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Wide localized solitons in systems with time- and space-modulated nonlinearities
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In this work we apply point canonical transformations to solve some classes of nonautonomous, nonlinear
Schrodinger equations, namely, those which possess specific cubic and quintic (time- and space-dependent)
nonlinearities. In this way we generalize some procedures recently published which resort to an ansatz to the

wave function and recover a time- and space-independent nonlinear equation which can be solved explicitly.
The method applied here allows us to find wide localized (in space) soliton solutions to the nonautonomous,
nonlinear Schrodinger equation. We also generalize the external potential which traps the system and the terms

of the nonlinearities.
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I. INTRODUCTION

Investigations into the nonlinear Schrodinger equation
(NLSE) [1] have increased in recent decades. The importance
of such investigations is not only due the possible real-world
applications of NLSE or the Gross-Pitaevskii equation (GPE)
[2] but also due to the possibility, on the theoretical side, of
increasing the class of nonlinear integrable models [3].

The applications of NLSE and/or GPE with spatially
dependent cubic and quintic (CQ) nonlinearities can be
appreciated, for example, in pulse propagation in optical fibers
[4], in photonic crystals [5], and in the study of Bose-Einstein
condensates (BECs) [6], whose nonlinearities are driven by
means of optical interactions as well.

Specificly, dark and bright solitons have been observed in
various nonlinear physical phenomena. Investigation of bright
and dark solitons is useful for understanding the properties
of BECs. Bright solitons are characterized by a localized
maximum in the density profile without any phase jump across
it. In the relevant experiments, this type of soliton is formed
by utilizing a Feshbach resonance to change the sign of the
scattering length from positive to negative. On the other hand,
dark solitons may also be considered as moving domain walls
which separate regions of a condensate with different values
of the order parameter. In fact, dark solitons are density
dips characterized by a phase jump of the wave function
at the position of the dip and can be generated by means
of phase-engineering techniques [7]. Thus, there are many
possibilities for managing these solitons, strongly justifying a
quest for novel analytical solutions.

The techniques for managing the nonlinearities have been
improved a lot, and in some cases, the nonlinear equations
governing the system present not only space- [8] but also time-
dependent nonlinearities [9,10]. In this case one talks about the
so-called nonautonomous NLSE [11], whose localized wave
solutions, in some specific cases, were found by Serkin and
Hasegawa [12] with a similarity transformation, which maps
the nonautonomous NLSE onto a nonlinear stationary equation
whose solutions are well known.
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A similar procedure has been carried out in a recent study by
Beitia, Pérez-Garcia, Vekslerchik, and Konotop (BPVK) [13].
Concretely, the authors relate the nonautonomous NLSE with
cubic nolinearity (CNLSE)

Y et g P M
i— = —— + v(x, X, ,
o ax? §
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(u is the eigenvalue of the nonlinear equation known as
chemical potential) by using the ansatz

W(x,1) = p(x,1) explig(x, )] PLX (x,1)] 3)

for the solution of Eq. (1). The variable X, which in Eq. (2)
plays the role of space coordinate, is in fact a function F (&)
of the specific combination &(x,7) = y(t)x + §(¢) of the space
coordinate and the time. In such an approach, which provides
analytical solutions for the wave function W(x,7), one finds
out that specific forms of the trapping potential v(x,) and the
nonlinearity function g(x,?) can be explored and that there is
an intrinsic dependence of v(x,t), g(x,t), p(x,t), and ¢(x,t)
on y(t), 5(t), and F(§); that is, one may choose conveniently
y (1), 8(t), and F(£) to obtain v(x,?), g(x,t), and, consequently
nonsingular p(x,?) and single-valued phase ¢(x,?).

More recently, in the work by Avelar, Bazeia, and Car-
doso (ABC) [14], the authors followed the BPVK approach
but extended the problem, focusing their attention on the
nonautonomous cubic and quintic nonlinear Schrodinger equa-
tion (CQNLSE). They have also obtained analytic localized
solutions of the bright or dark type (breathing, resonant,
quasiperiodic, and moving breathing solutions), depending on
whether the eigenvalue p vanishes.

The nonautonomous CQNLSE is obtained by adding a term
h(x,t)|¥[*W to the right side of Eq. (2), and the stationary
CQNLSE with constant coefficients is given by

BRI
ax2

We have noticed that when the similarity transformation is
applied, the trapping potential v(x,t) always has a quadratic
term, namely w?(¢)x2, which constitutes a harmonic oscillator

ud = + G3|P/*® + Gs|D[* . 4)
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with time-dependent frequency. The frequency is related to
y(¢) and its time derivatives and, when d?8/dt> # 0, one finds
a driven time-dependent harmonic oscillator whose force is
also time dependent. Such kind of problem is consecrated
in the literature of the time-dependent Schrodinger equation
concerning the analysis of dissipative effects in quantum
fluctuations. Moreover, such systems have found real-world
applications in quantum optics [15] and plasma physics [16].
Among the approaches applied to solve the Schrodinger
equation for the time-dependent (driven) oscillator, one resorts
to point canonical transformations on the coordinates and a
rescaling of the time in such a way that the problem can
be transformed into a Schrodinger equation for the harmonic
oscillator with constant frequency [17]. As a matter of fact, in
some specific cases, the problem can be even reduced further
into a Schrodinger equation for a free particle [18].

One of the main goals of the present work is to apply
successfully the same canonical point transformations for
solving some time-dependent Schrodinger equations to the
problem of the nonautonomous CQNLSE mentioned above.
We show that the point canonical transformation followed
by an appropriate redefinition of the wave function and
additional transformations of variables also leads to the
stationary CQNLSE with constant coefficients (4), without
resorting to any ansatz on the form of the wave function W(x,)
in Eq. (3).

The approach adopted here is straightforward, and as a
result of it one can see clearly the dependence of the trapping
potential v(x,t) and the inhomogeneous coefficients g(x,?)
and h(x,t) with the functions y(¢), §(¢), and F(&). With this
approach, the constraints over the functions y(¢), §(¢), and
F (&) in order to render the wave function W(x,t) well defined
are also evident. By following the mapping approach presented
in Ref. [19] we present the soliton solutions for Eq. (4) in terms
of the Weierstrass elliptic function, such that by considering
specific sets of the parameters u, G3,Gs and an arbitrary
constant of integration we not only recover the results found in
Refs. [13] and [14] but also present some new soliton solutions
by using the set of functions y(t), 6(¢), and F(&).

We also deal with extensions of the models by including
other trapping potentials which are a mix of circular functions
with the time-dependent harmonic oscillator and also comment
on a generalization of the nonautonomous time-dependent
nonlinear Schrodinger equation by considering a nonpolyno-
mial nonlinearity.

In the next section we present the approach to map the
nonautonomous CQNLSE onto a stationary CQNLSE. The
third section is devoted to present the solutions of Eq. (4) in
terms of the Weierstrass elliptic function where some examples
of wide bright and dark solitons are shown. In the fourth section
we consider other kinds of trapping potential besides the
persistent time-dependent harmonic oscillator and comment
on a nonpolynomial nonlinearity. The fifth section is left for
the conclusions.

II. THE APPROACH

In this section we present the approach by focusing on the
nonautonomous nonlinear Schrodinger equation with terms of
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cubic and quintic order in the wave function, namely

v v
; =__+v(x DV + g3(x,0) (W[ W
ot dx?
+ gs(x.0) W]t W, %)

whose function coefficients are written as

v(x,1) = w(tx” + fi)x + fo) + ¥ O VIy@)x + @),

(6)
g3(x,1) = Gay (1) fly () x + 8(1)], )
gs(x,1) = Gs hly(t) x + 8(1)]. ®)

The reason for choosing the inhomogeneous coefficients in
this way is going to be clarified below.

Now, we implement the following coordinate transforma-
tion and time rescaling [17]

-5 ©)
7@ 7@
T dr/
— 1y = —_, 10
Tl /072@’) 1o

with y[t(¢)] = y(¢) and 8[t(t)] = 8(¢) . Then, one can recast
Eq. (5) as

ow , 0
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—
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where ¥, = dy/dt, 8, = d§/dt, V(£,T) = W[x(£,7),t(T)],

and

+ fix )b
14

Y
v(,1) = w(f)(s 2
V

+ (0 + 7 (@) VE). (12)

From the last two equations one can appreciate why we have
chosen the specific dependence of V, f,andhon& = y(t) x +
8(t). Equation (11) looks like a nonautonomous NLSE on &
and t, except for the first derivative term in the variable £. In
order to eliminate that term, we redefine E(E ,T) as

V(r)e TG0 Y&, 1), (13)

where @(€,7) = 47—%52 + @6, — 773)5 —a(r), with a(r) being
an arbitrary function for the moment. By substituting Eq. (13)
into Eq. (11) one gets

Ay Y
i +UE DY + Gs fEOIVI* ¥

+Gsh@)y|* , (14)
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where

One can see why the factors involving y(¢) are present in
the expressions of v(x,t) and g3(x,t). Moreover, one can also
appreciate the contribution of the redefinition (13), specifically
the contribution of the phase «(£,7) to the redefinition of the
trapping potential U (&, 7).

Now, one can choose y(t) and §(7) such that

¥ Vrr Y8

o(t) =

fl(T)

Si L da
y dt

and, by coming back to the original variables (x,?), the
functions w, f; and f, appear as

(15)
Tz(f)

VitV — 2)/;2 Sy — 246
)= ———, )= —,
(1) 1,7 i) 2,7
82 da
= ——%— —, 16
AO=-35-4 (16)

revealing the intrinsic connection between the frequency w(z),
the force f1(¢), and the functions y (¢) and 6(¢). Note that a(z) is
an arbitrary function that could be chosen as da /dt = (8, /2y)?
if f>(¢) were not present in Eq. (6). Thus, one removes the
explicit time dependency of Eq. (14), that is,

oy Y
T +VEW + G fFEOWI ¥

+Gsh@|y|* ¢, (17)

and the wave function (13) is written as
W(x,t) = \/V(t)e_i“(x"> YE(x, 1), T ()], (18)

where o(x,t) = V’ x? ~|— — a(t). We recall that the phase
a(x,t) was 1ntr0duced through the redefinition (13) and
it contributes to the redefinition of the trapping potential,
which could be eliminated thanks to the presence of the
time-dependent driven harmonic oscillator terms [the three
first terms v(x,1)].

For stationary solutions in the variable t, that is, ¥ (£,7) =
¢(&)exp(— i E 1), we have

d’¢

o =ve-

Elp +G3 I ¢ + Gsh()lol* ¢.
(19)

Since we still have a nonlinear equation with inhomogeneous
nonlinearities, we are going to make further transformations in
order to reach a nonlinear second-order differential equation
with constant couplings. For that we redefine £ as a function
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of another variable ¢, that is, £ = f(g“ ), which leads us to the
differential equation

d*¢ Fi do =
i F_;E = F.(VI§()] — E)¢

+G3F, fIEQONI17 ¢
+GsFLhEONPl ¢, (20)

where F{ =dF/d¢ and ¢ = ¢[£(¢)]. By redefining the
field as

P(C) =\ Fr (), 21
we reach Eq. (8) in terms of ¢
d’® 2 4
d—§2=—M¢'+G3|q)| ®+Gs|P" P, (22)

where we have done the following identifications:

=2
3F
= —FVIEQ)) - B) + =5 Pow 3,
: ‘ 2F; 4F§
| (23)
fEQOI= =, hEQO]==
F( F{

As one can see, we have not defined the part of the trapping
V[£(¢)] yet. In fact, once we are going to work with a constant
chemical potential, V (£) is defined in terms of w and F(£). In
terms of the variables & and T we have

F" 2 F'\’ )
VE) = — — uF’ E,
©=(55) ~(35) ~nF?+

fE=F", h&=F, (24)
where F' = dF/d& and the field (21) becomes
1
—0 25
() = 6 [Z(&)]. (25)

Finally, by returning to the original space-time coordinates
(x,1), the wave function can be obtained from Eqgs. (18) and
(25), that is,

_ Ny .
W(x,t) = m exp[—i n(x,))]PLF((x,1))], (26)
with 7n(x,t) = x + 2ex —a(t)+ E [, dt'y*(t'), where

a(t) is an arbltrary funct1on

Thus, we have shown, by means of transformation of
variables, how the nonautonomous CQNLSE, Eq. (5), can
be mapped onto a nonlinear, one-dimensional, second-order
differential equation with cubic and quintic nonlinearities,
Eq. (22). More than that, we have shown explicitly how
the part of the trapping potential V(&) and the nonlinearity
functions f(&) and h(§) are related to the transformation

function F(§) = 7_1(5 ) [see Egs. (24)].
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III. THE MAPPING ONTO THE WEIERSTRASS p
FUNCTION

Here we consider the cases in which & is a real function on
¢ [Eq. (22)]. One can check that the solutions for Eq. (27) are
also solutions of Eq. (22):

dd\? G; Gs
_ — _ q)z _@4 _@6’
(d{ ) €E— U + > + 3

where € is areal arbitrary constant. Moreover, we shown how to
map such kind of equations [19] onto the nonlinear Weierstrass
differential equation

dg 2
) =407 — — g3,
(d{) & 826 — &3

where g, and g3 are the Weierstrass invariants and the
discriminant is A = g3 — 27g3. The values of the invariants
and of the discriminant determine how the Weierstrass function
are written in terms of the double-periodic Jacobi elliptic
functions for A s 0 [20], and the solutions for Eq. (27) can be
included in one of the categories listed below:

(1) For € # 0, one has the following solution for ®(¢):

27)

(28)

€
Q(¢) = \/ , (29)
£(5,82,83) + /3
where g, = %,uz —2Gsze and g3 = 28—7113 - %G3/L€ —
;—‘GS €2, which leads to the discriminant A = —%(66 G% +
36€2 G2 4 36G3Gse u — 3u>G3 — 161°Gs).
(2) For € = 0 and p # 0 one sees that if g, = %Mz, &3 =
2;87,113, and A = 0, then the solution is
—1/2
) . (30)

G3; — 28 B
q) =
© ( 4u * ©(2,82.83) + /3

where B = 4,/ & + 41 Gs.

(3)Fore = 0and u = O one gets g, = g3 = A = 0 [in this
case p(¢) = ¢ 2] and

2Gs

- G2\
¢(§)_<_E+ > ) )

€1y

All the examples with real-world applications considered
in Refs. [13] and [14] may be reproduced and fit in one of these
categories. We present next three additional examples which
were not considered by them, which are solutions of Eq. (5).

A. Examples

Because the dark and bright solitons are of primary im-
portance for developing concrete applications of BECs, many
techniques are developed for manipulating and controlling the
soliton’s parameters and induce changes in their shapes which
would be useful for applications. One possibility is to vary
the atomic scattering length by means of external magnetic
fields, that is, by using Feshbach resonances. People have been
contemplating how to modulate the width and amplitude of a
soliton in a controllable manner. It has been demonstrated that
the variation of the scattering length provides a powerful tool
for controlling the generation of bright and dark soliton trains;
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this technique can be used to modulate the bright soliton into
very high local matter densities in both harmonic trap potential
[21] and repulsive (inverted) harmonic trap potential [22].
We show by means of some examples that the width and the
amplitude of the solitons can also be manipulated theoretically
by focusing on the same form of the functions F(£€),y(¢), and
8(t) considered in Ref. [14] but with some different values of

u, Gz, Gs, and €. Explicitly, we take F () = %Erﬁ(%)
(this is the imaginary error function [20]), y(¢) = /m
and 6(r) = 0. We remark that this choice of F(&), when
substituted in V(&) (24), implies into an extra contribution
for the time-dependent frequency w(¢) of the driven harmonic
oscillator, or in other words, the trapping potential v(x,?) is a
sole time-dependent driven harmonic oscillator for u = 0.

1. Example 1

In real-world applications the nonlinearities and the con-
finement potential can be changed independently using an
optical trap and magnetic-field-induced Feshbach resonance.
In order to modulate the width of the dark soliton in a
controllable manner, we gradually increase the self-interaction
and simultaneously turn off the trapping potential.

Here, there is no way to turn off the ubiquitous trapping
harmonic potential, but we can modulate the width of a dark
soliton through a suitable choice of the chemical potential
and the coefficient of the quartic self-interactions. Here, as in
real-world applications, they are related to each other.

First we notice that Eq. (22) can be seen as the static
equation of motion d’®/d¢? =dU/d®, where U(®P) =
(1/2)(—u®? + L 0* + & @ + ¢). If the parameters of the
potential are chosen such that it presents only two minima, say
at +1, and such that the chemical potential varies from positive
to negative values (we notice that d*U/d®3_, = —pu), the
minimum energy solution ®(¢), which connects the minima
of U(®) at { — Fo00, is a kink which is deformable into a
two-kink (double kink) as p varies from positive to negative
values.

Such ®% polynomial potentials have been used to study
the phase transitions which come with domain wall splitting
and the appearance of a wet phase in some ferroelectric [23]
and paramagnetic [24] materials. The wetting transition can
also take place in the deconfinement phase transition of SU(3)
Yang-Mills theory [25], in supersymmetric QCD [26], and in
thick brane world scenario [27,28].

We choose pw=2a>—-1, G3=2a>-2), Gs=3,
and € =c=a? The solution ®(¢), for the cho-
sen coefficients of U(®), falls into the first category
of solutions shown in Eq. (29) with g = 3(1 +4a?)?

and g3 = —25(1 +a%)° and p(¢,82,83) = 3(1 +a”) + (1 +
a?®)csch’(v/1 + a2¢), such that we have

a tanh(+/1 4+ a%¢)

O(¢) = .
\/ sech’(v/1 + a2¢) + a2

(32)

The profiles of |®(¢)|? for three different values of  are shown
in Fig. 1, from which one can see the increasing of the width
of the soliton as x becomes close to the critical value u = —1.
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FIG. 1. (Color online) (a) Profiles of |®(¢)|? from Eq. (32). (b) |¥(x,t)|? for the wide breathing dark soliton with A = 0.001, b = 10, and

a =0.01.

By using Eq. (26) we find the wave funcction

2x2

W(x,t) = G;/6 V7 exp (—)/6172 ) exp[—i n(x,1)]

a sinh (m 3z b Erﬁ(%))

o 26"
\/1 + a? cosh? («/1 + a? ‘2/3;11/? Erﬁ(%‘b»

(33)

which is a wide breathing dark soliton for a®> < 1/2.

2. Example 2

A bright soliton can also be modulated into a desired
width and amplitude in a controllable manner by changing
the scattering length and the trapping potential.

As in example 1, the soliton width can be modulated by a
convenient choice of the parameters. Here we take values of
1 less than the critical value i = —1 of the previous example
and U(®P) no longer positive, but with two symmetrically
disposed global minima and one local minima at & = 0.
We look for solutions such that ®(¢ — £o0) — 0. For that
we take € = ¢ + k = 0, where k is a constant of integration.
From relations 18.12.1 to 18.12.3 of Ref. [20] one can see
that p(2,4%/3,81° /27) = (|l /3)(1 + 3csch®/[ie]¢ ) and by
choosing 28/G; = —A? < 0 (that is, Gs < 3G3/16|u|) and
G3 < 0, such that /—|u|/ G35 is real, we find that

2{/—1ul/Gs ‘
VA2cosh(2y/Ti[¢) + 1

We show profiles of ®(¢) for three different values of A> <
1 and |u| = —G3 = 4 in Fig. 2. In the same figure we show
also the amplitude |W(x,?)|*> for the wide breathing bright
soliton.

Particularly, a very thin bright soliton can be obtained when
Gs = 0. Weset u = —1 (the critical of u), Gz = —1,and e =
0, such that g, = ‘3—‘, g3 = —%,A =0, and ®(¢) belongs to
the second category of solutions listed in the previous section,

o(¢) = G4

namely

1 1 N
¢(§)=[§+§<@(C,gz,g3)—§) ] . (35)

One can verify that ©(¢,g2,83) = % + csch?z and, conse-
quently, ®(¢) = V2 seche.

By using Eq. (26) we arrive at the breathing bright-soliton
solution

2.2
. )/x
N7, 1) = in/6 2 _
(x,t) =¢ yexp( 6b2>

V3nb y X
—i , h | — Erfi ,
x expl[—i n(x,t)]sec ( 5 I (ﬁb)

(36)

where a(t) = [[y*(E — g5)]dt.

3. Example 3

This is an interesting example because we can find three
different analytic solutions with the same set of parameters,
w=>5, G3=10,and Gs = —3. Among those solutions we
find periodic solutions which were not presented in Ref. [14].

In the case € =0 and using Eq. (30) we find two very
similar, periodic solutions:

D,(8) = V10 and
V6 —/3) + 243 sin2(v/30)
V10

\/(5 +/5) 245 sinz(\/gé“).

Dy(¢) =

(37)
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(b)

FIG. 2. (Color online) (a) Profiles of |®(¢)|? from Eq. (34). (b) |W(x,t)|? for the wide breathing bright soliton with A = 0.001,5 = 10.

5(44/10-5)
27

However, if € = we find the kinklike configuration

4410 =5

P(5)= 3

sinh (ﬁ@;)
x k)
\/3(«/F) —2)+ (+/10 + 1) sinh? (@g)

(38)

which provides a breathing dark soliton solution for W(x,?).

IV. GENERALIZATIONS

In this section we discuss some generalizations of the
nonautonomous nonlinear Schrodinger equation. Particularly,
we focus on two generalizations.

A. Generalization of the trapping potential

As shown in Egs. (24), part of the potential is determined
by a convenient choice of F(&), such that F’(£) does not have
zeros. Moreover, one can see that V(&) has, for u = E =0,
a structure similar to the one-dimensional supersymmetric
quantum mechanics potential, with F” /2 F’ playing the role of
supersymmetric superpotential. Then it would be interesting
to analyze the influence that several trapping potentials in
supersymmetric quantum mechanics could have while keeping
the same nonlinearities on the nonautonomous nonlinear
Schrodinger equation.

We have analyzed some of those possibilities and have
found that the trigonometric Scarf and trigonometric Rosen-
Morse potentials, which have in their spectrum only bound
states (here we are using the same nomenclature for
supersymmetric quantum mechanics potentials as that of
Ref. [29]), are good candidates for the entrapment of breathing
bright solitons in a spatially periodic trapping potential.

For the sake of brevity we just present the first case here;
that is, we take

F'(§)=G;'" sec?(af), (39)
where A,a > Oand —7/2 < «&é < /2. Then V(€) = A(A —
a)seci(aE) — A2 — G5 sec*A®(ag)  and  gs(x,1) =
GsG; "’ sech/*(ag).

It is always convenient to look for y(#) and §(¢) such that
W(x,t) is well defined. We choose

y(@) = 1+ [1+ yisin(t) + 2 sin(v/201%,  8(r) = 0.
(40)
We refer to Ref. [30] for more details on this function y ().
The time-dependent frequency and driven force are given by
Eq. (16).
In order to get explicitly brightlike solution, let us consider
u=0,G3 =2,Gs = —3, and € = 0. The solution is given by
2!/0y 12 exp[—i n(x,1)] cos"/ (a§)

J1+ FER ’

whose modulus squared is shown in Fig. 3 for A =« = 1.
A breathing dark solution is obtained by setting u = 3,
G3; =6,Gs = —3,and € = 0. It is given by

6'/6y1/2 exp[—i n(x,t)]F (&) cos*/*(a)

JI+ FER

W(x,t) = (41)

W(x,t) =

. (42)

B. Generalization of the nonlinearities

We have shown in Egs. (24) how the nonlinearities functions
g3(x,t) and gs(x,1) [see Egs. (5)—(8)] must be intrinsically
related to each other and given in terms of the functions
y(t) and F’(§), such that the mapping of Eq. (5) onto
Eq. (22) could be realized. From a close inspection of those
relations we have found that the approach used here can be
used to map a nonautonomous Schrodinger equation with
nonpolynomial nonlinearity onto a static sine-Gordon-like
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FIG. 3. (Color online) |W(x,t)|*> for the bright soliton from
Eq. (41) with y; = 0,y, = 0.1. The periodic structure is due to the
periodicity of the circular trapping potential.

equation. The first paper in Ref. [30] proposed a polynomial
nonlinearity up to Nth order in W(x,7), with functional
coefficients related to each order such that the nonautonomous
NLSE could be mapped onto a stationary NLSE with constant
coefficients. Here we present inverse transformations to obtain
a nonautonomous NLSE with nonpolynomial nonlinearity
from a stationary NLSE with nonpolynomial nonlinearity.
Particularly, we consider the sine-Gordon equation, which is
satisfied by ®(¢), namely

d*o 1 T (=1
) _Zsin[bq)(g)]zz (=D

— 2n71q)2n+1
ez b — (2n+1)! ’

(43)

where b is positive constant. By using the transformation ¢ =
F (&) and the redefinition of ®[F ()] = /F'(§) ¢(§) we find

that
d2¢ B F’ 2 F" /
i (ﬁ) ‘(zw) ¢
(=" n+272n—1 ;2041
+Z(2 +1)' Fym2p2n=t g2ntl - (4q)

Now, by considering that ¢(£) = ¥(£,7)e'f 7, we find that
(&, 1) satisfies the nonautonomous NLSE
oY 821#
| — = Vv
o T Taer +VEW
(="
F/ n+2 b2n71 2n , 45
+nE:O (2n+1)!( ) W™y,  (45)
— (E'y2 d F"
where V(§) = (37)" — (7)) + E.

Now, the inverse of transformations in Egs. (9) and (10),
namely,

E=yMx+8(¢) and T—19= / dr'y?(t), (46)
0
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lead us to
oy i dy 192
PE_ ;(y,x+8,)a—ﬁ VIE(x.0Ol ¥
Z ST E Y Py, @)

0 —I— l)'
where ¥ = ¥ [£(x,t),t(¢)]. The first derivative in x can be
eliminated by the following redefinition of the wave func-
tion ¥ (x,t) = €' “*DW(x,1)//y (), where a(x,t) = I—)’,xz +

2 x — a(r). Then we finally obtain the nonautonomous NLSE

2y
with a generalized nonlinearity
aqf v
at = 8 - + v(x,t) ¥
1 F'\""
+ Z ( ) 211—1 (_) |\IJ|2n\IJ
(2n + 1)' 14
(SH
=, (48)
SW*(x,1)
where
v(x,1) = YtV — ZV;Z 2 + Sy — 2v:; X
4y? 2y?
5y e (49)
e 7 X,
4y2  dt 4
and

2
H— /dz{w (zt)[ 0 +v(zt)]‘l’(zt)

+ 2 PG cos (b,/MM)}. (50)
b Y

In this specific generalization the soliton amplitude is
periodic and is given by

4y (t){arccos[v sn(F(&)/v/b|v)]}?

2 _
Wl = i E ,

619

where sn(z|v) is the snoidal Jacobi elliptic function with
elliptic parameter 0 < v < 1. For v = 1, sn(z|v) = tanh(z)
and we have a breathing dark soliton.

V. CONCLUSIONS

In this work we have shown that an approach used to
tackle the Schrodinger equation with explicit time-dependent
potential parameters can be extended to the case of a
nonautonomous NLSE. As a consequence we were able
to reproduce results originally obtained through the use of
an ansatz together with similarity transformations [13,14].
Besides, this procedure leads us to interesting solutions of that
problem and particularly some configurations of wide soliton
solutions.

Furthermore, we extended the approach in order to deal with
systems with generalized nonlinearities and trapping potentials
which are a mixing of the (driven) time-dependent harmonic
oscillator and circular functions.

026605-7



L. E. ARROYO MEZA, A. DE SOUZA DUTRA, AND M. B. HOTT

We believe that the approach applied here can be used to
deal with the cases of damped-driven nonlinear Schrodinger
equation with time-dependent cubic and quintic nonlinearities,
such as the one treated originally in Ref. [12].

Moreover, extensions of this work for the cases with two or
more fields are under development.
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