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“Once we accept our limits, we go beyond them.” 
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ABSTRACT 

In this work we present a nonlinear control system applied to the two beam optical 

interferometer, operating with high gain approach (full compensation of interferometric 

phase), in order to convert the interferometric characteristic curve to a linear characteristic 

and eliminate complex algorithms for optical phase demodulation (which can involve phase 

unwrapping methods). The highlight of this work is the use of resonant filter within the 

controller, is a new proposal that brings together two powerful tools of the nonlinear control: 

the resonant filter and variable structure. The variable structure has been proved to be an 

important tool as well as efficient and robust enough to stabilize the interferometer. Also, the 

structure of the filter allows working with a considerable smaller gain when working in 

resonance, when compared to previous works. The controlling system was tested on the 

quadrature interferometer in open loop using a virtual feedback interferometer controlled, 

which gives equivalence of the physical feedback. This method of implementation was chosen 

due the need of higher sampling rate and to avoid a greater delay. The system proposed was 

also studied by changing the controller input (with and without switching, the variable 

structure, and changing the switching from a sign function to a sigmoidal one). After the 

experimental test, a piezoelectric flextensional actuator was evaluated under all the variations 

of the system proposed, and then compared under the same measurement to the arc tangent 

classical method and the discrepancy between methods in a range of 1,000 Hz was less than 

5%, thereby the system developed is validated for measurements of optical phase. 

 

Key-words: optical interferometry; high gain approach; resonant filter; nonlinear control. 

  



 
 

RESUMO 

Neste trabalho apresentamos um sistema de controle não linear aplicado ao interferômetro 

óptico de dois feixes, operando com abordagem de alto ganho (compensação total de fase 

interferométrica), a fim de converter a curva característica interferométrica para uma 

característica linear e eliminar algoritmos complexos para demodulação óptica de fase (que 

pode envolver métodos de desdobramento de fase). O destaque deste trabalho é o uso do filtro 

ressonante dentro do controlador, é uma nova proposta que reúne duas poderosas ferramentas 

do controle não linear: o filtro ressonante e a estrutura variável. A estrutura variável provou 

ser uma ferramenta importante, eficiente e robusta o suficiente para estabilizar o 

interferômetro. Além disso, a estrutura do filtro permite trabalhar com um ganho 

consideravelmente menor ao trabalhar em ressonância, quando comparado a trabalhos 

anteriores. O sistema de controle foi testado no interferômetro de quadratura em malha aberta 

utilizando um interferômetro de realimentação virtual controlado, que dá equivalência da 

realimentação física. Este método de implementação foi escolhido devido à necessidade de 

maior taxa de amostragem e para evitar um maior atraso. O sistema proposto também foi 

estudado alterando a entrada do controlador (com e sem chaveamento, a estrutura da variável, 

e mudando a função de chaveamento de uma função de sinal para uma função sigmoide). 

Após o teste experimental, um atuador flextensional piezoelétrico foi avaliado sob todas as 

variações do sistema proposto, e então comparado sob a mesma medida ao método arco 

tangente clássico e a discrepância entre os métodos na faixa de 1.000 Hz foi menor que 5%, 

assim o sistema desenvolvido é validado para medições de fase óptica. 

Palavras-chave: interferometria ótica; alto ganho; filtro ressonante; controle não linear. 
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1 INTRODUCTION 

The interferometric principle is based on the interference of two light beams, usually 

laser beams, due the coherence that laser source offers, among others advantages. Using the 

interference phenomenon, the system works with the diffe405rence between the reference 

beam and the sensor one being able to measure whichever factor is disturbing the sensor, 

purposely. Its main purpose is to convert an optical phase variation between its arms in a 

variation of optical intensity, which can be measured electronically. This optical phase 

variation can be inserted in the system through many modes that it is possible to. In the case 

of this work it is inserted through an excited piezoelectric actuator that produces small 

displacements. The interferometric system has a high sensitivity, being able to measure 

mechanical displacements in the order of 10-14 m (YIMNIRUN et al, 2003). For this and 

others benefits, this system can be applied in many areas and for measurement of different 

physical quantities: nanotechnology (DEVASIA et al., 2007), samples’ positioning in 

microelectronics (VERMA et al., 2005), masks’ alignments and others sectors of fine 

mechanics, where there is need for microscopic positioning. 

 However, being so sensitive it has its disadvantages: the system can also capture 

environmental disturbances (such as vibrations, temperature variations, air turbulences, etc.). 

In other words, mitigate these effects it is one of the main challenges presented to 

interferometry. Thereby, due to the systems’ nonlinear nature, problems as fading signal 

(SHEEM et al., 1982), as well as ambiguity of results and sense direction (CHEN et al.,2014) 

can appear and for that matter, making necessary the use of phase unwrapping algorithms 

(DEBNATH et al., 2009) which makes the measurement process complex, or else, the use of 

active compensations methods. 

Over fifteen years now, the members of LOE - Laboratory of Optoelectronics (Faculty 

of Engineering of Ilha Solteira - FEIS, Universidade Estadual Paulista - UNESP), have been 

developing interferometry applications (MARTIN, 2018; MARTIN et al., 2017; GALETI et 

al., 2015a; GALETI et al., 2013; MARÇAL et al., 2012a; MARÇAL et al., 2012b; 

BARBOSA et al., 2010; MARÇAL et al., 2007), with special interest in the development of 

new techniques of detection of optical phase using low cost interferometers and simple 

electronic, and utilizing the advantages offered by the current digital signal acquisition and 

processing systems. 

Due the challenges the interferometric system presents and in order to characterize 

new models of piezoelectric actuators, the members of LOE have been developing 
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unprecedented interferometric methods in the measurement of microscopic and 

submicroscopic displacements, processing the photodetected signals in the frequency 

(GALETI et al., 2015a; GALETI et al., 2013) or time domain (CONNELY, 2015; GALETI, 

et al., 2015b). 

The temporal methods may require elements of active compensation (the 

interferometric system in closed loop) in order to operate around the quadrature condition 

(optimal point of operation) steadily in low gain mode (UDD; SPILLMAN, 2011), or, to 

linearize the interferometry characteristic curve, in high gain approach (CHEUNG et al., 

2003), as proposed in this study. 

This work comes to present a nonlinear control system with high gain approach for the 

two beam optical interferometer. The innovation brought here is to use the nonlinear control 

with a resonant filter. The goal is to explore the high gain approach without the need of 

interferometer in quadrature (FELÃO, 2019), which reduces the coast of extra optical 

elements. Once more the closed loop system operates with high gain approach, i.e. on full 

compensation, in order to linearize the interferometer transfer curve (not through the 

traditional Taylor series, but by closed loop control techniques) and eliminate a complex 

process of demodulation (which can involve phase unwrapping methods). Also, by using the 

resonant filter it is possible reduce the error of the system by using the resonant filter in 

resonance. This system ends up uniting two powerful tools of the nonlinear control: the 

resonant filter and a variable structure. The variable structure has been proved to be an 

important tool as well efficient and robust enough to stabilize the interferometer. Also, it is 

one of the main techniques of nonlinear control due to its simplicity of implementation and 

robustness characteristic (UTKIN, 1978; ITKIS, 1976; DECARLO et al., 1988).  

Furthermore, its application to nonlinear systems, as in the case of the interferometric 

system, it strongly justified and allows satisfying the requirements of efficient operation of 

laser interferometers, guaranteeing high performance and robustness (MARTIN et al., 2017). 

Chapter 2 presents a theoretical background regarding the two beam interferometer. It is 

described the Bulk Michelson interferometer (used in the experimental setups), the 

interferometer signal and its peculiarities. Also, the configuration of this interferometer in 

quadrature due an application proposed in Chapter 4. 

The control theory is presented in Chapter 3: the controller proposed and its variations are 

described with the stability analysis along with its behavior. Also, they are tested preliminary 

via simulations in order to prove the theory described. Besides, a discrete analysis of the 

system had to be done due some issues regarding the sampling rate of the system. 
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Chapter 4 comes to present the experimental setup and the procedures used in tests 

presented in this research, as well as a brief description of the platforms used in the setups 

(hardware) and its connections. In the end of the chapter, a method of implementation is 

presented to solve some problems with the physical closing of the feedback control with the 

interferometric system. 

All the results obtained are disclosed in Chapter 4 as well. The resonant control, those 

same problems of the modified control where predicted in Chapter 3. It was tested using the 

method of the virtual controller presented in Experimental Setup section of Chapter 4. The 

resonant control was tested for four different strategies in order to improve the gain relation 

far from the filter resonance and the chattering effect. 

Finally, Chapter 5 brings the conclusions and discussion for future work. 
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5 CONCLUSION AND FUTURE WORK 

The variable structure is an elegant solution for the control and stabilization of the two 

beam optical interferometer. Along with it, the sliding mode brings simplicity of 

implementation, lowering costs and robustness. It is noteworthy that none of the methods 

studied, need the interferometer to be in quadrature, unless when using the virtual 

interferometer on the implementation of the method. 

The resonant control, this new approach, looks promising due its high accuracy and 

robustness (for the systems with switching). One can conclude that all the resonant systems 

tested do work and assure the simulations and theory developed in this work. All the system 

variations seem to work with little discrepancy when compared to the arc tangent method. 

Whereas the system with sigmoidal function is smoother than the other and has the smallest 

error (as foreseen already being said in such applications (MARTIN, 2018; FELÃO, 2019)).  

Also, we can notice that the resonant filter has characteristic of filtering a specific 

frequency with very high gain, there goes an advantage of working in resonance, which could 

be a powerful substitution on procedures to measure really small displacements. Also, since in 

resonance the gain of the filter goes to infinite and during the switching, the signal function 

also has an infinite gain, this brings a capability of full compensation (high gain approach) 

with a lower range of controller gain than studied before. 

On the developing of this research we could evaluate the advantages and issues that the 

high gain approach brings. It is an approach with easy results, once the correction phase is 

always proportional to the interest signal. But, the fact that it needs to compensate a composed 

signal come with some issues: it can be a problem for processing (when working with a real-

time implementation), since it ends up needing a higher sampling rate or can be limiting in 

gain by an analogic circuit. Also, closing a physical feedback loop is a bit challenging due the 

hardware available. And the risk of vibrating the feedback PZT to physical damage, reducing 

the frequency range that the control systems can compensated safely and out of instability (to 

operate in higher frequencies, it needs a higher gain generating chattering and amplifying 

vibrations in the PZT of feedback).  

For future works, a solution for the issues presented is to implement the systems using 

analog circuits, or a platform with a close sampling rate (such as FPGA), allowing the system 

to have a physical feedback, or even using the virtual method proposed by Felão (2019). Each 

case comes with advantages of increasing the sampling rate and disadvantages due the 
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peculiarities of the methods. Also, the resonant system with both inputs could be test using 

the sigmoidal function instead. 

In conclusion the resonant control system comes with the advantages of the high gain 

approach, without the need of the interferometer quadrature (when implemented using a 

physical feedback), as the high gain proposed by Felão (2019), and relies on small errors and 

smaller gains specially when operating in resonance.  
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