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Abstract. In this paper we present an extension to the non-
planar case of the asymmetric expansion of the averaged reso-
nant disturbing function of Ferraz-Mello & Sato (1989, A&A
225, 541-547). Comparions with the exact averaged disturbing
function are also presented. The expansion gives a good approx-
imation of the exact function in a wide region around the center
of expansion.

Key words: celestial mechanics – solar system: general – meth-
ods: analytical

1. Introduction

An important challenge in dynamical astronomy is to find a suit-
able expansion of the disturbing functionR for a given problem.
As far as planetary theory is concerned, the Laplace’s series
are widely used. They basically represent an expansion around
coplanar circular orbits. However, these series have generally a
poor convergence for high eccentricities and inclinations (see
Ferraz-Mello, 1994 for a discussion).

A typical example where the Laplacian expansion can not be
used because of its lack of convergence is that of the first-order
resonances in the asteroidal main belt (Murray, 1986). In the
case of the 2/1 and 3/2 resonances, the radius of convergence in
eccentricity of the Laplace’s expansion is 0.2 and 0.09, respec-
tively. Recall that both the Griquas (at 2/1) and the Hildas (at
3/2) have eccentricities higher than these values.

It was Woltjer (1928) who first proposed to use a Taylor
expansion of the disturbing function around a point other than
the origin. There is no reason “a priori” to suppose that such
an expansion will not have the same convergence problems of
the Laplacian expansion when we are far away from the center
of expansion. On the contrary, the larger the eccentricity of the
center, the smaller the radius of convergence (see for example
Wintner, 1941, §285-§299). However, it is clear that it will be
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good enough to describe the dynamics of libration as far as the
real motion remains close to the center of expansion.

Theasymmetric expansionof Woltjer allowed him to make
a good prediction of the libration period of the 3/4 resonance
between Titan and Hyperion. Later on, Ferraz-Mello (1987) re-
formulated Woltjer’s idea in the form of an analytic expansion
in the framework of the restricted planar three-body problem
for a first-order resonance. This work was extended for reso-
nances of any order by Ferraz-Mello & Sato (1989): We will
refer hereafter to their article as FMS89.

The planar asymmetric expansion led to the high-eccen-
tricity libration theory of the Hildas’ motion (Ferraz-Mello,
1988; Gallardo & Ferraz-Mello, 1995). It was also used to study
the corotation solutions of first-order resonances (Ferraz-Mello,
1989; Ferraz-Mello et al., 1993) and, more recently, to formu-
late a formal analytic theory for the high-eccentricity small-
amplitude librations at first-order resonances (Ferraz-Mello et
al., 1997). Numerical applications of the asymmetric expansion
also allowed Ferraz-Mello & Klafke (1991) to discover the dy-
namics of very-high eccentricity libration in the asteroidal 3/1
resonance, and Ferraz-Mello (1997), to construct a symplectic
mapping for the 2/1 and 3/2 resonances.

However, it becomes more and more evident that planar
models are not sufficient to explain all the properties observed
in some resonant systems. The articles of Wisdom (1987) and
Henrard et al. (1995) are good examples of this fact. Thus, in
many cases, the inclusion of the third dimension in the models
is necessary.

An important advance in this direction was already made
by Moons (1993, 1994), who extended the basic equations of
FMS89, and presented a method to calculate numerically the
resonant averaged disturbing function at each point of the phase
space for the non-planar model. This method allows us to have
an exact representation of the disturbing function. Despite of
the problem of the high computational cost of a mean at each
point of the phase space, the method was successfully applied
in many works (see for example Morbidelli & Moons, 1993;
Moons, 1994; Henrard et al., 1995).
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FMS89’s equations were also extended by Tsuchida (see
Oliveira, 1995) who derived an extension of the asymmetric
expansion to the non-planar case in which the plane of motion
of the disturbing body is kept fixed. The aim of this paper is
to extend the equations of FMS89 to the construction of the
spatial asymmetric expansion in terms of the inclinations of
both the disturbed and the disturbing bodies with respect to
a fixed reference plane. Since this expansion is a polynomial,
and its coefficients are computed only once, it is much faster
than the numerical calculation of the exact disturbing function.
However, it approximates well the disturbing function only in a
neighborhood of the center of expansion, and is only useful in
the case of moderate amplitude librations. In the case of large
amplitude librations, it should be better to use the expansion of
Yokoyama (1994), which is an expansion in powers of (e− e0)
combined with a Fourier expansion in the resonant angle σ.
However, that expansion was only calculated in the frame of
the planar problem.

In Sects. 2 to 6 we present the basic calculations to obtain the
asymmetric expansion of the disturbing function. These calcu-
lations are extended in Sect. 7 to the case of an oblate potential
of the primary body. Finally, in Sect. 8, we present a comparison
with the exact averaged disturbing function calculated numeri-
cally. The last section is devoted to the conclusions.

2. The disturbing function

Let a, e, I, ω,Ω be the orbital elements in their usual notation,
and v, u, ` the true, eccentric and mean anomalies, respectively.
We will use primed variables for the disturbing body and un-
primed ones for the disturbed body. We define the resonant an-
gular variables for a generic resonance (p + q) : p in the form

σ =
p + q
q

λ′ − p

q
λ−$

σ′ =
p + q
q

λ′ − p

q
λ−$′

σz =
p + q
q

λ′ − p

q
λ− Ω

σ′z =
p + q
q

λ′ − p

q
λ− Ω′

Q =
λ− λ′

q
(1)

where $ = ω + Ω and λ = ` + $ (also $′ = ω′ + Ω′ and
λ′ = `′ + $′). Recall that Q is the so called synodic angle,
which is a fast variable in comparison to the others.

Now, we write the disturbing function of the restricted 3-
body problem as

R =
Gm′

a′
[
f + f 1

]
(2)

where G is the gravitational constant, m′ and a′ are the per-
turber’s mass and semimajor axis, and f and f 1 are the direct
and indirect parts, respectively, which we write as

f = a′(r2 + r′2 − 2rr′ cosS)−1/2

f 1 = −a′ r
r′2

cosS (3)

where S is the angle between the position vectors r and r′. This
disturbing function depends on the inclinations only through
cosS. Introducing the notation

η = sin
I

2
, η′ = sin

I ′

2
(4)

we can write

cosS =
(
1 − η2 − η′2 + η2η′2

)
× cos

(
(v − σ) − (v′ − σ′)

)
+ 2ηη′

√
1 − η2

√
1 − η′2

× [
cos

(
(v − σ) − (v′ − σ′) + σz − σ′z

)
− cos

(
(v − σ) + (v′ − σ′) + σz + σ′z

)]
+
(
1 − η2

)
η′2 cos

(
(v − σ) + (v′ − σ′) + 2σ′z

)
+
(
1 − η′2

)
η2 cos

(
(v − σ) + (v′ − σ′) + 2σz

)
+ η2η′2 cos

(
(v − σ) − (v′ − σ′) + 2σz − 2σ′z

)
.

(5)

On the other hand, R depends on the eccentricities through
r, r′ and v, v′ which involves the solution of Kepler’s equa-
tion. If we assume that the eccentricity of the perturber is small
enough we can use the known elliptic expansions (Brouwer &
Clemence, 1961) and write

r′ = a′
[

1 − e′ cos `′ +
1
2
e′2(1 − cos 2`′) + O (e′3)

]
v′ = `′ + 2e′ sin `′ +

5
4
e′2 sin 2`′ + O (e′3) (6)

where, in terms of the variables of Eqs. (1), we have

`′ = σ′ + pQ. (7)

A similar assumption is not done in the case of the disturbed
body and the dependence of r, v on e will be considered later
(see Sect. 5).

Now, using Eqs. (5) and (6) we can write R as a function of
the form

R = R(r, v, σ, η, σz, r
′(a′, e′, `′), v′(e′, `′), σ′, η′, σ′z) (8)

and expand it in Taylor series. We will do this in two steps,
respectively discused in the next two sections.

3. Expansion in e′, η′ and η

Since e′ is a small quantity we start with an expansion around
e′ = 0 up to O (e′2) (this part of the expansion will lead to the
same expressions that appear in FMS89). We stress the fact that
such expansion is sufficient if we are looking for a first-order
averaged expansion ofR, on the hypothesis that e′ < O (

√
m′).

We will also assume that η′ ' O (e′). Note that this assumption
is valid for the inclinations of almost all the planets with respect
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to the invariant plane of the outer Solar System or with respect to
the ecliptic. On the other hand, many asteroids have inclinations
less than 30◦ and we will assume η ' O (

√
e′). Thus, we will

expand R around η′ = 0 and η = 0 up to orders consistent with
O (e′2).

Denoting R = f + f 1 we write

R =
Gm′

a′

[
R0

+
∂R
∂e′

e′ +
1
2
∂2R
∂e′2

e′2 +
∂R
∂η′

η′ +
1
2
∂2R
∂η′2

η′2

+
∂R
∂η

η +
1
2
∂2R
∂η2

η2 +
1
6
∂3R
∂η3

η3 +
1

24
∂4R
∂η4

η4

+
∂2R
∂e′∂η

e′η +
1
2
∂3R
∂e′∂η2

e′η2 +
∂2R
∂e′∂η′

e′η′

+
∂2R
∂η′∂η

η′η +
1
2
∂3R
∂η′∂η2

η′η2 + O (e′3)

]
(9)

and hereafter we assume that all the derivatives are evaluated at
e′ = η′ = η = 0. Since the expansion is symmetric with respect
to the inclinations, the D’Alembert rule holds and, so, just the
terms in the even powers of the inclinations should survive.
Hence, we must have

∂R
∂η′

=
∂R
∂η

=
∂3R
∂η3

=
∂2R
∂e′∂η

=
∂2R
∂e′∂η′

=
∂3R
∂η′∂η2

= 0. (10)

The remaining derivatives are not null, and in order to calculate
them we divide R in its direct and indirect parts.

First, we introduce the notation c = cosS and

b =
r2 + r′2 − 2rr′c

a′2
. (11)

Thus for the direct part we can write

f0 = b
−1/2
0

∂f

∂e′
= −b−3/2

0

[
1
a′
∂r′

∂e′
(

1 − r

a′
c0

)
− r

a′
∂c

∂v′
∂v′

de′

]
∂2f

∂e′2
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0
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a′
∂r′

∂e′

)2
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a′
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(
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∂c
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∂r′
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]

+ 3b1/2
0

(
∂f

∂e′

)2

∂2f

∂η′2
= b

−3/2
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∂η2
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−3/2
0

r
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∂η2

∂4f

∂η4
= 9b1/2

0

(
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)2

∂3f

∂e′∂η2
= b

−3/2
0
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r
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∂2c

∂η2
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1
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∂r′

∂e′

)
+
r
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∂3c

∂v′∂η2

∂v′

∂e′

]

+3b1/2
0

∂f

∂e′
∂2f

∂η2

∂2f

∂η′∂η
= b

−3/2
0

r

a′
∂2c

∂η′∂η
(12)

where c0 = cosS|e′=η′=η=0 and

b0 = 1 +
r2

a′2
− 2

r

a′
c0. (13)

For the indirect part, after straightforward calculations, we ob-
tain

f 1
0 = − r

a′
c0

∂f 1

∂e′
= − r

a′
∂c

∂v′
∂v′

∂e′
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a′
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(
1
a′
∂r′

∂e′

)
∂2f 1
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∂r′

∂e′

)2

+ 2
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1
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∂2r′
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r

a′
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∂v′
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1
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∂v′2

(
∂v′

∂e′

)2

∂2f 1

∂η′2
= − r
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∂η′2

∂2f 1
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∂η2

∂4f 1

∂η4
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∂3f 1
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∂v′∂η2

∂v′

∂e′
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a′
∂2c

∂η2

(
1
a′
∂r′

∂e′

)
∂2f 1

∂η′∂η
= − r

a′
∂2c

∂η′∂η
. (14)

Now, we introduce the functions

W1 =
r

a
cos(v − σ)

W2 =
r

a
sin(v − σ) (15)

which are the same as defined in FMS89 (see Eq. 18 in that
paper). These definitions together with Eq. (7) lead, after some
calculations, to the following expressions for the derivatives at
e′ = η′ = η = 0

r2

a′2
= α2(W 2

1 + W 2
2 )

r

a′
c0 = α(W1 cos pQ + W2 sin pQ)

r

a′
∂c

∂v′
= −α(W1 sin pQ−W2 cos pQ)

r

a′
∂2c

∂η2
= −4α(W1 sin σz + W2 cosσz)

×(sin pQ cosσz + cos pQ sin σz)
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r

a′
∂2c

∂η′∂η
= 4α(W1 sin σz + W2 cosσz)

×(sin pQ cosσ′z + cos pQ sin σ′z)

r

a′
∂3c

∂v′∂η2
= −4α(W1 sin σz + W2 cosσz)

×(cos pQ cosσz − sin pQ sin σz)

r

a′
∂2c

∂v′2
= −α(W1 cos pQ + W2 sin pQ) (16)

where α = a/a′ (recall that a′ is a constant). From Eqs. (6) we
also have

1
a′
∂r′

∂e′
= − cos pQ cosσ′ + sin pQ sin σ′

∂v′

∂e′
= 2(cos pQ sin σ′ + sin pQ cosσ′)

1
a′
∂2r′

∂e′2
= 1 − cos 2pQ cos 2σ′ + sin 2pQ sin 2σ′

∂2v′

∂e′2
=

5
2

(cos 2pQ sin 2σ′ + sin 2pQ cos 2σ′) (17)

and the computation of the derivatives is almost completed.
It is worth noting that Eqs. (15) can be written in the form

W1 = g2 cos(p + q)Q− g3 sin(p + q)Q

W2 = g2 sin(p + q)Q + g3 cos(p + q)Q (18)

where g2, g3 are the functions

g2 =
r

a
cos(ϕ− λ)

g3 =
r

a
sin(ϕ− λ) (19)

with ϕ = v + $. Thus, using the notation of FMS89 (see their
Eqs. 11, 12, 14 and 37) we introduce the definitions

g1 = W 2
1 + W 2

2

= g2
2 + g2

3

g4 = W1 cos pQ + W2 sin pQ

= g2 cos qQ− g3 sin qQ

g5 = W2 cos pQ−W1 sin pQ

= g2 sin qQ + g3 cos qQ. (20)

Recall that g4 differs by a factor α and g5 differs by a factor
2α to their counterparts in FMS89. In addition, we define the
functions

g6 = W1 cos pQ−W2 sin pQ

= g2 cos(q + 2p)Q− g3 sin(q + 2p)Q

g7 = W2 cos pQ + W1 sin pQ

= g2 sin(q + 2p)Q + g3 cos(q + 2p)Q. (21)

Finally, after some algebra, we obtain the following results for
both the direct and indirect parts.

3.1. Term of zero order

It is

R0 = (f0 + f 1
0 ) (22)

where

f0 = (1 + α2g1 − 2αg4)−1/2

f 1
0 = −αg4 (23)

(compare with Eqs. 7 and 13 of FMS89).

3.2. Terms of O (e′)

The term in e′ is:

∂R
∂e′

= (f1 + f 1
1 ) cosσ′ + (f2 + f 1

2 ) sin σ′ (24)

where

f1 = f 3
0 [(1 − αg4) cos pQ + 2αg5 sin pQ]

f2 = −f 3
0 [(1 − αg4) sin pQ− 2αg5 cos pQ] (25)

f 1
1 = −2α(g4 cos pQ + g5 sin pQ)

f 1
2 = 2α(g4 sin pQ− g5 cos pQ) (26)

(compare with Eq. 36 of FMS89). The term in η2 is:

∂2R
∂η2

= (f3 + f 1
3 ) + (f4 + f 1

4 ) cos 2σz

+(f5 + f 1
5 ) sin 2σz (27)

where

f3 = −f 3
0 2αg4

f4 = f 3
0 2αg6

f5 = −f 3
0 2αg7 (28)

f 1
3 = 2αg4

f 1
4 = −2αg6

f 1
5 = 2αg7. (29)

3.3. Higher order terms

The term in e′2 is:

∂2R
∂e′2

= (f6 + f 1
6 ) + (f7 + f 1

7 ) cos 2σ′

+(f8 + f 1
8 ) sin 2σ′ (30)

where

f6 = −f 3
0

(
3
2

+ αg4

)
+

3
2
f 5

0

[
(1 − αg4)2 + (2αg5)2

]
f7 = f 3

0

[(
1
2

+ αg4

)
cos 2pQ +

1
2
αg5 sin 2pQ

]
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+
3
2
f 5

0

[(
(1 − αg4)2 − (2αg5)2

)
cos 2pQ

+ 4(1 − αg4)αg5 sin 2pQ
]

f8 = −f 3
0

[(
1
2

+ αg4

)
sin 2pQ− 1

2
αg5 cos 2pQ

]
−3

2
f 5

0

[(
(1 − αg4)2 − (2αg5)2

)
sin 2pQ

− 4(1 − αg4)αg5 cos 2pQ
]

(31)

f 1
6 = αg4

f 1
7 = −7αg4 cos 2pQ− 13

2
αg5 sin 2pQ

f 1
8 = 7αg4 sin 2pQ− 13

2
αg5 cos 2pQ (32)

(compare with Eqs. 40, 41, 42 and 43 of FMS89). The term in
η′2 is almost the same as Eq. (27):

∂2R
∂η′2

= (f3 + f 1
3 ) + (f4 + f 1

4 ) cos 2σ′z

+(f5 + f 1
5 ) sin 2σ′z. (33)

The term in η4 has no indirect part:

∂4R
∂η4

= f9 + f10 cos 2σz + f11 sin 2σz

+f12 cos 4σz + f13 sin 4σz (34)

where

f9 = 18f 5
0α

2
(
g1 + 2g2

4

)
f10 = −72f 5

0α
2g4g6

f11 = 72f 5
0α

2g4g7

f12 = 18f 5
0α

2
(
g2

6 − g2
7

)
f13 = −36f 5

0α
2g6g7. (35)

And finaly, the mixed term in e′η2 is:

∂3R
∂e′∂η2

=
[
(f14 + f 1

14) + (f15 + f 1
15) cos 2σz

+ (f16 + f 1
16) sin 2σz

]
cosσ′

+
[
(f17 + f 1

17) + (f18 + f 1
18) cos 2σz

+ (f19 + f 1
19) sin 2σz

]
sin σ′ (36)

where

f14 = f 3
0α (3W1 − g4 cos pQ− g5 sin pQ) − 6f 2

0 f1αg4

f15 = −f 3
0α (3W1 − g6 cos pQ + g7 sin pQ) + 6f 2

0 f1αg6

f16 = f 3
0α (3W2 − g6 sin pQ− g7 cos pQ) − 6f 2

0 f1αg7

f17 = −f 3
0α (3W2 − g4 sin pQ + g5 cos pQ) − 6f 2

0 f2αg4

f18 = −f 3
0α (3W2 + g6 sin pQ + g7 cos pQ) + 6f 2

0 f2αg6

f19 = −f 3
0α (3W1 + g6 cos pQ− g7 sin pQ) − 6f 2

0 f2αg7 (37)

f 1
14 = −2f 1

1

f 1
15 = −f 1

19 = −4α(g6 cos pQ− g7 sin pQ)

f 1
16 = f 1

18 = 4α(g6 sin pQ + g7 cos pQ)

f 1
17 = 2f 1

2 . (38)

All these terms are of O (e′2). There is also a mixed term in η′η
which is of O (e′3/2); it is:

∂2R
∂η′∂η

=
[
(f20 + f 1

20) cosσ′z + (f21 + f 1
21) sin σ′z

]
sin σz

+
[
(f22 + f 1

22) cosσ′z + (f23 + f 1
23) sin σ′z

]
cosσz

(39)

where

f20 = f 3
0 4αW1 sin pQ = f 3

0 2α(g7 − g5)

f21 = f 3
0 4αW1 cos pQ = f 3

0 2α(g4 + g6)

f22 = f 3
0 4αW2 sin pQ = f 3

0 2α(g4 − g6)

f23 = f 3
0 4αW2 cos pQ = f 3

0 2α(g7 + g5) (40)

f 1
20 = −4αW1 sin pQ = −2α(g7 − g5)

f 1
21 = −4αW1 cos pQ = −2α(g4 + g6)

f 1
22 = −4αW2 sin pQ = −2α(g4 − g6)

f 1
23 = −4αW2 cos pQ. = −2α(g7 + g5). (41)

With these calculations we have completed the first part of
the expansion.

4. Expansion in k, h and α

We know that, in the resonance, the critical argument σ librates
around a certain value σ0, and both the eccentricity and the
semimajor axis librate around e0 and a0 respectively. So we
could make an expansion of the disturbing function around these
points. Since e and σ are coupled through the D’Alembert rule,
any term with the argument nσ is proportional to en. Thus any
expansion around a point e0 /= 0 is singular at e = 0. In order to
avoid this non-analyticity at the origin it is useful to replace the
pair of variables e, σ by the regular variables

k = e cosσ

h = e sin σ (42)

and to expand R around the point (k0, h0).
It is worth noting that the expressions obtained in Sect. 3

depend onk, h andα only through the coefficients fi and f 1
i , and

more precisely, they depend on k, h only through the functions
W1 and W2 (or equivalently, the functions g2 and g3). Thus, the
second part of the expansion consists in expanding each of these
coefficients in powers of (h− h0), (k − k0) and (α− α0).

We assume that all ∆k, ∆h and ∆α are of order O (e′) (i.e.,
∆e ' O (e′) and ∆α ' 0.05). So, we expand the term R0 up
to second the order in e′:

R0 = R00 +
∂R0

∂k
(k − k0) +

∂R0

∂h
(h− h0)
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+
∂R0

∂α
(α− α0) +

1
2
∂2R0

∂k2
(k − k0)2

+
1
2
∂2R0

∂h2
(h− h0)2 +

1
2
∂2R0

∂α2
(α− α0)2

+
∂2R0

∂k∂h
(k − k0)(h− h0) +

∂2R0

∂h∂α
(h− h0)(α− α0)

+
∂2R0

∂k∂α
(k − k0)(α− α0). (43)

The terms of O (e′) are expanded only up to the first order in e′

obtaining

∂R
∂e′

=

(
∂R
∂e′

)
0

+
∂

∂k

∂R
∂e′

(k − k0)

+
∂

∂h

∂R
∂e′

(h− h0) +
∂

∂α

∂R
∂e′

(α− α0)

∂2R
∂η2

=

(
∂2R
∂η2

)
0

+
∂

∂k

∂2R
∂η2

(k − k0)

+
∂

∂h

∂2R
∂η2

(h− h0) +
∂

∂α

∂2R
∂η2

(α− α0). (44)

The remaining terms are just evaluated at k0, h0 and α0.
The calculation of these derivatives is almost simple. We

show below some of the most cumbersome derivations of the
direct part. Denoting by X,Y any of the variables k, h or α, we
have

∂f0

∂X
= −1

2
f 3

0

[
∂(α2g1)
∂X

− 2
∂(αg4)
∂X

]
∂2f0

∂X∂Y
= 3f−1

0
∂f0

∂X

∂f0

∂Y

−1
2
f 3

0

[
∂2(α2g1)
∂X∂Y

− 2
∂2(αg4)
∂X∂Y

]
∂f1

∂X
= 3f−1

0
∂f0

∂X
f1

+f 3
0

[
−∂(αg4)

∂X
cos pQ + 2

∂(αg5)
∂X

sin pQ

]
∂f3

∂X
= −6f 2

0
∂f0

∂X
αg4 − 2f 3

0
∂(αg4)
∂X

. (45)

The explicit form of these coefficients can be found in Roig
(1997).

5. The functions W1 and W2

The evaluation of the functions W1 and W2 as well as of their
derivatives at the point k0, h0 can be done in two different ways
as already described in FMS89. We can use the relations (18)
together with the classical elliptic expansions of the functions
g2 and g3 (see Sect. 7 of FMS89), which leads to the so-called
high-eccentricity (HE) asymmetric expansion, valid only for
e0 < 0.6627, i.e., inside the radius of convergence of the cited
expansions of g2 and g3. Alternatively, we can write the func-
tions W1 and W2 in the form

W1 = cos(u− σ) − k + hT

W2 = sin(u− σ) + h + kT (46)

where

T =
1
e

(√
1 − e2 − 1

)
sin u (47)

and we can calculate the derivatives with the use of closed for-
mulas which are not singular at e = 0 (see Sects. 3.1, 3.2 and
3.3 of FMS89 and pay attention to some obvious misprints in
Eqs. 28 and 32, and in the formula after Eq. 22). This later
method leads to the so-called very-high-eccentricity (VHE)
asymmetric expansion, valid for any eccentricity e0.

It is worth noting that in Eq. (46), W1 and W2 depend on
the eccentric anomaly u. Thus, we must use the relation

` = σ + (p + q)Q (48)

and to solve Kepler’s equation in order to obtain the dependence
of W1,W2 on Q.

6. Final expression and average

Now, we can write the final expression of the expansion. De-

noting Ri = fi + f 1
i and RiX =

∂Ri

∂X
, we have

R =
Gm′

a′
[
R0 + R0h(h− h0) + R0k(k − k0)

+R0α(α− α0) +
[
R1 cosσ′ + R2 sin σ′

]
e′

+
[
R3 + R4 cos 2σz + R5 sin 2σz

] 1
2
η2

+R0hh
1
2

(h− h0)2 + R0kk
1
2

(k − k0)2

+R0αα
1
2

(α− α0)2 + R0hk(h− h0)(k − k0)

+R0hα(h− h0)(α− α0) + R0kα(k − k0)(α− α0)

+[R1h cosσ′ + R2h sin σ′]e′(h− h0)

+[R1k cosσ′ + R2k sin σ′]e′(k − k0)

+[R1α cosσ′ + R2α sin σ′]e′(α− α0)

+[R3h + R4h cos 2σz + R5h sin 2σz]
1
2
η2(h− h0)

+[R3k + R4k cos 2σz + R5k sin 2σz]
1
2
η2(k − k0)

+[R3α + R4α cos 2σz + R5α sin 2σz]
1
2
η2(α− α0)

+[R6 + R7 cos 2σ′ + R8 sin 2σ′]
1
2
e′2

+
[
R3 + R4 cos 2σ′z + R5 sin 2σ′z

] 1
2
η′2

+[R9 + R10 cos 2σz + R11 sin 2σz]
1

24
η4

+[R12 cos 4σz + R13 sin 4σz]
1

24
η4

+[R14 + R15 cos 2σz + R16 sin 2σz] cosσ′
1
2
η2e′

+[R17 + R18 cos 2σz + R19 sin 2σz] sin σ′
1
2
η2e′
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+
[
R20 cosσ′z + R21 sin σ′z

]
η′η sin σz

+
[
R22 cosσ′z + R23 sin σ′z

]
η′η cosσz

]
. (49)

Since each of the coefficients Ri depends on the fast variable
Q, this expansion can be averaged by solving numerically the
integral

R∗ =
1

2π

∫ 2π

0
R [u(Q), Q] dQ. (50)

The calculation of this integral requires the solution of Kepler’s
equation as an intermediate step (see Sect. 5). It is easy to show
that this step can be avoided by performing the average directly
over the eccentric anomaly (cf. Moons, 1993). From Eq. (48)
we write

Q =
(u− e0 sin u) − σ0

(p + q)
(51)

where e0, σ0 are the values at the center of the expansion; then
Eq. (50) can be replaced by

R∗ =
1

2π(p + q)

∫ 2π(p+q)

0
(1 − e0 cosu) R [u,Q(u)] du.

(52)

6.1. Parity rules

There are some special cases in which the coefficients Ri have
a well defined parity with respect to the variable Q (or u). This
property can be used to predict some zero averages (for odd
coefficients) and reduce to half the interval of integration in the
calculation of even coefficients.

The case of particular interest is the one in which we use a
center of expansion on the k-axis, i.e.h0 = 0. Such an expansion
is useful to study first-order resonances (q = 1), since, in this
case, libration occurs around σ0 = 0. Then, we can see from
Eq. (51) that the variableQ is an odd function of u, so the parity
of any function with respect to Q is the same as with respect
to u. This property can be used together with the parities of the
functions Wi (and their derivatives) with respect to u, shown in
Table 1, to predict the parity of each coefficient.

With these rules, the coefficient f0 as well as any power of
it are always even functions of u. Consequently, for a first-order
resonance the averaged expansion is reduced to the following
expression:

R∗ =
Gm′

a′
[
R∗

0 + R∗
0k(k − k0) + R∗

0α(α− α0)

+R∗
1 e

′ cosσ′ +
[
R∗

3 + R∗
4 cos 2σz

] 1
2
η2

+R∗
0hh

1
2
h2 + R∗

0kk
1
2

(k − k0)2

+R∗
0αα

1
2

(α− α0)2 + R∗
0kα(k − k0)(α− α0)

+R∗
2h e

′ sin σ′h + R∗
1k e

′ cosσ′(k − k0)

+R∗
1α e

′ cosσ′(α− α0) + R∗
5h

1
2
η2 sin 2σzh

+[R∗
3k + R∗

4k cos 2σz]
1
2
η2(k − k0)

+[R∗
3α + R∗

4α cos 2σz]
1
2
η2(α− α0)

+[R∗
6 + R∗

7 cos 2σ′]
1
2
e′2

+
[
R∗

3 + R∗
4 cos 2σ′z

] 1
2
η′2

+[R∗
9 + R∗

10 cos 2σz + R∗
12 cos 4σz]

1
24
η4

+[R∗
14 + R∗

15 cos 2σz]
1
2
η2e′ cosσ′

+R∗
19

1
2
η2 sin 2σz e

′ sin σ′ + R∗
21 η sin σz η

′ sin σ′z

+ R∗
22 η cosσz η

′ cosσ′z
]

(53)

where R∗
i =

1
π(p + q)

∫ π(p+q)

0
(1 − e0 cosu) Ri du.

In the general case, when the center of the expansion is at a
point with σ0 /= nπ/2 (n integer) the functions W1,W2 as well
as the variable Q do not have well-defined parities with respect
to u. Thus, the full expression Eq. (49) shall be considered.

7. The oblateness of the central body

In resonant satellite problems, we must take into account the
part of the disturbing function arising from the oblateness of
the primary body. Using the classical Legendre expansion, we
can write this oblateness potential in a first approximation as

RJ = −GMJ2b
2

a3

( r
a

)−3
P2(sin φ) + · · · (54)

where M, b and J2 are the mass, the equatorial radius and the
ellipticity factor of the potential of the central body; r, φ and a
are the planetocentric distance, the latitude over the equator and
the semimajor axis of the disturbed body. P2 is the Legendre
polynomial

P2(x) =
3
2
x2 − 1

2
. (55)

If the equator of the primary is the reference plane for defi-
nition of inclinations, the following relation holds:

sin φ = sin I sin(v + ω) (56)

which in terms of Eqs. (1) and (4) can be written as

sin φ = 2η
√

1 − η2 sin ((v − σ) + σz) . (57)

We now substitute Eqs. (55) and (57) in Eq. (54) and obtain

RJ = −GMJ2b
2

a′3

[
RJ

0 +
1
2
η2
(
1 − η2

)
× (

RJ
1 + RJ

2 cos 2σz + RJ
3 sin 2σz

) ]
(58)
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Table 1. Parities with respect to u for the case q = 1.

Even W1,W1k,W2h,W1hh,W1kk,W2hk

Odd W2,W1h,W2k,W2hh,W2kk,W1hk

where a′ is the semimajor axis of the disturbing body. Taking
into account Eqs. (15) and (20), we have

RJ
0 = −1

2

(
α g

1/2
1

)−3
(59)

(compare with Eq. 72 of FMS89). In addition, we introduce the
definitions

g8 = W 2
1 −W 2

2

g9 = 2W1W2 (60)

and we can write

RJ
1 = −12RJ

0

RJ
2 = 12RJ

0 g−1
1 g8

RJ
3 = −12RJ

0 g−1
1 g9. (61)

Now, we expand each term RJ
i around k0, h0 and α0 as in

Sect. 4. The calculation of the derivatives is simple and the final
expression reads

RJ = −GMJ2b
2

a′3
[
RJ

0 + RJ
0h(h− h0) + RJ

0k(k − k0)

+RJ
0α(α− α0) +

1
2

RJ
0hh(h− h0)2

+
1
2

RJ
0kk(k − k0)2 +

1
2

RJ
0αα(α− α0)2

+RJ
0hk(h− h0)(k − k0) + RJ

0hα(h− h0)(α− α0)

+RJ
0kα(k − k0)(α− α0) +

1
2
η2
(
1 − η2

)
× (

RJ
1 + RJ

2 cos 2σz + RJ
3 sin 2σz

)
+

1
2
η2(h− h0)

× (
RJ

1h + RJ
2h cos 2σz + RJ

3h sin 2σz
)

+
1
2
η2(k − k0)

× (
RJ

1k + RJ
2k cos 2σz + RJ

3k sin 2σz
)

+
1
2
η2(α− α0)

× (
RJ

1α + RJ
2α cos 2σz + RJ

3α sin 2σz
) ]

. (62)

The average is computed in the same way as already described
in Sect. 6, and parity rules apply when h0 = 0.

8. Comparisons

In order to test the precision of our asymmetric expansion, we
made several comparisons with the exact averaged resonant dis-
turbing function, computed numerically using the formulas of
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Fig. 1. Comparison at σ = 0 between the exact averaged disturbing
function (continous line) and the asymmetric expansion (dotted line),
expanded around the point k0 = 0.2, h0 = 0 and a0 = 3.275 AU (2/1
resonance) for different values of I , considering σz = 0. In all cases
we take a′ = 5.2 AU, e′ = 0.05, I ′ = 1.2◦, and σ′ = σ′

z = 0. The
expansion is almost the same in all cases. The agreement at I = 20◦ is
better than at I = 0◦ due to the fact that the planar disturbing function
has a singularity at k ' −0.5.

Moons (1993). These comparisons were made for the 2/1 reso-
nance and in all cases we considered

a′ = 5.2 AU

e′ = 0.05

I ′ = 1.2◦

σ′ = σ′z = 0 (63)
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Fig. 2. Comparison at σ = 0 between the exact disturbing function
(continuous line) and two expansions around the points k0 = h0 = 0
(dotted line) and k0 = 0.4, h0 = 0 (dashed line), with a0 = 3.275
AU in both cases. The comparison is made for I = 20◦ and σz = 0.
The variables of the disturbing body have the same values as in Fig.
1. Note that at k = 0 the difference between each expansion and the
exact function is almost the same. However, the second expansion gives
better approximation for other values of k (see comment in the text).

as fixed parameters. The coefficients of the expansion were eval-
uated using the closed formulas as in the VHE expansion. The
average was computed using a fourty points Gauss quadrature.

First, it is known that the planar asymmetric expansion be-
comes singular when the path of integration over Q includes
the point of collision of the bodies. The set of points in the
k0, h0 plane where this singularity occurs is the so-called col-
lision curve (see Ferraz-Mello et al., 1993). The non-planar
asymmetric expansion presented here is the sum of the planar
expansion plus terms related with the inclinations; so, this spa-
tial expansion has embedded the presence of the collision curve
of the planar problem. If we choose the center of expansion
(k0, h0) close to the collision curve, the spatial expansion will
try to reproduce a false singularity, leading to a very bad rep-
resentation of the disturbing function, even if a collision may
occur only at the mutual node of the orbits.

However, when the center (k0, h0) is far away from the col-
lision curve, the expansion can be used to obtain a very good
representation of the non-planar disturbing function. This rep-
resentation can be even better than that of the planar disturbing
function (FMS89), due to the fact that, in general, the non-planar
function does not have a collision curve. We can see in Fig. 1
that, for a given center of expansion k0, h0, there seems to be a
certain inclination for which the expansion works the best.

It is worth noting that the best agreement between the asym-
metric expansion and the exact disturbing function at a given
point in the plain k, h is, sometimes, obtained using a center
of expansion k0, h0 other than that point. This does not only
depend on the values of k0, h0, but also on the values of I , e′

and I ′ at which the expansion is evaluated. For example, we
see in Fig. 2 that, around the origin (k = 0), the asymmetric
expansion (for which k0 = 0.4) gives an approximation as good
as the Laplacian expansion (for which k0 = 0). However, the
asymmetric one gives better approximation for other values of
k, so it can be applyed to problems in which the center of li-
bration is at k = 0.4 as well as at k = 0. Note that, in this
figure, neither the asymmetric expansion nor the Laplacian one
coincide with the exact function when k = k0. The difference
with the exact function at this point is because both expansions
are made around e′ = I ′ = I = 0, but they are being evaluated
at e′ = 0.05, I ′ = 1.2◦ and I = 20◦. The difference is greater
at k0 = 0 because we are nearer the collision curve and the
expansion becomes worse.

We also perfomed some comparisons for different values of
σ. To do this, we used an asymmetric expansion around a0 =
3.275 AU, h0 = 0 and a given k0 between 0 and 0.8. Then we
fixed a, I and σz and calculated the relative difference between
this expansion and the exact function at each point of a grid in
the plane e, σ. The results were plotted as level curves in that
plane. Some of these comparisons, for three different values of
the inclination (I = 0◦, I = 15◦, I = 30◦) are shown in Fig. 3,
using centers of expansion around k0 = 0.2 and around k0 = 0.6.
In all these examples we fixed a = 3.275 AU and σz = 0.

In those figures the brightest level represents the region
where the relative difference is below 1%. The center of expan-
sion is marked with a cross. We see that for inclinations ∼ 30◦

(in the chosen limit for the truncation of the expansion), the
approximation becomes bad, and can be better in other region
than around the center of expansion. For smaller inclinations
we obtained a good agreement even for amplitudes of libration
of about 60◦ or 90◦. It is worth noting that the evaluation of the
averaged asymmetric expansion in a grid of 100 × 200 points
in the plane e, σ is about ten times faster than the numerical
evaluation of the exact averaged disturbing function in the same
grid.

Although the asymmetric expansion gives a good approxi-
mation of the exact function in a wide region of the phase space,
it is worth stressing the fact that the most important feature for
the dynamics is to be able to reproduce with the expansion the
location of the equilibrium solutions of the system (pericentric
branch, corotation solutions, etc.). For example, we can see in
Fig. 1 that for I = 20◦ the location of the minimum of the expan-
sion does not coincide with the minimum of the exact function.
As this minimum is associated with the location of the Kozai
resonance, we will not obtain a good representation of the dy-
namics for e > 0.5 with this expansion. It is obvious that, in
this case, we have to change the center of expansion and take a
value of k0 nearer to the minimum of the exact function. This is
clear in Fig. 2, where the expansion for k0 = 0.4 gives a better
location of that minimum.

In this sense, the asymmetric expansion should be combined
with a sort of iterative procedure to locate the position of these
equilibrium points. Starting with a given center (k0, h0), we
estimate the location of such an equilibrium point, then we can
use this point as a new center to recalculate the coefficients of
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Fig. 3a–c. Relative difference in the plane
e, σ between the exact disturbing func-
tion and the asymmetric expansion for
two different centers of expansion, cor-
responding to the 2/1 resonance. Left:
k0 = 0.2, h0 = 0, a0 = 3.275 AU. Rigth:
k0 = 0.6, h0 = 0, a0 = 3.275 AU (the cross
indicates the center of expansion). The re-
sults are presented for three different incli-
nations, considering σz = 0: a Case I = 0◦,
b Case I = 15◦, and c Case I = 30◦.
In all figures, the variables of the disturb-
ing body have the same values as in Fig. 1.
The white region corresponds to a difference
below 1%. Note that the approximation be-
comes poor as the inclination increases, and
can be better in other region than the center
of expansion.

the expansion, and so on. This kind of procedure was already
applied, for example, by Ferraz-Mello et al. (1993) to compute
the locus of corotation solutions in many asteroidal resonances,
using the planar expansion. We stress the fact that, even if we
can locate the exact position of a corotation, the expansion will
be valid only in neighbourhood of that corotation (which is the
actual center of the expansion). Thus, we should not expect to
obtain a good representation of the whole secular resonance.

In order to reproduce the locus of secular and secondary res-
onances inside first-order mean motion resonances, some tests
were recently made by Nesvorný (1997), using the spatial asym-

metric expansion of this paper. He combined the expansion with
the perturbative method of Henrard (1990) and succeded in ob-
tain the position of some secular and secondary resonances, as
well as the Kozai resonance, inside the 2/1, 3/2 and 4/3 reso-
nances. As an example, we presented in Fig. 4 the location of
the stable equilibrium of the Kozai resonance (together with its
separatrixes), at the pericentric branch of the 2/1 resonance. It
is also shown the position of the ν16 secular resonance. These
calculations were made taking different asymmetric expansions
around points (k0, a0) over the pericentric branch. We can com-
pare this figure with Fig. 6 of Morbidelli & Moons (1993) or
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Fig. 4. The continous lines represent the location of the stable equi-
librium points of the Kozai resonance (ω curve) and the ν16 secular
resonance, at the pericentric branch of the 2/1 mean motion resonance
(σ = 0 and σz = 0). The dashed lines are the separatrixes of the Kozai
resonance. The calculations were made using the asymmetric expan-
sion of this paper and considering a′ = 5.2 AU, e′ = 0.048, I ′ = 1.2◦,
and σ′ = σ′

z = 0. Dotted lines are different levels of the constant
N = (µa)1/2(2− (1− e2)1/2 cos I).

with Fig. 3 of Henrard et al. (1995) and see that the agreement
is very good.

9. Conclusions

We have presented the asymmetric expansion of the averaged
resonant disturbing function in the non-planar problem. Since
this expansion is done around a fixed point in the k, h plane and
truncated at O (e′3), it approximates well the disturbing func-
tion only in a neighborhood of that point, and we have shown
that this neighborhood around the center of expansion can be
wide enough. Thus, we can apply it to problems in which the
amplitude of libration is moderate. Recall that any application
must be also limited in inclination, since we have expanded the
function around zero inclinations.

Currently, this asymmetric expansion is being used in the
construction of a non-planar symplectic mapping for the first-
order asteroidal resonances, which extends the planar mapping
used by Ferraz-Mello (1997). It is also being used in the for-
mulation of an analytic theory of the high-eccentricity libration
dynamics (Ferraz-Mello et al., 1997).

The asymmetric expansion has been already shown to be an
useful tool for the expansion of the disturbing potential acting on
a resonant asteroid, and the expansion presented in this paper
may be useful in the analytic studies of the spatial resonant
problems in high eccentricities.

FORTRAN and C codes to compute the coefficients of this
expansion are available by anonymous ftp at:
ftp://chaos1.iagusp.usp.br/users/ftp/pub/highecc.
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