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Energy and momentum for the electromagnetic field described by three
outstanding electrodynamics

Antonio Acciolya)

Instituto de Fı´sica Teo´rica, Universidade Estadual Paulista, Rua Pamplona 145, 01405-900 Sa˜o Paulo, SP,
Brazil

~Received 27 September 1996; accepted 22 March 1997!

A prescription for computing the symmetric energy–momentum tensor from the field equations is
presented. The method is then used to obtain the total energy and momentum for the
electromagnetic field described by Maxwell electrodynamics, Born–Infeld nonlinear
electrodynamics, and Podolsky generalized electrodynamics, respectively. ©1997 American

Association of Physics Teachers.
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I. INTRODUCTION

There are two ways of obtaining the expression for
total energy and momentum related to a given relativis
field such as the Maxwell field. The first, which incidenta
is described in most college or university textbooks on ph
ics, is based on mechanics and employs concepts suc
force, work, and so on. The second way is to make use of
so-called symmetric energy–momentum tensor. Unfo
nately, the usual prescription for calculating this tensor
rather cumbersome for those who are not facile with fi
theory. As a consequence, the study of this powerful
elegant method of easily calculating the total energy a
momentum for localized fields is, in general, relegated
graduate courses. Our aim here is to present an eleme
algorithm for computing the symmetric energy–moment
tensor from the field equations and apply it to obtain the to
energy and momentum for the electromagnetic field rela
to the three most famous known electrodynamics, i.e.,
electrodynamics developed by Maxwell,1 Born–Infeld,2 and
Podolsky,3 respectively. By elementary we mean that no
fort will be expended on field theoretic technicalities and t
correspondingly no formal sophistication will be demand
of the reader.
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In Sec. II we outline the algorithm in hand and then app
it to obtain the total energy and momentum for the source
Maxwell field. Section III is devoted to the electrodynami
of Born–Infeld and Podolsky, in this order. We present o
conclusions in Sec. IV.

In what follows we will work in natural units where\
5c51 and use the Heaviside–Lorentz units withc replaced
by unit for the electromagnetic theories. Our conventions
relativity follow nearly all recent field theory texts. We us
the metric tensor

hmn5hmn5S 1 0 0 0

0 21 0 0

0 0 21 0

0 0 0 21

D ,

with Greek indices running over 0, 1, 2, 3. Roman indices
i , j , etc.—denote only the three spatial components.
peated indices are summed in all cases.

II. THE ALGORITHM

Suppose one wants to find the symmetric energ
momentum tensor for some free relativistic field. We take
882© 1997 American Association of Physics Teachers

ect to the terms at: http://scitation.aip.org/termsconditions. Downloaded to IP:

02 Apr 2014 20:35:35



e
n

l
ee

—

w

ed

th

th

u

le

th

e
is

t

lly
n

r

f

ll

ld

lly

s

s

ssed

 This arti
granted that this tensor, which from now on will be denot
by Tmn (Tmn5Tnm), obeys the differential conservatio
law:1

]nTmn50. ~1!

The continuity equation~1! yields the conservation of tota
energy and momentum upon integration over all of thr
space at fixed time. Indeed,

05E d3x]nTmn5
d

dt E d3xTm01E d3x] iT
m i .

For localized fields, the second integral—a divergence
gives no contribution, and taking into account that1

Pm5E d3xT0m, ~2a!

where

Pm5~e,P!, ~2b!

is the four-momentum of the field, ande andP are, respec-
tively, the total energy and three-momentum of the field,
find

dPm

dt
50,

or, equivalently,

de

dt
50,

dP

dt
50.

If we ‘‘switch on’’ a variable external ‘‘current’’ which acts
as a source for the field, the field equation will be modifi
and the energy–momentum tensor will no longer satisfy~1!,
as in the case of the free field. Instead, it will now obey
equation:

]nTmn5 f m, ~3!

where the contravariant vectorf m, which has the dimension
of force density, describes the interaction of the field with
current. From~3! we promptly obtain

dPm

dt
5E d3xf m.

This equation tells us that the rate of change of the fo
momentum of the field is equal to the ‘‘total force’’*d3xf m,
which is the analogue of the Minkowski equation for a sing
particle.1 Introducing an energy–momentum tensorTM

mn for
the current, i.e., for the matter, by the definition

]nTM
mn52 f m,

we can rewrite~3! in the form of a continuity equation:

]n~Tmn1TM
mn!50.

Thus the total energy and momentum of the field and
matter are conserved.

We return now to Eq.~3!. Let us then postulate thatf m is
the simplest contravariant vector constructed with a giv
current and a suitable derivative of the field. We qualify th
statement by means of some examples.

(i) The real Klein–Gordon field.In a sense the simples
field theory is that of a real fieldf(x) that transforms as a
883 Am. J. Phys., Vol. 65, No. 9, September 1997
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Lorentz scalar. This field, which corresponds to electrica
neutral particles, is known to satisfy the Klein–Gordo
equation4

~h1m2!f~x!50,

where h5hmn]m]n5]m]m. If we introduce a ‘‘source’’
j (x) for the field, the field equation turns out to be

~h1m2!f~x!5 j ~x!.

The simplest expression for the ‘‘force density’’f m built
with a given scalar currentj (x) and a derivative of the scala
field is of the form

f m5 j ]mf5~]mf!~h1m2!f.

Note that for somej there is one and only one derivative o
the field that couples in the simplest way toj so that the
resulting expression is a contravariant vector.

(ii) The Maxwell field.In the absence of sources, Maxwe
equations are5,6

]nFmn50, ~4!

]aFmn1]nFam1]mFna50, ~5!

whereFmn denotes the antisymmetric electromagnetic fie
tensor (Fmn52Fnm). Introducing a sourcej m for the elec-
tromagnetic field, the field equations take on the form

]nFmn5 j m, ~6!

]aFmn1]nFam1]mFna50. ~7!

The force density is given in this case by

f a5Fam j m5Fam]nFmn. ~8!

(iii) The complex Klein–Gordon field.This field is known
to obey the equations4

~h1m2!f~x!50, ~h1m2!f* ~x!50,

where thef* field is the complex conjugate of thef field.
The complex Klein–Gordon field corresponds to electrica
charged particles. Let us then introduce a ‘‘source’’j * (x)
for the f* field. As a consequence,

~h1m2!f* 5 j * , ~h1m2!f5 j .

The ‘‘force density,’’ which of course is a real quantity, ha
the form

f m5 j * ]mf1 j ]mf*

5]mf~h1m2!f* 1]mf* ~h1m2!f.

(iv) The Dirac field. The corresponding field equation
are4

igm]mc~x!2mc~x!50,

]mc̄~x!igm1mc̄~x!50,

wherec̄[c†g0 is the adjoint spinor toc. The indices label-
ing spinor components and matrix elements were suppre
for the sake of simplicity. We assume thatj̄ 5 j †g0 is the
‘‘source’’ for the c̄ field. As a result,

i ]mc̄gm1mc̄5 j̄ , igm]mc2mc52 j .

The ‘‘force density,’’ which incidentally is an Hermitian
quantity, can be written as
883Antonio Accioly
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 This arti
f a5 j̄ ]ac1]ac̄ j

5~ i ]mc̄gm1mc̄ !]ac2]ac̄~ igm]mc2mc!.

We hope the previous examples have clarified what ‘‘
simplest contravariant vector constructed with a given c
rent and a suitable derivative of the field’’ means. Note t
there is nothing ambiguous in the prescription for buildi
the force density out of the current and the derivative of
field.

Based on the previous considerations, we now findTmn for
the free Maxwell field. We do that in two steps.

(i) We ‘‘turn on’’ a current jm: From ~3! and~8!, we have

]mTam5 f a5Fam j m5Fam]nFmn. ~9!

The right-hand side of this equation can be expanded to

Fam]nFmn5]n~FamFmn!2~]nFam!Fmn,

and, exchanging the dummy indicesm andn on the second
term, we get

Fam]nFmn5]n~FamFmn!2 1
2~]nFam1]mFna!Fmn.

Using ~7!, we can replace the term in parentheses w
2]aFmn , leading to

Fam]nFmn5]n~FamFmn!1 1
2]aFmnFmn

5]n~FamFmn!1 1
4]a~FmnFmn!.

But,

]a5hab]b5habhbn]n5da
n ]n . ~10!

Thus

Fam]nFmn5]n@FamFmn1 1
4da

n FruFru#. ~11!

From ~9! and ~10! it follows that

]nTan5]n@FanFmn1 1
4da

n FruFru#.

If we now multiply both sides of the above equation byhab,
we immediately obtain

]nTn
b5]n@Fm

bFmn1 1
4h

bnFruFru#. ~12!

Note that

habFam5Fm
b , da

n hab5hnb.

Equation~11! can be rewritten as

]nTbn5]n@Fm
bFmn1 1

4h
bnFruFru#.

(ii) We ‘‘turn off ’’ the current: As a result,

f b5]nTbn5]n@Fm
bFmn1 1

4h
bnFruFru#50.

So, the fully contravariant form of the symmetric energ
momentum tensor for the Maxwell field is

Tbn5Fm
bFmn1 1

4h
bnFruFru. ~13!

We may now present a simple algorithm for computi
the symmetric energy–momentum tensor from the fi
equation. Multiply the equation for the field in hand by
suitable derivative of this field so that the resulting expr
sion contains only one free spacetime index and then rew
it as a four-derivative. Of course, this algorithm is nothi
but an ‘‘operational’’ summary of the main points we ha
just discussed. As such, its main role is to work as a m
monic device for the reader.
884 Am. J. Phys., Vol. 65, No. 9, September 1997
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Note that, contrary to what happens in usual field theo
here we do not have to postulate the equation of motion
the material bodies under the influence of the interacti
i.e., we do not have to introduce a formula for the for
density representing the action of the field on each body
fact, the simplicity criterion we have previously introduce
determines automatically the force density. Consider, in
vein, the Maxwell theory. From~9!, the force density is
given by

f a5Fab j b ,

whereupon

j m5~r,j !,

wherer is the charge density. On the other hand, the co
ponentsEi(Bi) of the electric field~magnetic field! can be
related to the components of the electromagnetic field ten
as follows:5,6

Ei5F0i , ~14!

Bi5 1
2e

i lmFlm , ~15!

where e i lm is the Levi–Civita density which equals11
(21) if i , l , m is an even~odd! permutation from 1, 2, 3,
and vanishes if two indices are equal. Therefore,

f 05F0i j i5E–j ,

and

f k5Fkb j b5Fk0 j 01Fki j i5Fk0 j 01ekil j iBl

5~rE!k1~ j3B!k.

So,

f a5~E–j ,rE1 j3B!,

which is nothing but the well-known Lorentz force densit
Let us then find the total energy and momentum for

Maxwell field with zero source. Using~2a!, ~2b!, ~13!, ~14!,
and ~15!, yields

efield5E d3xF1

2
F0iFi01

1

4
Fi j Fi j G

5E d3x
1

2
@E21B2#, ~16!

Pfield
i 5E d3xF0 jF

ji 5E d3x~E3B! i . ~17!

Equation~17! can be rewritten as

Pfield5E d3x~E3B!,

from which we trivially obtain the vectorS representing en-
ergy flow, i.e., the Poynting vector,

S5E3B. ~18!

Note thatSi5T0i .

III. THE NONLINEAR ELECTRODYNAMICS OF
BORN–INFIELD AND THE HIGHER ORDER
ELECTRODYNAMICS OF PODOLSKY

We shall now analyze two interesting attempts to mod
Maxwell electrodynamics in order to get rid of the infinitie
884Antonio Accioly
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 This arti
that usually plague that theory. The first was made by Bo7

in the early 30s. He proposed that the field equations c
cerning Maxwell theory, Eqs.~4! and~5!, should be replaced
by

]nF Fmn

A11F/a2G50, ~19!

]aFmn1]nFam1]mFna50, ~20!

where F[ 1
2FmnFmn ~Fmn is the antisymmetric electromag

netic field tensor! and a is a constant with dimension o
(length)2. Note that Eq.~19! is highly nonlinear. Let us then
find the symmetric energy–momentum tensor for this theo
For this purpose, multiply Eq.~19! by Fam :

Fam]nF Fmn

A11F/a2G50.

Using ~20! we obtain

Fam]nS Fmn

A11F/a2D 5]nF FamFmn

A11F/a2G1
Fmn]aFmn

2A11F/a2
.

On the other hand,

Fmn]aFmn

2A11F/a2
5

1

4

]a~2F !

A11F/a2
5a2]aA11F/a2

5a2]n@da
nA11F/a2#. ~21!

Thus the symmetric energy–momentum tensor is given

Tan5
FamFm

n

A11F/a2
1hana2A11F/a2. ~22!

Substitution of~22! into ~2a! leads to the expression for th
total energy of the field:

efield5E d3xF E2

A11
B22E2

a2

1a2A11
B22E2

a2 G .

Developingefield in powers ofa:

efield5E d3xFa21
1

2
~E21B2!1••• G ,

we see that, as a first approximation, the newefield differs
from the old~16! by a constant. Yet, this is an infinite con
stant! Fortunately, only energy differences are observa
Hence, this embarrassing infinite constant is harmless
easily removed by redefining the symmetric energ
momentum tensor to be

Tmn5
FamFm

n

A11F/a2
1hmna2@A11F/a221#.

The total energy of the field is now given by

efield5E d3xF E2

A11
B22E2

a2

1a2SA11
B22E2

a2 21D G .
885 Am. J. Phys., Vol. 65, No. 9, September 1997
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Expanding the square root and keeping only terms of sec
order, we recover the expression for the total energy of
Maxwell field; i.e.,

efield5E d3x
1

2
~E21B2!.

The total momentum of the field and the Poynting vector,
turn, are given, respectively, by

Pfield
i 5E d3x

~E3B! i

A11
B22E2

a2

, S5
E3B

A11
B22E2

a2

.

Since Born’s equations can be derived via a variational p
ciple from a Lagrangian densityL, in the limit of small field
strengths,L has to approachL (0)5 1

2(E
22B2), which is

exactly the Lagrangian density leading to Maxwell’s equ
tions. The Lagrangian density related to Born’s equations7

L52a2A11F/a2. ~23!

Expanding the square root, we obtain

L52a21 1
2~E22B2!1••• .

This Lagrangian density, as was expected, differs from
Maxwell one by a constant term. Now, the usual proced
for calculating the symmetric energy–momentum tensor,
consequently the total energy of the field, is entirely based
the Lagrangian density, which incidentally is not a physica
measurable quantity in the usual sense but a conven
mathematical tool. As a consequence, the symme
energy–momentum tensor computed via~23! leads to the
same troublesome value for the energy as before. Is it p
sible to avoid this problem without further redefining th
symmetric energy–momentum tensor? Yes, we redefine
Lagrangian density as follows:

L5a2@12A11F/a2#, ~24!

leading in first approximation to

L5 1
2~E22B2!1••• .

The Tmn computed using~24! gives a finite value for the
energy. Note, however, that the original Lagrangian den
proposed by Born~23! as well as the Lagrangian density~24!
yield the same field equations~19!. In a sense this way o
sweeping delicate questions under the carpet, despite b
mathematically elegant, disguises the underlying physics
the process.

The fact that Lagrangian density~23! does not reproduce
Maxwell Lagrangian density in the limit of small field
strengths, among other things, led Born and Infeld to ref
mulate Born’s original theory. Since the Lagrangian dens
L must be a Lorentz scalar and the electromagnetic field
only two gauge invariant Lorentz scalars, namely,

F5 1
2FmnFmn5B22E2,

G25~ 1
4Fmn* Fmn!25~E–B!2,

where* Fmn5 1
2e

mnrsFrs is the dual field strength tensor,L

can be a function ofF andG2 only. Born and Infield opted
for the following function of the invariants, as their Lagran
ian density2
885Antonio Accioly
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L5a2F12A11
F

a22
G2

a4 G ,
wherea has the meaning of a maximum field strength. S
for fields much weaker thana we recover Maxwell Lagrang
ian density by expanding the square root and keeping o
terms of second order. They chose this Lagrangian densi
analogy to the relativistic Lagrangian for a free particle,L
5m@12A12v2#, which in the nonrelativistic limit (v!1)
reduces to the well-known expressionL5mv2/2. Note that
just as the limiting velocityv51 is of no importance in
classical mechanics, the maximum field strengtha is irrel-
evant for classical electrodynamics. The field equations
Born–Infeld theory are

]nF Fmn2* FmnG/a2

A11
F

a2
2

G2

a4

G50,

]aFmn1]nFam1]mFna50.

Using our algorithm we find that the symmetric energ
momentum tensor for that theory is given by

Tmn5
FmrFr

n1G2hmn/a2

A11
F

a22
G2

a4

1hmna2A11
F

a22
G2

a4 .

In deriving this result, use has been made of the identity

* FmnFnr52Gdr
m .

Just as we have done before, we redefine the symm
energy–momentum tensor to avoid troublesome constan

Tmn5
FmrFr

n1G2hmn/a2

A11
F

a22
G2

a4

1hmna2FA11
F

a22
G2

a4 21G .
The energy, the momentum, and the Poynting vector,
now given, respectively, by

efield5E d3xF E21~E–B/a!2

A11
B22E2

a2
2

~E–B!2

a4

1a2SA11
B22E2

a2
2

~E–B!2

a4
21D G ,

Pfield5E d3x
E3B

A11
B22E2

a2
2

~E–B!2

a4

,

S5
E3B

A11
B22E2

a2
2

~E–B!2

a4

.
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An attractive feature of this theory is that it can account fo
stable electron with a finite size and finite self-energy.

The second notable attempt to modify Maxwell electrod
namics was made by Podolsky3 in the early 40s. In general
izing the equations of Maxwell electrodynamics, Podols
made every effort to leave the ordinary assumptions of M
well theory as nearly unaltered as possible. His higher-or
electrodynamics is described by the equations

~11a2h !]nFmn50, ~25!

]aFmn1]nFam1]mFna50, ~26!

where a is a real parameter with dimension of length a
h[]b]b. It is worth mentioning that the usual prescriptio
for obtaining the symmetric energy–momentum tensor
higher-order field theories is difficult to handle even f
those that are familiar with field theory. Fortunately o
recipe allows us to carry out this computation in a simp
way.

To find Tmn for Podolsky generalized electrodynamics w
multiply ~25! by Fam . Using ~11! we obtain

]n@FamFmn1 1
4da

n FruFru#1Fama2h]nFmn50.

The second term can be transformed as follows:

a2Famh]nFmn5@]n~FamhFmn!2]nFamhFmn#a2.

From ~26! and the above equation we obtain

a2Famh]nFmn5a2@]n~FamhFmn!1]a~ 1
2FmnhFmn!

2 1
2F

mnh]aFmn#.

On the other hand,

1
2F

mnh]aFmn5 1
2F

mnh~]nFam1]mFna!

52Fmnh]nFam

52]n~FmnhFam!1]nFmnhFam .

Similarly,

]nFmnhFam5]nFmn]b]bFam

52]nFmn]b~]mFbn1]aFmb!

52]m~]nFmn]bFba!2]a~ 1
2]nFmn]bFmb!.

Hence,

a2Famh]nFmn5a2]n@FamhFmn1FmnhFam

2]bFab]mFnm1 1
2da

n ~FruhFru

1]bFru]bFru!#.

The symmetric energy–momentum tensor can then be
pressed as

Tan5FamFm
n 1

1

4
hanFruFru1

a2

2
han@FruhFru

1]uFru]bFrb#2a2@FamhFm
n 1FnmhFm

a

1]bFab]mFnm#,

which agrees with the Podolsky result.
In electrostatics this gives for the energy,
886Antonio Accioly
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Efield5E d3x
1

2
$E22a2@~“–E!212E–“2E#%. ~27!

Taking into account that“3E50, and assuming thatE“–E
vanishes at infinity faster than 1/r 2, one finds that Eq.~27!
can easily be put in the form

Efield5
1

2 E d3x@E21a2~“–E!2#, ~28!

which is obviously positive. In the static case the scalar
tential due to a point charge turns out to be3

f5
Q

4pr
~12e2r /a!,

which approaches a finite valueQ/4pa asr approaches zero
Making use ofE52“f, we easily obtain the expression fo
the electrostatic field due to a point charge:

E~r !5
Q

4p F 1

r 22e2r /aS 1

r 2 1
1

ar D G r

r
. ~29!

Substituting~29! into ~28! and performing the integration
we find that the energy for the fields of a point charge
given by Q2/2a. Thus, unlike Maxwell electrodynamics
Podolsky generalized electrodynamics leads to a finite va
for the energy of a point charge in the whole space.
course, the momentum of the field in this case is equa
zero. The expressions for the total energy and momentum
the field in the general case are not very illuminating, so th
will not be displayed here.

It is worth mentioning that our method tells us that t
force law for Podolsky generalized electrodynamics is p
cisely the Lorentz force. If we consult Podolsky’s paper
find that this is the very force law he assumed for his theo
887 Am. J. Phys., Vol. 65, No. 9, September 1997
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IV. CONCLUSION

We have devised an algorithm for computing the symm
ric energy–momentum tensor from the field equations. T
prescription can be used for both ordinary and higher-or
field theory. It does not matter whether the field in hand i
tensor or a spinor field.

A last remark: The algorithm can be easily extended
curved space.8,9
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HIGH VOLTAGE

‘‘Oh, and about lab rules,’’ he added. ‘‘The first rule is ‘It’s your job and not mine.’ The second
is ‘I don’t take any excuses,’ and the third is ‘Lab hours are 7:30 to 5:30, with half an hour for
lunch.’ You should be able to get all your lab work done between those hours. Harvard’s Physics
Department lost a student last year when he fell asleep into his experiment’s high-voltage power
supply at 2:00 in the morning. He was found dead the next day. We don’t want that kind of thing
to happen here in the Sloan Lab.’’

Me neither. ‘‘Uh huh’’.
‘‘You can do computer work at night and read journal articles. And try taking a swim after

dinner for half an hour or so. I’ve found that exercising at that time makes me need less sleep and
wakes me up so I can work another four or five hours. Come on downstairs—I’ll show you your
cell.’’

Pepper White,The Idea Factory—Learning to Think at MIT~Penguin Books, New York, 1991!, p. 79.
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