LETTER

Statics and dynamics of a self-bound dipolar matter-wave droplet

To cite this article: S K Adhikari 2017 Laser Phys. Lett. 14025501

View the article online for updates and enhancements.

Related content

Stable and mobile excited two-dimensional dipolar Bose-Einstein condensate solitons S K Adhikari

Stable and mobile two-dimensional dipolar ring-dark-in-bright Bose-Einstein condensate soliton S K Adhikari

Two-dimensional bright and dark-in-bright dipolar Bose-Einstein condensate solitons on a one-dimensional optical lattice S K Adhikari

Recent citations

- Frontiers in multidimensional self-trapping of nonlinear fields and matter Yaroslav V. Kartashov et al
- Hydrodynamic model of a Bose-Einstein condensate with anisotropic short-range interaction and bright solitons in a repulsive Bose-Einstein condensate Pavel A Andreev
- Self-trapped quantum balls in binary Bose-Einstein condensates Sandeep Gautam and S K Adhikari

IOP ebooks" ${ }^{\text {" }}$

Bringing you innovative digital publishing with leading voices to create your essential collection of books in STEM research.

Start exploring the collection - download the first chapter of every title for free.

Letter

Statics and dynamics of a self-bound dipolar matter-wave droplet

S K Adhikari ${ }^{1}$
Instituto de Física Teórica, UNESP—Universidade Estadual Paulista, 01.140-070 São Paulo, São Paulo, Brazil

E-mail: Adhikari@ift.unesp.br
Received 20 November 2016, revised 5 December 2016
Accepted for publication 6 December 2016
Published 23 December 2016

Abstract

We study the statics and dynamics of a stable, mobile, self-bound three-dimensional dipolar matter-wave droplet created in the presence of a tiny repulsive three-body interaction. In frontal collision with an impact parameter and in angular collision at large velocities along all directions two droplets behave like quantum solitons. Such a collision is found to be quasi elastic and the droplets emerge undeformed after collision without any change of velocity. However, in a collision at small velocities the axisymmeric dipolar interaction plays a significant role and the collision dynamics is sensitive to the direction of motion. For an encounter along the z direction at small velocities, two droplets, polarized along the z direction, coalesce to form a larger droplet-a droplet molecule. For an encounter along the x direction at small velocities, the same droplets stay apart and never meet each other due to the dipolar repulsion. The present study is based on an analytic variational approximation and a numerical solution of the mean-field Gross-Pitaevskii equation using the parameters of ${ }^{52} \mathrm{Cr}$ atoms.

Keywords: Bose-Einstein condensate, Gross-Pitaevskii equation, soliton, dipolar atoms
(Some figures may appear in colour only in the online journal)

1. Introduction

After the observation of Bose-Einstein condensate (BEC) [1,2] of alkali atoms, there have been many experimental studies to explore different quantum phenomena involving matter wave previously not accessible for investigation in a controlled environment, such as, quantum phase transition [3], vortex-lattice formation [4], collapse [5], four-wave mixing [6], interference [7], Josephson tunneling [8], Anderson localization [9] etc. The generation and the dynamics of self-bound quantum wave have drawn much attention lately [10]. There have been studies of self-bound matter waves or solitons in one (1D) [10] or two (2D) [11, 12] space dimensions. A soliton travels at a constant velocity in 1D, due to a cancellation

[^0]of nonlinear attraction and defocusing forces [13]. The 1D soliton has been observed in a BEC [10]. However, a two- or three-dimensional (3D) soliton cannot be realized for twobody contact attraction alone due to collapse [13].

There have been a few proposals for creating a self-bound 2D and 3D matter-wave state which we term a droplet exploiting extra interactions usually neglected in a dilute BEC of alkali atoms [1]. In the presence of an axisymmetric nonlocal dipolar interaction [14] a 2D BEC soliton can be generated in a 1D harmonic [11] or a 1D optical-lattice [12] trap. Maucher et al [15] suggested that for Rydberg atoms, off-resonant dressing to Rydberg nD states can provide a nonlocal longrange attraction which can form a 3D matter-wave droplet. In this Letter we demonstrate that a tiny repulsive three-body interaction can avoid collapse and form a stable self-bound dipolar droplet in 3D [16]. There have been experimental [17]
and theoretical [18] studies of the formation of a trapped dipolar BEC droplet. In fact, for dipolar interaction stronger than two-body contact repulsion, a dipolar droplet has a net attraction [19, 20]; but the two-body contact repulsion is too weak to stop the collapse, whereas a three-body contact repulsion can eliminate the collapse and form a stable stationary droplet. Such a droplet can also be formed in a nondipolar BEC (details to be reported elsewhere) [21].

We study the frontal collision with an impact parameter and angular collision between two dipolar droplets. Only the collision between two integrable 1D solitons is truly elastic $[10,13]$. As the dimensionality of the soliton is increased such collision is expected to become inelastic with loss of energy in 2D and 3D. In the present numerical simulation at large velocities all collisions are found to be quasi elastic while the droplets emerge after collision with practically no deformation and without any change of velocity.

Due to axisymmetric dipolar interaction, two droplets polarized along the z direction, attract each other when placed along the z axis and repel each other when placed along the x axis and the collision dynamics along x and z directions has different behaviors at very small velocities. For a collision between two droplets along the z direction, the two droplets form a single bound entity in an excited state, termed a 3D droplet molecule [22]. However, at very small velocities for an encounter along the x direction, the two droplets repel and stay away from each other due to dipolar repulsion and never meet.

The dipolar interaction potential, being not absolutely integrable, does not enjoy well defined Fourier transform that would appear for an infinite system [23]. Therefore, to get meaningful results, it is necessary either to regularize this potential, or, which is equivalent, to deal only with finite systems, where the system size plays the role of an effective regularization. That is, as soon as atomic interactions include dipolar forces, only finite systems are admissible. In other words, the occurrence of dipole forces prescribes the system to be finite, either being limited by an external trapping potential or forming a kind of a self-bound droplet. The conditions of stability of such droplets are studied in the present manuscript.

2. Mean-field model

The trapless mean-field Gross-Pitaevskii (GP) equation for a self-bound dipolar droplet of N atoms of mass m in the presence of a three-body repulsion is [2, 24]

$$
\begin{align*}
\mathrm{i} \hbar \frac{\partial \phi(\mathbf{r}, t)}{\partial t}= & {\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+\frac{4 \pi \hbar^{2} a N}{m}|\phi|^{2}+\frac{\hbar N^{2} K_{3}}{2}|\phi|^{4}\right.} \\
& \left.+3 a_{\mathrm{dd}} N \int U_{\mathrm{dd}}(\mathbf{R})\left|\phi\left(\mathbf{r}^{\prime}, t\right)\right|^{2} \mathrm{~d} \mathbf{r}^{\prime}\right] \phi(\mathbf{r}, t) \tag{1}\\
a_{\mathrm{dd}} \equiv & \equiv \frac{m \mu_{0} \mu_{\mathrm{d}}^{2}}{12 \pi \hbar^{2}}, \quad U_{\mathrm{dd}}(\mathbf{R})=\frac{1-3 \cos ^{2} \theta}{R^{3}} \tag{2}
\end{align*}
$$

where a is the scattering length, $\mathbf{R}=\left(\mathbf{r}-\mathbf{r}^{\prime}\right), \theta$ is the angle between the vector \mathbf{R} and the polarization direction z, μ_{0} is the permeability of free space, μ_{d} is the magnetic dipole moment
of each atom, and K_{3} is the three-body interaction term. This mean-field equation has recently been used by Blakie [24] ${ }^{2}$ to study a trapped dipolar BEC. We can obtain a dimensionless equation, by expressing length in units of a scale l and time in units of $\tau \equiv m l^{2} / \hbar$. Consequently, (1) can be rewritten as

$$
\begin{align*}
\mathrm{i} \frac{\partial \phi(\mathbf{r}, t)}{\partial t}= & {\left[-\frac{\nabla^{2}}{2}+4 \pi a N|\phi|^{2}+\frac{K_{3} N^{2}}{2}|\phi|^{4}\right.} \\
& \left.+3 a_{\mathrm{dd}} N \int U_{\mathrm{dd}}(\mathbf{R})\left|\phi\left(\mathbf{r}^{\prime}, t\right)\right|^{2} \mathrm{~d} \mathbf{r}^{\prime}\right] \phi(\mathbf{r}, t) \tag{3}
\end{align*}
$$

where K_{3} is expressed in units of $\hbar l^{4} / m$ and $|\phi|^{2}$ in units of l^{-3} and energy in units of $\hbar^{2} /\left(m l^{2}\right)$. The wave function is normalized as $\int|\phi(\mathbf{r}, t)|^{2} \mathrm{~d} \mathbf{r}=1$.

For an analytic understanding of the formation of a droplet a variational approximation of (3) is obtained with the axisymmetric Gaussian ansatz: [25-27]

$$
\begin{equation*}
\phi(\mathbf{r})=\frac{\pi^{-3 / 4}}{w_{z}^{1 / 2} w_{\rho}} \exp \left[-\frac{\rho^{2}}{2 w_{\rho}^{2}}-\frac{z^{2}}{2 w_{z}^{2}}\right] \tag{4}
\end{equation*}
$$

where $\rho^{2}=x^{2}+y^{2}, w_{\rho}$ and w_{z} are the radial and axial widths, respectively. This leads to the energy density per atom:

$$
\begin{align*}
\mathcal{E}(\mathbf{r})= & \frac{|\nabla \phi(\mathbf{r})|^{2}}{2}+2 \pi N a|\phi(\mathbf{r})|^{4}+\frac{K_{3} N^{2}}{6}|\phi(\mathbf{r})|^{6} \\
& +\frac{3 a_{\mathrm{dd}} N}{2}|\phi(\mathbf{r})|^{2} \int U_{\mathrm{dd}}(\mathbf{R})\left|\phi\left(\mathbf{r}^{\prime}\right)\right|^{2} \mathrm{~d} \mathbf{r}^{\prime} \tag{5}
\end{align*}
$$

and the total energy per atom $E \equiv \int \mathcal{E}(\mathbf{r}) \mathrm{d} \mathbf{r}$ [26]:

$$
\begin{equation*}
E=\frac{1}{2 w_{\rho}^{2}}+\frac{1}{4 w_{z}^{2}}+\frac{K_{3} N^{2} \pi^{-3}}{18 \sqrt{3} w_{\rho}^{4} w_{z}^{2}}+\frac{N\left[a-a_{\mathrm{dd}} f(\kappa)\right]}{\sqrt{2 \pi} w_{\rho}^{2} w_{z}}, \quad \kappa=w_{\rho} / w_{z} \tag{6}
\end{equation*}
$$

$f(\kappa)=\frac{1+2 \kappa^{2}-3 \kappa^{2} \mathrm{~d}(\kappa)}{1-\kappa^{2}}, \quad \mathrm{~d}(\kappa)=\frac{\operatorname{atanh} \sqrt{1-\kappa^{2}}}{\sqrt{1-\kappa^{2}}}$.
In (6), the first two terms on the right are contributions of the kinetic energy of the atoms, the third term on the right corresponds to the three-body repulsion, and the last term to the net attractive atomic interactions responsible for the formation of the droplet for $|a|>a_{\mathrm{dd}}$. The higher order nonlinearity (quintic) of the three-body interaction compared to the cubic nonlinearity of the two-body interaction, has led to a more singular repulsive term at the origin in (6). This makes the system highly repulsive at the center $\left(w_{\rho}, w_{z} \rightarrow 0\right)$, even for a small three-body repulsion, and stops the collapse stabilizing the droplet.

The stationary widths w_{ρ} and w_{z} of a droplet correspond to the global minimum of energy $(6)[26,27]$
$\frac{1}{w_{\rho}^{3}}+\frac{N}{\sqrt{2 \pi}} \frac{\left[2 a-a_{\mathrm{dd}} g(\kappa)\right]}{w_{\rho}^{3} w_{z}}+\frac{4 K_{3} N^{2}}{18 \sqrt{3} \pi^{3} w_{\rho}^{5} w_{z}^{2}}=0$,

[^1]

Figure 1. 2D contour plot of energy (6) showing the energy minimum and the negative energy region for ${ }^{52} \mathrm{Cr}$ atoms as a function of widths w_{ρ} and w_{z} for (a) $N=10000, K_{3}=10^{-38} \mathrm{~m}^{6} \mathrm{~s}^{-1}$, (b) $N=3000, K_{3}=10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$ and (c) $N=10000, K_{3}=10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$. The variational and numerical widths of the stationary droplet are marked \times and + , respectively. Plotted quantities is all figures are dimensionless and the physical unit for ${ }^{52} \mathrm{Cr}$ atoms can be restored using the unit of length $l=1 \mu \mathrm{~m}$.

Figure 2. Variational critical number of atom $N_{\text {crit }}$ for the formation of dipolar $\left(a_{\mathrm{dd}}=15.3 a_{0}\right)$ and nondipolar $\left(a_{\mathrm{dd}}=0\right)$ droplets, obtained from (8) and (9), for different K_{3}. For $N<N_{\text {crit }}$ and for $a>a_{\mathrm{dd}}=15.3 a_{0}$ (dipolar) and for $a>0$ (nondipolar) no droplet can be formed.

$$
\begin{gathered}
\frac{1}{w_{z}^{3}}+\frac{2 N}{\sqrt{2 \pi}} \frac{\left[a-a_{\mathrm{dd}} c(\kappa)\right]}{w_{\rho}^{2} w_{z}^{2}}+\frac{4 K_{3} N^{2}}{18 \sqrt{3} \pi^{3} w_{\rho}^{4} w_{z}^{3}}=0 \\
g(\kappa)=\frac{2-7 \kappa^{2}-4 \kappa^{4}+9 \kappa^{4} \mathrm{~d}(\kappa)}{\left(1-\kappa^{2}\right)^{2}} \\
c(\kappa)=\frac{1+10 \kappa^{2}-2 \kappa^{4}-9 \kappa^{2} \mathrm{~d}(\kappa)}{\left(1-\kappa^{2}\right)^{2}}
\end{gathered}
$$

3. Numerical results

Unlike the 1D case, the 3D GP equation (3) does not have an analytic solution and different numerical methods, such as split-step Crank-Nicolson [28] and Fourier spectral [29] methods, are used for its solution. We solve the 3D GP equation (3) numerically by the split-step Crank-Nicolson method [28] for a dipolar BEC $[27,30]$ using both real- and imaginary-time propagation in Cartesian coordinates employing a space step of 0.025 and a time step upto as small as 0.00001 . In numerical calculation, we use the parameters of ${ }^{52} \mathrm{Cr}$ atoms [26], e.g. $a_{\mathrm{dd}}=15.3 a_{0}$ and $m=52 \mathrm{amu}$ with a_{0} the Bohr radius. We take the unit of length $l=1 \mu \mathrm{~m}$, unit of time $\tau \equiv m l^{2} / \hbar=$ 0.82 ms and the unit of energy $\hbar^{2} /\left(m l^{2}\right)=1.29 \times 10^{-31} \mathrm{~J}$.

The scattering length a can be controlled experimentally, independent of the three-body term K_{3}, by magnetic [31]
and optical [32] Feshbach resonances and we mostly fix $a=-20 a_{0}$ below. In figures 1 we show the 2 D contour plot of energy (6) as a function of widths w_{ρ} and w_{z} for different N and K_{3}. This figure highlights the negative energy region. The white region in this plot corresponds to positive energy. The minimum of energy is clearly marked in figures 1.

For a fixed scattering length a, (8) and (9) for variational widths allow solution for the number of atoms N greater than a critical value $N_{\text {crit. }}$. For $N<N_{\text {crit }}$ the system is much too repulsive and escapes to infinity. However, this critical value $N_{\text {crit }}$ of N is a function of the three-body term K_{3} and scattering length a. The $N_{\text {crit }}-a$ correlation for different K_{3} is shown in figure 2. The critical number of atoms for the formation of a nondipolar droplet for $K_{3}=10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$ is also shown in this figure. Although a trapped dipolar BEC with a negligible K_{3} collapses for a sufficiently large N [33], there is no collapse of the droplets for a large N due to a very strong three-body repulsion at the center.

We compare in figure 3(a) the numerical and variational root-mean-square (rms) sizes ρ_{rms} and z_{rms} of a droplet versus N for two different $K_{3}: 10^{-38} \mathrm{~m}^{6} \mathrm{~s}^{-1}$, and $10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$. These values of K_{3} are reasonable and are similar to the values of K_{3} used elsewhere [24, 34]. In figure 3(b) we show the numerical and variational energies $|E|$ of a droplet versus N for different K_{3}. The energy of a bound droplet is negative in all cases and its absolute value is plotted.

To study the density distribution of a ${ }^{52} \mathrm{Cr}$ droplet we calculate the reduced 1D densities $\rho_{1 \mathrm{D}}(x) \equiv \int \mathrm{d} z \mathrm{~d} y|\phi(\mathbf{r})|^{2}$, and $\rho_{1 \mathrm{D}}(z) \equiv \int \mathrm{d} x \mathrm{~d} y|\phi(\mathbf{r})|^{2}$. In figure 4 we plot these densities as obtained from variational and numerical calculations for different N and K_{3}. From figures 3(a) and 4(a)-(d) we find that for a small N and fixed K_{3}, the droplets are well localized with small size and the agreement between numerical and variational results is better. For a fixed N, the droplet is more compact for a small K_{3} corresponding to a small three-body repulsion.

In figures 5(a)-(d) we show the 3D isodensity contours of the droplets of figures 4(a)-(d), respectively. In all cases the droplets are elongated in the z direction due to dipolar interaction. In figures 5(a)-(b) and 4(a)-(b) K_{3} is much larger than that in figures 5(c)-(d) and 4(c)-(d). Hence, the threebody repulsion is stronger in figures 5(a)-(b) thus leading to

Figure 3. Variational (line) and numerical (chain of symbols) (a) rms sizes $\rho_{\mathrm{rms}}, z_{\text {rms }}$ and (b) energy $|E|$ versus the number of ${ }^{52} \mathrm{Cr}$ atoms N in a droplet for two different $K_{3}: 10^{-38} \mathrm{~m}^{6} \mathrm{~s}^{-1}$ and $10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$. The physical unit of energy for ${ }^{52} \mathrm{Cr}$ atoms can be restored by using the energy scale $1.29 \times 10^{-31} \mathrm{~J}$.

Figure 4. Variational (v, line) and numerical (n, chain of symbols) reduced 1D densities $\rho_{1 \mathrm{D}}(x)$ and $\rho_{1 \mathrm{D}}(z)$ along x and z directions, respectively, and corresponding energies of a ${ }^{52} \mathrm{Cr}$ droplet with $a=-20 a_{0}$ for different N and K_{3} : (a) $N=10000, K_{3}=10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$, (b) $N=3000, K_{3}=10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$, (c) $N=10000, K_{3}=10^{-38} \mathrm{~m}^{6} \mathrm{~s}^{-1}$, and (d) $N=3000, K_{3}=10^{-38} \mathrm{~m}^{6} \mathrm{~s}^{-1}$.
droplets of larger sizes. In contrast to a local energy minimum in 1D [10] and 2D [11] solitons, the 3D droplets correspond to a global energy minimum with $E<0$, viz figures 1 , and are expected to be stable. The stability of the droplets is confirmed (details to be reported elsewhere) by real-time simulation over a long time interval upon a small perturbation. and extreme inelastic collision with the formation of droplet molecule is possible for $v<1$.

To test the solitonic nature of the droplets, we study the frontal head-on collision and collision with an impact parameter d of two droplets at large velocity along x and z axes. To set the droplets in motion the respective imaginary-time wave functions are multiplied by $\exp (\pm \mathrm{i} v x)$ and real-time simulation is then performed with these wave functions. Due to the
axisymmetric dipolar interaction the dynamics along x and z axes could be different at small velocities. At large velocities the kinetic energy E_{k} of the droplets is much larger than the internal energies of the droplets, and the latter plays an insignificant role in the collision dynamics. Consequently, there is no qualititative difference between the collision dynamics along x and z axes and that between the collision dynamics for different impact parameters at large velocities. As velocity is reduced, the collision becomes inelastic resulting in a deformation and eventual destruction of the individual droplets after collision. At very small velocities, the dipolar energy plays a decisive role in collision along x and z axes, and the dynamics along these two axes have completely different characteristics, viz figure 9 .

Figure 5. The 3D isodensity $\left(|\phi(\mathbf{r})|^{2}\right.$) of the droplets of (a) figures 4(a)-(d) (b). The dimensionless density on the contour in figures 5 and $6-8$ is 0.001 which transformed to physical units is 10^{9} atoms cc ${ }^{-1}$.

Figure 6. Collision dynamics of two droplets of figure 4(b) placed at $x= \pm 4, z=\mp 1$ at $t=0$ moving in opposite directions along the x axis with velocity $v \approx 38$, illustrated by 3 D isodensity contours at times (a) $t=0$, (b) $=0.042,(\mathrm{c})=0.084,(\mathrm{~d})=0.126,(\mathrm{e})=0.168$, $(f)=0.210$. The velocities of the droplets are shown by arrows.

Figure 7. Collision dynamics of two droplets of figure 4(b) placed at $x= \pm 1, z=\mp 4.8$ at $t=0$ moving in opposite directions along the z axis with velocity $v \approx 37$ by 3D isodensity contours at times $(\mathrm{a}) t=0,(\mathrm{~b})=0.052$, (c) $=0.104,(\mathrm{~d})=0.156,(\mathrm{e})=0.208,(\mathrm{f})=0.260$.

The collision dynamics of two droplets of figure 4(b) ($N=3000, K_{3}=10^{-37} \mathrm{~m}^{6} \mathrm{~s}^{-1}$) moving along the x axis in opposite directions with a velocity $v \approx 38$ each and with an impact parameter $d=2$ is shown in figures 6(a)-(f) by successive snapshots of 3D isodensity contour of the moving droplets. A similar collision dynamics of the same droplets moving along the z axis with a velocity $v \approx 37$ each with impact parameter $d=2$ is illustrated in figures 7(a)-(f). The droplets come close to each other in figures 6(b) and 7(b), coalesce to form a single entity in figures 6(c)-(d) and 7(c)-(d), form two separate droplets in figures 6(e) and 7(e). The droplets are well separated in figures $6(\mathrm{f})$ and 7 (f) without visible
deformation/distortion in shape and moving along x and z axes with the same initial velocity showing the quasi elastic nature of collision. The frontal head-on collision is also quasi elastic.

To study the angular collision of two droplets of figure 4(b), at $t=0$ two droplets of are placed at $x= \pm 3, z=1$, respectively, and set into motion towards the origin with a velocity $v \approx 40$ each by multiplying the respective imaginary-time wave functions by $\exp (\pm \mathrm{i} 50 x+9.5 \mathrm{iz})$ and performing realtime simulation. Again the isodensity profiles of the droplets before, during, and after collision are shown in figures 8(a)(b), (c)-(d) and (e)-(f), respectively. The droplets again come out after collision undeformed conserving their velocities.

Figure 8. Collision dynamics of two droplets of figure 4(b) placed at $x= \pm 4, z=1$ at $t=0$ moving towards origin with velocity $v \approx 40$ by 3D isodensity plots at times (a) $t=0,(b)=0.042$, (c) $=0.084$, (d) $=0.126$, (e) $=0.168$, (f) $=0.210$.

Figure 9. (a) 2 D contour plot of the evolution of 1 D density $\rho_{1 \mathrm{D}}(z, t)$ versus z and t during the collision of two droplets of figure 4(d) initially placed at $z= \pm 3.2$ at $t=0$ and moving towards each other with velocity $v \approx 0.5$. (b) 2 D contour plot of the evolution of 1 D density $\rho_{1 \mathrm{D}}(x, t)$ versus x and t during the encounter of the same droplets initially placed at $x= \pm 1.6$ at $t=0$ and moving towards each other with velocity $v \approx 0.5$.

Two dipolar droplets placed along the x axis with the dipole moment along the z directions repel by the long range dipolar interaction, whereas the two placed along the z axis attract each other by the dipolar interaction. This creates a dipolar barrier between the two colliding droplets along the x direction. At large incident kinetic energies, the droplets can penetrate this barrier and collide along the x direction. However, at very small kinetic energies $(v<1)$, for an encounter along the x direction the droplets cannot overcome the dipolar barrier and the collision does not take place. There is no such barrier for an encounter along the z direction at very small velocities and the encounter takes place with the formation of a oscillating droplet molecule. To illustrate the different nature of the dynamics of collision along x and z directions at very small velocities we consider two droplets of figure 4(d) ($N=3000 ; K_{3}=10^{-38} \mathrm{~m}^{6} \mathrm{~s}^{-1}$). For an encounter along the z direction at $t=0$ two droplets are placed at $z= \pm 3.2$ and set in motion in opposite directions along the z axis with a small velocity $v \approx 0.5$. The dynamics is illustrated by a 2 D contour plot of the time evolution of the 1D density $\rho_{1 \mathrm{D}}(z, t)$ in figure 9 (a). The two droplets come close to each other at $z=0$ and coalesce to form a droplet molecule and never separate again. The droplet molecule is formed in an excited state due to the liberation of binding energy and hence oscillates. For an encounter along the x direction at $t=0$ two droplets are placed at $x= \pm 1.6$ and set in motion in opposite directions along the x axis with the same velocity $v \approx 0.5$. The dynamics is illustrated by a 2 D contour plot of the time evolution of the 1D density $\rho_{1 \mathrm{D}}(x, t)$ in figure $9(\mathrm{~b})$. The droplets come a little closer to each other due to the initial momentum. But due to long-range dipolar repulsion they move away from each other eventually and the actual encounter never takes place. In collision dynamics of nondipolar BECs and in collision
of dipolar BEC along z direction the BECs never exhibit this peculiar behavior.

A semi-quantitative estimate of the dipolar repulsion of the collision of two droplets along the x axis at small velocities can be given by the variational expression for energy per atom (6) for a fixed w_{z}, e.g.

$$
\begin{equation*}
E\left(w_{\rho}\right)=\frac{1}{2 w_{\rho}^{2}}+\frac{K_{3} N^{2} \pi^{-3}}{18 \sqrt{3} w_{\rho}^{4} w_{z}^{2}}+\frac{N\left[a-a_{\mathrm{dd}} f(\kappa)\right]}{\sqrt{2 \pi} w_{\rho}^{2} w_{z}}, \tag{10}
\end{equation*}
$$

where we have removed the w_{z}-dependent constant term. Equation (10) gives the energy well felt by an individual atom approaching the droplet along the x axis. The single approaching atom will interact with all atoms of the droplet distributed along the extention of the droplet along the z direction (~ 0.8, viz figure 4(d)). The most probable z value of an atom in the droplet to interact with the approaching atom is $z_{\mathrm{rms}} \sim w_{z} / \sqrt{2} \approx 0.5$. In figure 10 we plot $E\left(w_{\rho}\right)$ versus w_{ρ} with the parameters of the droplet of figure 4(d) employed in the dynamics shown in figure 9. We find in this figure that for small w_{z} the energy well is entirely repulsive. For medium values of w_{z} an attractive well with a repulsive dipolar barrier appears and for large w_{z} a fully attractive well appears without the dipolar barrier, which is also the case of an approaching atom along the z axis. For the probable w_{z} values there is a dipolar energy barrier of height ~ 0.2 near $w_{\rho} \sim 2$ to 3 . For the dynamics in figure 9, the approacing atom has an energy of $v^{2} / 2=0.5^{2} / 2=0.125$, which is smaller than the height of the dipolar barrier at $w_{\rho} \sim 2$ to 3 . Hence the approaching dipolar droplet in figure 9(b) turns back when the distance between the two droplets is ~ 2. In the collision along z direction there is no dipolar barrier and the encounter takes place at all velocities.

Figure 10. Energy well of (10) $E\left(w_{\rho}\right)$ versus w_{ρ} for different w_{z} with the parameters of the droplet of figure 4(d).

4. Summary

We demonstrated the creation of a stable, stationary self-bound dipolar BEC droplet for a tiny repulsive three-body contact interaction for $a_{\mathrm{dd}}<|a|$ and study its statics and dynamics employing a variational approximation and numerical solution of the 3D GP equation (1). The droplet can move with a constant velocity. At large velocities, the frontal collision with an impact parameter and the angular collision of two droplets are found to be quasi elastic. At medium velocities, the collision is inelastic and leads to a deformation or a destruction of the droplets after collision. At very small velocities, the collision dynamics is sensitive to the anisotropic dipolar interaction and hence to the direction of motion of the droplets. The collision between two droplets along the z direction leads to the formation of a droplet molecule after collision. In an encounter along the x direction at very small velocities, the two droplets repel and stay away from each other avoiding a collision.

It seems appropriate to present a classification of the droplet formation in different parameter domains, e.g. scattering length a, dipolar length a_{dd}, the strength of three-body interactions K_{3}, and the number of atoms N. In the absence of dipolar interaction ($a_{\mathrm{dd}}=0$), a droplet can be formed for attractive atomic interaction $(a<0)$. In all cases there is a minimum number of atoms $N_{\text {crit }}$ for the droplet formation, which increases as the three-body interaction K_{3} increases or the scattering length a increases corresponds to less attraction, viz figure 2. There is no upper limit for the number of atoms to form a droplet. A similar panorama exists for the formation of a dipolar droplet with the exception that the dipolar droplet can be formed for $a<a_{\mathrm{dd}}$.

The subject matter of this study is within present experimental possibilities as is clear from the stability plot of figure 2. The size of a trapped dipolar BEC is determined by the harmonic oscillator lengths of the trap, whereas the size of the present droplet is determined by the internal atomic interactions. One should start with a tapped dipolar BEC for $N<N_{\text {crit }}$ where no droplet can be formed, viz figure 2 . Now using the Feshbach resonance technique, one should make the scattering length a more attractive to enter the droplet formation domain. If the harmonic trap is weak then initial droplet size could be relatively large, and by varying the scattering length the size of the droplet could be made much smaller
and such droplets have been detected in experiment [17]. The repulsive three-body force could be responsible for the formation of such droplets. Preliminary study has shown that such droplets can also be formed in nondipolar BECs in the presence of a repulsive three-body interaction [21].

Acknowledgments

I thank V I Yukalov and A Pelster for encouragement and helpful remarks and the Fundação de Amparo à Pesquisa do Estado de São Paulo (Brazil) (Project: 2012/00451-0 and the Conselho Nacional de Desenvolvimento Científico e Tecnológico (Brazil) (Project: 303280/2014-0) for support.

References

[1] Anderson M H, Ensher J R, Matthews M R, Wieman C E and Cornell E A 1995 Science 269198
Davis K B, Mewes M O, Andrews M R, vanDruten N J, Durfee D S, Kurn D M and Ketterle W 1995 Phys. Rev. Lett. 753969
Bradley C C, Sackett C A, Tollett J J and Hulet R G 1995 Phys. Rev. Lett. 751687
[2] Dalfovo F, Giorgini S, Pitaevskii L P and Stringari S 1999 Rev. Mod. Phys. 71463
[3] Greiner M, Mandel O, Esslinger T, Hänsch T W and Bloch I 2002 Nature 41539
[4] Abo-Shaeer J R, Raman C, Vogels J M and Ketterle W 2001 Science 292476
[5] Donley E A, Claussen N R, Cornish S L, Roberts J L, Cornell E A and Wieman C E 2001 Nature 412295
Adhikari S K 2002 Phys. Rev. A 66013611
[6] Deng L, Hagley E W, Wen J, Trippenbach M, Band Y, Julienne P S, Simsarian J E, Helmerson K, Rolston S L and Phillips W D 1999 Nature 398218
[7] Andrews M R, Townsend C G, Miesner H-J, Durfee D S, Kurn D M and Ketterle W 1997 Science 275637
[8] Josephson B D 1962 Phys. Lett. 1251
Cataliotti F S, Burger S, Fort C, Maddaloni P, Minardi F, Trombettoni A, Smerzi A and Inguscio M 2001 Science 293843
Adhikari S K 2005 Phys. Rev. A 72013619
Adhikari S K 2003 Eur. Phys. J. D 25161
[9] Anderson P W 1958 Phys. Rev. 1091492
Billy J, Josse V, Zuo Z, Bernard A, Hambrecht B, Lugan P, Clément D, Sanchez-Palencia L, Bouyer P and Aspect A 2008 Nature 453891
Roati G, D'Errico C, Fallani L, Fattori M, Fort C, Zaccanti M, Modugno G, Modugno M and Inguscio M 2008 Nature 453895
Adhikari S K and Salasnich L 2009 Phys. Rev. A 80023606
[10] Pérez-Garcia V M, Michinel H and Herrero H 1998 Phys. Rev. A 573837
Abdullaev F K, Gammal A, Kamchatnov A M and Tomio L 2005 Int. J. Mod. Phys. B 193415
Strecker K E, Partridge G B, Truscott A G and Hulet R G 2002 Nature 417150
Khaykovich L, Schreck F, Ferrari G, Bourdel T, Cubizolles J, Carr L D, Castin Y and Salomon C 2002 Science 2561290
Nguyen J H V, Dyke P, Luo D, Malomed B A and Hulet R G 2014 Nat. Phys. 10918
[11] Pedri P and Santos L 2005 Phys. Rev. Lett. 95200404
Tikhonenkov I I, Malomed B A and Vardi A 2008 Phys. Rev. Lett. 100090406

Köberle P, Zajec D, Wunner G and Malomed B A 2012 Phys. Rev. A 85023630
Nath R, Pedri P and Santos L 2009 Phys. Rev. Lett. 102050401
[12] Adhikari S K 2016 Laser. Phys. Lett. 13085501
Adhikari S K and Muruganandam P 2012 J. Phys. B: At. Mol. Phys. 45045301
[13] Kivshar Y S and Malomed B A 1989 Rev. Mod. Phys. 61763
[14] Lu M, Burdick N Q, Youn S H and Lev B L 2011 Phys. Rev. Lett. 107190401
Aikawa K, Frisch A, Mark M, Baier S, Rietzler A, Grimm R and Ferlaino F 2012 Phys. Rev. Lett. 108210401
Lahaye T, Koch T, Fröhlich B, Fattori M, Metz J, Griesmaier A, Giovanazzi S and Pfau T 2007 Nature 448672
[15] Maucher F, Henkel N, Saffman M, Krlikowski W, Skupin S and Pohl T 2011 Phys. Rev. Lett. 106170401
[16] Bulgac A 2002 Phys. Rev. Lett. 89050402
[17] Kadau H, Schmitt M, Wenzel M, Wink C, Maier T, Ferrier-Barbut I and Pfau T 2016 Nature 530194
Schmitt M, Wenzel M, Bottcher F, Ferrier-Barbut I and Pfau T 2016 Nature 539259
[18] Xi K and Saito H 2016 Phys. Rev. A 93011604
[19] Lima A R P and Pelster A 2011 Phys. Rev. A 84041604 Lima A R P and Pelster A 2012 Phys. Rev. A 86063609
[20] Nikolic B, Balaž A and Pelster A 2013 Phys. Rev. A 89013624
Vidanovic I, Balaž A, Al-Jibbouri H and Pelster A Phys. Rev. A 84013618
[21] Adhikari S K unpublished
[22] Young S L E, Muruganandam P and Adhikari S K 2011 J. Phys. B: At. Mol. Phys. 44101001

Lakomy K, Nath R and Santos L 2012 Phys. Rev. A 86013610
[23] Yukalov V I and Yukalova E P 2016 Laser Phys. 26045501
[24] Blakie P B 2016 Phys. Rev. A 93033644
[25] Pérez-Garcia V M, Michinel H, Cirac J I, Lewenstein M and Zoller P 1996 Phys. Rev. Lett. 775320
[26] Koch T, Lahaye T, Metz J, Frhlich B, Griesmaier A and Pfau T 2008 Nat. Phys. 4213
[27] Kumar R K, Young S L E, Vudragović D, Balaž A, Muruganandam P and Adhikari S K 2015 Comput. Phys. Commun. 195117
[28] Muruganandam P and Adhikari S K 2009 Comput. Phys. Соттип. 1801888
Vudragović D, Vidanović I, Balaž A, Muruganandam P and Adhikari S K 2012 Comput. Phys. Commun. 1832021
Young S L E, Vudragović D, Muruganandam P, Adhikari S K and Balaž A 2016 Comput. Phys. Commun. 204209
Satarić B, Slavnić V, Belić A, Balaž A, Muruganandam P and Adhikari S K 2016 Comput. Phys. Commun. 200411
Lončar V, Young S L E, Skrbić S, Muruganandam P, Adhikari S K and Balaž A 2016 Comput. Phys. C 209190
[29] Muruganandam P and Adhikari S K 2003 J. Phys. B: At. Mol. Opt. Phys. 362501
[30] Lončar V, Balaž A, Bogojević A, Skrbić S, Muruganandam P and Adhikari S K 2016 Comput. Phys. Commun. 200406
[31] Inouye S, Andrews M R, Stenger J, Miesner H-J, Stamper-Kurn D M and Ketterle W 1998 Nature 392151
Chin C, Julienne P and Tiesinga E 2010 Rev. Mod. Phys. 821225
[32] Fatemi F K, Jones K M and Lett P D 2000 Phys. Rev. Lett. 854462
[33] Ronen S, Bortolotti D C E and Bohn J L 2007 Phys. Rev. Lett. 98030406
Parker N G, Ticknor C, Martin A M and O'Dell D H J 2009 Phys. Rev. A 79013617
Ticknor C, Parker N G, Melatos A, Cornish S L, O'Dell D H J and Martin A M 2008 Phys. Rev. A 78061607
[34] Altin P A, Dennis G R, McDonald G D, Doring D, Debs J E, Close J D, Savage C M and Robins N P 2011 Phys. Rev. A 84033632

[^0]: ${ }^{1}$ www.ift.unesp.br/users/Adhikari

[^1]: ${ }^{2}$ The term droplet formation in [24] refer to a sudden increase of density of a dipolar BEC in a trap, whereas the present droplet is self-bound without a trap.

