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RESUMO

A combinacédo de duas lentes com FOV hiper-hemisférico em posi¢do opostas pode gerar um
sistema omnidirecional (FOV 360°) leve, compacto e de baixo custo, como Ricoh Theta S e
GoPro Fusion. Entretanto, apenas algumas técnicas e modelos matematicos para a calibracao
um sistema com duas lentes hiper-hemisféricas sdo apresentadas na literatura. Nesta pesquisa,
é avaliado e definido um modelo geométrico para calibracdo de sistemas omnidirecionais
compostos por duas lentes hiper-hemisféricas e apresenta-se algumas aplicacGes com esse tipo
de sistema. A calibracdo das cdmaras foi realizada no programa CMC (calibracdo de multiplas
cameras) utilizando imagens obtidas a partir de videos feitos com a cdmara Ricoh Theta S no
campo de calibragdo 360°. A cadmara Ricoh Theta S é composto por duas lentes hiper-
hemisféricas fisheye que cobrem 190° cada uma. Com o objetivo de avaliar as melhorias na
utilizacdo de pontos em comum entre as imagens, dois conjuntos de dados de pontos foram
considerados: (1) apenas pontos no campo hemisférico, e (2) pontos em todo o campo de
imagem (isto é, adicionar pontos no campo de imagem hiper-hemisférica). Primeiramente, os
modelos angulo equisolido, equidistante, estereografico e ortogonal combinados com o modelo
de distor¢do Conrady-Brown foram testados para a calibragcdo de um sensor da camara Ricoh
Theta S. Os modelos de angulo-equisolido e estereografico apresentaram resultados melhores
do que os outros modelos. Portanto, esses dois modelos de projecdo foram utilizados em uma
calibracdo simultanea da cdmera (ou seja, ambos 0s sensores Ricoh Theta S foram considerados
em um mesmo procedimento). POIs (parametros de orientacao interior) e POEs (pardmetros de
orientacdo exterior) de ambos os sensores, e POR (parametros de orientacdo relativa) foram
estimados em um ajustamento de blocos com injuncéo de estabilidade dos ROPs. Os modelos
angulo-equisolido e estereografico apresentaram bons resultados com o uso dos pontos na area
hiper-hemisférica da imagem para a estimagdo dos POIs, POEs e PORs. No entanto, 0
ajustamento baseado no modelo angulo-equisélido com injuncéo de estabilidade apresentou 0s
melhores resultados. Neste trabalho, também € apresentado duas aplicacdes com sistemas
omnidirecionais: mapeamento 3D de uma area urbana usando um sistema de mapeamento
movel terrestre, composto pela camara Ricoh Theta S, e a geracdo da nuvem 3D de uma area
agricola com a camara GoPro Fusion, que também é composta por duas lentes hiper-
hemisféricas. Ambos experimentos apresentaram o0 potencial do uso de sistemas
omnidirecionais na geracdo de nuvem de pontos fotogramétrica e extracdo de atributos
importantes para cada aplicacéo.

Palavras-chaves: lente hiper-hemisférica; modelos de projecdo fisheye; sistema
omnidirecional; sistema polididptrico; calibracdo de mdltiplas camaras; injuncdo de
estabilidade; mapeamento 3D.



ABSTRACT

The arrangement of two hyper-hemispherical fisheye lenses in opposite position can design a
light weight, small and low-cost omnidirectional system (360° FOV), e.g. Ricoh Theta S and
GoPro Fusion. However, only a few techniques are presented in the literature to calibrate a
dual-fisheye system. In this research, a geometric model for dual-fisheye system calibration
was evaluated, and some applications with this type of system are presented. The calibrating
bundle adjustment was performed in CMC (calibration of multiple cameras) software by using
the Ricoh Theta video frames of the 360° calibration field. The Ricoh Theta S system is
composed of two hyper-hemispherical fisheye lenses with 190° FOV each one. In order to
evaluate the improvement in applying points in the hyper-hemispherical image field, two data
set of points were considered: (1) observations that are only in the hemispherical field, and (2)
points in all image field, i.e. adding points in the hyper-hemispherical image field. First, one
sensor of the Ricoh Theta S system was calibrated in a bundle adjustment based on the
equidistant, equisolid-angle, stereographic and orthogonal models combined with Conrady-
Brown distortion model. Results showed that the equisolid-angle and stereographic models can
provide better solutions than those of the others projection models. Therefore, these two
projection models were implemented in a simultaneous camera calibration, in which the both
Ricoh Theta sensors were considered in a same procedure. IOPs (interior orientation
parameters) and EOPs (exterior orientation parameters) of both sensors, and a set of ROPs
(relative orientation parameters) were estimated in a bundle adjustment based on stability
constraints of ROPs. Both equisolid-angle and stereographic models presented good
performances; meanwhile, the equisolid-angle model showed more stable results than
stereographic model when adding observation in the hyper-hemispherical image field. In this
research, two applications applying dual-fisheye cameras are also investigated: 3D city
mapping using a PMTS (portable mobile terrestrial system) that is composed of Ricoh Theta S
dual-camera, and 3D crop modelling using GoPro Fusion dual-camera. Both experimental
assessments presented the potential advantage of using the omnidirectional system to generate
a 3D point cloud, in which can extract important attributes for each application.

Keywords: hyper-hemispherical lens, fisheye projection model, omnidirectional system,
polydioptric system, multi-camera calibration, stability constraints, 3D mapping.
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CHAPTER |
INTRODUCTION

1 OVERVIEW AND MOTIVATION

The design of high performance imaging systems to cover a full-spherical
field of view (FOV) is a trend in the applied optical research. Multiple cameras arranged in the
same structure, which enables a 360° FOV panorama, have been used for virtual reality,
surveillance, robotic navigation and driverless vehicle applications. The overlap between
images from each camera that composes the multi-camera system is an important issue to create
panoramic images without blind zones. This is a current topic in recent works for multi-camera
design (Fangi et al., 2013; Pernechele et al., 2018, Song et al., 2018, Ye et al., 2018, Lian et al.,
2018). Furthermore, common points between sensor images can improve the system
calibration, since the bundles of rays that formed the 360° image are considered.

A multi-camera system can be designed with perspectives lenses, which have
a limited FOV, consequently, many cameras are needed to cover a full-spherical panorama. An
example of omnidirectional system with perspectives cameras is Ladybug 5, which is composed
of six cameras with 89.3° FOV (Khoramshahi et al., 2019). Another design option is to use
fisheye lenses, in which fewer lenses are required to cover a large panorama due to the large
FOV. The disadvantage is the loss of resolution caused by projection compression, mainly in
the limits of the image. However, some authors have highlighted the benefits of using lenses
with large FOV like fisheye lenses (Zhang et al., 2016; and Matsuki et al., 2018). For instance,
a larger spatial distribution of points and a bigger overlap between sequence images can be
tracked by fisheye lens cameras due to the large FOV.

Fisheye lenses can be classified as hemispherical (110° - 180° FOV) or hyper-
hemispherical (FOV above 180°). Nowadays, the use of lenses with FOV wider than 180° has
been a trend in omnidirectional systems. Just two hyper-hemispherical lenses in back-to-back
position can provide lightweight and low-cost full-spherical systems (e.g., Ricoh Theta S),
while maintaining the overlap between sensor images. This compact design has motivated the
use of dual-fisheye system in personal mobile terrestrial system for 360° imaging, as presented
by Campos et al. (2018b). Furthermore, the complexity of camera calibration is reduced for
dual-fisheye system, since only two sets of 1OPs (interior orientation parameters) and EOPs

(exterior orientation parameters), and a set of ROPs (relative orientation parameters) have to be
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estimated. Reducing the number of camera to be triggered simultaneously also facilitate their
synchronization.

Considering the high potential of 360° imaging for photogrammetric
measurements (Campos et al., 2018b; Castanheiro et al., 2018; Castanheiro et al., 2020), some
studies have focused on camera calibration (Aghayari et al., 2017; Campos et al., 2018a) and
photogrammetric applications (Caruso et al., 2015; Meegoda et al., 2018; Perfetti et al., 2018;
Campos et al., 2019; Tommaselli et al., 2019) of these multi-camera systems based on fisheye
lenses. However, only few studies proposed mathematical models that consider the image
observation geometry over 180° FOV for photogrammetric applications. Thus, these points are
usually excluded from the photogrammetric procedure, such as camera calibration and image
orientation. For instance, Campos et al. (2018a) presented a methodology to calibrate a multi-
camera system composed of two hyper-hemispherical fisheye cameras based on the equidistant
mathematical model. In this work, the points in the hyper-hemispherical image field were
removed from the camera calibration procedure because of the double mapping problem, which
occurs due to the arctan function in the equidistant model. This problem was circumvented by
Van den Heuvel et al. (2006) and Song et al. (2018) using a generic polynomial model to
calibrate a hyper-hemispherical fisheye lens. Other models have been proposed in literature for
hyper-hemispherical lens modelling (Khomutenko et al., 2016; Pernechele, 2016). However,
fisheye projections models were not yet sufficiently explored for photogrammetric procedures
with hyper-hemispherical lenses in the literature.

Besides a suitable mathematical model, an accurate multi-camera system
calibration also depends on a suitable technique to estimate IOPs, EOPs and ROPs. Many
researches have proposed a bundle adjustment with constraints on relative image orientation
(Heetal., 1993; Lermaet al., 2010; Habib et al., 2014; Detchev et al., 2018). Some studies have
presented improvements in the multi-camera system calibration when using ROPs as stability
constraints (Tommaselli et al., 2013; Lichti et al., 2015; Campos et al., 2018a; Jarron et al.,
2019). This technique is based on the stability of the cameras during image acquisition.
Nowadays, multi-camera systems have been constructed with cameras in a same structure,
known as polydioptric system (Maas, 2008). This arrangement can design a more stable
omnidirectional system. Therefore, the concept of stability constraints can be used as proposed
by Tommaselli et al. (2009; 2013). Meanwhile, the use of relative orientation stability

constraints, for dual-fisheye system, has been rarely approached in the literature.
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This research presents a study on fisheye mathematical models based on
equidistant, equisolid-angle, stereographic, and orthogonal projections combined with the
Conrady-Brown distortion model. These models were tested in a camera calibration by bundle
adjustment with the Ricoh Theta system to evaluate the contribution of using points in the
hyper-hemispherical image field. The four fisheye models were assessed for the Ricoh Theta
sensor using images taken in the 360° calibration field and CMC (calibration of multiple
camera) software. The models that achieved the best results were implemented in the CMC
software to calibrate both Ricoh Theta sensors in a simultaneous bundle adjustment based on
stability constraints of relative rotation matrix and base element. A further analysis was
performed for ROP estimation with and without using stability constraints. In this research, two
experimental assessments with two different dual-fisheye systems in close-range applications
were also performed: 3D city mapping using a PMTS (portable mobile terrestrial system),
composed of Ricoh Theta S dual-camera; and 3D crop modelling using GoPro Fusion dual-
camera. Both experimental assessments presented the potential of using an omnidirectional
system to generate 3D point clouds, in which important attributes can be extracted depending

on the application.
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CHAPTER VI
CONCLUSION AND RECOMENDATIONS

6 CONCLUSION

A mobile system with a dual-fisheye camera can be a feasible option. A larger
spatial distribution of points can be obtained using a camera with larger FOV, mainly for
environments with sparse features, such as indoor environments (Caruso et al., 2015; Matsuki
et al., 2018). Another advantage is the larger overlap between sequential images; therefore, an
object point is observed in a long period of image acquisition (Matsuki et al., 2018). The
benefits on using large FOV images were presented in details by Zhang et al. (2016) and
Matsuki et a. (2018). In this regards, fisheye models have been implemented in scientific and
commercial software due to the growing use of fisheye images for accurate applications, which
can be considered a trend in close range photogrammetry. However, some limitations when
using a dual-fisheye camera can be highlighted.

Generally, dual-fisheye systems are composed of two hyper-hemispherical
fisheye lenses to maintain the overlap between sensor images. Most of fisheye lenses follow
the equidistant projection (Abraham and Frostner, 2005), as the Agisoft Photoscan/Metashape
that uses the equidistant fisheye model. However, the equidistant model, as well orthogonal
model, do not correctly model observations beyond 180°, being required to remove them to
achieve accurate results (Campos et al., 2018a; Castanheiro et al., 2020). These common points
between images from both sensors can improve some photogrammetric techniques, such as
camera calibration. Therefore, further fisheye models were assessed with camera calibration
bundle adjustment of one Ricoh Theta sensor. The equisolid-angle and stereographic models
presented the best results. The a-posteriori values were 0.34 and 0.63 respectively, with a unit
a-priori value, and both models achieved a RMSE of discrepancies between control and
estimated distance of 6 mm. The affinity parameters were removed from the calibration
procedures, since the effects in the image coordinates were less than 0.5 pixels.

Regarding the calibration of both Ricoh Theta sensors in the same process
(simultaneous calibration with bundle adjustment), improvements were noticed in the estimated
standard deviations of EOPs and IOPs when using points in the hyper-hemispherical image
field, which were covered by both sensors. Furthermore, the use of ROPs as stability constraints

improved the ROPs estimation. The best results for the calibration Ricoh Theta S dual-camera
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were achieved by equisolid-angle model combined with Conrady-Brown’s distortion model,
considering the relative rotation elements and base components as stability constraints.

Two different dual-fisheye cameras (Ricoh Theta S and GoPro Fusion) were
assessed for 3D modelling an urban area and an agricultural crop. Both experimental
assessments presented that omnidirectional system composed of dual-fisheye camera can be a
feasibility choice for 3D mapping. Considering the uncertainties in the process of generating
360° equirectangular images from Ricoh Theta S, the video frames are more suitable for
applications that require high accuracy, such as close-range photogrammetry, because the
original geometry is preserved. A disadvantage of fisheye video frames is the low resolution of
the frames compared to the still image. Other omnidirectional system can be considered suitable
to use in a portable mobile mapping, for instance, GoPro Fusion preserves the original fisheye
images from each sensor without any processing, which is suitable for a rigorous
photogrammetric chain.

Some recommendations for future works can be mentioned: (1) the
calibration approach tested with Ricoh theta S system can be extended to other dual-fisheye
systems, such as GoPro Fusion camera; (2) a comparative analysis with other fisheye models
proposed in the literature and other techniques for multi-camera calibration can be also
performed; (3) a stochastic weighting of observation can be insert, since the fisheye images
have non-uniform spatial resolution; (4) the equisolid-angle projection model can be used for
3D reconstruction using hyper-hemispherical observations; and (5) a full-mapping can be
achieved combining multi-sensor data, such as aerial images, LIiDAR data and multispectral
and hyperspectral images. These are investigations that may contribute to further studies on
hyper-hemispherical fisheye models, improving the quality of results in applications.
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