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Thermodynamic Analysis of a Non Linear Lattice
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UNESP, Campus de São José do Rio Preto, Departamento de Fı́sica
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We investigate an extension of the Perard and Bishop (PB) model. In the studied model we get a harmonic
one dimensional lattice chain with an additional Morse potential on site. The rotation and vibration motion of
each component of the lattice are considered and the coupling for these motions is introduced by a resonance
condition. Thermodynamics and structural properties of the system are explored.
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1. INTRODUCTION

One dimensional non linear lattice has a long history be-
ginning with the Fermi-Pasta-Ulam (FPU). After that, several
works were dedicated to analyze these kind of system. Usu-
ally, the dynamical aspects of the problems are studied (for
a recent review, see ref.[1]). However, Peyrard and Bishop
(PB) had introduced a model [2] to simulate the DNA macro-
molecule putting attention on thermo-dynamical aspects of
the lattices.

In the FPU system the lattice is composed by masses linked
by non-linear potentials (the original potential had the form
V (x) = ax2 + bx4). In the PB model, on the other hand, the
DNA macromolecule is mimicked by two spring-masses lines
with an additional non linear potential joining the two lines at
the each adjacent pair of masses, representing H-bonds be-
tween the bases pairs. The mathematical treatment of this
model leaves to a harmonic lattice with a non linear potential
on site. The most frequently potential function in the context
is the Morse potential. Some extensions of the original model
in [2] are proposed considering, for example, the helicoidal
structure of DNA [3].

An important objective of the PB model is to understand
the phenomenon of DNA thermal denaturation and gets some
knowledge about others fundamental processes involving lo-
cal denaturation as, for example, the genetic transcription and
drugs intercalation. From this type of model is possible to ob-
tain interesting properties, as the average stretching between
base pairs as function of the temperature using the transfer in-
tegral operator [4]. It is important to note that the original PB
model consider only transversal motion of the lattices compo-
nents, i.e. only vibrational motions are studied. In this work,
we proposed an extension of the original PB model [2] by in-
troducing rotational motions for the nucleotides. In this way,
both the vibrational and rotational motion of each mass on the
lattice is considered. As in the original model, the stretch of
the base pairs is driven by the Morse potential and the cou-
pling between the two kinds of motion is obtained through
resonance condition. This condition leave us to a geometric
link on the model which introduces the radius of gyration of
the lattice components.
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We consider that the proposed model is still too simple to
simulate the DNA macromolecule. However, it permits a pre-
cise mathematical analyzes. Then, it is a good theoretical lab-
oratory to study generalizations of the PB model. Following
this line of thinking, all the parameters used in this work for
the numerical calculations are related with the phenomeno-
logical DNA analyzes.

2. THE MODEL

In the present model each nucleotide is represented by a
disk of mass m and radius R. These disks are joined together
along the ribbon by spring potentials with coupling constants
k. The two ribbons are coupled to each other by a non linear
potential simulating the hydrogen bonds. Each disk can have
two kinds of displacements, one linear (denoted by u and v for
each one of the adjacent ribbons) and an angular one, denoted
by θn and φn, respectively. For simplicity, we assumed that the
rotations happen around the axis that are parallel to the helix
axis, i.e. perpendicular to the hydrogen bond plane (see figure
1). The linear and rotations displacements are all in the same
plane. We couple the two ribbons through the Vn potential,
V (un,vn,θn,φn). The dependence in the vibrational coordi-
nates follows the normal PB model [2, 5] and the dependence
from θn and φn follows rotational models as, for example, the
coordinates cited in the ref. [6, 7]. In this way, we suppose
that V (un,vn,θn,φn) = V (un− vn,θn−φn).

The Hamiltonian for the system can be written as

H = Hp +HV , (1)

where

Hp = ∑
n

{
p2

un

2m
+

p2
vn

2m
+

p2
φn

2I
+

p2
θn

2I

}
(2)

represents the kinetics energy of system, and

HV = ∑
n

{
k
2
[(un−un−1)2 +(vn− vn−1)2]

}

+∑
n

{
ξ
2

[
(φn−φn−1)2 +(θn−θn−1)2]

}
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+∑
n

V (un− vn,θn−φn) (3)

is the potential energy. In Eq. (2), pun and pvn are the lin-
ear moments, pφn and pθn are angular moments. For simplic-
ity, the system is considered homogenous, which means that
the mass m and the moment of inertia I are equals for all nu-
cleotides. The same hypothesis is assumed by the strength
constants k and the angular strength constants ξ. The Fig. 1
shows a representation of the mechanical model indicated by
Eq. (1). Introducing a new set of coordinates:

yn =
un− vn√

2
, xn =

un + vn√
2

(4)

and

αn =
θn−φn√

2
, βn =

θn +φn√
2

(5)

we decouple the x from y motions and α from β ones in the
original Hamiltonian (1). The interaction potential Vn , how-
ever, remains dependent on a combination of yn and αn .
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FIG. 1: Mechanical model consisting of two connected chains of
oscillators mass-spring.

For our purpose, we admit that the potential depends on a
linear combination of the variables yn and αn , i.e. V (yn +
sαn), where s is a parameter coupling the coordinate y with
the angular motion described by α. This kind of dependence
in the potential is adopted as a first approximation for the
real dependence and the parameter s is related to the radius
of gyration as shown below. Introducing a canonical trans-
formation for the angular coordinate (αn; pαn), αn = sαn and
pαn = pαn/s, we get a new form to the Hamiltonian,

H = ∑
n

{
p2

xn

2m
+

p2
yn

2m
+

s2 p2
αn

2I
+

p2
βn

2I

}

+∑
n

{
k
2
[(xn− xn−1)2 +(yn− yn−1)2]

}

+∑
n

{
ξ

2s2

[
(αn−αn−1)2 + s2(βn−βn−1)2]

}

+∑
n

V
{√

2(yn +αn)
}

. (6)

For decoupled system we can identify the natural fre-
quencies for the vibration motion and rotation, as ωV =
2π(k/m)(1/2) and ωR = 2π(ξ/I)(1/2), respectively. In order
to join the angular and the linear motion and uncouple the
coordinates in the Hamiltonian, we impose a resonance con-
dition, i.e. ωV = ωR. This condition is supported by our main
interest, which is to observe the thermodynamical properties
of the system, in particular the rupture of the potential (de-
naturation). In this context, we remember that the oscillation
amplitudes increase drastically near the denaturation temper-
ature. Then, it is important to note that the amplitude of mo-
tions becomes larger in the resonance condition and the de-
naturation should be more probable. An additional argument
to use this supposition is that the coupling between rotational
and vibrational motion became more evident in the resonance
condition once in this condition occurs the greatest energy
exchange. Therefore, we obtain ξ = ks2 when considering
I = ms2. These constrains permit to identify s as the gyration
radius and to connect the parameters ξ and k. Thus, defining
a new set of coordinates

ωn =
yn−αn√

2
and λn =

yn +αn√
2

(7)

the Hamiltonian (6) becomes

H = ∑
n

{
p2

xn

2m
+

p2
λn

2m
+

p2
ωn

2m
+

p2
βn

2I

}

+∑
n

{
k
2
[(xn− xn−1)2 +(λn−λn−1)2]

}

+∑
n

{
k
2

[
(ωn−ωn−1)2 + s2(βn−βn−1)2]

}

+∑
n

V (2λn). (8)

As in the PB model, the interaction between two adjacent
bases is given by the Morse potential [2, 5]

v(z) = D(e−az−1)2 (9)
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where D is the energy of dissociation of the pair and a is
a parameter with inverse of length dimension. This poten-
tial is generally chosen to simulate hydrogen bonds in small
molecules as well [8, 9].

For a chain with N pairs of bases, the classical partition
function is given in terms of the Hamiltonian (8), and can be
factored as

Z =
∫ N

∏
n=1

dxndλndβndωnd pωnd pxn d pλn

d pβn e
−H
kBT = Zpx ZpλZpβZpω ZxZλZβZω. (10)

The integrals in all moments are simple gaussian integrals and
gives

Zpx = Zpλ = Zpω = (2πmkBT )
N
2 (11)

and

Zpβ = (2πIkBT )
N
2 , (12)

where kB is the Boltzmann constant. The Zx, Zω and Zβ are
contributions from harmonic chain of the oscillator. It is an
easy task to calculate analytically these integrals as simple
gaussian integrals and the result is given by

Zω = Zx =
{

2πkBT
k

}N
2
. (13)

and

Zβ =
{

2πkBT
ks2

}N
2
. (14)

The remaining term, in the λ variables, comes from an har-
monic chain of oscillator with an on-site non linear potential
for each oscillator. The Zλ, partition function can be written
as

Zλ =
∫ N

∏
n=1

dλne
−F
kBT , (15)

where F is given by

F(λn,λn−1) =
k
2
(λn−λn−1)2 +V (2λn). (16)

The integral in Zλ can be calculated using eigenfunctions
and eigenvalues of a transfer integral operator [4]

∫
dλn−1e

−F
kBT Ψi(λn−1) = e

−εi
kBT Ψi(λn). (17)

In the thermodynamic limit (N −→ ∞), the partition func-
tion Zλ, reduces to

Zλ = e
−Nε0
kBT , (18)

where ε0 is the ground state eigenvalue for a Schrdinger-like
equation given by [4]:

{
− (kBT )2

2k
d2

dλ2
n

+D(e−4λna−2e−2λna)
}

Ψ0(λn)

= (ε0−σ0−D)Ψ0(λn) (19)

where

σ0 =
kBT

2
ln

(
k

2πkBT

)
. (20)

The eigenvalue and the normalized eigenfunction for the
ground state are, respectively,

ε0 = σ0 + kBTa

√
2D
k
− (kBTa)2

2k
(21)

and

Ψ0(λ) = Ce
{
−
√

2
2 de−2aλ−λa(

√
2d−1)

}
, (22)

with d = (kD)1/2/(kBTa) and C the normalization constant.
In the limit N −→ ∞ the average stretching < λ > will be
dependent only on the ground state eigenfunction as

< λ >=< Ψ0(λ)|λ|Ψ0(λ) >=
∫ ∞

−∞
Ψ2

0(λ)λdλ. (23)

A criterion to determine the probability of rupture of the non
linear Morse potential as function of temperature is to con-
sider that for a distance smaller than 2Å the potential is in-
tact. This criterion is based in the phenomenological knowl-
edge that the hydrogen bond in the DNA is broken when the
distances between the basis pair are bigger than two angstroms
[5]. Then, the calculation of the probability is done using the
follow equation

P(λ < 2.0) =
∫ 2

−∞
Ψ2

0(λ)dλ. (24)

3. RESULTS

The qualitative behavior of the average stretching < λ >
as function of the temperature is obtained from Eq.(23) and
shown in Fig 2 while the fraction of closed base pairs versus
temperature is obtained from Eq.(24), see Fig. 3. The results
are similar to those obtained for a pure vibrational model [5].
However, in order to obtain a qualitative realistic result it is
necessary to fix the five parameters introduced in the model,
i.e. k, ξ, a, D and s.

The decision about the best values for the parameters is
based in experimental results for DNA presented in the lit-
erature as, for instance, scattering of neutrons [7], single-
molecule experiments [9] and low frequencies modes of vi-
bration [10]. In this way, we obtain the limit Da/2 ≤ 75 pN
[9] and ξ = 2 eV [7]. An important parameter introduced in
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FIG. 2: Variation of the average stretching as function of the temper-
ature, for different values of s: 3.5 (box), 4 (solid line), 4.5 (circle)
and 5.0 (cross). Integration in Eq.(23) was done numerically, with
D = 0.018 eV , ξ = 2.0 eV, k = ξ/s2 eV Å−2 and a = 2.22Å−1.

P( <2)l

T(K)

FIG. 3: Theoretical result for the fraction of unbroken base pairs as
function of temperature P(λ < 2Å), with values s equal to 3.5 (box),
4 (solid line), 4.5 (circle) and 5.0 (cross). The other parameters are
fixed.

this work is the radius of gyration s. It appears linked to the
moment of inertia of each disc. A good approximation to the
radius of gyration is s = 4 Å obtained from crystallographic
results of the nucleotides, contained in the Protein Data Bank
(www.rcsb.org/pdb/home/home.do). The nucleotide is under-
stood as a nitrogen base (Thymine, Adenine, Guanine and Cy-
tosine), the pentose sugar and the phosphate group, as usual,
see, for example, ref. [11]. Following the above criteri-
ons we obtain an optimal set of parameters as: ξ = 2 eV,
k = ξ/s2 = 0.125 eV Å−2, a = 2.22 Å−1 and D = 0.018 eV .
From these values, we note that Da/2 ≈ 32 pN ≤75 pN [9].

Using this set of parameters the model became completely de-
fined. In this case, the resulting denaturation temperature is TD
≈ 350 K (solid curve, in Figs. 2 and 3).

The denaturation temperature obtained is compatible with
the experimental results for DNA observed, for example, in
absorbance UV light at 260 nm [5]. In Fig 2 and 3 we observe
the behavior of denaturation curves for different values for the
radius of gyration with fixed values of ξ, a and D. We observe
that the melting temperature decrease when s increase.

4. CONCLUSION

The extension of the PB model discussed in this work per-
mits a complete mathematical treatment in analytical way. It
also permits to introduce structural factor for the analyzed lat-
tice, i.e. the radius of gyration. The model leave us to deter-
mine the melting temperature for the used parameters, ξ = 2
eV , k = 0.125 eV Å−2, a =2.22Å−1, D = 0.018 eV and s = 4
Å. Some variations in the value of the radius of gyration are
also shown in Fig. 2 and 3.

The results are quite sensitive to this value and we observe
that the denaturation temperature increase if the gyration ra-
dius decrease. However, it is possible an adjustment of the
temperature of denaturation by changing the parameters a and
D inside the range 0 < Da/2≤ 75 pN. The result present in the
figures 2 and 3 show a strong correlation between vibration
and rotation motion and they indicate the necessity of more
accuracy experimental results in order to fix the parameters,
particularly, the Morse potential parameters a and D.

The introduction of rotation motion makes the model closer
to the DNA real system. However, the presented model is still
very simple to simulate this macromolecule. In particular, the
assumption that there is a linear dependence between the vi-
bration variable (y) and the rotational one (α) looks like artifi-
cial for a complex system as the real DNA. The model can be
improved by using a more realistic connection between these
two kinds of variable.
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