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Energy and momentum for the electromagnetic field described by three
outstanding electrodynamics

Antonio Accioly®
Instituto de Fsica Teagica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-8@0P3alo, SP,
Brazil

(Received 27 September 1996; accepted 22 March)1997

A prescription for computing the symmetric energy—momentum tensor from the field equations is
presented. The method is then used to obtain the total energy and momentum for the
electromagnetic field described by Maxwell electrodynamics, Born—Infeld nonlinear
electrodynamics, and Podolsky generalized electrodynamics, respectively.o97©American
Association of Physics Teachers.

[. INTRODUCTION In Sec. Il we outline the algorithm in hand and then apply
it to obtain the total energy and momentum for the sourceless

There are two ways of obtaining the expression for theMaxwell field. Section Il is deyoteq to the electrodynamics

total energy and momentum related to a given relativisticof Born—Infeld and Podolsky, in this order. We present our

field such as the Maxwell field. The first, which incidentally conclusions in Sec. IV. . .

is described in most college or university textbooks on phys- In what follows we will work in natural units wheré

ics, is based on mechanics and employs concepts such &£ =1 and use the Heaviside—Lorentz units wétheplaced

force, work, and so on. The second way is to make use of thy unit for the electromagnetic theories. Our conventions for

so-called symmetric energy—momentum tensor. Unfortu¥elativity follow nearly all recent field theory texts. We use

nately, the usual prescription for calculating this tensor isthe metric tensor

rather cumbersome for those who are not facile with field

X 1 0
theory. As a consequence, the study of this powerful and
elegant method of easily calculating the total energy and _ |0 10
momentum for localized fields is, in general, relegated to  7«»=7 T\ g o —1 o |’

graduate courses. Our aim here is to present an elementary

algorithm for computing the symmetric energy—momentum 0 0 o -1

tensor from the field equations and apply it to obtain the totalvith Greek indices running over 0, 1, 2, 3. Roman indices—
energy and momentum for the electromagnetic field relateq j, etc.—denote only the three spatial components. Re-
to the three most famous known electrodynamics, i.e., thgeated indices are summed in all cases.

electrodynamics developed by Maxw&IBorn—Infeld? and

Podolsky? respectively. By elementary we mean that no eIl THE ALGORITHM

fort will be expended on field theoretic technicalities and that

correspondingly no formal sophistication will be demanded Suppose one wants to find the symmetric energy—
of the reader. momentum tensor for some free relativistic field. We take for
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granted that this tensor, which from now on will be denotedLorentz scalar. This field, which corresponds to electrically
by T# (T#*=T"*), obeys the differential conservation neutral r‘{Jarticles, is known to satisfy the Klein—Gordon
law:! equatio

9, TF'=0. (1) (O+m?)¢(x)=0,

The continuity equatiori1) yields the conservation of total Where 0= 27""9,d,=4,0". If we introduce a “source”
energy and momentum upon integration over all of three{(x) for the field, the field equation turns out to be
space at fixed time. Indeed, .

P (O+m?) b(x) =] (x).

OZJ d3x(7VT"”=i j dsxTMoJrj d3xa, TH. The simplest expression_ for the “forc_e d_ensity"” built
dt with a given scalar curren(x) and a derivative of the scalar

For localized fields, the second integral—a divergence—fi€ld is of the form

gives no contribution, and taking into account that fh=jotd= (") (O+m?) é.
PM:I 43Xk (2a) Note_that for some the_re is one and only one derivative of
the field that couples in the simplest way jtoso that the

resulting expression is a contravariant vector.

where (i) The Maxwell fieldIn the absence of sources, Maxwell
P#“=(e,P), (2b)  equations are®
is the four-momentum of the field, arddand P are, respec- d,F*"=0, (4)
t!vely, the total energy and three-momentum of the field, we 9. F. 40 F. +d.F, =0, )
find u w e
dp- where F#” denotes the antisymmetric electromagnetic field
—— =0, tensor #"=—F"#). Introducing a sourc¢* for the elec-
dt tromagnetic field, the field equations take on the form
or, equivalently, g, FHr=j#, (6)
d dpP _
d_;‘:O, a:o. 9oF ypt 9, F gt d,Fa=0. )
The force density is given in this case by
If we “switch on” a variable external “current” which acts f —F ih=F g FH )
as a source for the field, the field equation will be modified «=Fapl apmvs
and the energy—momentum tensor will no longer satijy (iif) The complex KleirGordon field.This field is known

asin Fhe case of the free field. Instead, it will now obey theto obey the equatiofis
equation: (O+m)$(x)=0, (O+m?)¢*(x)=0,

MY — 1
T e © where theg* field is the complex conjugate of thg field.
where the contravariant vectdt#, which has the dimension The complex Klein—Gordon field corresponds to electrically
of force density, describes the interaction of the field with thecharged particles. Let us then introduce a “sourgé’{x)

current. From(3) we promptly obtain for the ¢* field. As a consequence,
dp” fds ” (O+mA)g*=j*, (O+m?)¢=].
— = xf#,
dt The “force density,” which of course is a real quantity, has
the form

This equation tells us that the rate of change of the four-
momentum of the field is equal to the “total force’t®xf*, fh=j* o p+ o p*
which is the analogue of the Minkowski equation for a single o 2 ik g 5

particle! Introducing an energy—momentum tenddj” for =" ¢(0+m9)¢* +5%¢* (L +m) ¢.

the current, i.e., for the matter, by the definition (iv) The Dirac field. The corresponding field equations

5T —fh are
i y*d,p(X) —mi(x) =0,

3,001 y*+mi(x) =0,

where?E J19° is the adjoint spinor ta. The indices label-
?ng spinor components and matrix elements were suppressed

for the sake of simplicity. We assume thigtj Ty is the

we can rewritg(3) in the form of a continuity equation:
,(TH+Ti")=0.

Thus the total energy and momentum of the field and th
matter are conserved.

We return now to Eq(3). Let us then postulate thét is
the simplest contravariant vector constructed with a given'source” for the ¢ field. As a result,
current and a suitable derivative of the field. We qualify this .. —— — . :
statement by means of some examples. qualty oyt myg=], 1y h—mi= .

(i) The real Klein-Gordon field.In a sense the simplest The “force density,” which incidentally is an Hermitian
field theory is that of a real field(x) that transforms as a quantity, can be written as

883 Am. J. Phys., Vol. 65, No. 9, September 1997 Antonio Accioly 883



fa:ﬁaw—i_ &a%

= (I (9#(//’)/'”“4- mlﬁ) aalp_ galp(l ’yﬂﬁp,l//_ mlﬁ) i
We hope the previous examples have clarified what

simplest contravariant vector constructed with a given cur
rent and a suitable derivative of the field” means. Note th
there is nothing ambiguous in the prescription for buildin
the force density out of the current and the derivative of th

field.

Based on the previous considerations, we now Tiitifor
the free Maxwell field. We do that in two steps.

(i) We “turn on” a current j*; From (3) and(8), we have

T ou=Foa=Foui”=Fq,0,F*". 9
The right-hand side of this equation can be expanded to
FaMaVFMv:&V(FQMFILV)_(&VF[IM)FMVI

and, exchanging the dummy indicgsand v on the second
term, we get

Foaud F*'=0,(F 4, F*") = 3(3,F o+, F

ap uova

YA,

Note that, contrary to what happens in usual field theory,
here we do not have to postulate the equation of motion of
the material bodies under the influence of the interaction;
i.e., we do not have to introduce a formula for the force

“thedensity representing the action of the field on each body. In
fact, the simplicity criterion we have previously introduced
aletermines automatically the force density. Consider, in this

vein, the Maxwell theory. From9), the force density is

egiven by

fe= Faﬁj g
whereupon

j#=(p.J),
wherep is the charge density. On the other hand, the com-
ponentsE'(B') of the electric field(magnetic fieldl can be

related to the components of the electromagnetic field tensor
as follows>*®

Ei — FOi

Bi — %EilmFlm ,

(14)
(15

I . . . . . .
Using (7), we can replace the term in parentheses withwhere e ™ is the Levi-Civita density which equals 1

—3oF uvs

v_ v 1 v
Foand FH'=0,(F 4, F*") +20,F ., F*
= aV(Fa,uF'uV) + %&a(FMvFMV)'

leading to

But,

aa: naﬁaﬁ: ﬂaﬁﬂﬁvﬁu: 5:;‘91/ . (10)
Thus

Foaud F*'=0,[F o F*"+ 260F 4Fr?]. (11

From (9) and(10) it follows that
avTav:av[FavFMV_'— %5ZFP‘9FP0]'

If we now multiply both sides of the above equation %7,
we immediately obtain

I"TE=0,[FOF#+ i9PF ,FrO). (12)
Note that
NP o= Ffj, 8V b= P,

Equation(11) can be rewritten as
3, TEv =g, [FERHY+ 19P"F 7).
(ii)) We “turn off” the current: As a result,
fA=09,TA =0 [FOF*+ i9P'F ,FP?]=0.

So, the fully contravariant form of the symmetric energy—

momentum tensor for the Maxwell field is

TA'=FLFrr 4 1nPUF  F Y. (13)

(=1) ifi, I, mis an evenodd permutation from 1, 2, 3,

and vanishes if two indices are equal. Therefore,
fO=F%),=E.j,

and

fk:Fkﬁjﬁ:Fk0j0+Fkiji:Fk0j0+€kiljiB|
= (pE)*+(jxB)X.
So,
f*=(E-j,pE+]XxB),

which is nothing but the well-known Lorentz force density.

Let us then find the total energy and momentum for the
Maxwell field with zero source. Usin(a), (2b), (13), (14),
and(15), yields

_ 3
Efield_f d=x

1 Oi 1 ]
E F*Fo+ Z F Fij

=J d3x%[E2+ B?], (16)

Piﬁeldzf d3xFojF“=f d3x(ExB)'.

Equation(17) can be rewritten as

(17)

Pfield:f d*x(ExB),
from which we trivially obtain the vectos representing en-
ergy flow, i.e., the Poynting vector,

S=EXB. (18)

We may now present a simple algorithm for computingnote thatS = T9'
the symmetric energy—momentum tensor from the field

equation. Multiply the equation for the field in hand by a

suitable derivative of this field so that the resulting expres4ll. THE NONLINEAR ELECTRODYNAMICS OF
sion contains only one free spacetime index and then rewrit ORN—INFIELD AND THE HIGHER ORDER
it as a four-derivative. Of course, this algorithm is nothing gl ECTRODYNAMICS OF PODOLSKY

but an “operational” summary of the main points we have

just discussed. As such, its main role is to work as a mne- We shall now analyze two interesting attempts to modify

monic device for the reader.
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that usually plague that theory. The first was made by BornExpanding the square root and keeping only terms of second
in the early 30s. He proposed that the field equations conerder, we recover the expression for the total energy of the
cerning Maxwell theory, Eq44) and(5), should be replaced Maxwell field; i.e.,

by
1
= Efield:f dx > (E*+B?).
| TT—|= (19
V1+F/a? The total momentum of the field and the Poynting vector, in
0uF it 0yF apt 3,F a=0, (20) turn, are given, respectively, by
where FE%FWF”” (F*¥ is the antisymmetric electromag- pi f d¥x ——— 2 (ExB)' _ ExB
netic field tensor and a is a constant with dimension of field™ 32 E2 BZ_EZ
(length¥. Note that Eq(19) is highly nonlinear. Let us then 1+

find the symmetric energy—momentum tensor for this theory.
For this purpose, multiply Eq19) by F,, Since Born’s equations can be derived via a variational prin-

ciple from a Lagrangian density, in the limit of small field

Frv strengths, ¥ has to approach#(®?)=}E?—B?), which is
ap| /== |~ exactly the Lagrangian density leading to Maxwell's equa-
1+F/a tions. The Lagrangian density related to Born’s equatiohs is
Using (20) we obtain Y= _a \/mz 23)
P R ) -9 FauF*” " FEF 1y Expanding the square root, we obtain
PN V1+Fla?) ' J1+F/a?] 2y1+F/a? Y m — a2+ {E2—B2)+ - -
L0 2
On the other hand, This Lagrangian density, as was expected, differs from the
FAvy F 1 4,(2F) Maxwell one by a constant term. Now, the usual procedure
Rl oL =a2d, 1+ F/a? for calculating the symmetric energy—momentum tensor, and
2\J1+F/a® "4 V1+F/a? consequently the total energy of the field, is entirely based on
, the Lagrangian density, which incidentally is not a physically
=a’d,[ o,\1+F/a%]. (21)  measurable quantity in the usual sense but a convenient

mathematical tool. As a consequence, the symmetric

Thus the symmetric energy—momentum tensor is given by energy—momentum tensor computed V&8) leads to the

Faug” same troublesome value for the energy as before. Is it pos-
| G ——ELE NS P (22)  sible to avoid this problem without further redefining the
J1+F/a? symmetric energy—momentum tensor? Yes, we redefine the

I . . Lagrangian density as follows:
Substitution 0f(22) into (2a) leads to the expression for the

total energy of the field: Y=a1- \/m]’ (24
2 B°-E ing in fi imati
eﬁem:f 43x E ra[14 | leading in first approximation to
B®—E a F=YE2-B)+---
T

1
a2+§ (E?+B?)+---|,

The T#” computed using24) gives a finite value for the
Developinge;eyq in powers ofa: energy. Note, however, that the original Lagrangian density
proposed by Borii23) as well as the Lagrangian densi4)
3 yield the same field equatiori49). In a sense this way of
€fiela= | d°X sweeping delicate questions under the carpet, despite being
mathematically elegant, disguises the underlying physics of
we see that, as a first approximation, the nepy differs  the process.
from the old(16) by a constant. Yet, this is an infinite con-  The fact that Lagrangian densit23) does not reproduce
stant! Fortunately, only energy differences are observableviaxwell Lagrangian density in the limit of small field
Hence, this embarrassing infinite constant is harmless anstrengths, among other things, led Born and Infeld to refor-
easily removed by redefining the symmetric energy—mulate Born’s original theory. Since the Lagrangian density
momentum tensor to be % must be a Lorentz scalar and the electromagnetic field has
only two gauge invariant Lorentz scalars, namely,

apgv
TH= =t a a’[V1+F/a’-1]. F=3F, Fr'=B*-E?
The total energy of the field is now given by G? (4':* Fev)2=(E-B)?,
E2 B2_E2 where* F#V= —e’”P"FW is the dual field strength tensa¥;
eﬁem:J d3| ————+a? \/1+ —7 1) . can be a function oF andG? only. Born and Infield opted
B*-E* for the following function of the invariants, as their Lagrang-
I+ —2 ian density
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\/ﬁ An attractive feature of this theory is that it can account for a
1-\/1+ =5 —|, stable electron with a finite size and finite self-energy.

a a The second notable attempt to modify Maxwell electrody-
wherea has the meaning of a maximum field strength. Sohamics was made by Podolsl the early 40s. In general-
for fields much weaker thaa we recover Maxwell Lagrang- 1Zing the equations of Maxwell electrodynamics, Podolsky
ian density by expanding the square root and keeping OnH;nade every effort to leave the ordinary assumptions of Max-
terms of second order. They chose this Lagrangian density iWell theory as nearly unaltered as possible. His higher-order
analogy to the relativistic Lagrangian for a free partidle, €l€ctrodynamics is described by the equations
=m[1—y1—0v?], which in the nonrelativistic limit §<1) (1+a%0)a,F+"=0, (25)
reduces to the well-known expressibr- mv?/2. Note that

“=a?

just as the limiting velocityp=1 is of no importance in 9aF uvt F apt duF10=0, (26)
classical mechanics, the maximum field strengtfs irrel-  wherea is a real parameter with dimension of length and
evant for classical electrodynamics. The field equations fODEO’)ﬁaﬂ' It is worth mentioning that the usual prescription
Born—Infeld theory are for obtaining the symmetric energy—momentum tensor for
WY _ kv a2 higher-order field theories is difficult to handle even for
F F*'Gla o S
P -0 those that are familiar with field theory. Fortunately our
g F G2 ' recipe allows us to carry out this computation in a simple
way.
+——— ' . .
1 a2 a% To find T#” for Podolsky generalized electrodynamics we

multiply (25) by F,,, . Using(11) we obtain

9aF ot 9F apt 9,F 1a=0.
9,[F o F#7+ 18%F ,FP?]+F,,2°00,F#'=0.

v ap u' va

Using our algorithm we find that the symmetric energy—

momentum tensor for that theory is given by The second term can be transformed as follows:
F“PEY+ Gzn“”/az F G‘2 aZFauDavFMV:[aV(FaMDFﬂv) - avFa,uDFMV]az'
T = - + e\ 1+ —— —. , )
a- a From (26) and the above equation we obtain

/1+ F G°
27 A
a® a aF,,09,F*"'=a%d,(F ., OF*") +d,(3F ,,O0F*")
In deriving this result, use has been made of the identity e ,
—sF#*0Oa F*].

*FHE,,=—Gal.
i On the other hand,
Just as we have done before, we redefine the symmetric
energy—momentum tensor to avoid troublesome constants: Erg F, =R O(9,F, ., +,F,.)
a' uv v aup nova

FHPF)+GPpttla? G*

b e a
I+ %7
a a Similarly,

a
The energy, the momentum, and the Poynting vector, are
now given, respectively, by a,F*'OF = d,F# 3P gF

v ap v apu

=—F*'00,F,,
=—3,(F*"0OF )+ a,F*OF,,,.

A

+ 77’“’8.2 l+£2—
a

2 2 v
o [[a] —EE = 0 R0, 0
field™
\/1 B2-E2 (E-B)? = = 0,(9,FHOPF o) = 0030, FH0PF ).
+ —
a2 a’ Hence,
, \/ B*-E* (E-B)? a’F,,00,F*"=a%),[F,, O0F*+F*OF,,
N | — OBF 50, F 1+ 36%(F , OIFP"
aBYu 2\ po
+gFPPF )]
The symmetric energy—momentum tensor can then be ex-
5 _J o ExB pressed as
field™ '
B2-E® (E-B)? 1 a?
1+ rE— 7 T = F““F;+Z7;“"FpaF”(’+ > n*[F 0] Fro
a a
(4 rca v v a
ExB +3,FPPPF g]—ad F**OF ) + F**OF
S= : +gF g F ]
B°-E* (E-B)? | o
1+ — y which agrees with the Podolsky result.

a a In electrostatics this gives for the energy,
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1 IV. CONCLUSION
ef’ﬁe.d=f d3x§{E2—a2[(V-E)2+ 2E-V2E]. (27)
We have devised an algorithm for computing the symmet-
Taking into account tha? x E=0, and assuming th&V -E ric energy—momentum tensor from the field equations. The
vanishes at infinity faster thanr®/ one finds that Eq(27)  prescription can be used for both ordinary and higher-order
can easily be put in the form field theory. It does not matter whether the field in hand is a
tensor or a spinor field.
1 A last remark: The algorithm can be easily extended to
25"ﬁe|d=§ J d3x[E?+a?(V-E)?], (28)  curved spacé®

which is obviously positive. In the static case the scalar po-

tential due to a point charge turns out to’be
ACKNOWLEDGMENTS

— Q —rla ;
=g (1-e ), | am very grateful to the referees for their helpful sugges-

tions and comments.

which approaches a finite val@@4ma asr approaches zero.

Making use off= —V ¢, we easily obtain the expression for ?Electronic mail: accioly@axp.ift.unesp.br

the electrostatic field due to a point charge: 1A. O. Barut, Electrodynamics and Classical Theory of Fields and Par-
ticles(Dover, New York, 1980 see also references therein; J. D. Jackson,

Classical Electrodynamic&/Viley, New York, 1975, 2nd ed.
r 29 2M. Born and L. Infeld, “Foundations of the New Field Theory,” Proc. R.
F' ( ) Soc. London, Ser. A44, 425-451(1934.

3B. Podolsky, “A Generalized Electrodynamics Part I—Non-Quantum,”
Substituting(29) into (28) and performing the integration, Phys. Rev62, 68—-71(1942.
we find that the energy for the fields of a point charge is :F' Mandl and G. ShawQuantum Field TheoryWiley, New York, 1984.
given by Q2/2a. Thus, unlike Maxwell electrodynamics, D. H. Kobe, “Generalization of Coulomb’s law to Maxwell's equations

. . . using special relativity,” Am. J. Phy$4, 631-636(1986.
POdOlSky generallzed eleCtrOdynamlcs leads to a finite ValueD. E. Neunschwander and B. N. Turner, “Generalization of the Biot—

for the energy of a point charge in the whole space. Of sayart jaw to Maxwell's equations using special relativity,” Am. J. Phys.
course, the momentum of the field in this case is equal to 60, 35-38(1992.

zero. The expressions for the total energy and momentum ofM. Born, “On the Quantum Theory of the Electromagnetic Field,” Proc.
the field in the general case are not very illuminating, so they R. Soc. London, Ser. A43 410-437(1933.

will not be displayed here. 8A. Accioly, A. D. Azeredo, C. M. L. de Araga and H. Mukai, “A simple

It is worth mentioning that our method tells us that the prescription for computing the stress-energy tensor,” Class. Quantum
. . . Grav. (to be published

fc_)rce law for Podolsky generalized eIeCtrOdyna’mms IS Pre-op, Accioly and H. Mukai, “On the dissimilarity between the algorithms
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2 € r’  ar

E(r)=%

HIGH VOLTAGE

“Oh, and about lab rules,” he added. “The first rule is ‘It's your job and not mine.’ The second
is ‘I don't take any excuses,” and the third is ‘Lab hours are 7:30 to 5:30, with half an houf for
lunch.” You should be able to get all your lab work done between those hours. Harvard’s Physics
Department lost a student last year when he fell asleep into his experiment’s high-voltage power
supply at 2:00 in the morning. He was found dead the next day. We don’t want that kind of thing
to happen here in the Sloan Lab.”

Me neither. “Uh huh”.

“You can do computer work at night and read journal articles. And try taking a swim gfter
dinner for half an hour or so. I've found that exercising at that time makes me need less slee¢p and
wakes me up so | can work another four or five hours. Come on downstairs—I'll show you |your
cell.”

Pepper WhiteThe Idea Factory—Learning to Think at M[{Penguin Books, New York, 1991p. 79.
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