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Abstract In this paper we approach the issue of Clifford
algebra basis deformation, allowing for bilinear covariants
associated to Elko spinors which satisfy the Fierz–Pauli–
Kofink identities. We present a complete analysis of covari-
ance, taking into account the involved dual structure associ-
ated to Elko spinors. Moreover, the possible generalizations
to the recently presented new dual structure are performed.

1 Introduction

The so-called Elko spinors are a new set of spinors with a
complex and interesting structure on their own. Historically,
they were proposed by Ahluwalia and Grumiller when study-
ing the properties of the Majorana spinor. Similar to them,
Elko spinors are eigenspinors of the charge conjugation oper-
ator,C , but they have dual helicity and can take positive (self-
conjugate) and negative (anti-self-conjugate) eigenvalues of
C , while the Majorana ones take only the positive value and
carry single helicity.

From the physical point of view, Elko spinors are con-
structed to be invisible to the other particles (i.e., they do
not couple with the fields of the Standard Model, except for
the Higgs boson), becoming a natural candidate to dark mat-
ter [1]. Mathematically, the dual-helicity peculiarity forces
one to a redefinition of the dual spinor structure, as can be
found in [1]. This idiosyncrasy reflects itself when construct-
ing the spin sums for the Elko spinors, which break Lorentz
symmetry. However, the spin sums are invariant under trans-
formations of the very special relativity (VSR) [2–4]. There
are several areas in which Elko spinors have been studied,
from accelerator physics [5–8] to cosmology [9–19]. In par-
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ticular, the appreciation of new dual structures brings about
interesting possibilities within the algebraic scope [20,21].

As is well known, much of the physics associated to spinor
fields is unveiled from its bilinear covariants for the simple
reason that single fermions are not directly experienced. In
this context it is indeed important to pay special attention to
the subtleties of Clifford algebra when associating real num-
bers to the bilinear covariants [22]. It may sound as a sec-
ondary issue, but in fact the opposite is true. In two outstand-
ing papers in the 1990s [23,24], Crawford worked out sev-
eral important formalizations concerning the bispinor alge-
bra. Among these, a rigorous procedure to obtain real bilinear
covariants was developed. The general aim of this paper is
to make use of this procedure to envisage what (if any) bilin-
ear covariants are real when dealing with mass dimension
one spinors. It is our hope that the results to be shown here
may shed some light on the observables associated to these
spinors. With suitable, but important, changes we take advan-
tage of the formalism developed in [23] in order to study the
bilinear covariants associated to the Elko spinor case. After
a complete analysis, including the right observance of the
Fierz–Pauli–Kofink (FPK) [25–27] relations, we arrive at the
subset of real bilinear covariants.

Quite recently, new possibilities concerning the field
adjoint possibilities were thoroughly investigated in [28,29].
These formalizations may lead to a local and full Lorentz
spin 1/2 field also endowed with mass dimension one, evad-
ing, thus, the Weinberg no-go theorem [30]. We also have
investigated the bilinears to this case, and to some extent the
aforementioned program may be applied, leading to similar
conclusions.

This paper is organized as follows: in Sect. 2 we intro-
duce the bilinears covariant and proceed with the Clifford
algebra basis deformation; then, in Sect. 3, we analyze its
covariant structure. Both these sections are related to Elko
spinors as objects whose spin sums break Lorentz sym-
metry. The natural background symmetry is then encoded
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into the orthochronous proper Lorentz subgroup, leaving for
Appendix B an analogous investigation taking into account
VSR Elko spinors. In Sect. 4, we conclude with some remarks
about the results we found.

2 Bilinear analysis

Let ψ be a given spinor field belonging to a section of the
vector bundle PSpine1,3

(M) × ρC
4 where ρ stands for the

entire representation space D(1/2,0) ⊕ D(0,1/2), or a given
sector of such. The bilinear covariants associated to ψ , as
usual, read

σ = ψ†γ0ψ, ω = −ψ†γ0γ0123ψ, J = ψ†γ0γμψ γ μ,

K = ψ†γ0iγ0123γμψ γ μ, S = 1

2
ψ†γ0iγμνψγ μ ∧ γ ν,

(1)

where the Dirac matrices are written in the chiral (or Weyl)
representation,

γ0 =
(
O I

I O

)
, γi =

(
O σi

−σi O

)
. (2)

On general grounds, it is always expected that one can asso-
ciate (1) to physical observables. For instance, in the usual
case, bearing in mind the relativistic description of the elec-
tron, σ is the invariant length, J is associated to the current
density, K is the spin projection in the momentum direction,
and S is the momentum electromagnetic density. The bilinear
covariants, as is well known, obey the so-called Fierz–Pauli–
Kofink (FPK) identities, given by [31]

J2 = σ 2 + ω2, JμKν − Kμ Jν = −ωSμν − σ

2
εμναβ S

αβ,

JμK
μ = 0, J2 = −K 2. (3)

It can be seen that the physical requirement of reality can
always be satisfied for Dirac spinors bilinear covariants [23],
by a suitable deformation of the Clifford basis leading to
physical appealing quantities. Unfortunately, the same can-
not be stated for mass dimension one spinors, as Elko spinors.
Actually, a straightforward calculation shows an incompati-
bility in the usual construction of bilinear covariants. In fact,
one of the FPK identities is violated. This is due to the new
dual structure associated to these spinors. It is worth to men-
tion that the main difference between the Crawford deforma-
tion [23,24] and the one to be accomplished here is that in
the former case, the spinors are understood as Dirac spinors,
i.e., spinorial objects endowed with single helicity. There-
fore, the dual structure is the usual one ψ̄( p) = ψ†( p)γ0

and the required normalization is also ordinary. On the other
hand Elko spinors, due to their own formal structure, need a

dual redefinition
¬
λ

S/A

h ( p) = [�( p)λS/A
h ( p)]†γ0. This redef-

inition leads, ultimately, to a new normalization, culminating
in a basis deformation satisfying the FPK identities.

Let us make these assertions more clear by explicitly
showing the mentioned problem. In order to guarantee the
sequential readability of the paper we leave for Appendix A
a brief, but self contained, overview on the spinorial formal
structure of Lorentz breaking Elko fields. Taking advantage
of what was there defined, we use as an example the spinor
λS{−,+}( p) and its dual given by, respectively,

λS{−,+}( p) = ϒ−

⎛
⎜⎜⎝

−i sin(θ/2)e−iφ/2

i cos(θ/2)eiφ/2

cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

⎞
⎟⎟⎠ (4)

and1

¬
λ

S

{−,+}( p) = ϒ+
× ( −i sin(θ/2)eiφ/2 i cos(θ/2)e−iφ/2 −cos(θ/2)eiφ/2 −sin(θ/2)e−iφ/2 ).

(5)

We stress once again that the dual structure associated to
Elko spinors is obtained in a very judicious fashion in [29],
leaving no space for modifications, an exception being made
for the generalizations found in Ref. [1,29]. Using (4) and
(5), as a direct calculation shows, Eq. (1) gives

σ = −2m, (6)

ω = 0, (7)

J0 = 0,

J1 = 2im cos θ cos φ,

J2 = 2im cos θ sin φ,

J3 = −2im sin θ, (8)

K0 = 0,

K1 = −2m sin φ,

K2 = 2m cos φ,

K3 = 0, (9)

and

S01 = −2im sin θ cos φ,

S02 = −2im sin θ sin φ,

S03 = −2im cos θ,

S12 = S13 = S23 = 0. (10)

As can be verified, the above bilinear covariants do not obey
the FPK equations. More specifically, the relation contain-
ing Sμν is not satisfied. In view of this problem, we revisited
the formulation performed in [23] in order to find an appro-
priate Clifford basis upon which the bilinear covariants can
be constructed, leading to the right verification of the FPK

1 The explicit form of the boost factor, ϒ±, is defined in (A7).
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relations. The price to be paid is that only a subset of bilinear
covariants comprises real quantities.

2.1 Deformation of the Clifford algebra basis

As is well known, the very constitutive relation of the Clifford
algebra is given by

{γμ, γν} = 2gμνI, μ, ν = 0, 1, 2, . . . , N − 1, (11)

where gμν is an N = 2n even-dimensional space-time met-
ric, which in Cartesian coordinates has the form diag(1,−1,

. . . ,−1). The generators of the Clifford algebra are then the
identity I and the vectors γμ, usually represented as square
matrices. The standard approach dictates the complementa-
tion of the Clifford algebra basis, in order to guarantee real
bilinear covariants. This complement is performed by the
composition of the vector basis, used as building blocks [23],

γ̃μ1μ2···μN−M ≡ 1

M !εμ1μ2···μN γ μN−M+1γ μN−M+2···γ μN .

(12)

As is easy to see, the lowest M value is 2 (the smallest combi-
nation), nevertheless, it runs in the range M = 2, 3, . . . , N .
In this respect, the elements that form the (real) Clifford alge-
bra basis are

{�i } ≡ {I, γμ, γ̃μ1μ2...μN−2 , . . . , γ̃μ, γ̃ }, (13)

where γ̃ ≡ γ̃μ1μ2···μN−M .
In view of the new elements appearing in the definition

of the Elko dual, it is necessary to adapt the Clifford algebra
basis complementation. As shown previously, it is absolutely
necessary for the right appreciation of the FPK relations. We
shall stress that for the Dirac spinorial case, the set (13) is
suitably deformed (by a slightly different normalization) in
order to provide real bilinear covariants. We shall pursue
something similar here, and we will be successful in correct-
ing the problem related to the FPK relations. This notwith-
standing, only a subset of bilinear covariants ends up as real
in the Elko spinorial case.

The first two bilinears arising from the Clifford algebra
basis are

σ ≡ ¬
λh( p)Iλh( p), (14)

Jμ ≡ ¬
λh( p)γμλh( p), (15)

where
¬
λh( p) = [�( p)λh( p)]†γ0 is identified as the Elko

dual spinor.2 The operator �( p) is responsible to change
the spinor “helicity” (or rather the type of Elko spinor), here
labeled by h. All the details concerning such an operator can

2 We once again refer the reader to Appendix A for the definition of
the dual, as well as its necessity.

be found in Ref. [29]. The requirement σ = σ † leads auto-
matically to γ0 = �†( p)γ †

0 �( p) since �2( p) = 1. This
constraint is readily satisfied, in such a way that (14) is real.3

By the same token, one should require Jμ = J †
μ. This imposi-

tion leads to the constraint γ0γμ = �†( p)γ †
μγ

†
0 �( p) which,

however, cannot be fulfilled. This is an important point. In
fact, the counterpart associated to Dirac spinors is simply
γ −1

0 γ †
μγ0 = γμ, a constraint naturally achieved. The new

dual structure, therefore, has forced a new interpretation of
the bilinear covariants. First of all, as a matter of fact, for
mass dimension one spinors, Jμ cannot be associated to the
conserved current. Obviously, in order to have ∂μ Jμ = 0
it is necessary to use the Dirac equation. This truism has
lead to interesting algebraic possibilities [20], but the point
to be emphasized here is that there is no problem in having
a complex quantity related to the bilinear Jμ. The additional
important consequence of an imaginary Jμ is that in order to
satisfy the FPK equations Kμ or Sμν must also be imaginary.

Notice that, instead of the usual Crawford deformation,
here we do not arrive at an entire real bilinear set. In fact,
in trying to implement the full reality condition it is manda-
tory to change the building block of the Clifford basis γμ. It
would inevitably lead, however, to a change in the constitu-
tive algebraic relation of the Clifford algebra (11). Therefore,
this change must be excluded. It is important to emphasize,
moreover, that even if we were willing to accept a modifica-
tion of (11), the resulting constraint needed to get a real set
of bilinears cannot be fulfilled.

Having said that, we may proceed deforming the usual
basis in order to redefine bilinear covariants which satisfy
the FPK identities. Making use of Eq. (12) and considering
that the norm for the Elko spinor is real we have

[¬λh( p)γ̃μ1μ2···μN−Mλh( p)]†

= (−1)M(M−1)/2¬
λh( p)�( p)γ̃μ1μ2···μN−M�( p)λh( p).

(16)

It can be readily verified that the following redefinition of
γ̃μ1μ2···μN−M is appropriate to ensure Kμ to be a real quantity:

γ̃μ1μ2···μN−M

= (i M(M−1)/2/M !)�( p)εμ1···μN γ μN−M+1···γ μN �( p).

(17)

With the redefinition above, one is able to define the bispinor
Clifford algebra basis as in (13), but with the gammas given
by (17). As an example, consider the four-dimensional space-
time. In this case the basis is given, accordingly, by

3 Notice that it must be proved that the bilinears composed with �( p)’s
are covariant. We shall investigate this issue in the next section.
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M = 4 ⇒ γ̃ = −i�( p)γ5�( p), (18)

M = 3 ⇒ γ̃μ = −�( p)γ5γμ�( p), (19)

M = 2 ⇒ γ̃μν = i

2
�( p)γμγν�( p), (20)

where γ5 = −iγ0γ1γ2γ3. Now, with the real Clifford algebra
basis at hand, it is possible to construct the bilinear forms,
given by

I ⇒ σE = ¬
λh( p)Iλh( p),

γμ ⇒ JμE = ¬
λh( p)γμλh( p),

γ̃ ⇒ ωE = −i
¬
λh( p)γ5λh( p), (21)

γ̃μ ⇒ KμE = −¬
λh( p)�( p)γ5γμ�( p)λh( p),

γ̃μν ⇒ SμνE = i
¬
λh( p)�( p)γμγν�( p)λh( p).

From the above construction, after a simple but tedious
checking process, one ensures that the slight modifications of
the bilinear covariants are enough to guarantee that the FPK
identities (3) are satisfied. After all, we arrive at σ and Kμ

as real non-null quantities. As remarked in the Introduction,
it is our hope that these quantities shall be considered in the
determination of possible experimental outcomes of the Elko
construction.

3 Covariant structure

So far we have worked out quantities defined as (21) claiming
that they must be faced as bilinear covariants. While they are
bilinear quantities, their covariant structure must be evinced.
The whole issue is related to the (necessary) presence of the
�( p) operator.

Suppose that the Elko spinor belongs to a linear represen-
tation of the symmetry group in question, in such a way that,
seen in another frame, the field undergoes a transformation

λ
′S/A
h ( p′) = S(�)λ

S/A
h ( p). (22)

There is a Dirac-like operator that annihilates Elko spinors
[29] (not related to the field dynamics) given by

(γμ p
μ�( p) ± m)λ

S/A
h ( p) = 0, (23)

from which we shall investigate the covariance. Applying the
transformation (22) for the fields in Eq. (23), we find

(γμ p
′μ�( p) ± m)λ

′S/A
h ( p′) = 0. (24)

The momentum can be written as pμ ↔ i∂μ and the partial
derivative transforms usually as ∂ ′μ = �

μ
β∂β . Therefore, in

order to ensure covariance of Eq. (23) the following behavior
of the Dirac matrices and the �( p) operator, respectively, is
necessary:

γ ′
β = S(�)γμS

−1(�)�
μ

β, (25)

�′( p) = S(�)�( p)S−1(�). (26)

Equation (25) is the usual requirement to be posed to the
gamma matrices in order to achieve a covariant Dirac equa-
tion. The requirement (26) is the new ingredient of the Elko
theory, which must be investigated.

Interestingly enough, from Eq. (A13), along with (25), it
is possible to see that [29,32]

�′( p) = 1

2m
(λ′S{+−}( p′)λ̄′S{+−}( p′) + λ′S{−+}( p′)λ̄′S{−+}

× ( p′)−λ′A{+−}( p′)λ̄′A{+−}( p′)−λ′A{−+}( p′)λ̄′A{−+}( p′)),

= 1

2m
S(�)(λS{+−}( p)λ̄S{+−}( p) + λS{−+}( p)

× λ̄S{−+}( p) − λA{+−}( p)λ̄A{+−}( p)

− λA{−+}( p)λ̄A{−+}( p))γ0S
†(�)γ0,

and therefore

�′( p) = S(�)�( p)S−1(�), (27)

as expected. Once having verified the right transformations,
we are able to evince the bilinear quantities. Starting from σ ,
we have

σ ′
E = ¬

λ

′S/A

h ( p′)λ′S/A
h ( p′)

= λ
†S/A
h ( p)S†(�)S−1†(�)�†( p)S†(�)γ0S(�)λ

S/A
h ( p)

= ¬
λ

S/A

h ( p)λS/A
h ( p),

= σE ,

implying σ to be a scalar. Repeating the same procedure for
the remaining bilinear forms, we obtain

J ′
μE

→ �ν
μ

¬
λh( p)γνλh( p), (Vector),

ω′
E → det(�)i

¬
λh( p)�( p)γ5�( p)λh( p), (Scalar),

K ′
μE

→ −det(�)�ν
μi

¬
λh( p)�( p)γ5γν�( p)λh( p),

(Vector),

S′
μνE

→ i

2
�α

ρ�
β

ϑ

¬
λh( p)�( p)γαγβ�( p)λh( p),

(Bivector).

Therefore, the nomenclature previously adopted is indeed
adequate to the present case. We shall conclude pointing
out that the investigation of covariance, which concerns the
SIM(2), HOM(2) Lorentz subgroups, is taken into account
in Appendix B. The analysis is quite analogous, and the phys-
ical statements are essentially the same.
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4 Final remarks

In this paper we have shown that it is necessary to deform the
usual Clifford algebra in order to ascertain the right obser-
vance of the Fierz–Pauli–Kofink identities, regarding Elko
spinor fields. As a result, only a subset of bilinear covariants
are real. After have found the proper deformation, and having
observed its dependence on the new dual operator, we study
the covariance of the relevant quantities showing explicitly
its behavior under a typical transformation of the relativistic
group in question.

We would like to conclude this paper by returning to the
point raised at the end of the introductory section. As already
mentioned, in Refs. [29,30] a subtle way is described to evade
Weinberg’s no-go theorem, by exploring another possibility
of the dual structure, this time constructing the dual with
the additional requirement of Lorentz invariant spin sums.
Additional mathematical support was given in [28]. In the
formulation presented in [29], great care was taken in treating
the new dual structure in order not to jeopardize the simplest
bilinear σ , i.e., the spinor was required to be an eigenspinor of
the new operator, say O, entering into the dual redefinition.4

By assuming associativity between O and S, whose meaning
is the same of Sect. 3 (except that the full Lorentz group is the
relativistic group at hand), and that Eq. (23) is still holding,
we have

(iγμ�
μ
β∂

′β�( p) ± m)(S(�)O)−1O′
λ

′S/A
α = 0, (28)

which can be recast into the form

(iγ
′
β∂

′β S(�)�( p)O−1S−1(�)O′

±mS(�)(S(�)O)−1O′
)λ

′S/A
α = 0. (29)

Therefore the following identifications immediately hold:

S(�)O−1S−1(�)O′ = 1, (30)

�′( p) = S(�)�( p)(S(�)O)−1O′
. (31)

From (30) one sees that the new operator must transform as
O′ = S(�)OS−1(�), leading to the same transformation
rule of (26) for the operator �( p). In this vein the covari-
ance of (23) is ensured. The whole covariant analysis of the
corresponding bilinear quantities then follows immediately,
leading essentially to the same results.
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Appendix A: A brief overview: the Elko formal structure

Elko spinors are eigenspinors of the charge conjugation oper-
ator C

CλS/A( p) = ±λS/A( p), (A1)

where

C =
(

O i�
−i� O

)
K , (A2)

and K takes the complex conjugates of any spinor that
appears on the right side, while � is the Wigner time-reversal
operator in the spin 1/2 representation, which is given by
[1,33]

� =
(

0 −1
1 0

)
. (A3)

It is worth mentioning that Elko spinors form a complete set
of eigenspinors ofC with positive (S) and negative (A) eigen-
values. Another important aspect of these spinors is that they
are constructed in such a way that they carry dual helicity.

From the last considerations, the explicit form of Elko
spinors, in an arbitrary referential, is

λS{±,∓}( p) = �±(pμ)λS{±,∓}(0) (A4)

and

λA{±,∓}( p) = �±(pμ)λA{±,∓}(0). (A5)

The action of the boost operator �±(pμ) over the spinors, in
the rest-frame, is given by

�±(pμ)λ
S/A
{±,∓}(0) =

√
E + m

2

(
1 ± p

E + m

)
︸ ︷︷ ︸

boost factor

λ
S/A
{±,∓}(0).

(A6)

To summarize the notation, we choose to define the boost
factor by

ϒ± =
√

E + m

2

(
1 ± p

E + m

)
. (A7)

The four rest spinors are shaped by two self-conjugate

λS{−,+}(0) =
(+i�[φ+

L (0)]∗
φ+
L (0)

)
,

λS{+,−}(0) =
(+i�[φ−

L (0)]∗
φ−
L (0)

)
, (A8)

and the other two are anti-self-conjugate
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λA{−,+}(0) =
(−i�[φ+

L (0)]∗
φ+
L (0)

)
,

λA{+,−}(0) =
(−i�[φ−

L (0)]∗
φ−
L (0)

)
. (A9)

The associated components are defined by imposing them
to be eigenfunctions of the helicity operator, resulting in the
left-hand components given by

φ+
L (0) = √

m

(
cos(θ/2)e−iφ/2

sin(θ/2)eiφ/2

)
,

φ−
L (0) = √

m

(− sin(θ/2)e−iφ/2

cos(θ/2)eiφ/2

)
(A10)

and the right-hand components presented by

φ+
R (0) = √

m

(−i sin(θ/2)e−iφ/2

i cos(θ/2)eiφ/2,

)
,

φ−
R (0) = √

m

(−i cos(θ/2)e−iφ/2

−i sin(θ/2)eiφ/2

)
. (A11)

Once having addressed the formal structure for the Elko
spinors, we can now define the dual by the following general
formula:

¬
λ

S/A

h ( p) = [�( p)λS/A
h ( p)]†γ0, (A12)

with the operator �( p) defined as

�( p) ≡ 1

2m

(
λS{+−}( p)λ̄S{+−}( p) + λS{−+}( p)λ̄S{−+}

( p) − λA{+−}( p)λ̄A{+−}( p) − λA{−+}( p)λ̄A{−+}( p)
)
,

(A13)

which in a matrix form reads

�( p) =

⎛
⎜⎜⎜⎜⎝

i p sin(θ)
m

−i(E+p cos(θ))e−iφ

m 0 0
i(E−p cos(θ))eiφ

m
−i p sin(θ)

m 0 0

0 0 −i p sin(θ)
m

−i(E−p cos(θ))e−iφ

m

0 0 i(E+p cos(θ))eiφ

m
ip sin(θ)

m

⎞
⎟⎟⎟⎟⎠ , (A14)

where �2( p) = I, and �−1( p) indeed exists and is equal to
�( p) itself [29]. Now, the explicit form for the dual can be
readily written as

¬
λ

S/A

{−,+}( p) = +i[λS/A
{+,−}( p)]†γ0, (A15)

¬
λ

S/A

{+,−}( p) = −i[λS/A
{−,+}( p)]†γ0. (A16)

For more details as regards the whole construction, please
see [29].

Appendix B: VSR Elko spinors

As is extensively shown in [2,3], Elko spinors can be under-
stood as objects carrying a linear representation of SIM(2) or
HOM(2) Lorentz subgroups. In this vein, it would be impor-
tant to explore a possible Clifford algebra basis deformation
in this case, if necessary.

In order to illustrate the situation, we shall make use of the
Elko spinors found in [3]. Notice that, in general, the helic-
ity operator does not commute with the VSR boost. There-
fore, one cannot freely choose the rest spinors as a basis for
such an operator. This is the kernel of the subtle difference
between the Elko spinors studied previously and the spinors
here investigated.

For an arbitrary momentum, it is possible to see that in the
VSR scope we have [3]

χ S{−,+}( p) = √
m

⎛
⎜⎜⎜⎜⎜⎜⎝

i
px−i py√
m(p0−pz)

eiφ/2

i
√

p0−pz
m eiφ/2√

p0−pz
m e−iφ/2

− px+i py√
m(p0−pz)

e−iφ/2

⎞
⎟⎟⎟⎟⎟⎟⎠

(B1)

as a prototype spinor and

¬
χ
S

{−,+}( p) = √
m

(
0 −i e−iφ/2√

p0−pz
m

eiφ/2√
p0−pz

m

0
)

(B2)

as its dual, whose construction obeys the same previous pre-
scription, i.e., χ

S/A
h ( p) = [�( p)V SRχ

S/A
h ( p)]†γ0. All the

aspects investigated in the main text have a parallel here.
The only differences are the general boost of VSR, which
reads

VV SR =

⎛
⎜⎜⎜⎜⎜⎜⎝

√
m

p0−pz
px−i py√
m(p0−pz)

0 0

0
√

p0−pz
m 0 0

0 0
√

p0−pz
m 0

0 0 − px+i py√
m(p0−pz)

√
m

p0−pz

⎞
⎟⎟⎟⎟⎟⎟⎠

,

(B3)
and the �( p)V SR operator. In order to find this last operator,
it is possible to see that starting from Eq. (A13), but replacing
the usual spinors by VSR Elko spinors (just as (B1)) in the
composition of �( p)V SR , one arrives at
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�( p)V SR =

⎛
⎜⎜⎜⎜⎜⎝

i(px−i py)eiφ

m
−i(px−i py)

2eiφ

m(p0−pz)
− ime−iφ

p0−pz
0 0

i(p0−pz)eiφ

m − i(px−i py)eiφ

m 0 0

0 0 − i(px+i py)e−iφ

m
−i(p0−pz)e−iφ

m

0 0
i(px+i py)

2e−iφ

m(p0−pz)
+ ieiφm

p0−pz
i(px+i py)e−iφ

m

⎞
⎟⎟⎟⎟⎟⎠

. (B4)

This operator acts in VSR spinors just as the �( p) opera-
tor does in the usual Elko spinors: it changes the spinor type,
obeys �2( p)V SR = 1, and has determinant equal to 1, ensur-
ing the existence of the inverse.

With such ingredients, it is possible to see that all the
previous steps are repeated here, namely: the FPK identities
are not respected, except if the Clifford basis undergoes the
same deformation (with �( p)V SR replacing �( p)); σV SR

and Kμ
V SR are non-null real quantities, ωV SR is zero, and the

remaining bilinears are imaginary. Besides, as Eq. (23) still
holds, the covariance structure is also the same, provided we
use (B3) instead of the usual Lorentz transformation.
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