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Using the variational approximation and numerical simulations, we study one-dimensional gap solitons in a
binary Bose-Einstein condensate trapped in an optical-lattice potential. We consider the case of interspecies
repulsion, while the intraspecies interaction may be either repulsive or attractive. Several types of gap solitons
are found: symmetric or asymmetric; unsplit or split, if centers of the components coincide or separate;
intragap �with both chemical potentials falling into a single band gap� or intergap, otherwise. In the case of the
intraspecies attraction, a smooth transition takes place between solitons in the semi-infinite gap, those in the
first finite band gap, and semigap solitons �with one component in a band gap and the other in the semi-infinite
gap�.
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I. INTRODUCTION

One of the milestones in studies of Bose-Einstein conden-
sates �BECs� was the creation of bright solitons in 7Li and
85Rb in “cigar-shaped” traps �1�, with the atomic scattering
length made negative �which corresponds to the attraction
between atoms� by means of the Feshbach-resonance �FR�
technique �2�. Normally, BEC features repulsion among at-
oms. In that case, it was predicted that an optical-lattice �OL�
potential may support gap solitons �GSs� �3�, whose chemi-
cal potential falls in finite band gaps of the OL-induced spec-
trum. Although GSs, unlike ordinary solitons in self-
attractive BEC, cannot realize the ground state of the
condensate, it was demonstrated that they may easily be
stable against small perturbations �4�. A GS in 87Rb was
experimentally created in a cigar-shaped trap combined with
an OL potential, pushing the BEC into the appropriate band
gap by acceleration �5�. Other possibilities for the creation of
GSs are offered by phase imprinting �6�, or squeezing the
system into a small region by a tight longitudinal parabolic
trap, which is subsequently relaxed �7�.

BEC mixtures of two hyperfine states of the same atom
are also available to the experiment �8�. The sign and
strength of the interspecies interaction may also be con-
trolled by means of the FR �9�, hence one may consider a
binary condensate with intraspecies repulsion combined with
attraction between the species. It was proposed to use this
setting for the creation of symbiotic solitons �10�, in which
the attraction overcomes the intrinsic repulsion.

In this work, we aim to study compact �tightly bound
�11�� symbiotic gap solitons in a binary BEC, which are
trapped, essentially, in a single cell of the underlying OL
potential. Unlike the situation dealt with in Refs. �10�, we
consider the case of interspecies repulsion, while the in-
traspecies interactions may be repulsive or attractive. In Ref.
�11� it was already demonstrated that the addition of in-
traspecies repulsion expands the stability region of symbiotic
GSs supported primarily by the interspecies repulsion. The
case of attraction between two self-repulsive species was re-
cently considered in Ref. �12�, where it was shown that the
attraction leads to a counterintuitive result—splitting be-

tween GSs formed in each species. This effect can be ex-
plained by a negative effective mass, which is a characteris-
tic feature of the GS �3�. Indeed, considering the interaction
of two GSs belonging to different species, one may expect
that the interplay of the attractive interaction with the nega-
tive mass will split the GS pair.

Using variational �13� and numerical methods, we here
construct families of stable GSs of two kinds: unsplit �fully
overlapping� and split �separated�. The splitting border is
predicted by the variational approximation �VA� in an almost
exact form. In terms of chemical potentials of the two com-
ponents, the solitons may be of intragap and intergap types
�11�, with the two components sitting, respectively, in the
same gap or different gaps. In particular, the states with one
component residing in the semi-infinite gap �which is pos-
sible in the case of intraspecies attraction� will be called
semigap solitons.

The paper is organized as follows. The formulation of the
system and analytical results, obtained by the variational
method �13�, are given in Sec. II. Numerical findings are
reported in Sec. III, including maps of GS families in appro-
priate parameter planes. Section IV summarizes the work.

II. ANALYTICAL CONSIDERATIONS

We consider a binary BEC loaded into a cigar-shaped trap
combined with an OL potential acting in the axial direction.
Starting with the system of coupled 3D Gross-Pitaevskii
equations �GPEs� for wave functions of the two components
�1 and �2, one can reduce them to one-dimensional �1D�
equations �14�. In the scaled form, they are �12�

i��1,2�t = − �1/2���1,2�xx + g��1,2�2�1,2 + g12��2,1�2�1,2

− V0 cos�2x��1,2, �1�

where the OL period is fixed to be �, and the wave functions
are normalized to numbers of atoms in the two species,
�−�

+� ��1,2�x��2dx=N1,2. In Eq. �1�, time, the OL strength, and
nonlinearity coefficients are related to their counterparts
measured in physical units as follows: t��� /L�2�� /m�tphys,
V0��L /���2m�V0�phys, �g ,g12	��2Lm�� /����a ,a12	,
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where m is the atomic mass, L is the OL period, a and a12 are
scattering lengths accounting for collisions between atoms
belonging to the same or different species, and �� is the
transverse-confinement frequency. As said above, we assume
repulsive interspecies interactions, with g12�0, while the in-
traspecies nonlinearity may be both repulsive �g�0� and
attractive �g�0�.

While the model assumes equal intraspecies scattering
lengths, they are, in general, different for two hyperfine
states �8�. Therefore, using a FR, one cannot modify both
intraspecies nonlinearities to keep exactly equal values of
coefficient g in equations for both components �cf. Eq. �1��,
running from negative to positive values �hence, strictly
speaking, different cases considered in this work cannot be
realized in a single mixture, but should be rather considered
as a collection of situations occurring in different mixtures�.
However, we will consider asymmetric configurations, with
N1�N2, which give rise to a much stronger difference in the
effective interaction strengths in the two components than a
small difference in their intrinsic scattering lengths.

Stationary solutions to Eqs. �1� are looked for in the usual
form, �1,2�x , t�=exp�−i�1,2t�u1,2�x�, with chemical potentials
�1,2 and functions u1,2�x� obeying

�1,2u1,2 + u1,2� /2 − gu1,2
3 − g12u2,1

2 u1,2 + V0 cos�2x�u1,2 = 0,

�2�

with �−�
+�u1,2

2 �x�dx=N1,2. In the GS solutions constructed be-
low, �1 and �2 belong to the first two finite band gaps and/or
the semi-infinite gap in the spectrum induced by potential
−V0 cos�2x�.

Variational approximation for unsplit solitons. Equation
�2� can be derived from Lagrangian

L = 

−�

+� ��1u1
2 + �2u2

2 −
1

2
��u1��

2 +
1

2
�u2��

2 + V0 cos�2x�

	�u1
2 + u2

2� −
1

2
g�u1

4 + u2
4� − g12u1

2u2
2�dx − �1N1 − �2N2.

�3�

To predict solitons with a compact symmetric profile, which
corresponds to numerical results displayed below, we adopt
the Gaussian ansatz �13�

u1,2
�unsplit��x� = �−1/4�N1,2
1,2

w1,2
exp�−

x2

2w1,2
2  , �4�

where variational parameters are widths w1,2, reduced norms

1,2, and �1,2. The substitution of the ansatz in Eq. �3� yields
an effective Lagrangian, L=L�
1,2 ,w1,2 ,�1,2�. Then, the first
pair of the variational equations, �L /��1,2=0, gives 
1,2=1,
which is substituted below, after performing the variation
with respect to 
1,2. Thus, the remaining equations,
�L /�w1,2=�L /�
1,2=0, take the form

1 +
gN1,2w1,2

�2�
+

2g12N2,1w1,2
4

���w1
2 + w2

2�3/2 = 4V0w1,2
4 e−w1,2

2
, �5�

�1,2 =
1

4w1,2
2 +

gN1,2

�2�w1,2

+
g12N2,1

���w1
2 + w2

2�
− V0e−w1,2

2
. �6�

Using Eqs. �5� and �6� we can predict borders between in-
tragap and intergap soliton families of different types. To this
end, we take �1,2 from Eqs. �6� and, referring to the spectrum
of the linearized equation �1�, identify curves in plane
�N1 ,N2� which correspond to boundaries between different
gaps in the two components.

Variational approximation for split solitons. Two-
component solitons different from those considered above
feature splitting between the two components. An issue of
obvious interest is to predict the splitting threshold by means
of the VA, for the symmetric case, with N1=N2�N. For this
purpose, we use the following ansatz:

u1,2
�split��x� = �−1/4�N

w
�1 � bx +

C

4
w2b2 −

1

2
�1 + C�b2x2�

	exp�−
x2

2w2 , �7�

with infinitesimal splitting parameter b, the objective being
to find a point at which a solution with b�0 emerges. At
small b, the two components of expression �7� feature
maxima shifted to x= �b /a+O�b2�, and up to order b2, it
satisfies the normalization conditions, �−�

� u1,2
2 �x�dx=N. Un-

like b, constant C, to be defined below, is not a variational
parameter.

The substitution of ansatz �7� in Lagrangian �3� yields, at
orders b0 and b2,

L = −
N

2w2 + 2V0e−w2
−

g + g12

�2�w
N2 − b2N�1 +

C

2

− 2CV0w4e−w2
+

g�C + 2� + �C − 2�g12

2�2�
wN� . �8�

At order b0 �i.e., for the unsplit soliton�, variational equation
�L /�w=0 reduces to Eq. �5� with N1=N2�N and w1=w2
�w as follows:

1 +
�g + g12�Nw

�2�
= 4V0w4e−w2

. �9�

At order b2, equation �L /��b2�=0 yields the splitting condi-
tion,

C + 2

4 �1 +
gNw
�2�

 +
C − 2

4

g12Nw
�2�

− CV0w4e−w2
= 0.

�10�

Obviously, the splitting should not occur if g12=0, i.e., Eq.
�10� must only yield the trivial solution w=0 in this case.
This condition selects the value of C which was arbitrary
hitherto: C=−2, hence Eq. �10� takes the form Ng12

=2�2�V0w3e−w2
. Combining this with Eq. �9�, we obtain

SADHAN K. ADHIKARI AND BORIS A. MALOMED PHYSICAL REVIEW A 77, 023607 �2008�

023607-2



w=�2� / �N�g12−g��, and a prediction for N at the splitting
point,

Nsplit
4 =

8�2V0

g12�g12 − g�3 exp�−
2�

�g12 − g�2� . �11�

III. NUMERICAL RESULTS

Symmetric solitons. Equation �1� was discretized using the
Crank-Nicholson scheme and solved numerically in real
time, until the solution would converge to a stationary soli-
ton. This way of generating the solitons guarantees their sta-
bility. In Fig. 1, we present typical profiles of split and un-
split symmetric solitons, with N1=N2. Due to the symmetry,
these solitons are always of the intragap type �in Fig. 1, they
belong to the second band gap; in the semi-infinite and first
gaps, the shape of the solitons is quite similar�.

In all cases, the difference between the variational and
numerical shapes of the unsplit solitons is extremely small.
The present solitons are essentially confined to a single cell
of the OL potential. They change the shape and develop un-
dulating tails, which are often considered as a characteristic
feature of GSs, when � is taken very close to an edge of the
band gap �Fig. 1 demonstrates that, even in a well-
pronounced split state, peaks of both components stay in a
common cell�. It is also observed that, as might be expected,
the increase of the intraspecies nonlinearity coefficient g
pushes the solitons to higher band gaps, while the increase of
g12 tends to split the two components of the soliton. In addi-

tion to the compact GSs presented here, there may also exist
loosely bound ones, that extend over several OL �15�.

In Fig. 2, the entire family of the symmetric solitons is
displayed in the parameter plane of the strength of the in-
traspecies and interspecies interactions �gN ,g12N�. The VA
prediction for border between the unsplit and split solitons,
given by Eq. �11�, provides a remarkably accurate fit to the
numerical findings.

Dependences N��� for families of symmetric solitons are
plotted in Fig. 3. It is known that a necessary stability con-
dition for solitons populating the semi-infinite gap is given
by the Vakhitov-Kolokolov �VK� criterion, dN /d��0 �16�,
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FIG. 1. �Color online� Examples of unsplit and split symmetric
solitons, with N1=N2=1000, trapped in potential −V0 cos�2x�. Here
and in all other figures, V0=5. For the unsplit soliton, the variational
profile is included too.

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

S
p

l i
t

S
o

l i
t o

n
s

U
n

s p
l i

t
S

o
l i

t o
n

s

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

S
p

l i
t

S
o

l i
t o

n
s

U
n

s p
l i

t
S

o
l i

t o
n

s

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

S
p

l i
t

S
o

l i
t o

n
s

U
n

s p
l i

t
S

o
l i

t o
n

s

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

S
p

l i
t

S
o

l i
t o

n
s

U
n

s p
l i

t
S

o
l i

t o
n

s

split line (var)

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

S
p

l i
t

S
o

l i
t o

n
s

U
n

s p
l i

t
S

o
l i

t o
n

s

split line (var)
split line (num)

-6
-5
-4
-3
-2
-1
0
1
2
3
4
5

0 1 2 3 4 5 6 7 8

gN

g12N

V0 = 5

S
p

l i
t

S
o

l i
t o

n
s

U
n

s p
l i

t
S

o
l i

t o
n

s
Second Band Gap

First Band Gap

Semi Infinite Gap

FIG. 2. �Color online� The family of the two-component sym-
metric solitons �N1=N2�N�, mapped into the plane of the interac-
tion strengths g12N and gN. The plane is divided into regions cor-
responding to the semi-infinite gap and the finite first and second
band gaps. They are separated by narrow stripes representing the
Bloch bands. The border between the unsplit and split solitons is
shown as found from the numerical data, and as predicted by Eq.
�11�.
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FIG. 3. �Color online� The number of atoms in the symmetric
soliton, N1=N2�N, versus the common chemical potential of both
components, at several values of g for g12=0.002. Vertical stripes
are the Bloch bands between the gaps �the solution branch with g
=−0.001 suffers a discontinuity when it hits the band separating the
semi-infinite and first finite gaps�.
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while stable solitons in finite band gaps have dN /d��0,
disobeying this criterion �3,15�. In the present case, Fig. 3
shows the same generic feature �the semi-infinite gap con-
tains solitons only for g�0, i.e., in the case of the self-
attraction�. A noteworthy feature, viz, a turning point in de-
pendence N���, is exhibited for g=−0.001 by the solution
branch which passes from the semi-infinite gap into the first
finite band gap, and also by the branch corresponding to g
=−0.0005. Consequently, two different stable solitons can be
found in the corresponding interval of �. The solitons be-
longing to the branches with g=0.0025, g=0.001, and g=0
in Fig. 3 are unsplit, and they are accurately predicted by the
VA. Accordingly, the curves for these branches, as obtained
from the VA and from the numerical data, are virtually iden-
tical. On the other hand, all solitons belonging to the branch
with g=−0.0025 exhibit splitting. As concerns the bending
branches, their parts below the turning point are formed by
unsplit solitons �which are accurately approximated by the
VA�, while above the turning point the family continues in
the split form. Accordingly, the turning point on each bend-
ing branch belongs to the splitting border for the symmetric
solitons, cf. Fig. 2.

Asymmetric solitons. Typical examples of solitons with
N1�N2 are displayed in Fig. 4. Similar to their symmetric
counterparts, cf. Fig. 1, they feature both unsplit and split
shapes �the former ones are well approximated by the VA�,
which are again confined to a single cell of the OL potential.
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FIG. 5. �Color online� Families of asymmetric and symmetric
solitons mapped into the plane of atom numbers N1 and N2, for
different g12 and g. The plane is divided into regions populated by
solitons of six different types �three intragap and three intergap
varieties, symbols 0 and 1, 2 standing for the semi-infinite and two
lowest finite band gaps, respectively�. Each panel also shows the
numerically found border between the unsplit and split solitons, and
borders between different types of the unsplit ones, as predicted by
the VA.
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FIG. 4. �Color online� Typical profiles of unsplit and split asym-
metric �N1�N2� solitons. The examples represent solitons of inter-
gap types, as indicated in the panels. For the unsplit soliton, the
profiles predicted by the VA are shown too.
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The entire family of asymmetric and symmetric GSs is
mapped in the �N1 ,N2� plane, at fixed values of the interac-
tion coefficients �g12 and g� in Fig. 5. In these diagrams, the
border between intragap solitons of different types shrink to
a point belonging to the diagonal line �N1=N2�, which cor-
responds to symmetric solitons that account for direct tran-
sitions between different types of intragap solitons. In Fig. 5
the VA for the unsplit solitons accurately predicts borders
between their different varieties.

If none of the nonlinearities is attractive �Figs. 5�a� and
5�b��, no chemical potential may fall in the semi-infinite gap.
Three types of GSs are possible if both nonlinearities are
repulsive �Fig. 5�a��: intragap ones, in the two finite band
gaps, and the intergap species, combining them. If the in-
traspecies nonlinearity exactly vanishes �Fig. 5�b��, the inter-
species repulsion cannot push both components into the sec-
ond finite band gap, which leaves us with two species:
intragap in the first band gap, and the one mixing the two
finite band gaps. The interplay of the attractive intraspecies
nonlinearity with the interspecies repulsion supports two in-
tragap and two intergap types, as seen in Fig. 5�c�. Note that
one of them skips the first band gap, binding together com-
ponents sitting in the semi-infinite and in second finite gaps.
A notable feature of the map in Fig. 5�c� is the smooth tran-
sition from ordinary solitons, with both components in the
semi-infinite gap, to ones of the semigap type.

IV. CONCLUSION

In this work, we have considered the interplay of the re-
pulsion between two species of bosonic atoms with intraspe-

cies repulsion or attraction in a binary BEC mixture loaded
into the OL potential. Families of stable solitons found in this
setting are classified as symmetric or asymmetric, split or
unsplit, and intragap or intergap. Three varieties of intragap
solitons, and another three types of intergap ones are identi-
fied, if the consideration is limited to the two lowest finite
band gaps of the OL-induced spectrum. Varying the atom
numbers in the two components N1,2, we have plotted maps
of various states. Although different intragap and intergap
species are separated by Bloch bands, transitions between
them are continuous in the �N1 ,N2� plane. In particular, a
solution branch which connects the solitons �of the split
type�, populating the semi-infinite gap, and unsplit solitons
in the first finite band gap, features the turning point at the
border between the two varieties. Other varieties revealed by
the analysis represent semigap solitons, with one component
belonging to the semi-infinite gap, and the other one falling
into a finite band gap.

A considerable part of the numerical findings reported in
this work was accurately predicted by variational approxima-
tion. These include the shape of unsplit solitons �both sym-
metric and asymmetric ones�, borders between their variet-
ies, and the splitting border for the symmetric solitons.
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