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HIGHLIGHTS

e The study evaluated the effect of clomazone and nanoparticles in the tadpole livers.

e The exposure to sublethal doses present in the field causes liver damage in tadpoles.
¢ Exposed groups showed an increase in the frequency of melanomacrophage centres.

e Exposure to clomazone groups caused an increase of eosinophils and hepatic lipidosis.
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The use of agrochemicals in agriculture is intense and most of them could be carried out to aquatic
environment. Nevertheless, there are only few studies that assess the effects of these xenobiotics on
amphibians. Clomazone is an herbicide widely used in rice fields, where amphibian species live. Thus,
those species may be threatened by non-target exposure. However, nanoparticles are being developed to
be used as a carrier system for the agrochemicals. Such nanoparticles release the herbicide in a modified
way, and are considered to be more efficient and less harmful to the environment. The aim of this study
was to comparatively evaluate the effect of clomazone in its free form and associated with nanoparticles,
in the liver of bullfrog tadpoles (Lithobates catesbeianus) when submitted to acute exposure for 96 h.
According to semi-quantitative analysis, there was an increase in the frequency of melanomacrophage
centres, in the accumulation of eosinophils and in lipidosis in the liver of experimental groups exposed to
clomazone — in its free form and associated with nanoparticles — in comparison with the control group,
and the nanotoxicity of chitosan-alginate nanoparticles. The increase of melanomacrophage centres in all
exposed groups was significant (P < 0.0001) in comparison to control group. Therefore, the results of this
research have shown that exposure to sublethal doses of the herbicide and nanoparticles triggered
hepatic responses. Moreover, these results provided important data about the effect of the clomazone
herbicide and organic nanoparticles, which act as carriers of agrochemicals, on the bullfrog tadpole liver.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Amphibians have been considered to be the most vulnerable
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aquatic and land environments (Becker et al., 2009). In addition,
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amphibians have a permeable, moist and vascularized skin
(Stebbins and Cohen, 1995; Wake and Vredenburg, 2008), which
facilitates the absorption of xenobiotics that can be present in
bodies of water. Besides water contamination, several factors can
contribute to the global decline in the number of amphibians,
including climate changes, habitat fragmentation, competition with
exotic and invasive species and infections, usually caused by fungi
and other pathogens (Alford and Richards, 1999; Beebee and
Griffiths, 2005; Hayes et al., 2010; Mccallum, 2007; McMenamin
et al., 2008; Young et al., 2001). All these mentioned factors, asso-
ciated or isolated, could cause a decrease in the reproductive and
growth rates of amphibians (Hayes et al., 2010), as well as changes
in their behavior and performance, which could make them more
susceptible to diseases (Alford and Richards, 1999). Among these
factors, exposing amphibians to xenobiotics, such as pesticides
applied to crops, may negatively affect them. The pesticides can
cause death or trigger sub lethal effects (Krishnamurthy and Smith,
2011), which could affect the health of amphibian populations
found near to agriculture areas (Mann et al., 2009).

Xenobiotics induce several sub lethal effects on amphibians,
such as modification to cardiac functions (Costa et al., 2008; Dal-
Medico et al., 2014; Salla et al, 2016; Watson et al., 2014),
biochemical changes in several organs (Dornelles and Oliveira,
2014; Gilingordi et al., 2016; Maximiliano Attademo et al., 2015;
Peltzer et al., 2013; Pereira et al., 2013), as well as morphological
changes in the gonads (Abdalla et al., 2013; Li et al., 2015; Medina
et al,, 2012; Shi et al., 2014), testicles (Hayes et al., 2011), kidney
(Cakici, 2015; Loumbourdis, 2005; Marques et al., 2009), skin (Van
Meter et al., 2014; Walker et al., 1998) and liver (Bernabo et al.,
2014; Ganser et al.,, 2003; Grassi et al., 2007; Lou et al., 2013;
Loumbourdis, 2005; Marques et al., 2009). Xenobiotics can affect
the reproduction, development and survival (Devi and Gupta, 2013;
Finch et al., 2012; Flynn et al., 2015; Hooser et al., 2012; Svartz et al.,
2012), among other effects such as endocrine alterations
(Falfushynska et al., 2016), genomic damages (Gongalves et al.,
2015) and teratogenicity (Chae et al., 2015).

Brazil is a country with extensive agricultural areas that inten-
sively use pesticides on crops. These pesticides can reach water
bodies and lead to damage of non-target species that inhabit re-
gions close to these areas (Botelho et al., 2012; Pateiro-Moure et al.,
2011). One of the agrochemicals used in agriculture is the cloma-
zone herbicide, which is widely applied in rice fields located in the
south of Brazil (Cattaneo et al., 2012; Marchesan et al., 2007). In
fact, studies have confirmed the presence of clomazone residues in
water bodies close to Brazilian rice fields (Marchesan et al., 2007;
Zanella et al., 2008). The presence of amphibians close to these
rice fields and bays have been reported by Pastor et al. (2004) in
Spain, Colombo et al. (2008) in Brazil, Hyne et al. (2009) in
Australia, Bahaar and Bhat (2011) in India, and Liu et al. (2011) in
China. However, there are no studies on the sub lethal effects of
clomazone in amphibians. Currently, ecotoxicological studies with
the clomazone herbicide are on fish (Menezes et al., 2013; Miron
et al., 2008; Pereira et al., 2013). Therefore, it is relevant to eval-
uate the sub lethal effects induced by clomazone in amphibians.

This study also proposes to evaluate whether the association of
nanoparticles with clomazone makes it less harmful for non-target
amphibians than the active principle of this herbicide in its isolated
form, which is usually applied in agricultural fields.

Currently, new technologies are being applied to herbicide for-
mulations in order to release this agrochemical in a modified way,
which could decrease their ability to contaminate the environment.
Nanospheres, which are a type of nanoparticle, are associated with
pesticides for use on agricultural fields (Grillo et al., 2012; Silva
et al., 2011, 2012). The chitosan-alginate nanoparticles (AG/QS)
associated with the clomazone herbicide release small quantities

over time and therefore reduce the amount of the bioavailable
chemical compound in the environment (Silva et al., 2010).

Simultaneously with nanotechnology development, it is neces-
sary to assess the safety of nanospheres for different animal species.
For this reason, nanotoxicology has recently emerged as a research
area with a focus on testing whether or not the presence of nano-
particles in the environment induces toxic effects in the organisms
exposed to them. Some nanomaterials can be recognized by ani-
mals as foreign substances (Kahru and Dubourguier, 2010; Linhua
et al., 2009; Menard et al. 2011) and they could be immunologi-
cally harmful to the exposed animals. In this context, the evaluation
of the bullfrog tadpole's response to chitosan-alginate nano-
particles (AG/QS) exposure is also important in this research.

This study comparatively evaluated the hepatic response of
bullfrog tadpoles (Lithobates catesbeianus) of Gosner stage 25, un-
der acute exposure (96 h) to the clomazone herbicide (active
ingredient), in its free form and associated with chitosan-alginate
nanoparticles, as well as the nanoparticles of chitosan-alginate
without the herbicide. The concentration of clomazone used in
this study (0.5 mg L~! in Brazil) was similar to the levels of this
herbicide found in flooded rice fields (Cattaneo et al., 2012; Miron
et al., 2008; Rodrigues and Almeida, 2011).

The liver was the organ selected for this study because it is an
important target organ in toxicological, xenobiotic evaluations due
to its function in the biotransformation of chemical compounds.
Xenobiotics induce molecular, biochemical and cellular responses
on liver of frogs (Bernabo et al., 2014; Dornelles and Oliveria, 2015;
Li et al., 2014; Regnault et al., 2014). In addition, amphibian livers
have melanomacrophage centres (MMCs) that change in quantity
and size in stressful conditions, such as exposure to xenobiotics
(Agius and Roberts, 2003; Johnson et al., 2004; Ribeiro et al., 2011).
Biometric, morphometric and morphological parameters were
evaluated in this study in order to detect possible alterations in the
liver at organ, tissue and cellular levels.

2. Materials and methods
2.1. Animal care

Newly hatched L. catesbeianus (Shaw, 1802) tadpoles, at Gosner
(1960) developmental stage 25 (premetamorphic stage), were ac-
quired from a frog farm located in Santa Barbara do Oeste, Sao Paulo
State, Southeast Brazil (22°78’'S, 47°40'W), in a rural area. During
acclimation period (7 days), the 170 (one-hundred seventy) tad-
poles were housed in 80 L, glass aquariums that were equipped
with a continuous supply (1.2 L/h) of well-aerated and dechlori-
nated water, at a constant temperature (25 + 1 °C), under a natural
photoperiod (~12 h light/dark cycle). Animals were fed with
mashed commercial feed (Alcon Garden Basic Sticks®) once a day
during the acclimation period and the supply of food to the animals
was stopped 48 h before the toxicological bioassays with the her-
bicide clomazone and nanoparticles.

The water was monitored daily to ensure that the physical and
chemical parameters were Kkept at acceptable levels (pH 7.1-7.3;
hardness of CaCO; 28-34 mg L !; dissolved oxygen
6.8—7.5 mg L), similar to most Brazilian inland waters (CETESB,
2009; CONAMA, 2005). All physical-chemical parameters were
within the acceptable guidelines of American Society for Testing
and Materials (ASTM, 2002).

2.2. Ecotoxicological experiment design
One-hundred and twenty tadpoles, at Gosner (1960) develop-

mental stage 25, were submitted to a random distribution in to four
experimental groups assayed in triplicate: 1) Control (CT); II)
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Clomazone herbicide (CL); IlI) Clomazone associated with chitosan-
alginate nanoparticles (CLn); IV) Chitosan-alginate nanoparticles
(AQ).

Tadpoles with body mass between 137 g and 395 g
(2.24 + 0.10 g, mean + SE) were used in the bioassays. Each
experimental group had 30 individuals divided in three glass test
aquaria (N = 10 tadpoles per aquarium) comprising a triplicate per
group. Each test aquarium was filled with 10 L of well-aerated,
dechlorinated water (>6.0 mg O,/L). During the bioassays, all
glass test aquaria with the animals were kept under controlled
laboratory temperature (25 + 1 °C), on a 12:12 h light: dark cycle.
Acute exposure to clomazone and nanoparticles was performed in a
static system for 96 h.

All procedures followed ASTM (2002) guidelines, and the ex-
periments were previously approved by the University Ethics
Committee (Protocols n° 006/2013 — CEUA/UFSCar), which follows
Brazilian regulating laws.

2.2.1. Clomazone exposure

The clomazone pestanal® (analytical standard), which was used
in the bioassays, was obtained from Sigma—Aldrich Chemical Co.
The exposure concentration of the herbicide was selected as
0.5 mg L~! based on field level data (Cattaneo et al., 2012; Miron
et al., 2008; Rodrigues and Almeida, 2011).

2.2.2. Nanoparticles

The nanoparticles used in this study were provided by, and
prepared at, the Department of Environmental Engineering UNESP
(Universidade Estadual Paulista “Julio de Mesquita Filho”), Campus
Sorocaba, Sao Paulo State, Brazil. The chitosan-alginate nano-
particles were developed according to the methodology described
by Silva et al. (2010, 2012). The chitosan used in this study was
obtained from Sigma Chem. Co. and has a degree of deacetylation of
about 75—85%. The developed nanoparticles were previously
characterized and showed a size distribution ranging from 200 to
1000 nm, with a polydispersity of about 0.3 (Silva et al., 2010). The
chitosan-alginate nanoparticles were cross linked with calcium.
The final concentration of clomazone formulation added to aquaria
was 0.5 mg L™, i.e. identical to the concentration applied in aquaria
exposed to clomazone in its free form.

2.3. Collection of materials for light microscopy

Four days (96 h) after the beginning of the exposure, 10 tadpoles
from each experimental group were randomly collected from test
aquaria and were euthanized by cranial concussion. All procedures
followed the American Veterinary Medical Association (AVMA,
2001) guidelines, and the experiments were approved by the
University Ethics Committee (Protocols n° 006/2013), which follows
Brazilian regulatory laws.

Each euthanized tadpole was subjected to a ventral surgical
incision in the caudal-cranial direction in order to expose the liver.
The liver was removed and weighted in an analytical balance (Bel
Engineering, Class I) for the 10 tadpoles of each experimental group
(see section 2.4). Thereafter, the five liver samples obtained from of
each three exposed groups and control group (N = 5 per group)
were fixed overnight in modified Karnovsky (2.5% glutaraldehyde
in 0.1 M sodium cacodylate buffer, pH 7.2) and the sections were
prepared to be observed under light microscopy.

Subsequently the liver samples was washed in a cacodylate
buffer (0.1 M, pH 7.4) for a few minutes and postfixed in osmium
tetroxide (0.5% concentration) for 2 h in the dark. After, the material
was washed three times in the cacodylate buffer for 30 min (10 min
per bath) and processed according the methodology described by
Silva-Zacarin et al. (2012) and adapted by Abdalla et al. (2013).

Then, the material was submitted to a slow dehydration in
increasing series of cold-ethanol for 40 min every bath. After this
step, the liver fragments were embedded in resin (Leica®). The
histological sections with 1.5 pum of thickness were obtained in the
microtome and were then hydrated and submitted to Hematoxylin-
Eosin staining (HE) for morphological analysis by light microscopy.

Some slides were stained with Instant Prov Kit (New Prov®) for
visualization of different types of leukocytes and others slides were
submitted to Sudan Black (Pearse, 1960) for lipid detection in the
liver tissue.

For the semi-quantitative analysis of the hepatic parenchyma,
five individuals were analyzed per experimental group. Two his-
tological slides per individual for each experimental group were
evaluated. Each slide contained 16 liver tissue sections obtained by
sectioning at different depths of the livers. The histological features
were grouped into three categories (morphological biomarkers):
lipidosis in hepatocytes, frequency of eosinophils in capillaries or
parenchyma, frequency of melanomacrophage centres. Each his-
tological feature was assessed in a 6-grade score adapted from
Bernet et al. (1999), using a score ranging from 0 (zero) to 6 (six).
Score was attributed according to alteration degree of each histo-
logical parameter and/or its mean prevalence in area of section: 0 —
absence; 2 — slight degree in <25% area of section; 4 — moderate
degree in 25—50% area of section; 6 — severe degree in >50% area of
section. The analyses were done at 400 magnification.

2.4. Biometric and morphometric analysis

The biometric study was conducted on 10 tadpoles collected
randomly from each experimental group (CT = control,
CL = clomazone herbicide, CLn = clomazone associated with
chitosan-alginate nanoparticles, AQ = chitosan-alginate nano-
particles). The total tadpole body mass and the liver mass were
used to calculate the hepatosomatic index [HSI= (liver mass/
tadpole body mass) x 100] from each experimental group. The
result obtained was submitted to statistical analysis by parametric
ANOVA test, one way, with Dunnett's Test, a posteriori, using the
statistical analysis program Graph Pad Prism version 5.0. These
tests were performed to compare all exposed groups with the
control.

The morphometric studies were made from counts on histo-
logical slides using pre-established parameters: 1) Count melano-
macrophage centres to confirm or refute the hypothesis that these
cells increase in frequency in the exposed groups; II) Ratio hepa-
tocytes by melanomacrophage centres to verify if the increase
(hyperplasia) or the decrease (degeneration) of the number of he-
patocytes in response to the exposure to clomazone and/or nano-
particles (adapted from Crunkhorn et al., 2004).

For counting melanomacrophage centres, liver fragments of
each tadpole (N = 5 animals per group) were sectioned into 2 pm
thick sections, which were collected at intervals of 12 pm and
deposited on the slide, in order to obtain different depths of the
liver in the same slide, totaling 20 non-overlapping sections per
slide and ten slides per animal. To determine the frequency of the
melanomacrophage centres, 20 non-overlapping sections in non-
consecutive slides were digitized for each tadpole (N = 5 animals
per group), so that one-hundred fields for the experimental group
were photo-documented under a 4x objective (final
magnification = 40x) in order to visualize the larger area for
counting. All quantitative analyses were counted using the IMC-50
Leica Software.

To determine the ratio of hepatocytes by melanomacrophage
centres, five non-overlapping sections in non-consecutive slides
were digitized for each tadpole (N = 5 animals per group), so that
fifty random fields for experimental group were photo-
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documented at 400x magnification, in order to quantify the
number of melanomacrophage centres and hepatocytes. All quan-
titative analyses were counted using the IMC-50 Leica Software.
Mean numbers of MMCs and hepatocytes and the mean ration of
hepatocyte number to MMCs number per field for each animal
were calculated.

The morphometric data obtained from counting melanoma-
crophage centres and ratio hepatocytes by melanomacrophage
centres was statistically analyzed using the ANOVA test, one way,
with Tukey's Multiple Comparison Test, a posteriori. These tests
were applied in a paired way, thus the data of the experimental
groups were analyzed by comparison to the controls for each
exposed group. Subsequently, the results were plotted together in
the graphs. The program used for statistical analysis was the Graph
Pad Prism version 5.0.

3. Results
3.1. Biometric analysis

The HSI of the exposed animals showed no significant difference
from the control group value (ANOVA One-Way test, with Dunnett's
test, a posteriori, P > 0.05) (Fig. 1). The HSI for each exposed group
was CL = 247 + 0.165; AQ = 2.29 + 0.173; CL, = 2.35 + 0.181
(mean =+ SE) and for the control group (CT = 2.19 + 0.118).

3.2. Morphometric analysis

The quantity of melanomacrophage centres of the exposed an-
imals showed significant difference from the control group value
(ANOVA One-Way test, with Tukey's Multiple Comparison test, a
posteriori, P < 0.0001) (Fig. 2).

Although the number of MMCs is similar in all exposed groups
(Fig. 2), the number of hepatocytes per area unit independent of the
other components varied (mean + SE): Control = 454 + 1.16;
Herbicide Clomazone = 43.7 + 130; Chitosan-Alginate
nanoparticle = 50.7 + 1.37; Clomazone associated with Chitosan-
Alginate nanoparticle = 38.9 + 0.85. The number of hepatocytes
per area unit (12,739.5 pm?) significantly decreased in the group
exposed to Clomazone associated with Chitosan-Alginate nano-
particle in relation to the control and others exposed groups
(ANOVA One-Way test, with Tukey's Multiple Comparison test, a
posteriori, P < 0.0001).

The ratio of hepatocytes by melanomacrophage centres showed
no significant difference among the experimental groups (ANOVA
One-Way test, with Tukey's Multiple Comparison test, a posteriori,
P > 0.05) (Fig. 3).

3.3. Histological analysis

The morphological data on the liver of bullfrog tadpoles showed
the typical cytoarchitecture of the hepatic parenchyma of am-
phibians: hepatocytes forming acini, the occurrence of leukocytes,
bile ducts, blood vessels of different sizes and sinusoidal capillaries
(Fig. 4A—D) in the control and exposed groups. There are no
modifications in the liver stroma. Vascularization was similar in all
experimental groups, without rupture in blood vessels and absence
of dilatation of sinusoids. In the groups exposed to nanoparticles
(Fig. 4C, D), hepatic sinusoid was completely full of erythrocytes. In
all experimental groups (CT — Fig. 4A; CL — Fig. 4B; AG — Fig. 4C; CL,
— Fig. 4D), there were melanomacrophage cells diffusely dispersed
throughout the liver, which presented a black—brown
pigmentation.

The lipidosis in the cytoplasm of hepatocytes, as well as the
presence of granulocytes and melanomacrophage centres in the

hepatic parenchyma, were considered morphological biomarkers
in the evaluation process of the sublethal effects on tadpoles
(Table 1). The lipidosis was visualized as small vacuoles not stained
by hematoxylin-eosin in the cytoplasm of the hepatocytes. The
lipidosis in the hepatic tissue was observed in individuals exposed
to clomazone in its free form (Fig. 4B) and associated with nano-
particles (Fig. 4D).

In the exposure to the active ingredient in the herbicide group
(Table 1, Fig. 4B), there was an increase in the frequency of mela-
nomacrophage centres compared with the control groups (Table 1,
Fig. 4A). High frequency of melanomacrophage centres was
observed in the groups exposed to the nanoparticles (Table 1,
Fig. 4C) and to the nanoparticles associated with clomazone
(Table 1, Fig. 4D).

The Sudan Black histochemical test was performed to confirm
the presence of lipid granules in vacuoles not stained by
hematoxylin-eosin (Fig. 5A), which allowed for the detection of
lipidosis in liver tissues. Additionally, a kit for the characterization
of leukocytes (Instant Prov Kit) was used to confirm the occurrence
of eosinophils in the liver tissue (Fig. 5C), since the hematoxylin-
eosin showed granulocytes intensely stained by eosin (Fig. 5B).

4. Discussion

This study was the first to evaluate the adverse effects of the
clomazone herbicide on amphibian tadpoles. Clomazone is an
herbicide widely used in rice fields and specimens of the order
Anura are usually found in these areas (Bahaar and Bhat, 2011;
Colombo et al., 2008). Clomazone is water soluble and its half-life
in water solution is greater than 30 days (CDPR, 2003). This her-
bicide does not suffer photolysis in water (CDPR, 2003; USEPA,
2007). In the present study, in order to investigate the clomazone
herbicide stability, its concentration in water have been determined
by HPLC and during the experimental time (4 days) there was not
observed changes in the herbicide concentration (data not shown).
Clomazone can be biotransformed in the organism (Pereira et al.
2013) and even bioconcentrate in the animal body (Lazartigues
et al.,, 2013). In this scenario, probably the tadpoles absorbed the
clomazone and the nanoparticles.

In order to minimize the effects of pesticides on non-target or-
ganisms, new technology in agriculture is emerging with the
development of nanoparticles as carriers of agrochemicals (Grillo
et al. 2016). However, there is need to evaluate the nanotoxicity
of these nanoparticles on non-target organisms, which was the
focus of this study. Studies about the adverse effects of nano-
particles in amphibians are scarce (Bonfanti et al., 2015; Bour et al.,
2015; Bacchetta et al., 2012; Mouchet et al., 2008; Nations et al.,
2015).

The results of this study indicated the effects caused by the
clomazone herbicide, in its free form or are associated with the
nanoparticles, as well as by the nanoparticles without herbicide.
These data about nanotoxicity of an organic nanoparticle (chitosan-
alginate) associated to an herbicide (clomazone) are pioneer in
bullfrog tadpoles and anuran amphibians. Studies about the envi-
ronmental health impacts of nanomaterials in aquatic ecosystem,
especially in frogs, are in progress. Carbon nanoparticles in the frog
Xenopus laevis induced abnormalities in the movements of swim-
ming and decreased growth of tadpoles, and histological changes in
the kidney (Mouchet et al., 2008). Copper nanoparticles of titanium
dioxide and zinc oxide induced malformations in X. laevis tadpoles
and, additionally, histopathological lesions were caused in the in-
testine (Bacchetta et al., 2012). In addition, zinc oxide nanoparticles
induced a high incidence of malformations, in particular misfolded
gut and abdominal edema in X. laevis tadpoles (Bonfanti et al.,
2015).
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HSI (%)

Control Clomazone

Nanoparticle Clomazone Nanoparticle

Fig. 1. Hepatosomatic index (HSI) of bullfrog tadpoles (L. catesbeianus) between the control group, exposed to the clomazone group (active principle), exposed to nanoparticles and
exposed to nanoparticles associated to the active principle (clomazone). ANOVA One Way Test, with Dunnett's Test, a posteriori. The bar observed indicate the standard error. The
exposed and control groups showing no significant difference with two-tailed P value > 0.05.
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Mean melanomacrophage centres

Clomazone
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Nanoparticle Clomazone Nanoparticle

Fig. 2. Count of melanomacrophage centres obtained by analysis of liver section by IMC-50 Leica Software, showing that the mean number of melanomacrophage centres in
tadpoles’ liver increased in all groups exposed in comparison to the control group. Anova One Way test, with Tukey's Multiple Comparison Test, a posteriori. The exposed compared

with control groups indicates significant difference with two-tailed P value is <0.0001.

The absence of significant difference in the hepatosomatic index
(HSI) and the ratio of hepatocytes by melanomacrophage centres
does not necessarily mean that there was no change among the
components of liver tissue (hepatocytes and MMCs) of the exposed
groups, in comparison to the control group. The comparison of the
biometric and morphometric data suggests a compensatory
response of liver from exposed animals. The significant decreased
in number of hepatocytes in the group exposed to clomazone
associated with nanoparticles possibly was compensated by the
increase of number of MMCs, as well as their high development
degree, which is evidenced by the increase of area. There was high
frequency of MMCs with smaller area (100—2000 p?) in control
group and MMCs with larger area in exposed groups, mainly in the
group exposed to Chitosan-Alginate nanoparticle
(12,001—20,000 p?) [data not shown]. In this scenario, the ratio
hepatocytes by melanomacrophage centres did not changed in
exposed groups in comparison to the control group because the
compensatory response.

The increase in the number of melanomacrophage centres in

relation to the control might be the first response from the defense
system by exposure to the xenobiotics (Agius and Roberts, 2003)
and, later, the defense system acts in the inflammation due to their
phagocytic properties (Loumbourdis and Vogiatzis, 2002). This in-
crease in the melanomacrophage centres to the xenobiotics or
others environmental stresses was described by several authors
(Agius and Roberts, 2003; Johnson et al., 2004; Ribeiro et al., 2011).

The abundance of melanomacrophage centres in the groups
exposed to the nanoparticles associated, or not with the herbicide,
reflects that the tadpole organism might recognize the chitosan-
alginate nanoparticle as a toxin. However, the exact mechanism
for immune modulation involving the melanomacrophage centres
and the organic nanoparticle used in this study remain unknown,
as well as the congestion of erythrocytes in hepatic sinusoids in
these nanoparticle-exposed tadpoles. Hepatic confinement of
erythrocytes was described in liver of X. laevis exposed to a thermic
stressful condition (Maekawa et al., 2012).

Among the morphological alterations identified in the hepatic
parenchyma of the tadpoles in the groups exposed to clomazone,
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154

Ratio hepatocytes by melanomacrophage centres

Control Clomazone

Nanoparticle Clomazone Nanoparticle

Fig. 3. Ratio hepatocytes by melanomacrophage centres obtained by analysis of liver section by IMC-50 Leica Software, showing the ratio of the number of hepatocytes by
melanomacrophage centres number in tadpoles' liver not increased among the experimental groups. Anova One Way test, with Tukey's Multiple Comparison Test, a posteriori. The
exposed and control groups showing no significant difference with two-tailed P value >0.05.

Fig. 4. Bullfrog tadpole livers (L. catesbeianus) at stage 25 of Gosner. Histological sections stained with hematoxylin-eosin (HE). A) Control group; B) Exposed to the active ingredient
of the herbicide group; C) Exposed to nanoparticle group and D) Exposed to nanoparticle associated with the active ingredient group. Note the structure of liver tissue, such as
hepatocytes (he), and their nuclei (shown by black arrows), and bile ducts (bd), blood vessels (bv) and sinusoids (S) containing red blood cells (rbc) in its interior, defense cells such
as eosinophil (e) Note the presence of melanomacrophage centres (MMC) in all experimental groups. The lipidosis is more frequent in the exposed groups (shown by the white

arrow). A — D) Bar = 100 pm.

both in its free form and associated with nanoparticles, one of the
most important is lipidosis, characterized by lipid accumulation in
the vacuoles of different sizes in the cytoplasm of the hepatocytes
(Brum et al., 2014). The lipidosis observed in the liver of the animals
from the exposed groups reflects the standard hepatic response to
clomazone in the initial phase, when only small vacuoles were
observed in the cytoplasm. Other feature that reinforce that the
lipidosis is the initial phase is the absence of the diminishing

sinusoidal space due to the expansion in the cytoplasmic volume of
the hepatocytes with a high degree of lipidosis (Shaw and Handy,
2006).

Micro and macro lipidosis were described in the hepatocytes of
catfish (Rhamdia quelen) exposed to the commercial formula of
clomazone (Brum et al, 2014) and in the hepatocytes of carp
(Cyprinus carpio) exposed to different concentrations of TiO,
nanoparticles (Federeci et al., 2007; Linhua et al., 2009). Other
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Table 1

Semi-quantitative analysis in tadpoles’ liver in the groups exposed to clomazone herbicide (active ingredient), in its free form and associated to nanoparticles, and chitosan-
alginate nanoparticle without the herbicide, as well as the control group. The dates were presented as score values, ranging from 0 to 6, depending on the degree and extent of
the alteration.

Morphological biomarkers Control Clomazone Nanoparticle Clomazone Nanoparticle
Lipidosis in hepatocytes 2 4 2 4
Eosinophils 2 4 2 6
Melanomacrophage centres 4 6 6 6

Ranging: Score were attributed according to alteration degree of the histological parameter and its mean prevalence in area of section: 0 — absence; 2 — slight degree in <25%
area of section; 4 — moderate degree in 25—50% area of section; 6 — severe degree in >50% area of section.

Fig. 5. Bullfrog tadpole livers (L. catesbeianus) at stage 25 of Gosner. Histological sections stained with Sudan Black (A), hematoxylin-eosin (B) and Instant Prov (C). A—C) Exposed to
the active ingredient of the herbicide group. In (A), note the positive staining of Sudan Black for lipids in the liver parenchyma (shown by black arrow); B and C) Eosinophils (e) are

observed. Caption: hepatocytes (he) and their nuclei (n), red blood cells (rbc).

studies have also observed the presence of lipidosis in the hepa-
tocytes of animals exposed to different xenobiotics (Greenfield
et al,, 2008; Peebua et al., 2008; Ribeiro et al., 2005; Samanta
et al,, 2015; Smith et al. 2007). However, the mechanisms can be
different; generally, the accumulation of lipids in the liver is
accompanied by biochemical alterations in blood (Hodgson and
Levi, 2004).

The mechanism by which the occurrence of lipidosis in all of the
groups exposed to clomazone remains unknown. The abnormal
accumulation of lipids in the liver was also described by Glover
et al. (2007) in salmon (Salmo salar) exposed to endosulfan, and
by Costa et al. (2013) in Senegalese sole fish (Solea senegalensis)
exposed to cadmium. An injury or inflammation induced by xe-
nobiotics could prejudice lipid oxidation and protein synthesis,
causing an accumulation of triglycerides in the hepatocytes
(Greenfield et al., 2008; Melvin et al., 2013). In this context, the
increase in eosinophil frequency in the groups exposed to cloma-
zone (both in its free form, and associated with the nanoparticles)
could at least partially explain the lipidosis seen in this study.
Leucocytes increased in number during toxicosis in fishes affected
by pesticides, including the herbicide paraquat (Rojik et al., 1983).

According to Agius and Roberts (2003), the increase of envi-
ronmental stress in the derived vertebrate leads to changes in the
circulation of leukocytes and, consequently, the number of gran-
ulocytes increases in the liver. In the studies by Costa et al. (2013)
performed on S. senegalensis exposed to cadmium, the authors
observed highly elevated concentrations of eosinophil in the liver
and noted a correlation between this data and liver damage.

In this way, although this study has indicated that the exposure
time induced hepatotoxicity in tadpoles, a hepatic compensatory
response was also observed, thus we cannot infer how much these
changes could interfere with the health and development of the
adult animal. However, the results of the present study represent
an alert with respect to the sub lethal effects in low doses of the
clomazone herbicide found in agricultural fields as well as showing
the importance of evaluating the effect of biodegradable nano-
particles in non-targeted organisms. Studies about nanotoxicity are
important and should be encouraged to assess the level of the
ecotoxicological risk of nanoparticles by means of careful analysis
of the data, which will contribute to the development of new sys-
tems that cause less impact to the environment, so that the asso-
ciation of pesticides with nanocarriers achieve the desired benefits
in pest control in agriculture. However, it is necessary further
studies to investigate the potential effects of agrochemicals and
nanoparticles present in the environment in low concentrations on
the amphibians populations since they are currently endangered.
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