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Abstract

Hypertension is one of the chronic side effects of dexamethasone (DEX) treatment; however, almost nothing is known about
its acute effects. Therefore, the aim of this study was to investigate the possible mechanisms involved in blood pressure con-
trol after acute or short-term DEX treatment in adult animals. Eighty Wistar rats were divided into four groups: C1 and CS5,
for rats treated with saline for 1 or 5 days, respectively; D1 and D5, for rats treated with DEX for 1 or 5 days, respectively
(decadron, 1 mg/kg, i.p.). Heart rate was increased in DEX treatment, but arterial pressure and cardiac muscle mass were not
altered. Only few and isolated changes on gene expression and protein level of renin-angiotensin system components were
observed. Five days of DEX treatment, but not one day, determined an increase in sympathetic component of spectral analysis
(4+75.93%, P < .05) and a significant reduction of parasympathetic component (—18.02%, P < .05), which contributed to the
autonomic imbalance to the heart (LF/HF, 4-863.69%). The results of this present study demonstrated, for the first time, that
short-term exposure to DEX treatment impairs the autonomic balance to the heart before hypertension, which was indepen-
dent of renin-angiotensin system. J Am Soc Hypertens 2018;12(8):605-613. © 2018 American Heart Association. All rights
reserved.
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known side effect that occurs after its chronic use in both
animals' ~ and humans.”” In addition to hypertension,
this widely used synthetic glucocorticoid may cause body
weight (BW) loss (in animals), muscle atrophy, hyperglyce-
mia, peripheral insulin resistance, dyslipidemia, and liver
steatosis.” "'

The mechanisms responsible for DEX-induced hyperten-
sion are not well established, but some studies have sug-
gested the role of nitric oxide (NO),]3 ~16 oxidative stress
followed by endothelial dysfunction, as well as auto-
nomic nervous system”'®” and renin-angiotensin system
(RAS) alterations.”’*> Recently, our group has demon-
strated that chronic DEX treatment determined hyperten-
sion associated with decreases in baroreflex activity,
without any significant tissue RAS changes.””
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Over the last years, most of the studies have analyzed the
effects of a prenatal exposure to short-term DEX treatment
(or other glucocorticoid, such as betamethasone) to under-
stand the role of glucocorticoids on hypertension. RAS
involvement on this type of programmed hypertension is still
controversial. Although DEX increased vasoconstriction
induced by angiotensin II (Ang II) in sheep’s offspring coro-
nary rings,”" other studies have shown that treatment with
AT1 receptor antagonist, in lambs whose mothers were
treated with dexamethasone” or betamethasone,”® failed to
decrease mean arterial pressure. In addition, it has been
shown that treatment of pregnant ewes with DEX or betame-
thasone throughout gestation provokes hypertension in
offspring lambs, which may be associated with hemody-
namic and autonomic dysfunctions.”®*’ In addition, in this
model of programmed hypertension induced by antenatal
treatment with glucocorticoids, sometimes baroreflex alter-
ations may appear before hypertension, which may be asso-
ciated with cardiac hypertrophy.”’ >’

Our group has shown that acute DEX treatment in-
creases glucose and insulin levels™ and determines body
and muscle weight loss.' 139 Nevertheless, the autonomic
balance to the heart and RAS components expression in
the left ventricle (LV) muscle have not been evaluated af-
ter acute or short-term DEX treatment in adult rats. There-
fore, the aim of this study was to investigate the possible
mechanisms involved in blood pressure control after acute
or short-term DEX treatment in adult animals. The hypoth-
esis of this study was that acute or short-term DEX treat-
ment may impair autonomic balance to the heart and
increase gene/protein level of RAS components in myocar-
dium, which may contribute to the establishment of
hypertension.

Methods
Animal Care

For this study, 80 rats (Wistar, 200-250 g) from the Cen-
ter for Research and Production Facilities of UNESP (Bo-
tucatu, SP, Brazil) were used. All rats were kept in cages
(five in each) at the Animal Facility Maintenance from Fac-
ulty of Science, UNESP at Bauru. Water and food (Biobase,
Aguas Frias, SC, Brazil) were given ad libitum. Rats were
maintained in dark-light cycle (12-12 hours) with
controlled temperature (22°C). All procedures were
approved by the Committee for Ethical Use of Animals
of UNESP—Sao Paulo State University, campus at Bauru
(approved protocol # 1434-2014).

Groups and Pharmacological Treatment

Rats were randomly divided into four groups: 1/CI1, 20
animals that received saline injection for 1 day (i.p.); 2/
D1, 20 animals that received DEX injection for 1 day

(Decadron, 1 mg/kg of BW, i.p., at 9 AM); 3/CS5, 20 an-
imals that received daily saline injections during 5 days
(i.p.); 4/D5, 20 animals that received daily DEX injec-
tions (Decadron, 1 mg/kg of BW, i.p., at 9 AM) during
5 days.

Cardiovascular Parameters

On the last day of DEX or saline treatment, rats were
anesthetized with tribromoethanol (250 mg/kg, i.p.) and a
small incision on carotid artery was done to insert a poly-
ethylene catheter. After 24 hours, arterial pressure (AP)
and heart rate (HR) were continuously recorded for 30 mi-
nutes, in a quiet room, using a pressure transducer
(DPT100, Utah Medical Products Inc, Midvale, UT,
USA) connected to the artery cannula that sent the signal
to an amplifier (Quad Bridge Amp, ADInstruments,
NSW, Australia) and then to an acquisition board (Powerlab
4/35, ADInstruments, NSW, Australia) as published.3 Mean
arterial pressure, systolic arterial pressure, diastolic arterial
pressure, and HR were derived from pulsatile AP
recordings.

Spectral Analysis

Cardiac pulse interval (PI) from long recordings (15—
30 minutes) was processed by a computer software (Lab-
chart v7.0, ADInstruments, NSW, Australia) as previously
published,” which uses an algorithm that detects cycle-to-
cycle inflection points in the pulsatile AP signal. Thus,
HR variability analysis within frequency domain was pro-
cessed using DIAS software (DPM, from University of
Sao Paulo, Brazil, CardioSeries V2.4, http://www.
danielpenteado.com) by a non-parametric fast Fourier
transform algorithm. From these data, it was obtained a
low frequency band power (LF, 0.20-0.75 Hz) and high fre-
quency band power (HF, 0.75-3.0 Hz), which are related to
sympathetic and parasympathetic activity, respectively. Re-
sults were expressed as normalized units (nu) and, to assess
the sympathovagal balance, the LF/HF ratio of PI vari-
ability was calculated.”'**

Tissue Harvesting

After cardiovascular parameters measurements, all ani-
mals were euthanized by an overload of xylazine hydro-
chloride (20 mg/kg, i.p.; Anasedan, Paulinia, SP, Brazil)
and ketamine hydrochloride (160 mg/kg, i.p.; Dopalen,
Paulinia, SP, Brazil). LV muscle was removed, cleaned,
and immediately weighed. One sample of the heart was
stored at —80°C for protein analysis and another portion
was kept in RNAlater tissue storage reagent (Qiagen, 21
Strasse, Germany) and maintained at —80°C until RNA
extraction, as previously published.'?
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Total RNA Extraction

RNeasy mini kit (Qiagen, Hilden, Germany) was used
for total RNA extraction according to the manufacturer’s
instructions. Once reconstituted, total RNA sample was
measured and qualified in a spectrophotometer (NanoDrop
1000, Thermo Scientific, Waltham, MA, USA). Two micro-
liters of each sample were used to obtain the readings at
wavelengths of 260 nm (A260) and 280 nm (A280), which
provided information about the quantity and quality of
RNA. Samples with values between 1.9 and 2.1 on the
A260/A280 were transcribed. All total RNA samples
were treated with DNase (gDNA wipeout—Qiagen, Hilden,
Germany) and immediately subjected to reverse transcrip-
tion process with Quantitect Reverse Transcription kit (Qia-
gen, Hilden, Germany). Relative quantification of RAS
components was analyzed by means of real-time PCR reac-
tions using the TagMan system (Applied Biosystems, Fos-
ter City, CA, USA) in a thermocycler (ViiA 7; Applied
Biosystems). PCR reactions were performed in duplicate
and water was used as a negative control. The
quantitative mRNA expression was analyzed for
ATla (Rn01775763_gl), AT2 (Rn00560677_sl), ACE
(Rn00561094_m1), ACE-2 (Rn01416293_m1), MAS re-
ceptor (Rn00562673_sl), renin (Rn00561847_m1), and an-
giotensinogen (Rn00593114_m1). mRNA expression data
were calculated for values of the threshold cycle (Ct) using
the 44Ct method with the 274" formula to calculate the
relative quantification and normalized by glyceraldehyde 3-
phosphate dehydrogenase (GAPDH) (Rn01775763_gl).
Therefore, data are presented as mRNA expression relative
to the control group.

Western Blotting Procedures

LV muscle samples were homogenized (IKA T18, Stau-
fen, Germany) in RIPA solution (Cell Signaling Technology,
Danvers, MA, USA); 0.1% protease inhibitor cocktail (Pic,
Sigma Aldrich, SLM, USA) and 1% phenylmethanesulfonyl
fluoride (PMSF, Sigma Life Science, USA) were added to the
samples just before the homogenization, as previously pub-
lished” and centrifuged for 10 minutes at 4°C with
11,200 x g. The supernatant was transferred to a microcen-
trifuge tube and stored at —20°C. Bradford assay was used to
determine protein concentration of the samples (Bio-Rad
Kit, Protein Assay Standard II, Hercules, CA, USA) with al-
bumin as standard.™ Absorbance values were analyzed in a
microplate reader (BMG LABTECH, SPECTROstar Nano,
Ortenberg, Germany). Western blotting was performed ac-
cording to previously reported procedures.” In summary,
50-80 ug of protein were electrophoretically separated by
size using a gel system with two layers of polyacrylamide,
at different concentrations: 5% in the upper layer and from
8% to 12% in the lower layer, depending on the molecular
weight of the protein. These gels were then transferred to a

nitrocellulose membrane for 2 hours. Membranes were
then stained with Ponceau for protein bands verification
and washed in Tris-buffered saline solution with tween—20
(TBS-T). In the next step, the membranes were incubated
with blocking solution diluted in 5% bovine serum albumin
in TBS-T solution for 2 minutes, using the SNAP i.d. 2.0
Protein Detection System (Merck Millipore, Darmstadt, Ger-
many). Then, the membrane was incubated for 10 minutes
with the following primary antibodies (in 3% bovine serum
albumin): polyclonal renin antibody (Cell Signaling
Technology, #5250, 1:1,000), monoclonal rabbit antiangio-
tensinogen (clone EPR 2931, Merck Millipore,
#MABCI123, Germany, 1:1,000), polyclonal rabbit anti-
AT1 receptor (Merck Millipore, #AB15552 - 50 uL, Ger-
many, 1:500), polyclonal rabbit anti-AT2 receptor (Merck
Millipore, #AB15554 - 50 uL, Germany, 1:500), polyclonal
antiangiotensin 1-7 anti-MAS receptor (Alomone Labs,
#AAR-013, Israel 1:200), monoclonal mouse antihuman
CD 143 (ACE, AbD Serotec, #MCA2056, UK) and ACE-2
rabbit antihuman monoclonal antibody (EPR4435(2), Life-
span Biosciences, #L.S-B6324, 1:1,000) and glyceraldehyde
3-phosphate dehydrogenase (GAPDH, R&D System, #
AF5718, 1: 1,000, Minneapolis, MN, USA) for normaliza-
tion. Then, membranes were washed 3 x 10 minutes with
TBS-T and incubated for 10 minutes with the respective sec-
ondary antibody: antimouse or antirabbit depending on the
source of each primary antibody. Thereafter, antibody was
detected using a chemiluminescence reaction kit (SuperSig-
nal Pico, Pierce, Rockford, IL, USA), and the blots were
visualized on x—ray film. The bands were analyzed by a com-
puter program (Scion Image, Corporation, Beta 4.02).

Statistical Analysis

All data are expressed as mean =+ standard error of the
mean. Unpaired Student’s t test was used to compare the
groups. The significance level considered was P < .05.

Results
BW and Muscle Weight

One day of DEX treatment did not cause any change in
BW when compared with control group (347 £ 6 g vs.
349 £+ 7 g, respectively) (P = .871). However, when the an-
imals were treated for 5 days with DEX, a significant
reduction of 13.2% on BW was observed (296 £ 4 g vs.
342 £ 6 g, for D5 vs. C5, P < .001). DEX treatment did
not change heart, right ventricle or LV weight, normalized
by tibia bone size, as shown in Table 1.

Hemodynamic Responses

As shown in Figure I, neither 1 day nor 5 days of DEX
treatment changed values of systolic arterial pressure, dia-
stolic arterial pressure, and mean arterial pressure.
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Table 1
Values of body and heart weight in all groups analyzed

Cl D1 C5 D5
Body Weight (g) 349 + 6.55 347 £ 5.69 342 + 6.35 296 + 4.00*
Tibia (cm) 4.1 £ 0.03 4.1 £0.03 4.0 £ 0.02 3.9 £+ 0.02
Heart (g) 1.01 £ 0.04 1.07 £+ 0.03 0.91 £ 0.02 0.94 £+ 0.02
Heart/Tibia(mg/cm) 246.38 + 8.73 263.65 + 7.30 230.65 + 4.46 239.84 + 5.04
RV (g) 0.22 £+ 0.00 0.23 £+ 0.001 0.15 £+ 0.00 0.14 + 0.001
RV/Tibia (mg/cm) 5393 + 1.34 56.81 &+ 1.80 37.25 £ 1.00 36.81 £+ 2.09
LF (g) 0.74 + 0.03 0.75 £ 0.02 0.68 + 0.02 0.70 = 0.01
LV/Tibia (mg/cm) 180.14 + 6.90 185.58 + 6.03 173.27 + 4.54 177.22 £ 2.98

C1 and D1, control and DEX-treated groups for 1 day; C5 and D5, control and DEX-treated groups for 5 days; RV, right ventricle; LV,

left ventricle; LF, low frequency.

Values of heart weight, right ventricle, and left ventricle were normalized by tibia bone length.

Significance: * versus respective control; P < .05.

However, HR was significantly increased (8%, P < .05) af-
ter 5 days of DEX treatment.
Spectral Analysis

Through spectral analysis of the AP records, it was
possible to verify that 1 day of DEX treatment did not cause

any significant alteration, as illustrated in Figure 2. On the
other hand, 5 days of DEX treatment significantly increased
LF (4+75.93%, P < .003), reduced HF (-18.02%, P < .003)
and consequently promoted an autonomic imbalance to the
heart (+863.69%, P = .003). DEX treatment for 5 days was
not able to significantly change the sympathetic component
value to the vessels (P = .674), as shown in Figure 2.
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Gene Expression Discussion

DEX treatment promoted only isolated changes in
RAS components in the LV muscle. One day of DEX
treatment  significantly reduced AGT (-43.42%,
P < .005) and AT1 (-1.18%, P < .043) gene expression,
compared with C1 group. These results were further
decreased after 5 days of DEX treatment (-80.55%,
P < .015 and -70.75%, P < .024, for AGT and ATI,
respectively). In addition, ACE2 was decreased after
5 days of DEX treatment (-80.70%, P < .010), as shown
in Figure 3.

Protein Level

Figure 4 shows that 1 day of DEX treatment did not alter
protein level of any RAS components in the LV muscle;
however, 5 days of DEX treatment significantly increased
ACE (4106.57%, P < .039) and MAS (491.12%,
P < .027) protein level, compared with control (C5 group;
Figure 4).

The most interesting finding in this study was that short-
term, but not acute, DEX treatment provoked autonomic
balance alterations to the heart without any change on arte-
rial pressure. In addition, both treatments were not able to
promote significant alterations in myocardium expression
of RAS components.

Our group has shown that chronic treatment with DEX
promotes muscle atrophy and food intake decrease, which
may be associated with BW decrease in rats.” ''*"** In
this present study, BW loss was observed only after
5 days of DEX treatment. The mechanisms responsible
for this response were not investigated in this present study,
but it is possible that food intake decrease could be contrib-
uting because this response is normally observed since the
first day of DEX treatment.'""!

DEX-induced hypertension is an unwanted effect
observed by several groups, using different protocols, dos-
ages, and time of administration.”'®*>*”*57 Similarly,
arterial pressure increase is also observed after systemic
or local betamethasone, cortisol or corticosterone
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Figure 3. Relative expression of mRNA of the renin-angiotensin system (RAS) components in myocardium, in all groups analyzed:
treated with saline for 1 day (C1, n = 14), treated with dexamethasone (DEX) for 1 day (D1, n = 14), treated with saline for
5 days (C5, n = 13), and treated with DEX for 5 days (D5, n = 14). Angiotensinogen (AGT), angiotensin II receptor type 1
(AT1a); angiotensin II receptor type 2 (AT2); angiotensin converting enzyme (ACE); angiotensin converting enzyme 2 (ACE2) and
angiotensin'~’ receptor (MAS). Significance: * versus respective control, P < .05.

treatment.”****' Although DEX is known to cause hyper-

tension, as well as other glucocorticoids, little is known
about the mechanisms involved in this effect.

The role of hemodynamic and autonomic control for eti-
ology of hypertension induced by glucocorticoids has been
studied for the last 2 decades, but the results are still unclear.
While some authors have shown that hypertension in
offspring sheep exposed prenatally to cortisol was associated
with increased total peripheral resistance, due to sympathetic
nerve activity increases,’’ others have postulated that pro-
grammed hypertension after DEX treatment during gestation
may be associated with increased cardiac output and stroke
volume, due to cardiac hypertrophy, without changes in total
peripheral resistance.”’”*° In addition, it has been shown that
DEX treatment (or betamethasone) provokes alterations in
baroreflex curve,”®>”*! but, in these studies, it is not possible
to determine if baroreflex alterations contributed to the estab-
lishment of hypertension or increased blood pressure
impaired baroreflex function. Accordingly, our group has
recently demonstrated that chronic treatment with DEX pro-
vokes hypertension associated with baroreflex alterations”’
and autonomic unbalance to the heart, as well as increased
sympathetic nerve activity to the periphery,’ but the effects
of short-term DEX treatment on autonomic functions and
blood pressure control remain poorly understood.

In the present study, acute and short-term DEX treat-
ment was not able to provoke increase in arterial

pressure. However, short-term but not acute DEX treat-
ment provoked an increase in heart rate may be due to
an increase in sympathetic nervous activity and a
decrease in parasympathetic nerve activity to the heart
(which reflects an autonomic imbalance to the heart -
higher LF/HF), suggesting that even though arterial pres-
sure did not change, some neural alterations were already
occurring, which may have important clinical relevance.
Neural changes before any blood pressure alteration have
been shown after antenatal treatment with DEX”’** and
betamethasone.”” These authors have demonstrated de-
creases of baroreflex gain or shifts of baroreflex curve to-
ward higher pressure. These autonomic changes, even
before hypertension, suggest that these effects may pre-
cede hypertension.

It has been proposed that these autonomic changes may
be due to cardiac hypertrophy, which could reduce cardiac
functional reserve’® °: however, the results of the present
study do not confirm cardiac hypertrophy. It is important
to note that those previous studies were performed using
antenatal DEX treatment and, in the present study, the
rats were treated in adult phase. DEX-induced autonomic
imbalance to the heart, demonstrated for the first time in
this present study, could be explained by the action of
DEX on receptors localized in the dorsal hind brain
because it has been shown that local treatment with corti-
costerone pellets on dorsal hind brain, in adult rats,
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provokes autonomic changes such as decreases of barore-
flex gain.”

The known role of RAS on autonomic functions and
the overexpression of the AT1 receptor on selected and
important cardiovascular regions of the brain after DEX
treatment”’ suggest that RAS could be contributing to
the autonomic changes observed after DEX treatment,
in the presence or absence of hypertension, but the re-
sults are still inconclusive. Studies with programmed hy-
pertension have shown that treatment with AT1 receptor
blocker attenuates arterial pressure and brings back to
normal the baroreflex decreased gain and the reduced
heart rate variability induced by antenatal betamethasone
treatment.”” On the other hand, other studies using
blockade of AT1 receptor fail to attenuate the changes
observed on arterial pressure or baroreflex function
induced by betamethasone”® or DEX.”” Besides increases
in AT1 receptor expression on medulla oblongata that
may be observed after antenatal DEX treatment,3 7
plasma levels of RAS components were not altered.”
In this present study, plasma levels of RAS were not
observed, which is a limitation of this study. On the

other hand, this study investigated the role of DEX treat-
ment on cardiac RAS components. After acute or short-
term DEX treatment, there was a decrease in gene
expression of AGT and AT1 receptors, but the protein
levels of AGT or AT1 receptor were not altered. Even
though ACE protein level was higher after 5 days of
DEX treatment, MAS protein level was higher also,
which could help to explain the lack of cardiac or pres-
sure alterations. These results are in agreement with our
previous observation that heart RAS components are not
altered in rats treated for 10 days with DEX, even though
hypertension was present.”’

In summary, the results of this present study demon-
strated, for the first time, that short-term exposure to
DEX impairs the autonomic balance to the heart before hy-
pertension, which was independent of RAS. These re-
sponses improve our understanding regarding the
mechanisms promptly induced by DEX treatment on cen-
tral control of autonomic function, which may have impor-
tant clinical relevance and could contribute to the important
cardiovascular risk imposed by elevated glucocorticoid
levels.
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