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1. Introduction

After the observation of Bose–Einstein condensate (BEC)  
[1, 2] of alkali atoms, there have been many experimental 
studies to explore different quantum phenomena involving 
matter wave previously not accessible for investigation in a 
controlled environment, such as, quantum phase transition [3], 
vortex-lattice formation [4], collapse [5], four-wave mixing 
[6], interference [7], Josephson tunneling [8], Anderson local-
ization [9] etc. The generation and the dynamics of self-bound 
quantum wave have drawn much attention lately [10]. There 
have been studies of self-bound matter waves or solitons in 
one (1D) [10] or two (2D) [11, 12] space dimensions. A soli-
ton travels at a constant velocity in 1D, due to a cancellation 

of nonlinear attraction and defocusing forces [13]. The 1D 
soliton has been observed in a BEC [10]. However, a two- or 
three-dimensional (3D) soliton cannot be realized for two-
body contact attraction alone due to collapse [13].

There have been a few proposals for creating a self-bound 
2D and 3D matter-wave state which we term a droplet exploit-
ing extra interactions usually neglected in a dilute BEC of 
alkali atoms [1]. In the presence of an axisymmetric nonlocal 
dipolar interaction [14] a 2D BEC soliton can be generated in 
a 1D harmonic [11] or a 1D optical-lattice [12] trap. Maucher 
et  al [15] suggested that for Rydberg atoms, off-resonant 
dressing to Rydberg nD states can provide a nonlocal long-
range attraction which can form a 3D matter-wave droplet. 
In this Letter we demonstrate that a tiny repulsive three-body 
interaction can avoid collapse and form a stable self-bound 
dipolar droplet in 3D [16]. There have been experimental [17] 
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Abstract
We study the statics and dynamics of a stable, mobile, self-bound three-dimensional dipolar 
matter-wave droplet created in the presence of a tiny repulsive three-body interaction. In 
frontal collision with an impact parameter and in angular collision at large velocities along 
all directions two droplets behave like quantum solitons. Such a collision is found to be 
quasi elastic and the droplets emerge undeformed after collision without any change of 
velocity. However, in a collision at small velocities the axisymmeric dipolar interaction 
plays a significant role and the collision dynamics is sensitive to the direction of motion. 
For an encounter along the z direction at small velocities, two droplets, polarized along the z 
direction, coalesce to form a larger droplet—a droplet molecule. For an encounter along the x 
direction at small velocities, the same droplets stay apart and never meet each other due to the 
dipolar repulsion. The present study is based on an analytic variational approximation and a 
numerical solution of the mean-field Gross–Pitaevskii equation using the parameters of 52Cr 
atoms.
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and theoretical [18] studies of the formation of a trapped dipo-
lar BEC droplet. In fact, for dipolar interaction stronger than 
two-body contact repulsion, a dipolar droplet has a net attrac-
tion [19, 20]; but the two-body contact repulsion is too weak 
to stop the collapse, whereas a three-body contact repulsion 
can eliminate the collapse and form a stable stationary drop-
let. Such a droplet can also be formed in a nondipolar BEC 
(details to be reported elsewhere) [21].

We study the frontal collision with an impact parameter 
and angular collision between two dipolar droplets. Only the 
collision between two integrable 1D solitons is truly elastic 
[10, 13]. As the dimensionality of the soliton is increased such 
collision is expected to become inelastic with loss of energy 
in 2D and 3D. In the present numerical simulation at large 
velocities all collisions are found to be quasi elastic while the 
droplets emerge after collision with practically no deforma-
tion and without any change of velocity.

Due to axisymmetric dipolar interaction, two droplets polar-
ized along the z direction, attract each other when placed along 
the z axis and repel each other when placed along the x axis and 
the collision dynamics along x and z directions has different 
behaviors at very small velocities. For a collision between two 
droplets along the z direction, the two droplets form a single 
bound entity in an excited state, termed a 3D droplet molecule 
[22]. However, at very small velocities for an encounter along 
the x direction, the two droplets repel and stay away from each 
other due to dipolar repulsion and never meet.

The dipolar interaction potential, being not absolutely 
integrable, does not enjoy well defined Fourier transform 
that would appear for an infinite system [23]. Therefore, to 
get meaningful results, it is necessary either to regularize 
this potential, or, which is equivalent, to deal only with finite 
systems, where the system size plays the role of an effective 
regularization. That is, as soon as atomic interactions include 
dipolar forces, only finite systems are admissible. In other 
words, the occurrence of dipole forces prescribes the sys-
tem to be finite, either being limited by an external trapping 
potential or forming a kind of a self-bound droplet. The con-
ditions of stability of such droplets are studied in the present 
manuscript.

2. Mean-field model

The trapless mean-field Gross–Pitaevskii (GP) equation for a 
self-bound dipolar droplet of N atoms of mass m in the pres-
ence of a three-body repulsion is [2, 24]

∫
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where a is the scattering length, ( )−= ′R r r , θ is the angle 
between the vector R and the polarization direction z, µ0 is the 
permeability of free space, µd is the magnetic dipole moment 

of each atom, and K3 is the three-body interaction term. This 
mean-field equation has recently been used by Blakie [24]2 to 
study a trapped dipolar BEC. We can obtain a dimensionless 
equation, by expressing length in units of a scale l and time in 
units of ħ/τ≡ml2 . Consequently, (1) can be rewritten as
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where K3 is expressed in units of ħ /l m4  and φ| |2 in units of 
l−3 and energy in units of ħ /( )ml2 2 . The wave function is nor-

malized as ( )∫ φ| | =tr r, d 12 .
For an analytic understanding of the formation of a drop-

let a variational approximation of (3) is obtained with the 
axisymmetric Gaussian ansatz: [25–27]
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where ρ = +x y2 2 2, ρw  and wz are the radial and axial widths, 
respectively. This leads to the energy density per atom:
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and the total energy per atom ( )∫≡ EE r rd  [26]:
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In (6), the first two terms on the right are contributions of 
the kinetic energy of the atoms, the third term on the right cor-
responds to the three-body repulsion, and the last term to the 
net attractive atomic interactions responsible for the forma-
tion of the droplet for | | >a add. The higher order nonlinearity 
(quintic) of the three-body interaction compared to the cubic 
nonlinearity of the two-body interaction, has led to a more 
singular repulsive term at the origin in (6). This makes the 
system highly repulsive at the center ( →ρw w, 0z ), even for a 
small three-body repulsion, and stops the collapse stabilizing 
the droplet.

The stationary widths ρw  and wz of a droplet correspond to 
the global minimum of energy (6) [26, 27]
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2 The term droplet formation in [24] refer to a sudden increase of density of 
a dipolar BEC in a trap, whereas the present droplet is self-bound without 
a trap.
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3. Numerical results

Unlike the 1D case, the 3D GP equation  (3) does not have 
an analytic solution and different numerical methods, such as 
split-step Crank–Nicolson [28] and Fourier spectral [29] meth-
ods, are used for its solution. We solve the 3D GP equation (3) 
numerically by the split-step Crank–Nicolson method [28] for 
a dipolar BEC [27, 30] using both real- and imaginary-time 
propagation in Cartesian coordinates employing a space step 
of 0.025 and a time step upto as small as 0.000 01. In numer-
ical calculation, we use the parameters of 52Cr atoms [26], 
e.g. =a a15.3dd 0 and m  =  52 amu with a0 the Bohr radius. 
We take the unit of length l  =  1 μm, unit of time ħ/τ≡ =ml2  
0.82 ms and the unit of energy ħ /( ) = × −ml 1.29 102 2 31 J.

The scattering length a can be controlled experimentally, 
independent of the three-body term K3, by magnetic [31] 

and optical [32] Feshbach resonances and we mostly fix 
a  =  −20a0 below. In figures 1 we show the 2D contour plot 
of energy (6) as a function of widths ρw  and wz for different  
N and K3. This figure highlights the negative energy region. 
The white region in this plot corresponds to positive energy. 
The minimum of energy is clearly marked in figures 1.

For a fixed scattering length a, (8) and (9) for variational 
widths allow solution for the number of atoms N greater than a 
critical value Ncrit. For <N Ncrit the system is much too repul-
sive and escapes to infinity. However, this critical value Ncrit 
of N is a function of the three-body term K3 and scattering 
length a. The −N acrit  correlation for different K3 is shown in 
figure 2. The critical number of atoms for the formation of a 
nondipolar droplet for = −K 103

37 m6 s−1 is also shown in this 
figure. Although a trapped dipolar BEC with a negligible K3 
collapses for a sufficiently large N [33], there is no collapse 
of the droplets for a large N due to a very strong three-body 
repulsion at the center.

We compare in figure  3(a) the numerical and variational 
root-mean-square (rms) sizes ρrms and zrms of a droplet versus 
N for two different K3: 10−38 m6 s−1, and 10−37 m6 s−1. These 
values of K3 are reasonable and are similar to the values of K3 
used elsewhere [24, 34]. In figure 3(b) we show the numerical 
and variational energies | |E  of a droplet versus N for different 
K3. The energy of a bound droplet is negative in all cases and 
its absolute value is plotted.

To study the density distribution of a 52Cr droplet we cal-

culate the reduced 1D densities ( ) ( )∫ρ φ≡ | |x z y rd d ,1D
2  and 

( ) ( )∫ρ φ≡ | |z x y rd d1D
2. In figure 4 we plot these densities as 

obtained from variational and numerical calculations for differ-
ent N and K3. From figures 3(a) and 4(a)–(d) we find that for a 
small N and fixed K3, the droplets are well localized with small 
size and the agreement between numerical and variational 
results is better. For a fixed N, the droplet is more compact for 
a small K3 corresponding to a small three-body repulsion.

In figures  5(a)–(d) we show the 3D isodensity contours 
of the droplets of figures 4(a)–(d), respectively. In all cases 
the droplets are elongated in the z direction due to dipolar 
interaction. In figures 5(a)–(b) and 4(a)–(b) K3 is much larger 
than that in figures 5(c)–(d) and 4(c)–(d). Hence, the three-
body repulsion is stronger in figures 5(a)–(b) thus leading to 

Figure 1. 2D contour plot of energy (6) showing the energy minimum and the negative energy region for 52Cr atoms as a function of widths 

ρw  and wz for (a) = = −N K10 000, 103
38 m6 s−1, (b) = = −N K3000, 103

37 m6 s−1 and (c) = = −N K10 000, 103
37 m6 s−1. The variational 

and numerical widths of the stationary droplet are marked  ×  and  +, respectively. Plotted quantities is all figures are dimensionless and the 
physical unit for 52Cr atoms can be restored using the unit of length l  =  1 μm.

Figure 2. Variational critical number of atom Ncrit for the formation 
of dipolar ( =a a15.3dd 0) and nondipolar ( =a 0dd ) droplets, 
obtained from (8) and (9), for different K3. For <N Ncrit and for 
> =a a a15.3dd 0 (dipolar) and for a  >  0 (nondipolar) no droplet 

can be formed.

Laser Phys. Lett. 14 (2017) 025501
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droplets of larger sizes. In contrast to a local energy minimum 
in 1D [10] and 2D [11] solitons, the 3D droplets correspond 
to a global energy minimum with E  <  0, viz figures 1, and are 
expected to be stable. The stability of the droplets is confirmed 
(details to be reported elsewhere) by real-time simulation over 
a long time interval upon a small perturbation. and extreme 
inelastic collision with the formation of droplet molecule is 
possible for v  <  1.

To test the solitonic nature of the droplets, we study the 
frontal head-on collision and collision with an impact param-
eter d of two droplets at large velocity along x and z axes. To 
set the droplets in motion the respective imaginary-time wave 
functions are multiplied by ( )± vxexp i  and real-time simula-
tion is then performed with these wave functions. Due to the 

axisymmetric dipolar interaction the dynamics along x and z 
axes could be different at small velocities. At large velocities 
the kinetic energy Ek of the droplets is much larger than the 
internal energies of the droplets, and the latter plays an insig-
nificant role in the collision dynamics. Consequently, there 
is no qualititative difference between the collision dynamics 
along x and z axes and that between the collision dynamics 
for different impact parameters at large velocities. As veloc-
ity is reduced, the collision becomes inelastic resulting in a 
deformation and eventual destruction of the individual drop-
lets after collision. At very small velocities, the dipolar energy 
plays a decisive role in collision along x and z axes, and the 
dynamics along these two axes have completely different 
characteristics, viz figure 9.

Figure 3. Variational (line) and numerical (chain of symbols) (a) rms sizes ρ z,rms rms and (b) energy | |E  versus the number of 52Cr atoms N 
in a droplet for two different K3: 10−38 m6 s−1 and 10−37 m6 s−1. The physical unit of energy for 52Cr atoms can be restored by using the 
energy scale × −1.29 10 31 J.

Figure 4. Variational (v, line) and numerical (n, chain of symbols) reduced 1D densities ( )ρ x1D  and ( )ρ z1D  along x and z directions, 
respectively, and corresponding energies of a 52Cr droplet with a  =  −20a0 for different N and K3: (a) = = −N K10 000, 103

37 m6 s−1,  
(b) N  =  3000, = −K 103

37 m6 s−1, (c) =N 10 000, = −K 103
38 m6 s−1, and (d) N  =  3000, = −K 103

38 m6 s−1.

Laser Phys. Lett. 14 (2017) 025501
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The collision dynamics of two droplets of figure  4(b) 
( = = −N K3000, 103

37 m6 s−1) moving along the x axis in 
opposite directions with a velocity ≈v 38 each and with an 
impact parameter d  =  2 is shown in figures 6(a)–(f ) by suc-
cessive snapshots of 3D isodensity contour of the moving 
droplets. A similar collision dynamics of the same droplets 
moving along the z axis with a velocity ≈v 37 each with 
impact parameter d  =  2 is illustrated in figures  7(a)–(f ).  
The droplets come close to each other in figures 6(b) and 7(b), 
coalesce to form a single entity in figures 6(c)–(d) and 7(c)–(d), 
form two separate droplets in figures 6(e) and 7(e). The drop-
lets are well separated in figures 6(f ) and 7(f ) without visible 

deformation/distortion in shape and moving along x and z axes 
with the same initial velocity showing the quasi elastic nature 
of collision. The frontal head-on collision is also quasi elastic.

To study the angular collision of two droplets of figure 4(b), 
at t  =  0 two droplets of are placed at =± =x z3, 1, respec-
tively, and set into motion towards the origin with a veloc-
ity ≈v 40 each by multiplying the respective imaginary-time 
wave functions by ( )± +x zexp i50 9.5i  and performing real-
time simulation. Again the isodensity profiles of the droplets 
before, during, and after collision are shown in figures 8(a)–
(b), (c)–(d) and (e)–(f ), respectively. The droplets again come 
out after collision undeformed conserving their velocities.

Figure 5. The 3D isodensity ( ( )φ| |r 2) of the droplets of (a) figures 4(a)–(d) (b). The dimensionless density on the contour in figures 5 and 
6–8 is 0.001 which transformed to physical units is 109 atoms cc−1.

Figure 6. Collision dynamics of two droplets of figure 4(b) placed at =± =∓x z4, 1 at t  =  0 moving in opposite directions along the 
x axis with velocity ≈v 38, illustrated by 3D isodensity contours at times (a) t  =  0, (b)  =  0.042, (c)  =  0.084, (d)  =  0.126, (e)  =  0.168, 
(f )  =  0.210. The velocities of the droplets are shown by arrows.

Figure 7. Collision dynamics of two droplets of figure 4(b) placed at =± =∓x z1, 4.8 at t  =  0 moving in opposite directions along the  
z axis with velocity ≈v 37 by 3D isodensity contours at times (a) t  =  0, (b)  =  0.052, (c)  =  0.104, (d)  =  0.156, (e)  =  0.208, (f )  =  0.260.

Laser Phys. Lett. 14 (2017) 025501
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Two dipolar droplets placed along the x axis with the dipole 
moment along the z directions repel by the long range dipolar 
interaction, whereas the two placed along the z axis attract 
each other by the dipolar interaction. This creates a dipolar 
barrier between the two colliding droplets along the x direc-
tion. At large incident kinetic energies, the droplets can pen-
etrate this barrier and collide along the x direction. However, 
at very small kinetic energies (v  <  1), for an encounter along 
the x direction the droplets cannot overcome the dipolar bar-
rier and the collision does not take place. There is no such 
barrier for an encounter along the z direction at very small 
velocities and the encounter takes place with the formation 
of a oscillating droplet molecule. To illustrate the different 
nature of the dynamics of collision along x and z directions at 
very small velocities we consider two droplets of figure 4(d) 
( = = −N K3000; 103

38 m6 s−1). For an encounter along the 
z direction at t  =  0 two droplets are placed at =±z 3.2 and 
set in motion in opposite directions along the z axis with a 
small velocity ≈v 0.5. The dynamics is illustrated by a 2D 
contour plot of the time evolution of the 1D density ( )ρ z t,1D  in  
figure 9(a). The two droplets come close to each other at z  =  0 
and coalesce to form a droplet molecule and never separate 
again. The droplet molecule is formed in an excited state due 
to the liberation of binding energy and hence oscillates. For 
an encounter along the x direction at t  =  0 two droplets are 
placed at =±x 1.6 and set in motion in opposite directions 
along the x axis with the same velocity ≈v 0.5. The dynamics 
is illustrated by a 2D contour plot of the time evolution of the 
1D density ( )ρ x t,1D  in figure 9(b). The droplets come a lit-
tle closer to each other due to the initial momentum. But due 
to long-range dipolar repulsion they move away from each 
other eventually and the actual encounter never takes place. 
In col lision dynamics of nondipolar BECs and in collision 

of dipolar BEC along z direction the BECs never exhibit this 
peculiar behavior.

A semi-quantitative estimate of the dipolar repulsion of the 
collision of two droplets along the x axis at small velocities 
can be given by the variational expression for energy per atom 
(6) for a fixed wz, e.g.

( ) [ ( )]π κ
π

= + +
−

ρ
ρ ρ ρ

−
E w

w

K N

w w

N a a f

w w

1

2 18 3 2
,

z z
2

3
2 3

4 2
dd

2 (10)

where we have removed the wz-dependent constant term. 
Equation  (10) gives the energy well felt by an individual 
atom approaching the droplet along the x axis. The single 
approaching atom will interact with all atoms of the droplet 
distributed along the extention of the droplet along the z direc-
tion (∼0.8, viz figure 4(d)). The most probable z value of an 
atom in the droplet to interact with the approaching atom is 

/∼ ≈z w 2 0.5.zrms  In figure 10 we plot ( )ρE w  versus ρw  with 
the parameters of the droplet of figure 4(d) employed in the 
dynamics shown in figure  9. We find in this figure  that for 
small wz the energy well is entirely repulsive. For medium 
values of wz an attractive well with a repulsive dipolar barrier 
appears and for large wz a fully attractive well appears without 
the dipolar barrier, which is also the case of an approaching 
atom along the z axis. For the probable wz values there is a 
dipolar energy barrier of height ∼0.2 near ∼ρw 2 to 3. For the 
dynamics in figure 9, the approacing atom has an energy of 

/ /= =v 2 0.5 2 0.1252 2 , which is smaller than the height of the 
dipolar barrier at ∼ρw 2 to 3. Hence the approaching dipolar 
droplet in figure 9(b) turns back when the distance between 
the two droplets is  ∼2. In the collision along z direction 
there is no dipolar barrier and the encounter takes place at all 
velocities.

Figure 8. Collision dynamics of two droplets of figure 4(b) placed at =± =x z4, 1 at t  =  0 moving towards origin with velocity ≈v 40 by 
3D isodensity plots at times (a) t  =  0, (b)  =  0.042, (c)  =  0.084, (d)  =  0.126, (e)  =  0.168, (f )  =  0.210.

Figure 9. (a) 2D contour plot of the evolution of 1D density ( )ρ z t,1D  versus z and t during the collision of two droplets of figure 4(d) 
initially placed at =±z 3.2 at t  =  0 and moving towards each other with velocity ≈v 0.5. (b) 2D contour plot of the evolution of 1D density 

( )ρ x t,1D  versus x and t during the encounter of the same droplets initially placed at =±x 1.6 at t  =  0 and moving towards each other with 
velocity ≈v 0.5.
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4. Summary

We demonstrated the creation of a stable, stationary self-bound 
dipolar BEC droplet for a tiny repulsive three-body contact 
interaction for < | |a add  and study its statics and dynamics 
employing a variational approximation and numerical solu-
tion of the 3D GP equation (1). The droplet can move with a 
constant velocity. At large velocities, the frontal collision with 
an impact parameter and the angular collision of two drop-
lets are found to be quasi elastic. At medium velocities, the 
collision is inelastic and leads to a deformation or a destruc-
tion of the droplets after collision. At very small velocities, 
the collision dynamics is sensitive to the anisotropic dipolar 
interaction and hence to the direction of motion of the drop-
lets. The collision between two droplets along the z direction 
leads to the formation of a droplet molecule after collision. In 
an encounter along the x direction at very small velocities, the 
two droplets repel and stay away from each other avoiding a 
collision.

It seems appropriate to present a classification of the 
droplet formation in different parameter domains, e.g. scat-
tering length a, dipolar length add, the strength of three-body 
interactions K3, and the number of atoms N. In the absence 
of dipolar interaction ( =a 0dd ), a droplet can be formed for 
attractive atomic interaction (a  <  0). In all cases there is a 
minimum number of atoms Ncrit for the droplet formation, 
which increases as the three-body interaction K3 increases or 
the scattering length a increases corresponds to less attraction, 
viz figure 2. There is no upper limit for the number of atoms 
to form a droplet. A similar panorama exists for the formation 
of a dipolar droplet with the exception that the dipolar droplet 
can be formed for <a add.

The subject matter of this study is within present exper-
imental possibilities as is clear from the stability plot of  
figure 2. The size of a trapped dipolar BEC is determined by 
the harmonic oscillator lengths of the trap, whereas the size 
of the present droplet is determined by the internal atomic 
interactions. One should start with a tapped dipolar BEC for 
<N Ncrit where no droplet can be formed, viz figure 2. Now 

using the Feshbach resonance technique, one should make the 
scattering length a more attractive to enter the droplet forma-
tion domain. If the harmonic trap is weak then initial droplet 
size could be relatively large, and by varying the scattering 
length the size of the droplet could be made much smaller 

and such droplets have been detected in experiment [17]. The 
repulsive three-body force could be responsible for the forma-
tion of such droplets. Preliminary study has shown that such 
droplets can also be formed in nondipolar BECs in the pres-
ence of a repulsive three-body interaction [21].
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