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Introduction

Inflammation represents a cause, but also a consequence of
obesity, contributing to disrupt metabolic homeostasis.
Previously associated to high fat diets and physical inac-
tivity, the contribution of gut microbiota and genetic
inheritance are also being evaluated as risk factors for
obesity. [1]

Increasing, and sometimes contrasting, findings have
revealed the involvement of inflammasome in the devel-
opment of obesity and obesity-associated diseases in
experimental models. Inflammasome is a cytoplasmic
complex responsible for the activation of caspase-1 and the
consequent production of the biologic active form of
interleukin (IL)-1ß and IL-18. Several intracellular innate
receptors (i.e., NLR Family Pyrin Domain Containing 1/
NLRP1, NLRP3, NLRP6, Absent in Melanoma 2/AIM2)
sense pathogen-associated and danger-associated molecular
patterns (DAMPs), respectively, and became able to mount
an inflammasome. These molecules are expressed in

leucocytes, as well as in non-immune cells, such as adipose
tissue and epithelium. In intestinal epithelial cells (IEC), it
has been demonstrated that specific innate receptors act not
only fighting against pathogens, but also regulating gut
microbiota [1].

Moreover, once obesity has been established, several
obesity-related DAMPs (i.e., high levels of glucose, fatty
acids, uric acid), oxidative and/or endoplasmic reticulum
(ER) stress are responsible for inflammasome-dependent
secretion of IL-1ß and IL-18 from both leucocytes
and adipocytes, leading to a dangerous pro-inflammatory
loop [2].

In humans, it is possible to observe an increasing of both
inflammasome cytokines in serum from obese individuals
[3, 4]. However, it is difficult to understand whether the
activation of inflammasome has been the trigger or, even-
tually, an important contributing factor for the development
of obesity, or whether it “simply” amplifies the metabolic
stress induced inflammation.

The aim of this study was to elucidate the contribution of
inflammasome genetics in the development of obesity and
obesity-associated morbidities.

Material and methods

Patients

Two hundred and eighty eight unrelated obese patients
(male/female: 22/266) and 96 non-obese individuals (male/
female: 19/77) were recruited from the Department of
Obesity, Centre of Medical Specialties of Minas Gerais
(Belo Horizonte, Southeast of Brazil) in compliance with
the Institutional Review Board of the “Santa Casa de Belo
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Horizonte” hospital. Body mass index (BMI) was used to
define obesity: subjects with BMI ≥ 30 kg/m2 were classi-
fied as obese, BMI of 25–29.9 kg/m2 as over-weight and
BMI of 18.5–24.9 kg/m2 as normal weight [5]. Due to
the limited number of over-weight individuals in our cohort
(n= 3), and considering their border-line BMI values
(25.03; 25.33 and 27.10, respectively), they were grouped
with the normal-weight group. Median BMI of obese group
is 45.17 Kg/m2 (min: 30.41-max: 82.83), and of non-obese
group is 22.68 Kg/m2 (min: 17.90-max: 27.10).

To determine metabolic risk factors in obese subjects, we
followed the diagnostic criteria for metabolic syndrome
defined in accordance with the American Heart Association/
National Heart, Lung, and Blood Institute Scientific State-
ment [6], which included systemic arterial hypertension
(SAH) (systolic blood pressure >140 mmHg, and/or dia-
stolic blood pressure >90 mmHg, and/or drug treatment for
elevated blood pressure) and type-2 diabetes (T2D) (ele-
vated fasting glucose ≥ 100 mg/dL or drug treatment for
elevated glucose). One hundred and six out of 288 obese,
and 35 out of 96 non-obese individuals have SAH. Seventy
three (male/female: 6/67) out of 288 obese, and 6 (male/
female: 1/5) out of 96 non-obese individuals have T2D. For
18 obese individuals (male/female: 3/15) we did not have
clinical data about T2D. Sixty seven (male/female: 6/61)
out of 288 obese, and 5 (male/female: 1/4) out of 96 non-
obese individuals have both SAH and T2D.

SNPs genotyping

Five SNPs were selected based on minor allele frequency,
functional effect and/or previously reported association with
human disorders: NLRP1 rs12150220 (L155H), rs11651270
(M1184V); NLRP3 rs10754558 (3’UTR); IL1B rs16944
(promoter); IL18 rs1834481 (non-coding transcript exon
variant/intron) [7]. SNPs genotyping was performed using
allele-specific Taqman assays (Applied Biosystems) and
qPCR using the QuantStudio3 Real-Time PCR platform
(Applied Biosystems).

Data analyses

The effect of SNPs on clinical and biochemical variables
was analysed by multivariate association based on general
linear model adjusted for confounders variables (age, sex,
ethnicity) using R-project package “SNP-assoc” version
1.9–2. Analyses were performed in the codominant, domi-
nant, recessive and overdominant models for all SNPs. The
Haploview software was used to investigate the linkage
disequilibrium (LD) and to derive the haplotypes. A sig-
nificant threshold of p= 0.01 has been assumed after
Bonferroni correction for multiple SNPs analysis (p= 0.05/
n; n= 5 SNPs).

Results and discussion

In the present study, we evaluated the genetic contribution
of inflammasome-encoding genes NLRP1, NLRP3, IL1B,
IL18 in the development of obesity and obesity-associated
comorbidities, precisely SAH and T2D. All the poly-
morphisms resulted in Hardy–Weinberg equilibrium. No
LD was found for NLRP1 SNPs.

Nor NLRP1 nor IL18, which have been recently showed
to play a key role in obesity in animal model [8, 9], were
associated to obesity or related diseases, at least in our
cohort (Supplementary File 1).

On the other hand, NLRP3 gain-of-function variant
rs10754558 resulted significantly associated to obesity (padj
= 0.009) (Table 1). NLRP3 rs10754558 G minor allele
resulted more frequent in non-obese than in obese indivi-
duals (C/G+G/G: 0.68 vs. 0.55; OR= 0.46, according to a
dominant model of inheritance) (Table 1), suggesting a
protective role of this variant against obesity development.

When BMI, as a continuous variable, was considered,
NLRP3 rs10754558 continued to be associated with obesity.
Individuals carrying NLRP3 rs10754558 C/G genotype
presented lower BMI values compared to homozygotes (C/
G: 38.87± 1.01 vs. C/C+G/G: 42.40± 0.94; padj= 0.015,
according to an over-dominant model of inheritance)
(Table 1).

The protective role of this NLRP3 rs10754558 variant in
obesity is quite unexpected. rs10754558 SNP is localized in
3′UTR region of NLRP3 and determines an increased
NLRP3 mRNA stability possibly affecting the micro RNA-
223 binding site, cooperating to increase transduction rate
of NLRP3 mRNA [10]. It increases the secretion of IL-1ß
and IL-18 by human peripheral blood monocytes or
monocyte-derived macrophages stimulated with bacterial
lipopolysaccharides (yet unpublished data).

Activation of NLRP3 inflammasome and the resulting
production of pro-inflammatory cytokines have been
showed to play a major role in adipogenesis and in pro-
inflammatory transformation of adipose tissue in chronical
overfeeding mice [11].

However, we must consider the physiological role of
inflammasome [12] in maintaining body homeostasis. A
basal activation of inflammasomes is required to control
microbiota, IEC proliferation and tissue repair through
the production of IL-18 [13]. IL-18 appeared to exert a
paradoxical effect in obesity: obese individuals present
increased serum level of the cytokine [3, 14], nonetheless it
has been recently demonstrated that IL-18 represents a
major player against obesity [8, 9]. Vijay-Kumar and
Gewirtz discussed the role of NLRP3 in obesity, empha-
sizing that the deficiency of NLRP3 leads to an altered
microbiota predisposing to the development of obesity and
obesity-associated morbidities in mice [15]. Altogether
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these findings help us to explain our quite unexpected
result.

Finally, when we have considered obesity-related
comorbidities, namely SAH or T2D, we observed no
association among SNPs and SAH (Supplementary File 1),
but a significant association between IL1B rs16944 and T2D
(Table 1).

IL1B rs16944 minor A allele resulted less frequent in
T2D (n= 73; male/female: 6/67) than in non-T2D (n= 215;
male/female: 31/184) patients (G/A+A/A: 0.51 vs. 0.67;
padj= 0.008; OR= 0.49), especially in women (padj=
0.001; OR= 0.41), or in older individuals (>40 years; T2D:
57 out of 73; non-T2D: 90 out of 215) (padj= 0.009; OR=
0.44).

Once again, a gain-of-function of inflammasome was
associated with protection against the development of dia-
betes. In mice, IL-1β has been pointed out as one of the
factors involved in the translation of obesity-associated
inflammation into insulin resistance (as largely reviewed in
ref. [16]).

All this considered, we hypothesized two scenarios, one
in which the genetic background shapes a predisposing (loss
of NLRP3 or NLRP6 in mice [17]) or protective (gain-of-
function polymorphisms in inflammasome genes) backbone
against obesity; and another, in which, in a gain-of-weight
environment, the NLRP3-inflammasome senses cell stress
agents and heavily contributes to adipose tissue inflamma-
tion [11] and consequently to the pathogenesis of obesity
and metabolic disorders.
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