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Baryogenesis driven by curvature effects is investigated by taking into account gravitationally induced 
particle production in the very early Universe. In our scenario, the baryon asymmetry is generated 
dynamically during an inflationary epoch powered by ultra-relativistic particles. The adiabatic particle 
production rate provides both the needed negative pressure to accelerate the radiation dominated 
Universe and a non-zero chemical potential which distinguishes baryons and anti-baryons thereby 
producing a baryon asymmetry in agreement with the observed value. Reciprocally, the present day 
asymmetry may be used to determine the inflationary scale at early times. Successful gravitational 
baryogenesis is dynamically generated for many different choices of the relevant model parameters.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.
1. Introduction

A well known but still challenging cosmological fact is that the 
number of baryons in the visible Universe is much larger than the 
number of anti-baryons. The baryon asymmetry (B-asymmetry) is 
usually characterized by the dimensionless quantity:

η = nb − nb̄

s
≡ nB

s
, (1)

where nb , nb̄ are the number densities of baryons (anti-)baryons, 
respectively, and s is the radiation entropy density. Current con-
straints on η are based on precision measurements of the primor-
dial deuterium abundance combined with the analysis of cosmic 
background radiation (CMB) acoustic peaks. It lies in the interval 
(5.7–6.7) × 10−10 [1].

The agreement between Big-bang nucleosynthesis predictions 
and the CMB observations suggests that the above ratio has re-
mained constant at least since the cosmic factory started the pro-
duction of the light elements. It is now widely believed that the 
B-asymmetry was dynamically generated in the very early Universe 
with the η value being expressed through some fundamental pa-
rameters of particle physics and cosmology.
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Many models have been proposed based on new interactions 
satisfying (entirely or partially) the well known criteria for baryo-
genesis advanced in the seminal paper by Sakharov [2]. However, 
there is no consensus among cosmologists regarding the correct 
approach to describe the observed B-asymmetry, nor even whether 
one needs to strictly adhere to all of Sakharov’s conditions (see [3]
for discussion of these issues).

In this work, we consider the model dubbed gravitational 
baryogenesis (GB) which is defined by an effective derivative cou-
pling between the Ricci scalar curvature (R) and the baryon cur-
rent [4]. As in the “spontaneous baryogenesis” model [5], (which 
inspired the GB model) the GB approach also leads to an effective 
chemical potential which is proportional to the time derivative of 
the Ricci scalar, μ ∝ Ṙ ≡ dR/dt , giving rise to a relative shift be-
tween the baryon and anti-baryon number.

Now, for a flat homogeneous and isotropic FRW geometry sup-
ported by a perfect fluid, the Ricci scalar reads [6]:

R ≡ −6

(
ä

a
+ ȧ2

a2

)
= − (1 − 3ω)

ρ

M2
Pl

, (2)

where a(t) is the scale factor, ρ is the energy density, and M Pl =
(8πG N )−1/2 ≈ 2.4 × 1018 GeV, is the reduced Planck mass. As 
usual, the ω-parameter defines the fluid equation of state (EoS), 
ω = p

ρ = const., where p is the pressure.
From (2), the observed B-asymmetry cannot be generated by 

the GB mechanism when the cosmic fluid is radiation dominated 
i.e. when w = 1 . This means the expression in (2) must somehow 
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be corrected in order to obtain a non-zero R , and Ṙ at very early 
times.

This problem for GB related to the null values of R and Ṙ (and 
thus the vanishing of η) when the Universe is dominated by ultra-
relativistic particles has motivated different solutions in the litera-
ture [7–9]. Lambiase and Scarpeta [7] discussed GB in f(R)-gravity 
theory while Sadjadi [8] investigated a possible time-variation 
of ω. More recently, Odintsov and Oikonomou [9], adopted the 
Gauss–Bonnet invariant in order to obtain a non-zero η even 
in the radiation domination era (see also [10] for a connection 
with braneworld inspired cosmology and [11] for GB in context 
of Hawking radiation from primordial black holes). One aim of this 
article is to propose a new solution for this problem based on the 
gravitational particle production in the very early Universe.

There is growing interest in cosmologies driven by gravitation-
ally induced particle production [12–23]. These papers adopted the 
non-equilibrium macroscopic description proposed long ago by Pri-
gogine and coworkers [24] based on the thermodynamics of open 
systems. A covariant description for the process was advanced in 
[25]. It has also been argued that matter creation at the expenses 
of the gravitational field occurs only as an irreversible process 
constrained by the usual requirements of non-equilibrium relativis-
tic thermodynamics [24–26]. Dynamically, the negative pressure 
describing matter creation acts like a second viscosity stress, an 
effective mechanism suggested by Zeldovich [27] to describe phe-
nomenologically the cosmic particle production process. However, 
it has been proved that gravitational particle production and bulk 
viscosity are not equivalent from a thermodynamic viewpoint [26]. 
Although not physically equivalent, it has been shown that the 
negative pressure of both mechanisms can source inflation (some 
examples are given in Refs. [26,28–30]).

More recently, a relativistic kinetic treatment that fully recov-
ers the macroscopic approach for gravitational particle production 
has also been proposed [31,32]. In principle, this means that an 
acceptable non-equilibrium theory for gravitational induced parti-
cle production requires finite-temperature quantum field theory in 
curved space–times. The lack of such a theory points to a phe-
nomenological approach in order to incorporate back-reaction in 
the cosmic dynamics.

In the macroscopic (or kinetic approach) the back reaction on 
the geometry is included from the very beginning. In particular, 
the Ricci scalar as given by (2) becomes:

R = −
(

1 − 3ω + (1 + ω)
�

H

)
ρ

M2
Pl

, (3)

where �, with dimensions of (time)−1, is the particle production 
rate and H = ȧ

a is the Hubble parameter (see section 2 for details). 
Since R is different from zero for ω = 1

3 , the extra, phenomenolog-
ical �(H) term may potentially produce B-asymmetry even during 
the radiation phase. Note also that for negligible particle produc-
tion, �(H) � H , the standard result for R is recovered. For an 
analysis which ignores the effect of the particle production on the 
Ricci scalar see [33,34].

Closely related with the present work is the tepid or warm 
deflationary model1 driven by gravitationally induced particle pro-
duction [13,16,23]. This kind of inflationary scenario is significantly 
different from isentropic inflation, as well as from warm inflation 
[35]. Firstly, it is not driven by a scalar field, since its basic mech-
anism is the gravitational particle production process. Secondly, 
although filled exclusively by ultrarelativistic particles (ω = 1

3 ), its 

1 Deflationary model here means only an exact but unstable primordial de Sitter 
state that subsequently deflates towards the standard radiation phase. For a more 
general definition see [29].
evolution starts from an exact, non-singular de Sitter state pow-
ered by the negative pressure associated with the gravitationally 
produced thermal bath. This scenario resembles the idea of a cos-
mology emerging from nothing, via quantum tunneling, directly 
into a de Sitter space [36]. However, different from many variants 
of inflation, there is no Big-bang singularity (or horizon problem), 
and the exact, but unstable, primordial de Sitter stage evolves 
smoothly to the standard radiation FRW phase when the particle 
production ends – in agreement with conformal invariance [37].

In this context, we show that the observed B-asymmetry is nat-
urally generated during a warm inflationary period with ω = 1

3 . As 
we shall see, the proposed solution is not fine-tuned, and by in-
verting the argument the observed B-asymmetry may also be used 
to determine the scale of deflation.

The paper is organized as follows: In section 2 we review 
briefly how a non-singular de Sitter phase followed by inflation 
with a “graceful exit” is naturally powered by adiabatic gravita-
tionally induced particle production. In section 3, we quantify the 
B-asymmetry predicted by the model. Finally, in section 4, the ba-
sic results are summarized.

2. Inflation induced by gravitational particle production

In this section we briefly review the inflationary model pow-
ered by “adiabatic”, cosmological particle production, focusing es-
pecially on those aspects that will be relevant to gravitational B-
asymmetry, to be discussed in the next section.

To begin with, let us consider the space–time described by a 
flat FRW geometry

ds2 = dt2 − a2(t)
(

dx2 + dy2 + dz2
)

, (4)

where a(t) is the scale factor. In such a background, the Einstein 
equations and the balance equation for the particle number and 
entropy density can be written as [25,32]

ρ = 3M2
Pl H2 , (5)

p + pc = −M2
Pl [2Ḣ + 3H2] , (6)

ṅ + 3nH = n� ←→ Ṅ

N
= � , (7)

ṡ + 3sH = s� ←→ Ṡ

S
= � , (8)

where n is the particle number density (N is the total comoving 
number of particles), s is the entropy density (S is the total co-
moving entropy), and the creation pressure pc is defined in terms 
of the creation rate � by the expression:

pc = −(ρ + p)
�

3H
, (9)

while the energy conservation law (uμT μν ;ν = 0) which is also 
contained in the field equations now becomes [25,32]:

ρ̇ + 3H(ρ + p + pc) = 0 . (10)

It should be noticed that the balance equations (7) and (8) im-
ply that Ṡ

S = Ṅ
N so that the specific entropy (per particle), σ =

S/N = s/n, is conserved. This condition defines what is meant by 
“adiabatic” particle production [25]. Its major implication is that 
some equilibrium relations, together the general form of the ki-
netic phase space density, are preserved [31].

In what follows we consider that the early universe is radiation 
dominated (ω = 1

3 ). In this case, it has been demonstrated [31,38]
that under “adiabatic” conditions the quantities ρr , nr and sr , as 
a function of the temperature, scale, respectively, as ρr ∼ T 4, nr ∝
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sr ∼ T 3 (the same as for the equilibrium relations). However, the 
temperature law is now determined by the corrected differential 
equation [31,38]:

Ṫ

T
= − ȧ

a
+ �

3
. (11)

On the other hand, by combining Eqs. (5), (6), (9) with the ra-
diation EoS, it is readily checked that the evolution equation for 
the Hubble parameter reads:

Ḣ + 2H2
(

1 − �

3H

)
= 0 . (12)

Note that a de Sitter solution (Ḣ = ṅ = 0) supported by radiation is 
obtained when � = 3H . However, this primordial de Sitter solution 
is unstable since the evolution of the Universe implies that the 
ratio �/3H is a time dependent quantity with the model evolving 
to the standard radiation FRW phase.

How is such a transition described? The late time suppression of 
the dimensionless ratio �/3H suggests that it depends on the Hub-
ble parameter, and, more generally, could be expanded in power 
series of the form [23]:

�

3H
= α + β

(
H

H I

)
+ γ

(
H

H I

)2

+ ... , (13)

where α, β , γ are dimensionless constants and H I is an arbitrary 
inflationary scale (α must be very small to guarantee a transition 
to the standard FRW phase). In order to simplify matters and dis-
cuss analytic results, let us consider a two-parameter, phenomeno-
logical particle creation rate [16]

�

3H
=

(
H

H I

)p

, (14)

where the power index p is a positive constant. We stress that 
expressions for the ratio �

3H given in (13) and (14) are purely phe-
nomenological. However, there are some models where the param-
eters for the particle production are fixed via physical arguments. 
For example in [33] the production rate is fixed by connecting it 
to the Hawking-like radiation in FRW space–time, along the lines 
first suggested in [37]. In this way one obtains �

H ∝ H4. Here we 
do not assume any particular physical model for particle produc-
tion but simply use the phenomenological rate given by (14).

In this case, the equation of motion (12) becomes:

Ḣ + 2H2

(
1 − H p

H p
I

)
= 0 , (15)

whose solution reads:

H = H I[
1 + D a2p

]1/p
, (16)

where D is an integration constant. This solution describes exactly 
the idea of deflation with an unstable, primordial de Sitter phase 
followed by a radiation FRW phase.2 This can be seen by looking 
at the two limiting cases: For D a2p � 1 we find H = H I while for 
D a2p 
 1 the solution becomes

H = H I

D1/pa2
→ a(t) ∝ √

t. (17)

2 An initial non-singular and unstable de Sitter stage can be generated not only 
by gravitational particle production as described above. It appears in non-singular 
models driven by bulk viscosity [28] and also in running vacuum cosmologies [39]. 
The ubiquity of this solution suggests that exotic initial conditions are not required.
Therefore, the solution (16) describes a smooth transition from an 
early, non-singular Sitter stage to the standard, FRW phase and 
thus gives a natural, “graceful” exit from de Sitter to the standard 
radiation dominated epoch (when the particle production ends). 
This result can also be checked using the expression for the decel-
eration parameter:

q(H) ≡ − ä

aH2
= 1 − 2

(
H

H I

)p

. (18)

For H = H I one finds q = −1 (de Sitter) while for H � H I the de-
celerating parameter approaches q = 1 (radiation dominated FRW). 
As should be expected, inflation ends (i.e. ä = 0) before the begin 
of the FRW phase, that is, when the expansion rate reaches the 
value Hend = 2−1/p H I .

The behavior in the thermal sector is also easily established. 
Once the particle production rate is known, the temperature law 
(11) can readily be integrated (in this connection see Refs. [16,23,
31]). As one may check, it is given by:

T (H) = T I

(
H

H I

) 1
2

, T I =
(

270

π2 g∗

)1/4 √
M Pl H I , (19)

where g∗ = ∑
gi counts the total number of relativistic degrees of 

freedom (d.o.f.) near the still arbitrary inflationary scale H I . This 
result implies that the temperature at the end of inflation (i.e.
when H = Hend) is essentially defined by two free parameters (i.e.
p and H I ) through the expression, Tend = 2−1/2p T I , where T I de-
pends on H I as given above.

As remarked before, this formalism naturally incorporates the 
back reaction effects on the geometry. From Eqs. (5), (9) and (10)
one may check that the modified Ricci scalar is given by (3). Fur-
ther, by using Eqs. (5), (9), (14) and (15), we find, for a radiation 
dominated era, the very simple expression for the Ricci scalar

R = −4

(
H

H I

)p ρ

M2
Pl

= −12H2
(

H

H I

)p

. (20)

This reduces to the well known de Sitter result for H = H I . As we 
shall see, the above formula will be crucial for the gravitational 
baryogenesis process as discussed next.

3. Particle production and curvature baryogenesis

In gravitational particle production models an equal number of 
effectively massless particles and anti-particles are created [21], 
and thus one would expect that such models are not useful for 
baryogenesis. However, in the GB approach, the asymmetry is gen-
erated by a derivative coupling between the Ricci curvature scalar 
and the baryon current JμB (or to the baryon − lepton current, 
JμB−L ). Following the arguments similar to Ref. [4] we will show 
that an observationally acceptable B-asymmetry is possible during 
the radiation phase by virtue of the particle production process 
discussed in the previous section. The Lagrangian density for this 
interaction takes the form [4]

Lef f = 1

M2∗
(∂μR) JμB , (21)

where M∗ is an unknown cut-off mass scale of the theory, usually 
assumed to be the reduced Planck mass.3 Such an interaction term 
can be obtained from a low-energy quantum gravity approach, as 

3 The GB model is essentially a gravitational version of “spontaneous” baryogen-

esis approach based on the coupling between JμB and the four-gradient of a scalar 
field, 1

f ∂μφ JμB , where f is a cut-off in the effective field theory [5].
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well as in higher dimensional supergravity theories [4,40]. It is this 
interaction term in (21) which is the source of the B violation.

In the FRW space–time all physical quantities vary only tempo-
rally, hence one may replace ∂μR → Ṙ , and using (21), one can de-
fine an effective chemical potential, μ(t)nB ≡ Lef f = 1

M2∗
(∂0 R) J 0

B . 
For a species of particle, i, carrying a baryon charge, qi , the chem-
ical potential is given by

μi = qi
Ṙ

M2∗
= ± Ṙ

M2∗
, (22)

where for simplicity we have assumed in the last step that all 
baryons have baryon number +1 and all anti-baryons have baryon 
number −1. In principle, one could also consider cases where 
particles might carry fractional baryon number or higher integer 
baryon number, however, the basic conclusions are not changed 
significantly. It is this chemical potential, which derives from the 
effective Lagrangian in (22), that leads to the B-asymmetry. Note 
as Ṙ → 0 that μi → 0 which implies that the B-violation turns 
off. As we will see later, after inflation Ṙ rapidly goes to zero so 
that B-asymmetry generation also rapidly turns off after inflation. 
With these assumptions, the B-asymmetry produced by the above 
chemical potential reads [4]:

η = nB

s
≈ Ṙ

M2∗T

∣∣∣
T =T D

, (23)

with T evaluated at the temperature T D when the B-violation op-
erator decouples. In general, the value of T D is fine-tuned to occur 
at a definite moment in order to get the desired value of η. In 
order to avoid the η-dilution during the inflationary process, T D

is usually identified with the temperature at the end of inflation. 
Here, by exploring two different possibilities, we show the robust-
ness of the prediction of η in the present scenario.

In point of fact, the above approximate result (23) can be rig-
orously justified by observing that the radiation entropy per unit 
volume reads

s = ρ + p

T
= 2π2

45
g∗s T 3 , (24)

where g∗s is also a sum over the relativistic d.o.f. similar to 
g∗ . From now on we assume that all particles are in the ultra-
relativistic regime with a common temperature so that g∗s = g∗ . In 
addition, for a single baryon species the concentration nB can be 
calculated by integrating the Fermi–Dirac distributions for baryons 
and anti-baryons by taking into account the different chemical po-
tentials

nB =
∫

d3 p

(2π)3

1

e(E−μ)/T + 1
−

∫
d3 p

(2π)3

1

e(E+μ)/T + 1
. (25)

Note that the chemical potentials in the above expression appear 
differently for baryons and anti-baryons since they have opposite 
baryon numbers, ±1. It is this difference in chemical potential 
which is responsible for generating the B-asymmetry. In (25) we 
have used the Fermi–Dirac distribution exclusively, since in the 
Standard Model only fermions carry baryon number. If one as-
sumed that bosons could carry baryon number then one should 
also use the Bose–Einstein distribution. Since the expression in 
(25) is only for a single species of baryon/anti-baryon, one needs to 
sum over all baryonic degrees of freedom, (i.e. g∗b ≡ ∑

i=baryons gi ). 
Thus to get the full result for all the baryons one should multiply 
nB from (25) by g∗b .

Now, by taking the limit μ � T , one can integrate (25) and 
using (22) one obtains:
nB ≈ g∗b

(
μ3

6π2
+ μT 2

6

)
≈ g∗b

μT 2

6
≈ g∗b

6

ṘT 2

M2∗
−→ η ≈ Ṙ

M2∗T
.

(26)

In the above expression two different approximations were made. 
First, we have dropped μ3 relative to μT 2 again using μ � T . Sec-
ond, in the last step, we have taken 15g∗b

4π2 g∗
of order unity. Actually, 

g∗ > g∗b but we assume that the difference will not be more than 
one order of magnitude. Note that the B-asymmetry parameter in 
(23) is determined by T = T D and Ṙ . As discussed in the introduc-
tion, the back reaction of the particle production process implies 
that R is different from zero even for ω = 1

3 . One of the advan-
tages of using the GB mechanism in conjunction with the particle 
creation mechanism is that the particle creation itself modifies R
and Ṙ so that at tree level one can have baryogenesis without re-
sorting to higher order loop calculations to deal with the problem 
at ω = 1

3 , as was done in [4].
In order to obtain the expression for the B-asymmetry in the 

presence of gravitational particle production, we need to calculate 
Ṙ , which we do by differentiating (20) to give

Ṙ = −4
ρ̇

M2
Pl

(
H

H I

)p

− 4p
ρ

M2
Pl

H p−1

H p
I

Ḣ . (27)

Using ρ̇ = −3H(ρ + p + pc) from (10), and Ḣ = −2H2
(

1 − H p

H p
I

)
from (16), we find that (27) becomes

Ṙ = 24(2 + p)H3
I

(
H

H I

)p+3
[

1 − H p

H p
I

]
. (28)

From the above equation one can see that at early times (i.e. when 
H = H I ) that Ṙ = 0 so from (22) the chemical potential is zero 
and there is no B-asymmetry production. For late times the Hub-
ble parameter decreases so that H � H I and Ṙ → 0. This again 
drives the chemical potential to zero and thus for late times the 
B-asymmetry production turns off. It is only in a narrow range 
between early and late times that Ṙ �= 0 and B-asymmetry produc-
tion occurs as we will discuss shortly.

Now, inserting (28) into (23) we obtain:

η ≈ 24(2 + p)H3
I

M2∗T D

(
H

H I

)p+3
[

1 − H p

H p
I

]
, (29)

where we still need to fix the decoupling temperature. We now 
consider that the B-violation operator decouples at the end of in-
flation when Hend = 2−1/p H I and T D ≡ Tend = 2−1/2p T I (see the 
discussion below (18) and (19)). In this case, the baryogenesis 
η-parameter takes the simple form:

η ≈ 6
(2 + p)2−5/2p H3

I

M2∗
√

Mpl H I

(
π2 g∗
270

)1/4

≈ 6(2 + p)2
p−5
2p

(
M Pl

M∗

)2 (
H I

M Pl

)5/2

, (30)

where for g∗ ≈ 106 we have approximated (π2 g∗/270)1/4 ∼ √
2. 

The above result is the main prediction of our work, and its con-
sequences will now be carefully examined.

To begin with, we observe that (29) implies η ≈ 0 for H = H I

(primordial de Sitter stage) and for H � H I (standard FRW radia-
tion phase). It thus follows that baryogenesis must occur at some 
moment between the early de Sitter stage and the begin of the 
standard radiation FRW phase.

Note also that once T D had been fixed, the η value depends 
on 3 free parameters: the power index p > 0, which determines 
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Table 1
Baryogenesis predictions for η for some selected values of the free parameters.

p > 0 M Pl/M∗ ≥ 1 H I /M Pl ≤ 1 η

0.07 3.0 × 106 1.0 × 10−5 8.8 × 10−10

0.05 3.0 × 108 9.0 × 10−6 3.4 × 10−10

0.1 5.0 × 104 1.0 × 10−5 4.2 × 10−10

1.0 20.0 9.0 × 10−6 4.4 × 10−10

1.0 8.0 2.0 × 10−5 5.2 × 10−10

1.0 60.0 4.5 × 10−6 7.0 × 10−10

2.0 10.0 1.0 × 10−5 4.5 × 10−10

3.0 100.0 1.5 × 10−6 6.6 × 10−10

10.0 7.0 7.0 × 10−6 5.4 × 10−10

the rapidity to end of inflation, (i.e. when ä = 0 – see the discus-
sion below (18)), and the two ratios, M∗/M Pl and H I/M Pl . The η
value is weakly dependent on p but varies appreciably with the 
two ratios of scales.

It is worth noticing that the fractional variation of tempera-
ture between the de Sitter-phase and the end of inflation, �T

T I
=

(T I − Tend)/T I = 1 − 2−1/2p , is relatively short, especially as the 
index p increases. This means that the T D does not change appre-
ciably in the corresponding interval, and its value can be chosen 
fairly broadly – without fine-tuning – on the interval where baryo-
genesis is physically allowed. Following the tradition for adiabatic 
inflation, we first make the choice T D = Tend . Again due to the 
smallness of �T

T I
, the decoupling temperature, T D , can be cho-

sen anywhere in the interval (T I , Tend) without greatly altering 
our basic conclusions. Of course, this is possible in models with 
gravitational particle production, but not for adiabatic, inflation-
ary models driven by scalar fields (in this connection see [41] for 
baryogenesis in the framework of warm inflationary models). One 
might still argue, that even though we have a degree of freedom in 
choosing T D in the interval (T I , Tend), there is still some degree of 
fine tuning due to the derived thermodynamic relation T I (H I ) [see 
Eq. (19)]. In Table 1 we show that this is not the case by obtaining 
reasonable η for a broad range of H I .

We now put numbers into (30) to illustrate that our model 
gives values for η which agree with the observed value. Let us 
for example take p = 1, and also take the natural choice for the 
GB scale, M∗ = M Pl . This implies from (30) that η ≈ 9

2 (H I/Mpl)
5/2. 

Hence, by assuming that the inflationary scale is H I ≈ 10−4 M Pl

(in agreement with some analysis), we obtain η ≈ 4.5 × 10−10, 
in rough accordance with the present observations (see the con-
straints below (1)). Reciprocally, given the observed value of the η
parameter, we obtain a very reasonable value for H I ≈ 1015 GeV, 
the energy scale of the primordial de Sitter stage.

Naturally, such predictions depend on the values assigned to 
the three free parameters, p, M∗/M Pl , and H I/M Pl (as explained 
before, in the present scenario, η is weakly dependent on the value 
of T D in its allowed range). Thus it is interesting to discuss briefly 
the robustness of the present scenario to give reasonable values for 
H I and η without the need for fine-tuning.

In Table 1, we display the predictions of the B-asymmetry pa-
rameter for a large set of selected values of the free parameters 
with T D = Tend . The values were chosen to give an idea of how the 
observed B-asymmetry can be generated by different combinations 
of the parameters. One can see that for any value of the power 
index, p, it is possible to obtain η in rough agreement with obser-
vations for reasonable values of the ratios M Pl/M∗ , and H I/M Pl . 
From Table 1 we see that M∗ does not need to be equal to the 
Planck mass in order to obtain the observed B-asymmetry. More 
interestingly, although not determined like in inflationary models 
driven by scalar fields, here the primordial de Sitter scale, H I , can 
be orders of magnitude smaller than the Planck mass. Finally we 
note that the values in Table 1 are consistent with the bound from 
[42] namely H I/M Pl < 3.6 × 10−5 at 95% confidence level.

A possible conclusion from Table 1 is that the prediction of 
the η parameter in this model is rather robust. However, one may 
worry that the choice of T D = Tend , in the short allowed interval 
for T where baryogenesis may occur, could still represent a mod-
erate fine-tuning. In order to show this is not the case, a different, 
more realistic choice for the decoupling temperature is now con-
sidered. For example, one might more naturally associate T D with 
the maximum value of the B-asymmetry production. Using (29), 
and the temperature relationship from (19) to fix T D , we obtain 
the η parameter in the form:

η ≈ 24
√

2(p + 2)

(
M Pl

M∗

)2 (
H I

M Pl

)5/2 (
H

H I

)p+5/2
(

1 − H p

H p
I

)
.

(31)

The last two factors are time dependent and since H ≤ H I , both 
are defined on the same interval [0, 1]. However, as the Universe 
expands and cools, the first term decreases while the second one 
increases. This means that the baryogenesis η-parameter has a 
maximum value. By differentiating (31) with respect to H one ob-
tains that the maximum occurs at

H∗ = H I

(
p + 5/2

2p + 5/2

)1/p

, (32)

and using (19) this leads to a decoupling temperature

T∗ ≡ T D = T I

(
p + 5/2

2p + 5/2

)1/2p

. (33)

Now for p 
 1, the above temperature becomes T∗ ≈ Tend =
2−1/2p T I which is exactly the same expression for the temper-
ature at the end of the inflationary process that we previously 
used for T D (see the discussion below (19)). In the opposite 
regime, p � 1 (but p still greater than zero), one finds that 
H∗ → e−2/5 H I ≈ 0.67H I and T∗ → e−1/5T I ≈ 0.82T I . If one takes 
p = 10−3, M∗ = 2.5 × 10−3 M Pl and H I ∼ 1.0 × 10−5 M Pl one finds 
that η ∼ 5.1 × 10−10, again in rough agreement with the observed 
value of η. Thus even for very small p acceptable values of η can 
be obtained.

Summarizing, for large and small values of p, acceptable val-
ues of η are obtained using different definitions for the decoupling 
temperature. In other words, our results for η are insensitive to the 
choice of T D , thereby showing that there is no fine-tuning (not 
even moderate fine-tuning), provided that the phenomenological 
particle production rate is given by (14).

4. Summary and conclusions

In this paper we have investigated the early generation of B-
asymmetry driven by curvature effects, in the context of gravi-
tationally induced particle production models. In the relativistic, 
inflationary scenario adopted here, the early universe is always 
dominated by ultrarelativistic particles. Inflation is powered by the 
negative pressure of the gravitational particle production, and its 
evolution starts from a non-singular de Sitter phase and deflates 
to the standard radiation phase. The key point is that the back re-
action of the created particles allows the gravitational baryogenesis 
process to work properly before the beginning of the standard ra-
diation phase when the particle production ends.

In Table 1, one may see how the observed baryogenesis de-
pends on the relevant parameters of the model. Based on two 
different arguments for the decoupling temperature, we have also 
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shown that successful gravitational baryogenesis (without fine-
tuning) may happen in this framework.

We also stress that gravitational baryogenesis in the presence 
of particle production does not require new ingredients, like high 
order loop corrections, in order to avoid having η = 0 when ω = 1

3
as happened in [4]. In addition, as can be seen in Table 1, the cut-
off scale of the gravitational baryogenesis, M∗ , does not need to be 
equal to the Planck mass in order to generate the observed value 
nB
s ∼ 10−10. More interestingly, this value may also be generically 

obtained for a primordial de Sitter scale, H I ∼ 10−5 Mpl , which is 
of the order of the GUT scale (see Table 1).
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