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ARTICLE INFO ABSTRACT
MSC: We obtain an explicit polynomial whose simple positive real roots provide the limit cycles
34C07

which bifurcate from the periodic orbits of a family of cubic polynomial differential centers
328‘; when it is perturbed inside the class of all cubic polynomial differential systems. The family
34029 considered is the unique family of weight-homogeneous polynomial differential systems of
37C10 weight-degree 2 with a center. The computations has been done with the help of the algebraic
37027 manipulator Mathematica.
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1. Introduction and statement of the main results

The study of the number of limit cycles of a polynomial differential system is mainly motivated by the16th Hilbert's problem
stated in 1900. See [9] and [15] for more details.

Actually one of the main goals in the qualitative theory of real planar polynomial differential systems is the determination
of their limit cycles. One of the ways to produce limit cycles is perturbing a polynomial differential system which has a center
and to study the number of limit cycles which can bifurcate from the periodic orbits of the center, up to first order in the small
parameter of the perturbation, see for instance [1,3,8,10,14]. This problem is called for some authors the weak Hilbert’s problem.

There are many methods to study the maximum number of limit cycles that bifurcate from the periodic annulus of a center,
i.e. to study the weak Hilbert’s problem. Most of them are based on the Poincaré return map, the Poincaré-Melnikov integrals, the
Abelian integrals, and the averaging theory. It is well known that in the plane the last three methods are essentially equivalent.
The weak Hilbert’s problem has been studied by many authors, see for instance the second part of the book [6] and the hundreds
of references quoted there. See also [12].

Here we consider polynomial differential systems given by

X =P(x.y),
y=Qx.y), (1)
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Fig. 1. Phase portrait of the polynomial differential system (2) in the Poincaré disc.

where P and Q are polynomials with real coefficients, the degree of the system is the maximum of the degrees of the polynomials
Pand Q.

System (1) is called weight-homogeneous if there exist (s1,s,) € N2 and d € N such that forany A e R* = {A e R: A > 0} we
have

PAx, A2y) = A5 HIP(x, ), QOTx, A%y) = 227 HQ(x, y).

The vector (s1, s3) is called the weight-exponent of system (1) and d is called weight-degree with respect to the weight-exponent
(Sl » 52 )'

There are few works trying to study the weak Hilbert’s problem for weight-homogeneous polynomial differential systems.
Our main goal is to solve the weak Hilbert’s problem for the weight-homogeneous polynomial differential systems of weight-
degree 2.

In [11] the authors classified all centers of a planar weight-homogeneous polynomial differential systems up to weight-degree
4. In particular they proved that the unique family of weight-homogeneous polynomial differential systems with a center with
weight-degree 2 is

X = X’ +dgy = P(x.y),

¥ = b3oxX® + bxy = Q(x.y). (2)
with

(b]] - 2(12())2 + 8ag, b30 = 7(12 <0.
The weight-exponent of this family is (s, s2) = (1, 2).

The polynomial differential system (2) has a global center at the origin of coordinates, and its global phase portrait in the
Poincaré disc is given in Fig. 1. For more details in order to study the global phase portrait of a polynomial differential system in
the Poincaré disc see Chapter 5 of [7].

The main goal of this paper is to provide an explicit polynomial whose real positive simple zeros gives the exact number of limit
cycles which bifurcate, at first order in the perturbation parameter, from the periodic orbits of the center of the weight-homogeneous
polynomial differential system (2).

More precisely we consider the polynomial differential system

X = axX* + agy + £p(x. ),
¥ = b3oX® + buxy + £q(x.y). (3)
where
P(X,¥) = Coo + CioX + Co1y + C20X* + CuXY + Coy” + C30X + €1 X’y
+ CiaXy? + Co3y,
q(x.y) = doo + dioX + dory + daoX* + d Xy + dosy? + d3oX + d X%y
+ dioxy® + dosy?,

and ¢ is a small parameter.
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Consider the following function
g1(0) = a? cos* O + (4ay; sin@ + (2ayg — byy) cos? 6)2.

In what follows we state our main result where the functions f;(@), fori =0, 1, ..., 7, W(0) and k(0) are given in Section 3. We
do not provide these functions here due to their length.

Theorem 1. Let |¢| > O be a sufficiently small parameter and let rj; be a positive simple root of the polynomial

1 3 2
R0 = 5231 [ A6, @)
k=0 0
where
@) - WOLOKEO

&1(0)?
Then the following two statement hold.

(a) The perturbed systems (3) have a limit cycle bifurcating from the periodic orbit r(0, 15) = k(8)r; of the period annulus of the
center (2) using the averaging theory of first order.
(b) The polynomial (4) can have 0, 1, 2 or 3 positive simple real roots depending on the perturbation of system (2).

Statement (a) of Theorem 1 is proved in Section 3, and statement (b) in Section 4 .
Note that from Theorem 1 it follows that using averaging theory of first order at most 3 limit cycles can bifurcate from the
periodic solutions of the center (2).

2. Preliminaries

In this section we give some well known results that we shall need for proving Theorem 1.
Consider a system given by

X =Fy(t,x) + eF (t, X) + O(?), (5)

where ¢ # 0 is sufficiently small and the functions Fy,F; : Rx 2 > R" and E : R x Q x ( — &g, &g) — R" are €2 functions,
T—periodic in the first variable and €2 is an open subset of R". We suppose that the unperturbed system

X =FR(t,x) (6)

has a submanifold of periodic solutions of dimension n.
Let x(t, z, &) be the solution of system (6) such that x(0, z, ¢) = z. The linearization of the unperturbed system along a periodic
solution x(t, z, 0) is

y = DXFO(t* X(t* Z, 0))y (7)

In what follows we denote by M,(t) the fundamental matrix of the linearized system (7) such that M,(0) is the identity matrix.

We assume that there is an open set U with CI(U) c 2 such that for each z € CI(U), X(t, z, 0) is T—periodic, where x(t, z, 0)
denotes the solution of the unperturbed system (6). We denote by Cl(U) the closure of U. The set Cl(U) is isochronous for system
(6), i.e. it is formed only by periodic orbits with period T.

The following result is a version of averaging theorem for studying the bifurcation of T—periodic solutions of system (5) from
the periodic solutions x(t, z, 0) contained in CI(U) of system (6) when |¢| > 0 is sufficiently small. See [4] for a proof. For more
details on the averaging theory see [5] and the book [13].

Theorem 2 (Perturbations of an isochronous set). We assume that there exists an open and bounded set U with CI(U) c 2 such that
foreach z € CI(U), the solution x(r, z, 0) is T—periodic. Consider the function F : Cl(U) — R"

T
F(z) = % / M; ' (0F (£ x(t. . 0))dt. ®)
0
Then the following statements hold.

(i) If there exists a € U with F(a) = 0 and det ((0F/dz)(a)) # O then there exists a T-periodic solution X(t, &) of system (5) such
that x(0, €) — awhen ¢ — 0.
(ii) The kind of the stability of the periodic solution x(t, ) is given by the eigenvalues of the Jacobian matrix ((d.F/9z)(a)).

The following result is the generalized Descartes Theorem about the number of zeros of a real polynomial. See [2] for a proof.
Theorem 3. Consider the real polynomial p(x) = a,-]xi1 + aizxi2 +o 4 a,-rxfr with0 <i; <ip, <--- <irand aj; +# 0 real constants for
jef{1,2,...,r}. When a;, @i, < 0, we say that aj, and ai,, have a variation of sign. If the number of variations of signs is m, then p(x)

has at most m positive real roots. Moreover, it is always possible to choose the coefficients of p(x) in such a way that p(x) has exactly
r — 1 positive real roots.
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3. Proof of statement (a) of Theorem 1

We write system (3) in the generalized polar coordinates x = rcos@, y = r% sin6, and we obtain the differential equation

dr

19 = Po(r.0) +&F (r.0) + 0(e?), 9)
in the standard form for applying the averaging theory of first order described in Section 2, where
hy(0)
&1(0)
1602, (cos? 6 + 2sin”6)

rig1(6)?

F(r,0) =

T,

F] (r,@) =

(Q(r cos@,r?sin@)p(rcosH, r*sin6)

— P(rcos@,r*sin@)q(rcos @, r? sin 9)),

h1(0) = rcosf(cos® O ((a® + (bn — 2a3)*) sin®
— 8a01030) — 8ag1 (o1 + by sin ) sin ).

Note that the differential Eq. (9) satisfies the assumptions of Theorem 2. Consider r(6, ) the periodic solution of the differ-
ential equation dr/d6 = rhy(0)/g,(0) such that r(0, ry) = ro. For solving this differential equation we take z = sin6 in g;(6), and
we obtain a polynomial of degree 4 in z which can be factorized in the form

812 =Hi(z-21)(z - 22)(z2 - 23)(z2 — 24),

where H; = a? + (by; — 2a)2, the coefficients of g5(2) = (z—2z1)(z—2;) and g5(2) = (z — z3)(z — z4) are reals, and z; are the
complex roots of g, fori=1,...,4 given by

| Ny [Ny
z1=H3;— |— —2H,, z;=H3;— |—= +2H,,
1 3 le 2 2 3 H12+ 2
N] NZ
z3=H | — —2H,, z4=H | —= + 2H,,
3 3+ le 2 4 3+ H12+ 2

with

Hy = _%’ Hy = ao1 (4d0 — 2bn) ’

T a? + (b1 — 2ax0)?
Ny = a* + 20 (—2a§; + 4agi Ha (b — 2az0) + (byy — 2030)?)

+ (b — 2a30)° (4a01 (ao1 + 2Ha (b — 2a30)) + (biy — 2a3)?),
Ny = a* +2a?((byy — 2a30)* — 2001 (a1 + 2Hz (byy — 20)))

+ (b1 — 2a30)* (4ao1 (@01 + 2Hy (2430 — b11)) + (byy — 2a30)?).

Thus the differential Eq. (9) with & = 0 can be rewritten into the form

dr 1 (acos@+ﬂsin9cos@ ycos@—i—Ssin@cos@)

- =7r—
d0  Hi\ Ag+A;sin@ +sin’0 By + By sinf +sin6

(10)

where Ay = 21z, A| = —z1 — 23, By = 7324 and By = —z3 — z4 and the parameters ¢, 8, y and ¢ are the solutions of the system
By + Aoy + 8ap1az0 = 0,
BBo + By + A1y +Aod — a® + 8ad, — 4ad, + 4ayobyy — b? = 0,
BB+ o+ y +A18 —8anmay + 8amby =0,
B + 8 + a* + 4a3, — 4axby + b3 = 0.
The solution of the differential Eq. (10) is
r(0,10) = k(@)ro = roe"1@ky(0),
where
1 [ Qa—AiB) (arctan % — arctan %) 2y —B;9) (arctan w — arctan %>

JR 7
ki(0) = H R + 7 :
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ks (0) = Ay 7 By~ (Ag + sin @ (A; + sin@)) %7 (By + sin 0 (B, + sin@)) .
S = 4B, — B2,
R = 4A, — A2,
Solving the variational Eq. (7) for our differential Eq. (9) we get that the fundamental matrix is M(6) = k(6). Note that M(6)

does not depend on ry. Using the polynomials p and g given in (3) and system (2) we have that the integrant of the integral (8)
for the differential Eq. (10) is

. L W(0)fi(0)

M 1(9)1:1(9,"(9,7'0)) = ;W
& WO) FO) (M Oky(0)) 2
=20 £(0)?M(®)

(6, 19) 2

7
)

i=0
where
fo(0) = 8ad,dog sin b + 8ag;azedog cos? 0,
f1(6) = cos® 6 (a*coo + 8ag1 az0d10 + 4a50Co0 — 4a20b11Co0 + b Coo)
+ 8ag sinf cos 6 (ag;dig — b11Coo),
f2(6) = cos* 0 (aPcrp + 8ag; az0d0 + 4a3C10 — 4a20b11C10 + b1 C10)
+ 8a2,do; sin® 6 + 8ag; sin 6 cos® 8 (ag; a0 + az0dor — b11c10),
f3(0) = sin6 cos® 0 (a*co; + 8ad,d30 + 8ag1az0d11 — 801 b11C20 + 4a3Co1
— dayobyicor + b3 cor) + €os® 0 (aPcag + 8ag Aaodzo + 40220
— 4ay0b11Ca0 + b2, C20) + 8ag; sin” A cos O (agydqy — by1Cor).
fa(0) = sin6 cos* 0 (a®cyy + 8ag1a20dx1 — 8agib11C30 + 4a30C11
— dayobyicn + b2 cnr) + c30 cos® O (a? + 4a2, — dazbyy + b))
+ 8a2,dgy sin® 6 + 8ag; sin® O cos? A (ag; day + azodoa — bici),
f5(6) = sin? @ cos® O (a’coy + 8ag1az0d12 — 8ag1b11Ca1 + 4a5yCon
— dayobiicoy + b?coa) + €1 sin B cos® O (a? + 4ad, — 4axby; + b2))
+ 8ag; sin® @ cos 0 (agid1z — b11Co2).
fs(0) = c125in* 0 cos* 0 (a® + 4a3, — 4axbq; + b?,) + 8a3,dos sin 6
— 8dg; sin® 0 cos? 6 (by;¢1z — Aa0dg3),
f7(6) = co3sin® 0 cos® O (a® + 4a3, — 4azby + b3;)
— 8agby1¢o3 sin® 0 cos 6,
W() = —8ag;(2sin* 6 + cos? 6).
Computing the integral (8) we obtain

1 2 1 M. 2
Flro) =5 /0 M O)F (0. 76, 19))d0 = 5 > "1 /0 A(0)d6,
i=0

where the function A;(0) are defined in the statement of Theorem 1.
If i is odd then it is easy to check that f;(0) = —f;(6 + 7 /2), fori=0,..., 7,and 6 € [0, /2] U[m, 37/2]. Since that k{(0) =
k(0 +1/2), ky(0) =ky (0 +7/2), M(B) = M(O +m/2) and W (O) =W (O + 1 /2), for 6 € [0, /2] U[m, 37 /2], we easily obtain
[ W) fi®) e Ok (0))°
£1(0)°M(©)
_ /f WO +7/2fi0 + 7/ Pke(@ +7/2)
0 21(60 +7/2)°M(6 + 7 /2)
_ / WO EOk6)
0 21(0)°M(6)

/E " A 0)dO =
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= —/%A,-(e)de,
0
T T ks i—2
" A 0)d0 - /2 WORO) V@) 1o
ki ¥ g1(0)°M(9) |
- fﬁ WO +7/2)(0 +7/2) (e Pla0 +7/2) " 4y
4 21(0 +7/2)*M(0 + 7 /2)
_[F WORO) Ok (0) i
n 21(0)°’M(9)
- —/TA,‘(H)dGA

Therefore for i odd we have
2
/ A6)d6 = 0.
0

Analogously if i is even then a function g € { ky, ky, M,W, f;, fori=0, ..., 7} satisfies that g(0) = g(@ +m/2) if 0 € [0, /2] U |,
37 /2]. Thus we easily can check that

% T 37” 2
/ A0)d6 = / A(6)d6 and / A0)d6 = /3 A(0)d6.
0 % T T‘r
So we have
2 3z
/ A6)d6 = 2/ A6)d6 0.
0 2
Therefore the function F defined in (8) can be written as
1 E 2k—2 2
.
F(ro) = 5 gro /O Ay (0)d6. (1)

Note that the coefficients A,,(0) in (11) are linearly independent for k = 0, .., 3. Thus by the generalized Descartes Theorem,
the averaged function F has at most 3 positive simple zeros which provide limit cycles of system (3). Hence statement (a) of
Theorem 1 is proved.

4. Proof of statement (b) of Theorem 1

In this section we present examples that illustrate statement (b) of Theorem 1 forl =0, 1, 2, 3.
Consider the cubic polynomial differential system with a center at the origin

. . x3
X=x*+y, y=-"7+3,
with the perturbation
! . x3
X=x+y, y= -7 +3xy + £(doo + daoX* + d1 X2y + do3y?). (12)

Writing system (12) in the coordinates x = rcos @ and y = r2 sin@, and taking the quotient /6 we obtain the following system
in the standard form of Theorem 2 for applying the averaging theory

dr

0 =FR(r,0) +eF(r,0) + 0(e?), (13)
where
rcos@(—15sin6 +sin (30) + 16 cos (20) — 32)
R(r.0) = — - .
4(85sin” 6 + cos* 6 — 4sin6 cos? 0)
16H(6) (doo + do3r® sin® 6 + daor? cos? 6 + dyy 1 sin 6 cos? 6)
F(r,0) = - ,

r2(8 sin® 6 + cos* @ — 4sin6 cos? 9)2
H(0) = (cos?0 +sin6)(cos? 6 + 2sin’ ).
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Thus for system (13) we have

3/4 5 4sin6
2%/ exp (-3 arctan )

~4sinf+cos (20)+1
{‘/—8 sinf — 8sin (30) — 28 cos (26) + cos (40) + 35
and the integrant of the integral (8) of system (13) is

A(0) +B(O)r3 +C(0)rg +D(O)r§

k(0) = M(6) =

3
where
AG) 231/4dgoH (6) exp (§ arctan ﬁﬁf@w)
(—8sinf — 8sin (30) — 28 cos (20) + cos (40) + 35)5/4°
5©) 237/4dy0H(0) cos? 0 exp (3 arctan ﬁgg)(zom)
(—8sinf — 8sin (30) — 28 cos (20) + cos (40) + 35)7/4°
o) = 243/4d2.1H(0) sir%Q cos? 0 exp (-3 arctan ﬁgfew) |
(—8sinf — 8sin (30) — 28 cos (20) + cos (40) 4 35)9/4
D) = 249/4d o3 H(0) sin’ 6 exp (—% arctan ﬁgg’(wm)

~ (—8sin0 — 85in (36) — 28 cos (20) + cos (40) + 35)11/4°

Computing numerically the integral (8) for system (13) we obtain

F(rp) = rlZ ( —427527.30772.. doo — 590.65521.. dyorg — 133.80248.. d;7g — 48202.93168.. d03rg).
0

Taking
i -36 g 49 G 14
00 = 127527.30772..° 2° T 590.65521..° 2' T 133.80248.°
-1
o3 = 48502.93168..

the function F becomes
36 +49r2 + 1415 + 15
r2 '

F(ro) =

We can easily check that 7 does not have positive simple zeros and by Theorem 2 the perturbed system (12) does not have limit
cycles with ¢ # 0 sufficiently small. So statement (b) is proved for [ = 0.

Get
0 36 i 41 b 4
00 = 427527.30772..° 2° ~ 590.65521.." '~ 133.80248.°
-1
o3 = 78502.93168.

the function F is now given by
—36—413—4r3+r8.

F(ro) = 2
0

Thus we have that F has a unique positive simple zero given by rp; = 3 which by Theorem 2, provide 1 limit cycle of the
perturbed system (12) with & # 0 sufficiently small. This shows statement (b) for [ = 1.

Taking
g -36 g 23 b 12
00 = 127527.30772..° 2° T 590.65521..° 2' T 133.80248.°
-1
o3 = 48502.93168..

the function F turns into
36 +23r2 — 1213 +1§
r2 '

F(ro) =

We can check that F has exactly 2 positive simple zeros given by ry 1 = 2 and rp , = 3 which by Theorem 2, provide 2 limit cycles
of the perturbed system (12) with & # 0 sufficiently small. Therefore statement (b) is proved for [ = 2.
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Finally, taking
. 36 G 49 i 14
00 = 427527.30772.. 2° T 590.65521..° '~ 133.80248.°
-1
do3 = 48502.93168..

the function F becomes
-36 + 49% - 14r§ + rg
r2 '

Thus it is easy to check that F has exactly 3 positive simple zeros given by rp 1 = 1, 19, = 2 and rp 3 = 3 which by Theorem 2,
provide 3 limit cycles of the perturbed system (12) with & # 0 sufficiently small. Hence statement (b) is proved.

F(ro) =
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