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Renormalization-group calculation of excitation properties for impurity models
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The renormalization-group method developed by Wilson to calculate thermodynamical proper-
ties of dilute magnetic alloys is generalized to allow the calculation of dynamical properties of
many-body impurity Hamiltonians. As a simple illustration, the impurity spectral density for the
resonant-level model (i.e., the U =0 Anderson model) is computed. As a second illustration, for the
same model, the longitudinal relaxation rate for a nuclear spin coupled to the impurity is calculated
as a function of temperature.

I. INTRODUCTION

Strong correlations dominate the physics of dilute
magnetic alloys and of fluctuating-valence and heavy-
fermion compounds. Analyses of such systems on the
basis of single-particle concepts or straightforward per-
turbative expansions have long been proved unreliable, in
many cases even at the qualitative level. Their theory has
nevertheless advanced significantly in the past decade,
driven by a combination of exact results and controlled
approximations. Four techniques —the Bethe ansatz, '

the renormalization-group and Monte Carlo methods,
and the 1 lN expansion —have played a prominent role
in this development. Given that each of them has specific
limitations and must be complemented by the other
three, attempts to extend the scope of an individual ap-
proach are important. This paper is concerned with one
such extension.

We consider the renormalization-group method, a
technique originally developed to calculate thermo-
dynamical properties of impurity models that more re-
cently has been employed to evaluate dynamical proper-
ties of simple (essentially fixed-point) Hamiltonians.
Nevertheless, as we shall show, to compute excitation
properties away from axed points one has to generalize
the renormalization-group transformation in Ref. 2; the
necessary generalization is detailed here for the first time.
As an illustration of the extended method, we consider an
exactly diagonalizable Hamiltonian, that of the U=O
spin-degenerate Anderson model and compute two of its
dynamical properties: (l) the frequency-dependent im-

purity spectral density, and (2) the temperature-
dependent relaxation rate for a nuclear spin coupled (by a
contact interaction) to the impurity spin. Experimental
motivation for the first calculation is provided by photo-
emission and inverse photoemission measurements, and
for the second by NMR experiments, but the present
work does not discuss experimental data. Our illustrative
calculations are aimed at demonstrating that the novel

approach solves the technical problem of calculating the
excitation properties of impurity many-body Hamiltoni-
ans.

The cornerstone of the renormalization-group ap-
proach is a logarithmic discretization of the conduction
band, which ultimately substitutes a discrete set for the
continuum of eigenvalues of the model Hamiltonian.
This approximation is justified a posteriori: after a physi-
cal property for a given model is computed, one must
show that the results converge rapidly to the continuum
limit. For thermodynamical averages, this task is easily
executed. ' For golden-rule calculations, however, a
naive application of the discretization in Ref. 2 produces
discrete sequences of lines bearing little resemblance to
the smooth spectra expected in the continuum limit. In
special cases, a rapidly convergent smoothing procedure
has been shown to produce accurate results. That pro-
cedure nevertheless has two limitations: (l) it applies
only to quadratic Hamiltonians or to Hamiltonians that,
on the basis of special conservation laws, can be projected
onto subspaces in which they become quadratic, and (2) it
assumes that the single-particle spectrum of the model
Hamiltonian is that of a conduction band with uniform
phase shifts. Taken together, these two premises apply
only to fixed-point Hamiltonians, in most cases limiting
the computation of physical properties to restricted fre-
quency and temperature ranges.

By contrast, the procedure in this paper applies to the
entire renormalization-group flow diagram, i.e., to the
fixed-point and crossover regions alike. It covers the full
parametric space of many-body impurity Hamiltonians
and enables us to compute physical properties for all tem-
peratures or frequencies. Our example, the U =0 Ander-
son model, has two fixed points, both thoroughly dis-
cussed in Ref. 9: at high (low) energies, the free-orbital
(frozen-impurity) fixed point dominates the physical
properties of the Hamiltonian. In the renormalization-
group approach, therefore, to calculate accurately the
intermediate-energy excitation properties of even this

41 9403 1990 The American Physical Society



M. YOSHIDA, M. A. WHITAKER, AND L. N. OLIVEIRA 41

quadratic Hamiltonian one must resort to the generalized
procedure we describe.

Our presentation is organized as follows. Section II
discusses the Hamiltonians covered by the generalized
renorrnalization-group approach, which is detailed in
Sec. III. Sections IV and V are dedicated to the two illus-
trations. Section VI presents our conclusions and
discusses other applications of the new method. Finally,
the Appendix collects an algebraic derivation too lengthy
to appear in Sec. III.

II. SCOPE OF THE METHOD

The conduction-band —impurity interaction must be
represented by a Hamiltonian involving the operators fp

and no other combination of the ck. Thus, in the Ander-
son model, the impurity and conduction states are cou-
pled by the Hamiltonian

H;, =&2V(fpcd+cd fp), (2)

while the conduction-band and impurity Hamiltonians
are

and

H& = skckckdk—1

H; =Ededcd+ Undtnd) . (4)

Following previous applications of the
renormalization-group method, ' ' ' we consider a
linear dispersion relation (ek =Dk, where 2D is the band-
width). The renormalization-group transformation in
Sec. III nevertheless applies equally well to nonlinear re-
lations, as a subsequent paper is planned to show. '

The analysis in Sec. III is independent of the form of
the impurity Hamiltonian. 8; involves only the impurity
states cd and can be easily diagonalized, either nurnerical-
ly or analytically. The direct product of its eigenvectors
with the operator fp [Eq. (1)] yields a basis that is com-
plete with respect to both the impurity Hamiltonian and
the impurity —conduction-band Hamiltonian H, , This
basis is nonetheless incomplete with respect to the con-
duction states and must hence be augmented. Before this
can be done, however, the renormalization-group ap-
proach requires that the conduction band be discretized.

This work concerns models comprising a single impuri-
ty orbital, denoted cd, coupled to noninteracting s-wave
states ck centered at the impurity site. The Anderson
and the Nozieres-De Dominicis" Hamiltonians are ex-
amples. Assuming the conduction band half filled in
momentum space, we measure the momenta k from and
in units of the Fermi momentum, so that k ranges from
—1 to 1. We also assume that the interaction between
conduction band and impurity is short ranged, hence
momentum independent, so that the impurity couples to
the conduction states through the combination J c1,dk
It is then convenient to define the normalized Fermi
operator

]
fP = —f C1zdk

Since the discretization in this paper deviates from that
in Ref. 2, its discussion deserves a separate section.

III. FORMALISM

A. Discretixation of the conduction band

A(m +z —1)/2 A
—z —m

b = ckdk .
(1 A

—1)1/2 /1 —z —m
(8)

These definitions generalize the original discretization,
to which Fig. 1 reduces for z =1. We refer the reader to
Refs. 2 and 9 for discussions of the approximation in-
volved in projecting the conduction Hamiltonian H, on
the basis 8 of the operators a, b, a,b, a basis clearly
incomplete with respect to the operators ck. Here, we
write down the projection obtained' by inverting Eqs.
(5)—(8) and substituting in Eq. (3) the resulting expres-
sions for ck.

H, = g E (zA)(a a bb )—
m=1

+Ep(z, A)(a a bb), —

Z
-A

-Z-I -Z-2 -Z-2 -Z-I
-h -A"- ".h CK/D

F=o

FIG. 1. Logarithmic discretization of the conduction band.
The parameter A must be larger than unity but is otherwise ar-
bitrary; in numerical calculations, a typical choice is A=3. The
parameter z lies in the interval 0(z(1. For z=1, we recover
the discretization in Refs. 2 and 9. In this case, for a linear
dispersion relation, the codiagonal coefficients c„on the right-
hand side of Eq. (13) have been determined analytically (see Ref.
2).

In order to make numerically tractable the model
Hamiltonian in Sec. IV, we must discretize the continu-
um of conduction states. To this end we follow the se-
quence in Fig. 1, generalizing the logarithmic sequence in
Ref. 2. This sequence defines intervals in momentum
space. For each of them, out of the infinitely many ways
in which its operators ck can be linearly combined, we
consider the combination most localized around the im-
purity site. In particular, for the interval 1)k )A, we
define the normalized Fermi operator

a =(1—A ') (5), k

and for the interval —1 & k & —A ' the operator

b =(1 A—') ' f ckdk . (6)—1

For each of the intervals A' ' m )k )A ™
(m =1,2, ), we likewise define the operator

A(m+z —1)/2 A1 —z —m

am = Gdk,
( 1 A

—1)1/2 ~
—z —m

and finally, for each of the intervals —A' ' & k(—A ' (m =1,2, ) the operator
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where

E (z A)=f e„dk f dk,
2 m A

—2 —m

and

(10)
N

g (e )'=F,(z, A) —[(m„„)2"+']„,
n=0

(14)

As the Appendix shows, this condition leads to an
equation determining the coefficients c.'„:

E (z, A)= f ekdk f dk .

Each energy +E (z, A) or +ED(z, A), appearing on
the right-hand side of Eq. (9), is the average kinetic ener-

gy in the corresponding intervals depicted in Fig. 1. For
given A and fixed z, these energies form a discrete set, so
that, as the example in Sec. IV will show, the golden-rule
calculation of photoemission rates for the discretized
Hamiltonian yields discrete transition lines instead of the
continuous absorption spectra one would expect. When z
runs from 0 to 1, however, the energies +E (z, A) and
+ED(z, A) cover the entire conduction band, turning the
golden-rule transition lines into a continuous spectrum.
This smoothing procedure, detailed in Sec. IV, provides
the motivation for introducing the parameter z in Fig. 1.

The operator fo, Eq. (1), can also be projected on the
basis%. By inverting Eqs. (5)—(8) we find

1/2
1 —Afo= A(1 —z —m 1/2(a +b )

m=1
1/2

1 —A+
2

(a+b) . (12)

B. Tridiagonalization of the conduction Hamiltonian

The infinite basis 8 must be made finite before the
model Hamiltonian can be diagonalized numerically. At
first sight, one would be tempted to truncate at finite m
the infinite sum on the right-hand side of Eq. (9). This
must nevertheless be avoided. For then a parallel trunca-
tion on the right-hand side of Eq. (12) would be neces-
sary, affecting the coupling between impurity and con-
duction electrons and making the accuracy of all subse-
quent computations dependent on the strength of H;, .

We therefore introduce a new basis. We construct an
orthonormal, infinite sequence of Fermi operators f„
(n =0, 1,2, ), where fo is the operator in Eq. (12), and
the other operators are defined by the Lanczos' con-
struction, i.e., by requiring the conduction Hamiltonian
to have the tridiagonal form

H, = g e'„(f„f„+,+H. c. ) .
n=0

(13)

Unlike Eq. (9), this equality is exact; this can be
checked by substituting the right-hand sides of Eqs.
(5)—(8) for the operators a, b, a, and b, respectively.
Exact, therefore, is the projection of the interaction H, ,
[e.g. , Eq. (2)] on the discrete basis %. Only the conduc-
tion Hamiltonian is affected by the discretization in Fig.
1. This circumstance results from the definition of the
operators a, b, a, and b, the first of two precautions
taken to make the accuracy of the numerical calculations
model parameter independent. The second precaution
involves the tridiagonalization of the conduction Hamil-
tonian, to which we now turn.

~ (z, A)=(1—A-') y A'-'--[Z (z, A)]'"+'
m=1

+(1—A ')[Eo(z A)] (16)

Equation (14) is solved iteratively. For N=O, it deter-
mines co.

(Ez) =(1—A ') g A' ' m[g (z, A)]
m=1

+(1—A ')[Eo(z,A)]

For N )0, Eq. (16) determines FN(z, A), and provided
that co, c1, ,cN, have been determined, the matrix

(&iv+, )
+ can be computed from Eq. (15). Equation

(14) then determines sN.
For small N (N ~ 8', where 8' depends on A and on the

dispersion relation —a typical value is 5), this straightfor-
ward procedure can be carried out analytically or numeri-
cally. ' For larger N, however, a practical difficulty
arises, deserving a brief digression. For increasing n, the
coefficients c.„decrease rapidly; for a linear dispersion re-
lation and z = 1, for example, one finds

s'„=D(1+A 1)A
—"/2/2

(n ))I, ek=Dk, and z=l) . (18)

As N decreases, therefore, both sides of Eq. (14) be-
come small. Since neither of the two terms on the right-
hand side diminishes appreciably, the small cN must be
computed from the difference between two relatively
large numbers and for N )8' the procedure grows inaccu-
rate.

In practice, this problem is minor. Quadrupule-
precision numerical computations make 8' ~ 10, and
symbolic-manipulation programs make 8' arbitrarily
large. On the other hand, as shown following, for N ~ 00

an asymptotic expression for the cN can be easily derived.
As it turns out, this expression, denoted fN, describes ac-
curately (to four significant digits, ty ically) the eN even
for N as small as 10. Thus, for N~ =10 Eqs. (14) and
(15) determine eiv, while for N )8' the asymptotic form
fN is substituted for cN. The difference between cN and
E iv (an upper bound for the error in this approximation)
is insignificant. An illustration will be presented in Sec.
IV B.

In order to find the asymptotic coefficients fN, we con-
sider the conduction energies near the Fermi level. For

where the term within the square brackets on the right-
hand side is the 2N+ 2th power of the matrix

[~iv + 1]ij Ei —lfii j —1+ej —lfij, i —
1

(i,j=1,2, ,N+1), (15)

and
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these, the dispersion relation can be linearized, yielding
c.„=vFk (k « 1), where vF is the Fermi velocity. Substi-
tution in the numerator on the right-hand side of Eq. (10)
then leads to

becomes

X—1

H„„„,=H;+H, ;+ g e'„(ftf„+,+H. c. ) .
n=0

(22)

D(1+A ')A™
E (z, A)= (m»1) .

(19)

Dn the right-hand side of this expression, the smallest
coefficient is

z ~
( 1+A

—
1)A —(N —1)/2+ 1 —z

The right-hand side of this equation has been factored
so that the term within large parentheses on the right-
hand side, a constant for fixed A and z, multiplies the
discrete energies D(1+A ')A /2, precisely the ener-
gies that result when a linear dispersion relation is
discretized for z = 1. Since the coefficients e,z scale
linearly with any constant factor multiplying the conduc-
tion energies Fk, and hence with any factor multiplying
the energies E (z, A), the asymptotic form for sN is ob-
tained by multiplying the right-hand side of Eq. (18) by
the term within large parentheses in Eq. (19):

~+~ a 1 —Z —n/2
VF~i (20)

C. Truncation of the conduction Hamiltonian

With Eq. (20) and Eqs. (14)—(16), a conduction Hamil-
tonian with arbitrary dispersion relation can be made tri-
diagonal. Since e'„~0 for n ~ ~, for given energy e one
can always find an integer N such that

E~ &(6 . (21)

Thus, if one is interested in calculating excitation proper-
ties at the energy e (or at the temperature T=e/ks,
where ks is Boltzmann's constant), negligible error will
result from truncating at n =N the infinite series on the
right-hand side of Eq. (13); moreover, since the
conduction-band —impurity Hamiltonian H;, commutes
with the operators f„(n )0), this error is independent of
the impurity-conduction-band interaction.

With the truncated form substituted for the
conduction-band Hamiltonian, the model Hamiltonian H

[see Eq. (20)]. Following Ref. 2, to define a dimensionless
Hamiltonian Hz whose smallest coefficient is =1, we
scale H„„„,by 1/sN, , defining

2 A(p/' —j )/2+2 ) tM0
(23)

In the large-N limit, this equality in turn defines a
renormalization-group transformation 'T:

'T[HN]: )/AHN—+(fN fN+, +H. c. ) =HN+, . (24)

D. Linear dispersion relation

In order to apply the tridiagonalization procedure in
Secs. III A and III B to the linear dispersion ck =kD, we
must first determine the discrete energies Eo(z, A) and
E (z, A) (m = 1,2, . . . }. Equations (10}and (11)yield

—1

E (z, A)=D A' (25)

and

1+4
Eo(z, A)=D (26)

respectively.

While this transformation, essentially identical to the
one discussed by Wilson, has no interesting fixed points,
the conduction Hamiltonian is an important fixed point
of the transformation %=V . In order to show this, that
our analysis preserves the scaling of the conduction
band, the following section discusses the specific case of a
linear dispersion relation.

TABLE I. Codiagonal coefficients for linear dispersion relation calculated for A=3 and z =1 from
the numerical procedure defined by Eq. (14) (s'„), from the exact expression in Ref. 2 [s„(exact)], and
from the asymptotic expression (20).

0
1

2
3

5
6

8
9

10
11

c, '„ /D

5.547 00196x 10-'
3.493 70517x10-'
2.144 824 87 x 10-'
1.267 483 08 X 10
7.377 13247 x 10-'
4.270 815 57 x 10
2.468 007 66 x 10-'
1.425 33900 X 10
8.230034 56 X 10
4.75177360x 10-'
2.743 468 78 X 10
1.587 940 10x 10

c„(exact)/D

5.54700196x 10-'
3.493 705 17x 10-'
2.144 824 87 X 10
1.26748308 x 10-'
7.377 13247x 10-'
4.270 815 57 x 10
2.468 007 66 x 10-'
1.425 33900x10-'
8.230034 56 X 10
4.751773 60x 10-'
2.743 468 74 x 10-'
1.583 948 37 X 10

6,„/D

6.666 666 67 x 10-'
3.84900179x 10-'
2.222 222 22 X 10
1.28300060x 10-'
7.407 407 41x 10-'
4.276 668 66 x 10
2.469 135 80 X 10
1.425 556 22 x 10-'
8.230452 67 x 10
4.751 85407 X 10
2.743 48422 X 10
1.583 95135x 10-'
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0
1

2
3
4
5

6
7
8

9
10
11

5.675448 21X 10-'
4.603 125 52 X 10
4.035445 80X10-'
2.551 833 71 X 10
1.353 390 32 X 10-'
7.50818175X10 2

4.293 512 36 X 10
2.472 254 88 X 10
1.426 149 66 X10-'
8.23159055 X 10-'
4.752072 78 X 10
2.743 526 76 X 10

1 ~ 154 700 54
6.666 666 67 X 10-'
3.84900179X 10-'
2.222 222 22 X 10
1.283 00060X 10
7.40740741 X 10-'
4.276 668 66X10-'
2.469 135 80X 10-'
1.425 556 22 X 10-'
8.230452 67 X 10
4.751 85407 X 10
2.743 484 22 X 10

Next, we must determine the function F~(z, A) appear-
ing on the right-hand side of Eq. (14). From Eq. (16) we
find

' 2N+2
1+A

F~(z, A)=(1—A ')

' 2N+2

+(1—A ')
2

p —(2N + 3)z

p
—(2N + 3)

TABLE II. Codiagonal coefficients for linear dispersion rela-
tion calculated for A=3 and z=0.5 from the numerical pro-
cedure defined by Eq. {14){s'„),and from the asymptotic expres-
sion (20). The exact expression in Ref. 2 applies only to z = 1.

0'„ /D

TABLE IV. Positive eigenvalues qj (j=1, . . . ,N/2) of the
truncated conduction Hamiltonian H~ [Eq. (28)] for two even
Ãs (16 and 18) and two z's (1 and 0.5).

Eigenvalue N = 16
z=1

N =18
z =0.5

N =16 N =18

7f 1

'92

7I3

g4

g5

g6
'97

98

g9

1.695 755
5.196 104

15.588 52
46.765 38

140.296
420.888

1 262.66
3 787.99

1.695 755 1.695 747 1.695 752
5.196099 5.196034 5.196075

15.588 48 15.587 97 15.588 27
46.765 55 46.765 27 46.763 90

140.296 2 140.296 1 140.295 8
420.8884 420.8883 420.8883

1 262.665 1 262.665 1 262.665
3 787.995 2 587.249 3 787.995

11 363.99 7 761.746

by the exact expression in Ref. 2. The same comparison
shows that, as explained in Sec. III B, the numerical pro-
cedure determining the coefficients deteriorates rapidly
for n ~](I'=ll. Thus, by substituting the asymptotic
forms 0'„ for the e'„(n & 11), we ensure that the codiago-
nal coefficients of the conduction Hamiltonian deviate
less than 0.1%o from the exact coefficients.

Having obtained the codiagonal coefficients c„,we can
now write and diagonalize the truncated Hamiltonian
HN. As an illustration, we consider the conduction-band
Hamiltonian, i.e., we choose H; =H;, =0. Equation (23)
in this case becomes

(27)
N —1

H =A(N —i)/2 g gz(f tf +H. c. ) (28)

Equation (14) is now solved numerically, as explained
in Sec. III B. Tables I and II show codiagonal coefficients
s'„computed in quadrupole precision for two z's (1 and
0.5, respectively). For comparison, they also list the
asymptotic values produced by Eq. (20), indicating that
for n =10 the numerical and asymptotic c,'„agree to four
significant digits. For n ~ 10, on the other hand, the nu-
merical procedure in Sec. IIIB yields coefficients c.'„

correct to eight significant digits; this is shown by Table I
(z= 1), which compares them to the coefficients s„given

where

gz
pz 2 n pz —1

&+A-' D
(29)

m, n =0
(30)

To diagonalize Hz, we write Eq. (28) in the following
form:

TABLE III. Positive eigenvalues z), [j=1, , {N+I)/2] of the truncated conduction Hamiltonian HN [Eq. {28)]for three odd
lV's (15, 17, and 25) and two z's (1 and 0.5).

Eigenvalue

Il

7l2

7l3

Y)4

Yf5

16

g7

18

g9

I10

911

912

113

N =15

0.800 048 3
2.997 492
9.000034

27.00001
81.00000

243.0000
729.0000

2 187.000

z=l
N =17

0.800 047 9
2.997 489
9.000013

27.000 10
81.00002

243.0000
729.0000

2 187.000
6 561.000

N =25

0.800 047 7
2.997 487
9.000000

27.00000
81.00001

243.000 1

729.001 1

2 187.008
6 561.002

19683.00
59 049.00

177 147.0
531 441.0

N =15

0.800 042 9
2.997 451
8.999 716

26.99994
81.00000

243.0000
729.0000

1 493.749

z =0.5

N =17

0.800 046 1

2.997 475
8.999 891

26.999 15
80.999 83

243.0000
729.0000

2 187.000
4481.246

N =25

0.800 047 7
2.997 487
8.999 998

26.999 99
80.999 89

242.9990
728.991 2

2 186.931
6 560.986

19683.00
59 049.00

177 147.0
362 981.0
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and

rt =A' ' [j=1, . . . , (N 1)/2—],

1+A p(N —1)/2+z —1

~(N + 1 )/2
1 +P —

1

(32)

(33)

Likewise, for large, even N, the N +1 eigenvalues form
a symmetrical set, one of them always being zero. Of the
remaining ones, each positive (negative) eigenvalue is ap-
proximately given by g ( —

rt ), where, as Table IV
shows,

~ =A&-'" [J=1,(N —2)/2], (34)

and

1+~ p(N —1)/2+z —1

9N /2 (35)

As discussed in Refs. 2 and 9, the eigenvalue go=0 re-
sults from the particle-hole symmetry of the conduction
Hamiltonian (i.e., its invariance under the transformation
ck ~ck). Preserved by the approximations in Secs.
IIIA —IIID, this invariance makes the spectrum of H,
symmetrical. For even lV, the truncated Hamiltonian has
an odd number (N +1) of eigenvalues, so that one of
them must vanish.

The results in Tables III and IV, which show that for
large X the scaled conduction-band Hamiltonian in Eq.
(28) approaches a fixed point of the renormalization-
group transformation A, have a simple interpretation.
In order to obtain the eigenvalues +6' of the conduction
Hamiltonian H, from those of HN, we have to multiply
the latter by (1+A ')A " +' 'vF/2. For odd N,
for instance, we find

1+A
A

—(N —()/2+( —zD
2

m. „=A(~-""(g„S.„„+g.S„.„)
(m, n=0, . . . , N) . (31)

The Hermitian matrix % can be diagonalized numeri-
cally. The results for z =1 and 0.5, and for various N are
displayed in Tables III and IV. For large, odd X, the
%+1 eigenvalues form. a symmetrical set. Each positive
(negative) eigenvalue is approximately given by ri ( —

71,. )

[j=1, . . . , (N+1)/2], where, as Table III shows,

and (38) coincide with those on the right-hand sides of
Eqs. (25) and (26), respectively. For odd (even) N, the ei-
genvalues of the truncated Hamiltonian thus reproduce
very well the N+1 (N) highest energy levels of the
discretized conduction Hamiltonian. As one might ex-
pect, the central effect of the approximation in Sec. III C
is to truncate the infinite series on the right-hand side of
Eq. (9).

This simple illustration shows that the more general
discretization in Fig. 1 preserves the essential properties
of the renormalization-group approach in Ref. 2. The
parameter z makes that approach more flexible, as the
calculation of excitation properties in Secs. IV and V will
show.

IV. IMPURITY SPECTRAL DENSITY
FOR THE RESONANT-LEVEL MODEL

A. Computation of the spectral density

N —1

+ g (gf„f„+,+H. c. )
n=0

(39)

where

This section computes the impurity spectral density for
the resonant-level model, a spinless Hamiltonian
equivalent to the U =0 Anderson Hamiltonian [Eqs.
(2)—(4)]. The resonant-level model has three characteris-
tic energies: the band half width D, the impurity-orbital
energy sq, and the half width I =~V /D of the reso-
nance introduced in the conduction band by the coupling
to the impurity states. If the latter two were zero, at low
energies (i.e., for energies e much smaller than the width
D) the energy-scaling invariance of the conduction band
~ould make the Hamiltonian H approach the fixed point
discussed in Sec. III D. The two characteristic energies
cd and I break the scaling invariance and, as shown fol-

lowing, drive the Hamiltonian away from that fixed
point.

To demonstrate this and to calculate the impurity spec-
tral density, we first observe that for the resonant-level
Hamiltonian, Eq. (23) becomes

Htv=A' " s'cdcd+ V'(f()cd+H. c. )

[j=1, . . . , (N+1)/2], (36)

or with the index m = (N+ 1)/2 —j and Eqs. (34) and (35)
substituted for g,

—1

E —= ( = DA' ' [m =1, . . . , (N 1)/2]—

z d 2 Az —1Fd= &+~-'

V 2&2
1+P—1

(40)

(41)

(37)

and

1+6
0 2

(38)

The expressions on the right-hand sides of Eqs. (37)

This quadratic Hamiltonian is easily diagonalized.
For odd X, the following results are relevant to our
analysis.

(i) Half of the N+l eigenvalues of Hv are positive, and
half are negative, denoted g + and rt. , respective—ly,
where j= l, . . . , (N +1)/2. To an excellent approxima
tion, the following expression determines these eigenvalues:
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j —1 —r+=Aj+

where

with

r
tan(m. y, +)=

(sd E—+.

—1

E —+ +
D p —(N —1)/2+ 1 —z

g+ Qj+

(43)

(44)

It follows that

2
Qj+

pd(E) =
I dE~+ /dz I E += .E

or substituting Eq. (48) for u. +,

sin (ny +)
pd(e) =

(»n'(~y, ~)+~1 /«, ~»A)) IdE, ~/dz I

(55)

E.g =g

(56)

and

Ir=
A

(45} The derivative in the denominator on the right-hand
side is easily computed from Eqs. (42) and (43), which
yield

1+A ' lnA
(46)

dE~ ~r
sin (ny +)knI /(E +inA)

(57}

N —1

,a+=u, ~ „c+ g u,„+f„.
n=0

(47)

In particular, the coeQcient of the impurity operator cd is

(ii) The Hamiltonian is diagonalized by the Fermi opera-
tors

Equation (56) then becomes

sin (n.y, +)
pd(e)=

7Tr
(58)

Simple trigonometric identities applied to Eq. (43) then
turn Eq. (58) into

sin(n. y +)

(sin (ny, +)+el /(E, +lnA)}'
(48)

1
pd(e) =—

~ I +(sd —e)
(59)

With these results, we are in a position to calculate the
impurity spectral density, defined for fixed z as

y l&Flcdln&l'~(EF —En —e) i«&0
g F

y I (Fled ln) I 5(EF En —e)— (49)

a +In) if e)0
a ln) if E&0 (50)

so that, for c )0,

& F lcd ln &
=

I cd, a, + I =u, +, (51)

where ln) and IF), energies En and EF, are the ground
state and an eigenstate of HN, respectively. For the
resonant-level Hamiltonian, the right-hand side of Eq.
(49) will vanish unless, for some j [1 &j & (N+1)/2],

For A~ 1, AA [Eq. (46)] converges rapidly to unity, I'
[Eq. (45)] converges rapidly to I', and Eq. (59) reduces to
the exact expression'

1 I
+2+ ( )2

(60)

For A ) 1, the substitution V~ VQ A~, a standard pro-
cedure in renormalization-group calculations, ' reduces
Eq. (59) to Eq. (60).

It should be noticed that this derivation, although pro-
ducing the exact expression for the spectral density, in-
volves the errors in Eqs. (42) and (48). A numerical cal-
culation based on the procedure in Sec. III would hence
produce results in slight disagreement with Eq. (60). For
j ~ 2, the relative errors in Eqs. (42) and (48) are never-
theless & 1%; moreover, these errors diminish rapidly as

j increases. The renormalization-group derivation is
therefore essentially exact.

while for c &0,

&Fled n&={c„,a,
' ]=u, (52)

B. Comparison with previous
renormalization-group computations

Having derived Eq. (60), we now pause to compare the
procedure in Ref. 5 with the one in Sec. III. The former
approach, which amounts to convoluting the golden rule
with a smoothing function, yields the following expres-
sion for the impurity spectral density:

In general, therefore,

pd(E)= g u +5(E E+), — (53)

I(F Icd In & I'

(EF En )lnA—
, l&Flcdln&l'

(61)

the upper (lower) sign applying for positive (negative) E.
The right-hand side of this equation, comprising a se-

quence of 5 functions, must be smoothed to produce a
continuous spectral density. To this end, we integrate pd
over the discretization parameter z:

1 1

pd(e)= f pd(E)dz= f g uj+8(E E,+)dz . —
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where the prime restricts the sum to eigenstates I' of H
such that

1 & F 0E —E
(62)

Compare now the right-hand sides of this expression
and Eq. (56). Since their numerators are identical, the
two fractions will be equal if and only if

dEJ~
dz

(64)

From Eqs. (42) and (44) it then follows that y, ~ must
be independent of z. As the following reasoning shows,
this condition will only be satisfied if Htv is a fixed point
of the transformation R, defined in Sec. III D.

The eigenvalues of a fixed point HN of the transforma-
tion R remain invariant as N~N+2. For the Hamil-
tonian Hz to be such a fixed point it is therefore neces-
sary that its eigenvalues rii+ —hence that the y~+ [cf. Eq.
(43)]—remain invariant as N ~N+ 2, i.e., as
EJ+~AE, + [see Eq. (44)]. According to Eq. (43), this is

An analysis similar to that transforming Eq. (49) into Eq.
(56) converts Eq. (61) into

sin (my +)
pd(e) =

(sin (iry&+)Mal'/(E +1nA))~E +~lnA E,+ ——~

(63)

possible under two circumstances: (i) I =0 and ed =0, or
(ii) I ~ac and ~e„~~ac (or ed =0). In case (i), yi+=0,
and we recover the (free orb-ital ) fixed point discussed in
Sec. III. In case (ii), myJ+ =arctan(I /ee), and we recov-
er the (frozen-impurity' ) fixed point.

In general, one is interested in finite parameters I and
Ed, so that H~ is no fixed point of A. Nevertheless, for
energies s such that

~
e

~
))I, ~ sd ~, the Hamiltonian H~

[where Eq. (21) defines N] is close to the free-orbital fixed
point. Likewise, for ~s~ && I', ~ed ~, the Hamiltonian HN is
close to the frozen-impurity fixed poirit. In these two
ranges of energies, therefore, the properties of the model
Hamiltonian are approximately described by the fixed-
point Hamiltonians, the y.+ are approximately indepen-
dent of z, and Eq. (64) is a good approximation for the
derivative in the denominator of Eq. (56). In these two
ranges, therefore, Eq. (63)—i.e., the procedure in Ref.
5—can be justified.

By contrast, for s =min(I, ~ed ~ ), as Eq. (43) indicates,
the yj+ depend strongly on E +, hence on z, so that Eq.
(64) is a poor approximation, and Eq. (56) badly underes-
timates the spectral density pd(e). In this case, the gen-
eralized discretization in Fig. 1 is indispensable.

As an illustration, Fig. 2 shows the spectral densities
computed from Eqs. (60) and (63) and two impurity ener-
gies, 0 and 0.05D. For both ed, for ~e~ & I =0.01D the
Hamiltonian H~ [Eq. (39)] approaches the frozen-
impurity fixed point, a region to which the procedure in
Ref. 5 applies. Thus, in both cases, in the limit c.~0 the
solid circles representing Eq. (63) agree well with the

I I I I I I I I t I I I I I I I I I

30— n, ~ s
g~~O

t %0.0ID

(b) A ~3
ed ~ 0.05 D

r ~O.OID

20— 20—

IO IO—

-O.IO
~ ~ I I I I I I, I

0.00
g/D

O. IO -0.05 0.00 0.05 0.IO O. I 5
c/D

FIG. 2. d-level spectral densities for resonant-level width I"=0.01D and two impurity energies: (a) cd =0 and (b) cd =0.05D. The
solid lines represent Eq. (60), the exact result of the procedure in Sec. III. The solid circles were obtained from Eq. (63), defined by
the procedure in Ref. 5, with A=3; for fixed A, this approach yields spectral densities at discrete energies. The triangles represent
Eq. (65), the Cxaussian convolution in Ref. 19, for A=3. As explained in the text, the latter two approaches are reliable only near
fixed points of the renormalization-group transformation R, near the frozen-impurity fixed point (~e~(I ) in particular. Thus in (a)
the solid circles and triangles describe well the resonance in the spectral density at c, =Ed. By contrast, in (b) Eqs. (63) and (65) give
spectral densities well below the maximum of the resonance.
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pd(s) = — exp — —ln
&err)

X g u, ~5(e —E,~)d inc .
J

(65)

Here, as described in Ref. 19, we have carried out the in-
tegration on a logarithmic scale and taken the parameter
q=0. 8 lnA. For ~s~ & I, in both cases Eq. (65) is in good
agreement with Eq. (60). In particular, in Fig. 2(a) this
region contains the resonance maximum. In Fig. 2(b),
however, Eq. (65) reproduces poorly the maximum in the

I

solid lines representing the exact Eq. (60). In Fig. 2(a),
this limit coincides with the center of the resonance,
which is therefore well described by Eq. (63). By con-
trast, in Fig. 2(b), the maximum of the resonance lies in
the crossover region so that for c=cd the solid circles
miss the solid line by a factor of 3—the ratio between
~E~.+~lnA [which divides the right-hand side of Eq. (63)]
and ~dE, +dz~ [which divides the right-hand side of Eq.
(56)]. In this case, as pointed out previously, only the
procedure in Sec. III produces accurate results.

An alternative method has been more recently pro-
posed' ' to smooth the discrete spectral density result-
ing from Eq. (53); like the procedure in Ref. 5, this ap-
proach is accurate near the frozen-impurity fixed point.
To show this, Fig. 2 displays as triangles the spectral den-
sities obtained by convoluting Eq. (53) for z=1 with a
Gaussian:

crossover region. As one might expect, therefore, the
Gaussian convolution and the convolution in Ref. 5 are
comparably accurate in the fixed-point region, but de-
scribe only qualitatively the crossover region.

V. LONGITUDINAL RELAXATION RATE

This section considers a spin-dependent excitation
property of the U=O Anderson model, the longitudinal
(T, '

) relaxation rate for a spin- —,
' nucleus coupled to the

impurity by the contact interaction

H;, =m(I cd Tcd &+I+cd ~cd T ), (66)

where tc is a constant, and I+ (I ) is the raising (lower-

ing) nuclear-spin operator.
We wish to compute the temperature-dependent rate

g exp( 13E~ ) I
—(F I H, . I

J ) I'5(EF EJ),—
F,J

(67)

where P= I/k&T, Z is the partition function, and ~J),
like ~F ), is an eigenstate of the unperturbed Hamiltonian
H~ [Eq. (39)].

To this end, we refer to the results in Sec. III but ob-
serve that the discretization in Fig. 1 is applied to the ck 1

and ck~ separately, two independent parameters z& and

z& being introduced in this spin-degenerate case. For
fixed z

&
and z ~, we then compute

1
(z t, z

&
) = g exp( PE~ ) ( (F)H—, (

J ) ) 5(EF EJ ) . —= 2~
(68)

The eigenstates of Hz split into a spin-up component and a spin-down component, e.g., ~F ) = ~F) &F) &
and

EF=EF&+EF&. Equation (68) can therefore be written

4mw
(zt, z~)= f g exp( 13E~ ))(F& ~c„—

& ~J& ) ) 5(EF EJ —s)—
T T

T' T

exp( PEJ )I (F) lcd)I J( ) I'5(EF —EJ +s) «
F J l

1

(69)

where a factor of 2 has appeared, accounting for the (identical) contributions from the two terms on the right-hand side
of Eq. (66), and an integration over s has been introduced, to decouple the up-spin energies from the down-spin ones.
Following the procedure in Sec. IV A [Eqs. (49)—(53)], we next convert the sums over the many-body states

~
J ) and

~F ) into a sum over single-particle states j:

1
(z T, z( ) =4m' g uI+5(E, + —c. )

p g u +5(E +
—s) ds,

1 1+e I" '- '- 1+e t"
j

(70)

where the upper (lower) signs refer to E & 0 ( E & 0).
Again following the procedure is Sec. IV A we now integrate this z-dependent relaxation rate, this time over z& and

z&, and find that

2 2

=4vrw f [1—f(s)]g ' f(s) gT) —,. ~dE, +Idzt ~ g ~
——~,. [dEJ ~ Idz) ~ z, + =~

dc (71)
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where f(s) =[1+exp(Pe)] ' is the Fermi function.
Comparison with Eq. (55) now shows that each sum on

the right-hand side is the impurity spectral density pd(s),
so that

=4rrw f pd(E)[1 —f(E)]f(e)de .
Ti oo

(72)

The renormalization-group approach based on the gen-
eralized discretization in Fig. 1 therefore reproduces the
exact expression, applied to which standard mathemati-
cal manipulations yield the longitudinal relaxation rate. '

VI. CONCLUSIONS

We have generalized the renormalization-group ap-
proach, a method developed to calculate thermodynami-
cal properties of impurities in metallic environments; the
extended method is capable of calculating excitation
properties as well. More general than the convolution
discussed in previous papers, the new procedure applies
to fixed-point and crossover Hamiltonians alike. As the
two illustrative applications in Secs. IV and V indicate, it
calculates essentially exactly the dynamical properties as
functions of energy or temperature.

To make our illustrations clear, we have calculated ex-
citation properties for a quadratic form, the resonant-
level Hamiltonian. This has allowed us to compute the
impurity spectral density and the longitudinal relaxation
rate analytically. Applications to many-body Hamiltoni-
ans, such as that of the ( UAO) Anderson model, can only
be worked out numerically. The numerical diagonaliza-
tion of the truncated Hamiltonian, Eq. (23), follows the
iterative procedure in Refs. 2 and 9. Although not exact,
this iterative diagonalization relies on a controlled ap-
proximation; ' the resulting deviations in the calculated
physical properties can be made smaller than a few per-
cent at any given temperature or frequency. An example
based on the generalized method we have described, a nu-
merical calculation of the impurity spectral density for
the spin-degenerate Anderson model, has been reported
in a preliminary publication. '

In conclusion, the discretization in Fig. 1 opens per-
spectives for the renormalization-group calculation of ex-
citation properties for impurity models. The new ap-
proach may also broaden the method in a different way.
In practice, the number M of states that must be kept to
diagonalize iteratively each model Hamiltonian limits the
number of models to which the renormalization-group
approach can be applied. For increasing A, M decreases
rapidly; the scope of the method would therefore be ex-
tended if calculations could be carried out with large A.
Unfortunately, the computation of thermodynamical
averages on the basis of the original (z = 1) discretization
produce errors proportional to exp( —

m /inA) (with large
prefactors), which become serious for A & 3.

The generalized discretization suggests an alternative
approach. Our results for the thermodynamical average
evaluated in Sec. V suggest that, if a given impurity Harn-
iltonian is discretized and truncated as Sec. III
prescribes, then diagonalized, if thermodynamical aver-
ages (such as the impurity contribution to the magnetic

susceptibility or to the specific heat} are subsequently
computed and these averages integrated over z, then the
results, such as the right-hand side of Eq. (72), should be
independent of A. This possibility, which would pave the
road for calculations with large discretization parame-
ters, is currently being investigated, to be discussed eIse-
where.
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APPENDIX: CALCULATION OF CODIAGONAL
COEFFICIENTS

and

N —1

Hx= g e'„(f„f„+,+H. c.),
n=0

(A2}

R~ = g s'„(f„f„+,+H. c. ),
n =N+]

(A3)

so that, for i & N, f, commutes with H~, while for i & N,

f; commutes with Rz.
We want to determine the coefficients s'„ in Eqs. (Al)

and (A2). As a preliminary step, for given integer N and
non-negative integer power n &N, we will demonstrate
the following identity:

fg(H~)"f0~0)=—0 (0&n &N), (A4)

where ~0) denotes the state annihilated by all ck.
The proof is recursive. For N= 1, Eq. (A4} becomes

fifolO) =0, (A5)

a self-evident equality, since the operators f, and fo are
orthogonal.

Next, to complete the argument, we assume that

fz i(H&, ) fo~O) =0 (0&m &N —1), (A6)

and proceed to prove Eq. (A4); to this end, for n & N, we
consider the identity

(H )"f iO) =(A+8+C)"fiiO), (A7)

where A =H&, , 8=c~,fzfz i, and C=B .
The binomial expansion of the parentheses on the

right-hand side of Eq. (A7) produces numerous terms, but

This appendix develops the numerical procedure con-
verting the conduction Hamiltonian H, to the tridiagonal
form in Eq. (13), which for convenience we write

H, Hx, +a~—(f~f~+i+H. c.)+R~,
where
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for any integer 0& m n —1 (which implies m & N —1),
Eq. (A6) makes 8A fo I

0 ) =0, while the equality

[HN „fN]=0 makes CA folo) =0. A single term
( A ") contributes, then, to the expansion, and Eq. (A7) be-
comes

(HN)"f(filo) =(HN, )"f(llo) (0&n &N) . (AS)

(HN) f(llo) =(A+8+C) f(llo) . (A 1 1)

Following the reasoning that converted Eq. (A9) into
Eq. (Alo} we convert Eq. (All} into

+sN —IfNfN —l(HN —1) 'f olo)

Since the operator fN commutes with (HN, )", Eq. (A4)
follows.

This auxiliary relation established, we turn to provid-
ing another identity; to this end, we consider the state re-
sulting from the repeated application of the Hamiltonian
H, on foflo). According to Eq. (Al), this can be written

(H, ) +'f(1lo) =( A +8+C) +'f(1 Io), (A9)

where A =HN, 8 =eN fN+, fN, and C =8 +RN.
Again, most terms in the binomial expansion of the

parentheses on the right-hand side vanish. This is be-
cause (i) for 0 & m & N, according to Eq. (A4),
BA folo) =0, and (ii) both fN+, and RN commute with

HN= A, so that for any m ~0, CA fotlo) =0. Thus,
only two terms ( A

+' and 8 A ) contribute to the ex-
pansion, and Eq. (A9) reads

(H )N+ lf t I())

=(HN} +'folo)+sNfN+(fN(HN) folo&

(A 10)

This equality is central to the procedure determining
cN. Before discussing that procedure, however, to reine
the unwieldy last term on the right-hand side of Eq.
(Alo) we consider the identity (A7) for n =¹

N —
1

f,(H, )"f', lo&= g '„lo& .
n=0

(A15)

We now substitute this expression for fN(HN) folo)
in the last term on the right-hand side of Eq. (Alo) and
obtain

N

(H ) "f.'Io)=(H )""f'.Io)+ P ".f'. , Io&
n=0

(A16)
Next, we calculate the norm of both sides, obtaining

(Qlf (H ) f(llo) =(Olfo(HN) + f(1IQ)
N

+ n(:}'. (A17)
n=0

In order to prove this equality identical to Eq. (14), we
must now find an analytical expression for the expecta-
tion value on the left-hand side of Eq. (A17), i.e., for the
norm of the state I@N+()—= (H, ) +'folo). Given the
identity H, lo) =0—which follows from the definition of
lo) —by successively commuting H, with fo we find that

ICN+1)=[H„[H„''' [H, fot]''']]IO) (AIS)

This expression, whose right-hand side nests N + 1 com-
mutators, eff'ectively determines I@N+, ) because an ex-
pression for the multiple commutator is easily found:

Since fN commutes with HN 1, fN annihilates the first
term on the right-hand side. By operating with it on both
sides of Eq. (A12), we then find

fN(HN) folo) sN —IfN —1(HN —1) folo) .

By letting N~N j—(j =1, . . . , N —1) on both sides of
this equality, we generate N —1 equations which, com-
bined with Eq. (A13), yield

fN(HN)"folo) =eN (s'N-2' ' ' e(flscf lfofolo&

(A14)

equivalent to

[H [H, [H fo] ]]=
1/2

[a —
(
—1) b ][Eo(z,A)]

1/2
1 —A A(1 —z —m)/2[E ( A}]N+1[ t

( 1)Nbt ]
m =1

(A19)

The norm (4N+(I+N+, ) =FN(z, A) is therefore

FN(z, A)=(1 —A ') g A' ' [E (z, A)] + +(1—A ')[E(1(z,A)]
m =1

This expression for FN(z, A) is finally substituted for the left-hand side of Eq. (A17), which then yields Eq. (14).
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