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Traveling solitons in Lorentz and CPT breaking systems
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In this work we present a class of traveling solitons in Lorentz and CPT breaking systems. In the case of
Lorentz violating scenarios, as far as we know, only static solitonic configurations were analyzed up to
now in the literature. Here it is shown that it is possible to construct some traveling solitons which cannot
be mapped into static configurations by means of Lorentz boosts due to explicit breaking. In fact, the
traveling solutions cannot be reached from the static ones by using something similar to a Lorentz boost in
those cases. Furthermore, in the model studied, a complete set of exact solutions is obtained. The solutions
present a critical behavior controlled by the choice of an arbitrary integration constant.
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I. INTRODUCTION

The study of the problem of Lorentz symmetry breaking
has appeared in the physics literature, motivated by the fact
that the superstring theories suggest that Lorentz symmetry
should be violated at higher energies [1]. Recently, many
works considering the impact of some kind of Lorentz
symmetry breaking have appeared in the literature. For
instance, some years ago, Carrol, Field, and Jackiw [2]
addressed the problem of CPT (charge conjugation-parity-
time reversal) symmetry violation. On the other hand, some
of the impacts on the standard model due to the breaking of
Lorentz and CPT symmetries were discussed by Colladay
and Kostelecky [3—5]. Another problem analyzed in the
literature is the spontaneous breaking of the four-
dimensional Lorentz invariance of QED [6]. At this point,
it is interesting to mention that a space-time with torsion
interacting with a Maxwell field by means of a Chern-
Simons-like term was introduced in Ref. [6]. In this case,
itis possible to explain the optical activity in the synchrotron
radiation emitted by cosmological distant radio sources.

Recently motivated by the problem of Lorentz symmetry
violating gauge theories in connection with gravity models,
Boldo et al. [7] have analyzed the graviton excitations and
Lorentz violating gravity with the cosmological constant. It
is important to remark that considerable effort has been
made experimentally to observe signs of Lorentz and CPT
symmetry violation effects. In fact, in a very recent work,
Maccione, Liberati, and Sigl [8] have shown that experi-
mental data on the photon content of ultrahigh-energy
cosmic rays lead to strong constraints over the Lorentz
symmetry violations in stringy space-time foam models.
This was done by studying the time delay between 7y rays of
different energies from extragalactic sources. Moreover,
Gubitosi et al. [9] have analyzed the impact of Planck-scale
modifications to electrodynamics characterized by a
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spacelike symmetry breaking vector. Last year, several
studies involving Lorentz violation appeared in the
literature [7-17].

Finally, it is important to remark that nonlinear models
which have topological solutions are very interesting and
important in many branches of physics [18-23]. In a recent
work [24] it was shown that some nonlinear models in two-
dimensional space-time, where two scalar fields interact in
the Lorentz and CPT violating scenarios, present static
solitonic configurations. This was done by generalizing a
model presented by Barreto and collaborators [25]. Finally,
in a very recent work, Bazeia er al. [26] also analyzed the
effects of Lorentz violation on topological defects generated
by two real scalar fields. In that case, the symmetry breaking
is induced by a tensor with arbitrarily fixed coefficients that
couple the two fields. In all of these examples, the presented
solitonic configurations were static. In this work we are
going to show that it is possible to find nontrivial traveling
solutions in this kind of scenario. This is going to be done
by taking as an example a generalization of some models
recently discussed in the literature [24-29]. As a conse-
quence, we present a class of traveling solitons in Lorentz
and CPT breaking systems as well as some static configu-
rations. Finally, it is shown that the static configurations are
not the static limit of the traveling ones. This is done by
using an approach developed to deal with some classes of
nonlinear models in two-dimensional space-time of two
interacting scalar fields which were presented in [30]. In
this last reference it was shown that in these systems in
1 + 1 dimensions, the so-called orbit equation can be cast
into the form of a linear first-order differential equation,
thus leading to general solutions of the system. We also
show that the solutions present a critical behavior controlled
by the choice of an arbitrary integration constant.

II. THE MODEL

Some years ago, Ref. [24] presented a two-field model in
1 + 1 dimensions, where the Lorentz breaking Lagrangian

© 2011 American Physical Society


http://dx.doi.org/10.1103/PhysRevD.83.105007

A. DE SOUZA DUTRA AND R. A.C. CORREA

density generalizes some results in the literature. That
Lagrangian density contains vector functions with a
dependence on the dynamical scalar fields. Moreover, the
mentioned vector functions are responsible by the Lorentz
symmetry breaking. On the other hand, in Ref. [26], the
effects of the Lorentz violation on topological defects
generated by two real scalar fields was analyzed, too;
here, the Lagrangian density has a tensor which is the
term that breaks the Lorentz and, eventually, the CPT
symmetry. Thus, in this work we construct a generalized
two-field model in 1 + 1 dimensions which is described by
the Lagrangian density

L=30,p0"d +30,xI*x — G* (b, x)3, &
— F*(, )9, x — vk# (0,40, + 9, x9,X)

— pk*7a, 0, x — V(e x), (1)
with
wr — [ @1 Q3
g (013 ay ) @

where u = 0, 1; G*(¢, x) and F*(¢, x) are vector func-
tions; and V(¢, ) is the potential. Furthermore, k*” is a
constant tensor, here represented by a 2 X 2 matrix, where
oy, @y, as, and a4 are arbitrary parameters, in general.
However, if one wants to keep the CPT symmetry, this
matrix must be a real, symmetric, and traceless one [4,5]. A
similar process of breaking the Lorentz symmetry was put
forward by Anacleto ef al. [17] in a recent work, where the
tensor k*” is a 4 X 4 matrix; here, the authors studied the
problem of acoustic black holes in the Abelian Higgs
model with Lorentz symmetry breaking. Finally, it is pos-
sible to recover the Lorentz symmetry by imposing that
gy = —a and a, = 0= a3 [4,5]

Note that, from the Lagrangian density (1), we can
recover the one presented in the work by Bazeia et al.
[26] by choosing ¥ = 0, G%(¢, x) = F'(¢, x) =0, a; =
ay = B, a, = a3 = a,and p = —1. Furthermore, we can
also recover the Lagrangian density presented in [24,25] by
conveniently setting the above defined parameters.
Therefore, we have a more general model, including vector
functions and a constant tensor. It is important to remark
that the more general model presented here can be used to
bring more information about the impact of the Lorentz
violation of important systems like, for instance, those
presenting topological structures [24,25].

From the Lagrangian density (1), we can write the
corresponding equations of motion

(1 —ya)d — (1 + ya)d" — plaii + asx”)
+(FS = GYx + (F)y = GYX'
— (a3 + an)(yd' + px') + V4 =0, 3)
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(1 —yany— (1 + ya)x" — pla;d + a,¢")
— (F) =GP — (Fy — G))¢'
— (a3 + a)(yx' + pd) +V, =0, 4)

where the dots stand for the derivative with respect to time,
while the prime represents the derivative with respect to x,
Vg =0dV/d¢ and V, = 9V/dx. It can be seen that the
two equations above are carrying information about the
symmetry breaking of the model through the presence of
the «; parameters and the vector functions. Here one can
see that, when looking for static solutions, the terms de-
pending on the time derivative of the fields in the above
nonlinear differential equation vanish. Thus, those solu-
tions will not present a dependence on the parameters «a;,
a,, and a3, and this will also be true in the Lorentz
invariant case when the «, and a3 parameters are explicitly
zero, and @y = —ay.

Furthermore, as a consequence of the model studied in
this work, in general, we cannot analytically solve the
above differential equations. However, one can still con-
sider an interesting case for the field configurations, where
one searches for traveling wave solutions. Configurations
that exhibit traveling waves have an important impact
when we study boundary states for D-branes and the
supergravity fields in a D-brane [27-29].

Then, let us begin our search for traveling wave
solutions in the forms ¢ = ¢(u) and y = x(u), with u =
Ax + Bt. Thus, Egs. (3) and (4) take the form

_¢uu+Bqu_qu+V¢:0’ (5)

_XMM+B¢llM+&¢M+‘7,\/=O’ (6)
with the definitions

pl(ay + a3)AB + a,A” + aB?]

B=- (1 4+ yay)A? — (1 — ya,)B* + ABy(a, + a,)’
(7
__ B(F}, — GY) + A(F}, — G))
a= ,
(I + yay)A? = (1 = ya)B* + ABy(a, + ay)
(8)
) Vy
VQS = ’
(1 4+ yay)A* — (1 — ya,)B* + ABy(a, + ay)
9
v, = Y
X1+ yay)A? — (1 — ya,)B> + ABy(a, + ay)’
(10)

In this case, one can observe that the terms which do not
contribute to a static configuration are still present in this
variable, from which one can conclude that the solutions in
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the traveling variable case are essentially different from
those in the static configuration. In other words, the trav-
eling wave solutions depend explicitly on the variables «,
a,, and a3, in contrast with what happens for static con-
figurations, as stated above.

In order to decouple the pair of second order differential
equations, we multiply Eq. (5) by ¢, and Eq. (6) by x,-
Thus, it is not difficult to conclude that, after adding the
two equations, one can write

d

AT 2@+ X+ Bbuxa+ V(60| =0 (D

In this case, we have

— N2 + x2) + Bouxu + V(d, x) = by. (12)

In the above equation, the arbitrary constant b, should
be set to zero in order to get solitonic solutions. It can be
noticed that this condition allows the field configuration to
go asymptotically to the vacua of the field potential, where
the derivative of the field configuration and the fields’
potential vanish simultaneously. Otherwise, one obtains
oscillating (in space) or complex solutions depending on
the chosen value of the constant b. For instance, one can
see such a feature in a recent work [31], where some
properties of soliton configurations in twisted orbifolds
are addressed.

Note that in the above equation (with by = 0), the
dependence on @ has disappeared. However, the depen-
dence of the system on the Lorentz breaking parameters is
still present but it is implicit. Now, in order to decouple the
above equation, we apply the rotation

(Y) =50 3 )G) o
Thus, Eq. (12) is rewritten as

—11=-p)6% =11+ B2 +V(0,¢) =0. (1)

Furthermore, performing the dilations

o =2 =L s
1 — B 1+ B
one gets
—1g2 = 1p2 + V(a, p) = 0. (16)

At this point, one can verify that the above equations
allow one to write two first-order coupled differential
equations. In this case it is usual to impose that the poten-
tial must be written in terms of a superpotential like

V(o, p) = %(7‘3W§Z p ))2 + %(LV;Z’ p ))2, 17)
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which leads to the following set of equations:

do _ dp _
T =W, T =W,
where W, = oW(o, p)/do and W, = aW(a, p)/dp,
and this will lead us to the solitonic solutions we are
looking for.
In order to analyze the energy of the configurations
obtained, we write the energy-momentum tensor in the
form

(18)

_ Ly, L
C) (9 ux)

Therefore, the energy density for the Lagrangian (1) is
given by

wv

'y — gt L. (19)

AP
700 = % + X? + (E + 3/6!4)(<f>’2 +x?) + Gl (¢ x)9'

+FY (b, )X +2— payd x +y(as + a3)d'd
+ylay + a) X' x + pagd'x' + payd '
+ pazd’'x + V(d, x). (20)

For the traveling wave solutions, the energy density is
written in the form

B2 1
Tooveting = [7 + (5 + ya4)A2 + y(ap + a3)AB] 2

+ I:B?Q + (% + ya4)A2 + y(a, + a3)AB:|X§

+ playA® — a\ B> + (a; + a3)ABld,x,

+A[GH (¢, )¢, + Fl (. )x.] + V(. x).
21

Now, we choose the superpotential that was used in [30],
which is written as

A
W(o, p) = — Ao + 50'3 + wop?. (22)

In this case, the solutions presented in Ref. [30], with
A = u, are given by

(c§ — 4)etrlmm) — 1

o+ (u) = [coe2t 1) — P — detnlu—u)’

) 4 — ¢} + etulumuo)
og_\u) = ’

[e2mlu=to) — ¢ 2 — 4

) = 421 (u=1o) (23)

P T [ geh i) — [ — 4etnlui—u)’
4 2 p(u—ug)

po(u) =

[eZM(M*Mo) — 00]2 — 4’

where we must impose that ¢, = —2 in both solutions.
The resulting fields are illustrated in Fig. 1, where the
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FIG. 1. Traveling soliton solutions and static solutions for A =
pm =1 and ¢y = —2.001. The dashed line corresponds to the
static case with 8 =0.5, A= 1. The thin continuous line
corresponds to the traveling wave case for 8 = 0.5, a = 0.4,
A=1,B=—15.

difference between the static and the traveling wave con-
figurations can be seen. On the other hand, in the case
where A = 4 u, the exact solutions are written as

4+ (16¢cy — 1)ebrlu—u)

o+ () = [2 + M) — [6eqednluu)’

16¢y + 4ebulumm) — ]
o-(u) = S pEEn :

[1 + 2e*# @2 — 16¢,
2 2p(u—up)

piu) = — c , Y

YI(1/2)e =00 + 12 — 4o ebutu=w)

420 (u=1o)

p_(u)=—

J[l + 2etru=u) 2 — 16¢,

In this case, we impose that ¢, = 1/16. It is important to
remark that, making the exchange of c — p and p — o in
the case where A = u, the equation of motion (16) remains
invariant. Thus, the solutions in which kinks become lumps
and vice versa shall appear, and this is used in order to
generate the orbits appearing in Fig. 2. In fact, this sym-
metry is important for the generation of all possible classes
of orbits connecting the vacua [18].
Thus, the fields ¢(u) and y(u) are given by

_ 1o  px(u
b-(w) [\/1 \71 - B]’
X=(u) = _[ o) . p=(u) ] (25)

VL5 J1+3

Now, using the solutions presented in Ref. [30], which
are represented here by (23) and (24), we have the com-
plete set of solutions with position and time dependence.
At this point, it is important to explain what we mean by a
complete set of solutions.

Since we are not reproducing here all the steps followed
in order to obtain the solutions presented in Ref. [30], it is
important to say that in that work, the nonlinear differential
orbit equation was mapped into a linear one and, as a
consequence, a general solution was obtained. This first-
order linear differential equation naturally has a solution

PHYSICAL REVIEW D 83, 105007 (2011)
X (u) ¢+ 3

UL ( /
(@) | T /
-0.65 I € ¢+ (u) -6

Lads | T o ,Z J

FIG. 2. Orbits (left) and solutions (right). (a) The orbit with
A=pu=1and B = 0. (b) The orbit with A = u = 1 and B =
0.5. (a) Solutions (right) to the case where ¢, = —2.0001 and
B = 0. (b) Solutions (right) to the case where ¢, = —2.0001 and
B =0.5.

depending on an arbitrary integration constant, cq, which is
such that the solutions present a kind of degeneracy, since
the energy of the configuration is insensitive to its value.
Furthermore, there exists a critical value of ¢, such that the
behavior of the solitons changes drastically, as it can be
seen in Fig. 2.

Here, once more, we call attention to the fact that the
static solutions for Egs. (3) and (4) are different from the
traveling wave ones. This difference can be seen from an
inspection of the static field differential equations

—¢"+BY" +taxy +V, =0, (26)
X"+t B —axy' +V, =0, (27)
where now one has
B _ T Phay _ (F<11> B G}()
= > a = -y . N\
=2 g v, ="
=—"  an =—4
S+ yay) 1+ yay)

Note that the constants «, a,, and a3, which are present in
the Lagrangian density of the system and in the traveling
wave equations, disappear completely in the static case. In
particular, if y =0, G*(¢, x) = F* (¢, x) =0, a, =
ay =B, ay = a3 = «a, and p = —1, one recovers the
model presented by Bazeia et al. [26]. In the static case,
the equations of motion presented by the authors are given
by

— ¢+ B+ V=0, (29)
X'+ B +V, =0 (30)

At this point, it is interesting to note that the pair of
equations presented in [26] for the static solutions takes on
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a different form compared with Egs. (26) and (27). In fact,
we can recover the equations of motion presented in the
work of Bazeia [26] by conveniently choosing the symme-
try breaking parameters. But the general static configura-
tions are given by Egs. (26) and (27), which are carrying
more information about the terms of the Lorentz breaking
of the model through the presence of the parameter «,
which is totally absent in the static solution.

III. CONCLUSIONS

In this work we have shown that a class of traveling
solitons in Lorentz violating systems can be analytically
obtained, which happens despite the fact that there is no
Lorentz symmetry; consequently, one cannot recover the
traveling solutions from the static one, just performing
Lorentz boosts. This feature has been illustrated in some
nonlinear models of interacting scalar fields in two-
dimensional space-time, which were presented in [30].
Furthermore, in the model studied, a complete set of
solutions was obtained. That complete set of solutions is
characterized by the presence of an arbitrary integration
constant for the orbit equation. The solutions present a
critical behavior controlled by the choice of an arbitrary
integration constant. The change in the behavior of the

PHYSICAL REVIEW D 83, 105007 (2011)

solution, when one is working with ¢, close to its critical
value, is illustrated in the Fig. 2. There one can see that
when S is far from zero, the soliton configuration develops
a kind of double step profile. This happens due to the fact
that the orbit connecting the vacua passes close to an
intermediate vacuum, since the position of some vacua is
deformed by the symmetry breaking. Finally, the solutions
obtained in this work are valid for arbitrary values of the
speed of the configuration. The speed of the configuration
will be given by v = B/A, as can be verified from the
inspection of the variable used in order to write the non-
linear differential equation of the model analyzed.
Comparing the variable used in this work, u = Ax + Bt,
with the usual boosted variable u; = y(x + vt), one can
verify that the parameters A and B can be chosen in a range
larger than the corresponding ones in the boosted variable,
allowing the appearance of superluminal solitons. It is
interesting to note that some superluminal solutions in
Lorentz symmetric cases were discussed a long time ago
by Aharonov et al. [32].
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