass, 
and soil organic carbon and nitrogen from 2004 to 2016 for 
the cultivation of maize and soybeans. Site-specific input 
variables, such as soil texture (sand, silt, and clay contents), 
soil density, and SOC and SNT contents, and average 
annual productivity for soybeans and corn were extracted 
from published works (Marcelo, 2007; Marcelo et al., 2009; 
Marcelo, 2011; Martins et al., 2012) with results for the 
years 2003, 2005, 2006, 2007, 2009, and 2010 from the 
experimental area described in 2.1. The data from 
meteorological elements for Jaboticabal, SP, Brazil were 
used in the DSSAT program. The daily inputs were 
maximum temperature, minimum temperature, wind 
speed, relative humidity, precipitation, and global solar 
radiation. These variables were obtained from the 
Meteorological Station of the Faculdade de Ciências 
Agrárias e Veterinárias da Universidade Estadual Paulista 
“Júlio de Mesquita Filho” (FCAV-UNESP). The FAO 56 
method was used to estimate crop evapotranspiration 
(ETc). 

Data analysis and model evaluation metrics 

The data were initially analyzed using descriptive 
statistics (mean, standard error of the mean, standard 
deviation, minimum, maximum, coefficient of variation, 
asymmetry, and kurtosis) of the simulated data. 
Subsequently, the percentage deviation (%) (Equation 1) of 
the estimated values from the observed values of 
productivity were established (kg ha−1): 

𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(%) = ቂ
(ௌ௜௠௨௟௔௧௘ௗିை௕௦௘௥௩ )

ை௕௦௘௥௩௘ௗ
ቃ 𝑥100     (1) 

 
The performances of the models were evaluated 

using linear regression analysis, in which the independent 
variables were those of the observed data and those 
dependent on the results extracted from the DSSAT. The 
adjusted coefficient of determination (R2adj.) (Equation 2) 
was calculated according to Cornell & Berger (1987) and 
the square root of the mean error (RMSE) (Equation 3) and 
absolute percentage of the error (MAPE) (Equation 4) 
(Willmott, 1981): 

𝑅ଶ𝑎𝑑𝑗𝑢𝑠𝑡𝑒𝑑 = ቂ1 −
(ଵିோమ)∗(௡ିଵ)

ேି௞ିଵ
ቃ       (2) 

Where:  

N is the number of points in the data sample, 

K is the number of independent regressors, that is, 
the number of variables in the model, excluding the 
constant. 

 

 𝑅𝑀𝑆𝐸 = ට
∑ (௒௢௕௦೔ ି௒௘௦௧௜೔)మಿ

೔సభ

ே
       (3) 

 

 𝑀𝐴𝑃𝐸(%) =
∑ ቀቚ

ೊ೐ೞ೟భషೊ೚್ೞభ
ೊ೚್ೞభ

ቚ௫ଵ଴ ቁ೙
೔సభ

ே
                     (4) 

Where: 

N is the number of points in the data sample;  

Yobsi is the observed value of Y, and  

Yesti is the estimated value of Y. 
 

Principal component analysis is an exploratory 
multivariate technique that condenses the information 
contained in a set of original variables into a set of smaller 
dimensions, composed of new latent variables, preserving a 
relevant amount of the original information. The new 
variables are the eigenvectors (main components) generated 
by linear combinations of the original variables, constructed 
with the eigenvalues of the covariance matrix. 

The main components whose eigenvalues were 
higher than the unit were considered according to the 
criterion established by Kaiser (1958). The coefficients of 
the linear functions, which define the main components, 
were used to interpret their meaning, using the sign and the 
relative size of the coefficients as an indication of the weight 
to be assigned to each variable. Only coefficients with high 
values were considered for interpretation, usually those 
greater than or equal to 0.50 in absolute value. These 
analyses were processed using R (R Development Core 
Team, 2017). 

 
RESULTS AND DISCUSSION 

The mean of maize biomass for all simulated years 
was 15594 ± 597 kg ha−1, while for soybean it was 5905 ± 
164 kg ha−1 (Table 1). The crop yield was 5996 ± 275 and 
3441 ± 121 kg ha−1 for maize and soybean, respectively 
(Table 1). According to the Companhia Nacional de 
Abastecimento-CONAB (2010), the forecast of maize yield 
for the 2010 harvest was 3906 kg ha−1 in Brazil, with a 
surplus of 2000 kg ha−1 compared to the DSSAT simulation. 
The soybean yield forecast from CONAB in 2010 was 2629 
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kg ha−1, with a value lower than the means found for the 
simulated experiment in the DSSAT. The values of soil 
organic carbon and nitrogen were the same for both crop 
sequences (Table 1). The values of the coefficient of 
variation of the organic carbon of the soil were low, thus 
demonstrating that the variation of this variable during the 
13-year chronosequence was quite limited. 

The use of maize in crop sequences is a practice 
highly recommended in the literature since maize has a high 
potential for biomass production when compared to 
soybeans (De Araújo Santos et al., 2019). Furthermore, the 

physiological processes of maize cause the crop to produce 
a biomass rich in carbon (Taiz & Zeiger, 2010), resulting in 
a slower breakdown and hence increasing the soil carbon 
content (Martins et al., 2012).  

Another reason for the possible relationship of the 
highest levels of soil organic carbon in areas with maize 
cultivation in the sequence of crops is that their roots are the 
main pathways for the release of plant exudates into the soil, 
which end up interfering with microbial activity that causes 
them to release exudates that enrich the soil with organic 
carbon (Austin et al., 2017; Faucon et al., 2017).  

 
TABLE 1. Descriptive statistics of crop biomass (kg ha−1) and crop yield (kg ha−1) for maize in the sequence maize-maize and 
soybean in the sequence soy-maize and soil surface total organic carbon at maturity (OCTAM, kg ha−1), soil organic carbon at 
maturity (OCAM, kg ha−1), soil surface total nitrogen at maturity (ONTAM, kg ha−1), and soil nitrogen at maturity (ONAM, 
kg ha−1). 

Maize 
 Mean ± SE Min Max SD Kurt CV% 

Crop Biomass 15594 ± 597 10013 18043 2153 316.29 13.81 

Crop Yield 5996 ± 275 4443 7268 992 −125.46 16.54 

OCTAM 24.59 ± 0.01 24.49 24.65 0.04 −0.01 0.18 

OCAM 24.59 ± 0.01 24.49 24.65 0.04 −0.01 0.18 

ONTAM 34.29 ± 2.86 34.17 34.44 10.39 −149.56 30.30 

ONAM 34.29 ± 2.86 34.17 34.44 10.39 −149.56 30.30 

Soybean 
 Mean ± SE Min Max SD Kurt CV% 

Crop Weight 5904 ± 164 4957 7419 593.74 299.78 10.05 

Crop Yield 3441 ± 121 2630 4375 439.61 0.99 12.7 

OCTAM 24.50 ± 0.02 24.37 24.58 0.07 −150.08 0.30 

OCAM 24.45 ± 0.02 24.33 24.53 0.07 −150.58 0.31 

ONTAM 34.17 ± 5.41 33.85 34.44 19.82 −129.94 57.99 

ONAM 34.14 ± 5.41 33.82 34.42 20.11 −128.24 58.91 

N = 13; SE, standard error of the mean; Min, minimum; Max, maximum; SD, standard deviation; Kurt, kurtosis; CV, coefficient of variation 
(%). 
 

The results of the temporal variation of crop yield 
and weight showed similar behaviors for both soybean 
(Figure 1A) and maize (Figure 1B). Olibone et al., (2010) 
and Caires et al., (2015) observed that crop weight 
production indicates, in most cases, good yield values. 

The levels of organic carbon decreased slightly after 
2010 (Figure 1). This fall in SOC and SON levels occurred 
just after the years when crop yields were low. This indicates 
that the production of crop weight did not exceed that of 
previous years when compared to years with a higher crop 

biomass/yield. In this way, the microorganisms may have 
consumed the organic matter present in the area, causing the 
decrease. Such behavior was observed for the two sequences 
studied. It is worth mentioning that although there was a 
decrease in the levels of total organic carbon, this variation 
was very low (Table 1). 

The levels of organic nitrogen, as well as those of 
carbon, also decreased as time went on, and this was already 
expected since as the levels of organic matter in the soil 
decreased, there was also a decrease in nitrogen (Batjes, 1996). 
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FIGURE 1. Temporal variation of crop biomass (kg ha−1) and crop yield (kg ha−1) for maize in the sequence maize-maize and 
soybean in the sequence soy-maize and soil surface total organic carbon at maturity (OCTAM, kg ha−1), soil organic carbon 
at maturity (OCAM, kg ha−1), soil surface total nitrogen at maturity (ONTAM, kg ha−1), and soil nitrogen at maturity (ONAM, 
kg ha−1). 
 

For maize, the yield was an overestimation for the 
years 2005 and 2007 where the percentage difference was 
positive (5.65 and 6.09%), while for the years 2003, 
2006, 2009, and 2010, the DSSAT underestimated the 
values productivity, where 2006 and 2010 showed the 

biggest differences (Table 2). For the soybean yield, only 
the year 2005 presented an underestimated percentage, 
while for the other years the difference was always 
overestimated, with the highest values for the years 2007 
and 2009. 
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TABLE 2. Percentage difference between the observed and estimated yield for maize and soybean under no-tillage. 

Yield of maize (kg ha−1)  

Year Simulated Observed Deviation (%) 

2004 7123 7156 −0.46115 

2005 5453 6273 5.659174 

2006 6628 7911 −17.6969 

2007 6511 6649 6.091142 

2009 4505 7100 −3.95775 

2010 6819 7000 −14.6571 

Yield of soybean (kg ha−1) 

Year Simulated Observed Deviation (%) 

2004 3604 2955 21.96277496 

2005 3135 3284 −4.537149817 

2006 3568 3123 14.24911944 

2007 3413 2754 23.92883079 

2009 3301 2600 26.96153846 

2010 3817 3400 12.26470588 
 

The model adjustment (R²adj. 0.91, p < 0.05) was 
significant only for soybean productivity (Figure 2). The 
adjusted coefficient of determination indicated an optimal 
fit of the model. With R²adj. 0.91, this means that 91% of 
the variation in soybean yield was explained by the model. 
Yang et al., (2014) found an R2 of 0.96 between simulated 
and observed data for soybean yield in an area without 
irrigation, while in irrigated areas, Dogan et al., (2007) 
found values of R2 of 0.94 and 0.88 for 2003 and 2004, 
respectively. Thus, it can be seen that the CROPGRO 
model can satisfactorily simulate soybean productivity 
under different management conditions in Jaboticabal, São 
Paulo, Brazil. 

Still, for the performance of the model, it is worth 
noting that both RMSE and MAPE are good metrics to use 
for calibrating the model because the RMSE has the same 
unit of measurement as the simulated variables and the 
MAPE is given as a percentage (Yang et al., 2014). In our 
study, the RMSE and MAPE values between the observed 
and simulated productivity by the model were 2.21 kg ha−1 
and 44.24%, respectively. Coelho et al., (2018), simulating 
sugarcane productivity for the municipality of Jaboticabal, 
found RMSE values for the cultivars studied ranged 
between 1.91 and 2.58 Mg ha−1. 

 

 

FIGURE 2. Linear regression and validation between soybean yields observed and estimated by DSSAT/CROPGRO. 
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For the cultivation of maize, the two factors together 
explained 83.9% of the total variation of the original data. 
The first process (PC 1) represents 49.7% of the variability 
and the second process (PC 2) 34.2%. The process 
contained in PC 1 is the most important for this study, as it 
is derived from the highest eigenvalue and has  

the highest percentage of explanation (49.7%), with the 
variables that most contribute to this being represented by 
weight (−0, 83), yield (−0.86), soil total organic carbon at 
maturity (OCTAM, kg ha−1), and soil organic carbon at 
maturity (OCAM, kg ha−1), (−0.86) (Figure 3). 

 

 

FIGURE 3. Biplot chart showing the biomass (kg ha−1), yield (kg ha−1) soil surface total organic carbon at maturity (OCTAM, 
kg ha−1), soil organic carbon at maturity (OCAM, kg ha−1), soil surface total nitrogen at maturity (ONTAM, kg ha−1), and soil 
nitrogen at maturity (ONAM, kg ha−1) for maize.  
 

According to the signs of the factorial loads, PC 1 is 
negative and strongly correlated with yield, followed by 
OCTAM, OCAM, and biomass (Table 3). We can 
understand the relationship between nitrogen, productivity, 
and biomass in CP1 as being related to conservationist 

practices, such as the direct seeding system (NTS), which 
disturbs the soil less and applies a greater contribution of 
organic waste (Li et al., 2017), and this accumulation of 
organic matter in the soil directly influences the 
productivity of the crop. 

 
TABLE 3. Correlation between attributes and the first two main components (PC 1 and PC 2). 

Principal components  PC 1 PC 2 

Explained variance (%)  49.7* 34.2* 

Correlations    

WEIGHT  −0.8317830  0.1609858 

YIELD  −0.8229902 −0.1723165 

OCTAM  0.8619306 −0.2817491 

OCAM  0.8619306 −0.2817491 

ONTAM  −0.2490356 −0.9592739 

ONAM  0.2490356 0.9592739 
 

For CP 2, the factorial loads were also negative for 
ONTAM (−0.95) and ONAM (−0.95) (Table 3). CP 2 is 
only being influenced by soil nitrogen. Nitrogen is the 
nutrient required in the greatest quantity by plants (Obour 

et al., 2017), but nitrogen absorption has very complex 
dynamics in the soil (Silva et al., 2005), which may justify 
the process of the second main component containing 
only nitrogen. 
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FIGURE 4. Biplot chart showing the biomass (kg ha−1), yield (kg ha−1) soil surface total organic carbon at maturity (OCTAM, 
kg ha−1), soil organic carbon at maturity (OCAM, kg ha−1), soil surface total nitrogen at maturity (ONTAM, kg ha−1), and soil 
nitrogen at maturity (ONAM, kg ha−1) for soybean. 
 

In the main component analysis for soybean 
cultivation, both factors explained 93.5% of the total 
variation in the original data. CP 1 represents 61.2%, and 
PC 2 32.3% (Figure 4). The process contained in CP 1, 

namely the variables that contribute the most to this, are 
represented by OCTAM (0.93), OCAM (0.96), ONTAM 
(0.95), and ONAM (0.95). The factorial loads are all 
negative (Table 4). 

 
TABLE 4. Correlation between attributes and the first two main components (PC 1 and PC 2). 

Principal components  CP1 CP2 

Explained variance (%)  49.7* 34.2* 

Correlations    

WEIGHT  −0.2191429  −0.96723339 

YIELD  −0.1268609 −0.98343314 

OCTAM  0.9363166 −0.12154163 

OCAM  0.9619292 −0.04716633 

ONTAM  0.9509519 −0.09237068 

ONAM  0.9506415 −0.09436713 
 

PC 1 is represented by C and N. They are the main 
components of SOM and their stocks will vary depending 
on the rates of addition, particularly by waste. In agricultural 
systems, the stocks of organic C and N are also influenced 
by the management system adopted (Souza et al., 2009). 

PC 2 is represented by biomass (−0.96) and 
productivity (−0.98), and is also represented by negative 
factor loads. Productivity is influenced by the amount of 
biomass. These variables are favored by the vegetation 
cover formed due to the use of the no-till system (Muraishi 
et al., 2005). 
 
CONCLUSIONS 

Among the tested models, CROPGRO had the best 
accuracy. Therefore, DSSAT can be used to simulate 

soybean yield under the NTS for the climatic conditions of 
Jaboticabal/SP. 

The levels of carbon and organic nitrogen in the soil 
showed little variation over the years, but there was a small 
decrease after years with low biomass production. The use 
of multivariate techniques is a useful tool to verify the 
relationship of organic carbon and nitrogen in the soil with 
crop productivity when using simulated data. 
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