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Abstract. We estimate the number of homotopy types of path-components of the mapping
spaces M(Sm ,FPn) from the m-sphere S

m to the projective space FPn for F being the
real numbers R, the complex numbers C, or the skew algebra H of quaternions. Then,
the homotopy types of path-components of the mapping spaces M(E�m ,FPn) for the
suspension E�m of a homology m-sphere �m are studied as well.

Introduction

Let M(X,Y ) be the space of all continuous (not necessarily based) maps between
connected spaces X and Y with the compact-open topology. The space M(X,Y ) is
in general disconnected with path-components in one-to-one correspondence with
the set 〈X,Y 〉 of (free) homotopy classes of maps. Furthermore, different com-
ponents may—and frequently do—have distinct homotopy types. A basic prob-
lem in homotopy theory is to determine whether two path-components are homo-
topy equivalent or, more generally, to classify the path-components of M(X,Y )

up to homotopy type. For a basepoint x0 ∈ X , we have the evaluation map
ω : M(X,Y ) → Y defined by ω(g) = g(x0) for g ∈ M(X, Y ), which is a fibration
[13]. Let M f (X,Y ) be the path-component of M(X,Y ) that contains a given map
f : X → Y , and write ω f : M f (X,Y ) → Y for the restriction of ω to M f (X,Y ).

Works on these classification problems date back to the 1940s. Whitehead
[24, Theorem 2.8] considered the case X = S

m , the m-sphere, and proved that
M f (S

m,Y ) is homotopy equivalent to M0(S
m,Y ) if and only if the evaluation
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fibration ω f : M f (S
m,Y ) → Y admits a section, where 0 denotes the constant

map. Then, results by Hansen [10,11], and later by McClendon [19] treated this
classification problem as well.

Hansen [12] obtained a classification of path-components ofM(Mn,Sn), where
Mn is a suitably restricted n-manifold. The aim of [21] was to describe an approach
whichfits inwellwithHansen’s and leads to some further progress. In [6] the authors
made use of Gottlieb groups of spheres to deal with path-components of the spaces
M(Sn+k,Sn) for 8 ≤ k ≤ 13.

Let now G be a Lie group and P → X a principal G-bundle over a space
X with gauge group G. Atiyah and Bott [1] proved the following. Let BG be the
classifying space for G. Then in homotopy theory BG = MP (X, BG). Here the
subscript P denotes the path-component of a map of X into BG which induces P
(i.e., the principal G-bundle P → X ).

The case in which X is a manifold and Y = BG has been the subject of
extensive recent research by Crabb, Kono, Sutherland, Tsukuda, and others (see
e.g., [4,14,22]).

Then, Lupton and Smith [17] gave a general method that may be effectively
applied to the question of whether two path-components of a function space
M(X,Y ) have the same homotopy type provided X is a co-H -space.

Now, let FPn denote the projective n-space with n ≥ 1 for F being the real
numbers R, the complex numbers C, or the skew algebra H of quaternions. The
purpose of this paper is to classify homotopy types of path-components of the space
M(Sm,FPn) for certain m, n.

Section 1 fixes some notations and definitions, and necessary results as well.
In particular, we recall a very important result on ω f : M f (S

m, X) → X for our
further investigationswhichwas obtained byG.W.Whitehead [24]with a correction
by J.H.C. Whitehead [25] and then generalized in [16] for ω f : M f (E A, X) →
X , where E A is the reduced suspension of the space A. Next, we make use of
some results from [7, Chapter 1] to identify path-components of M(Sm,FPn) for
some m, n. Section 2 takes up the systematic study of the path-components of
M(Sm,RPn) and its main results are stated in Propositions 2.3 and 2.4. Section 3
is concentrated with the homotopy type of path-components of mapping spaces
M(Sm,CPn) and the main result is presented in Proposition 3.2. Section 4 is
devoted to the homotopy type of path-components ofmapping spacesM(Sm,HPn)

and some computations are presented in Proposition 4.2. Finally, Sect. 5 presents
some background on homologym-spheres�m form ≥ 1 to study path-components
of themapping spacesM(�m,FPn). Themain result of that section is Theorem 5.5
which uses results from [7, Chapter 2] and Sect. 2 to estimate homotopy types of
path-components of the mapping spaces M(E�m,FPn).

1. Prerequisites

For topological spaces X and Y , let M(X,Y ) be the space of all continuous maps
equipped with the compact-open topology. In the pointed case, for this space
we write M∗(X,Y ). Let M f (X,Y ) (resp. M∗ f (X,Y )) be the path-component of
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M(X,Y ) (resp.M∗(X,Y )) containing a (resp. pointed) map f : X → Y and denote
by M0(X,Y ) (resp. M∗0(X,Y )) the path-component containing the constant map.

Given pointed spaces X and Y , write 〈X,Y 〉 and [X,Y ] for the sets of homotopy
classes of free and pointed maps, respectively. It is well known that there is an
action of the fundamental group π1(Y ) on [X,Y ] and there is a bijection 〈X,Y 〉 ≈
[X,Y ]/π1(Y ).

Let [ f ] denote the homotopy class of a map f : X → Y . If X is a Hausdorff
space then for any homotopy H : I × X → Y there is an associated continuous
map H : I → M(X,Y ) and consequently [ f ] ⊆ M f (X,Y ).

If the evaluation map ev : M(X,Y ) × X → Y is continuous and σ : I →
M(X,Y ) is a path then its adjoint σ̂ : I × X

σ×idX−−−−→ M(X,Y ) × X
ev−→ Y is also

continuous and so [ f ] ⊇ M f (X,Y ).
In particular, if X is a compactly generated space then for any path σ : I →

M(X,Y ) its adjoint σ̂ : I × X → Y is continuous and [ f ] ⊇ M f (X,Y ). Because
X is also Hausdorff we derive that [ f ] = M f (X,Y ) and the set 〈X,Y 〉 coincides
with the set of all path-components of the space M(X,Y ).

As pointed out by Whitehead [24] all path-components of M∗(Sn, X) for the
n-sphere Sn have the same homotopy type. Moreover, Lang [16, Lemma 2.1] gen-
eralized this result for the space M∗(E A, X), where E A is the reduced suspension
of the pointed space A. In general, distinct path-components of the space M∗(X,Y )

need not be homotopy equivalent.
Therefore, the following problem naturally arises.

Problem 1.1. Given spaces X and Y , classify all path-components of the spaces
M(X,Y ) and M∗(X,Y ) up to homotopy type.

We consider a variety of cases beginning with the most classical, mentioning
progress on Problem 1.1, when appropriate.

Throughout the rest of this paper, all spaces are assumed to be pointed compactly
generated and all maps are pointed maps. Further, we do not distinguish between a
map and its homotopy class and we freely use notation from Toda’s book [23].

Given a space X , denote by πn(X) its nth homotopy group. Further, for f ∈
πn(X) there is the evaluation fibration ω f (at the base point of Sn)

M∗ f (S
n, X) ↪→ M f (S

n, X)
ω f−→ X.

A very important result for our further investigations was obtained by G.W.
Whitehead [24] with a correction by J.H.C. Whitehead [25] and then generalized
by Lang [16]. It describes the boundary operator in the exact homotopy sequence
for the evaluation fibration by means of the Whitehead product.

Theorem 1.2. (G.W. Whitehead) If f ∈ πn(X) then for any i ≥ 1 there is a
commutative diagram

· · · πi+1(X)

p f

∂ f
πi (M∗ f (S

n, X))

≈ H f

πi (M f (S
n, X)) · · ·

πi+n(X),
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where ∂ f is the boundary operator in the exact homotopy sequence for the evalua-
tion fibration ω f , the map H f is the adjoint isomorphism (also called the Hurewicz
isomorphism), and p f is the Whitehead product with f , i.e., p f (g) = [ f, g] for
any g ∈ πi+1(X).

Recall that theGottlieb groups Gn(X) for n ≥ 1 of a space X have been defined
in [9] as evaluation subgroups

Gn(X) = Im(ev∗ : πn(M∗(X, X), idX ) → πn(X)).

For a wide class of spaces X , the groupGn(X) is the subgroup of the nth homotopy
group πn(X) containing all elements f : Sn → X such that f ∨ idX : Sn ∨ X → X
extends (up to homotopy) to a map F : Sn × X → X , i.e., the diagram

S
n ∨ X

f ∨idX
X

S
n × X

F

commutes (up to homotopy). It is easy to observe that Gn(X) = πn(X) provided
X is an H -space.

Further, the Whitehead center groups Pn(X) for n ≥ 1 defined in [9] consist
of all elements f ∈ πn(X) such that the Whitehead product [ f, g] = 0 for any
g ∈ πm(X) and m ≥ 1. Certainly, Gn(X) ⊆ Pn(X) for all n ≥ 1. Notice that for
any f ∈ Pn(X) and i ≥ 1, Theorem 1.2 implies that there is a short exact sequence

0 → πi+n(X) → πi (M f (S
n, X)) → πi (X) → 0. (1.1)

More generally, a map f : A → X such that f ∨ idX : A ∨ X → X extends
(up to homotopy) to a map F : A × X → X , i.e., the diagram

A ∨ X
f ∨idX

X

A × X

F

commutes (up to homotopy) is called cyclic.WriteG(A, X) for the set of homotopy
classes of all cyclic maps A → X and notice that G(A, X) is a subgroup of [A, X ]
provided A is a co-H -space.

Yoon [26] observed a connection between G(E A, X) and path-components of
M(E A, X). In particular, [26, Theorems 4.5 and 4.9] imply:

Proposition 1.3. For any f ∈ πn(X) the following are equivalent:

(i) the evaluation fibrations (M f (S
n, X), ω f , X)and (M0(S

n, X), ω0, X)are fibre
homotopy equivalent;
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(ii) the evaluation fibration (M f (S
n, X), ω f , X) has a section;

(iii) f ∈ Gn(X).

Proposition 1.4. If f, f ′ ∈ πn(X) and f + f ′ ∈ Gn(X) or f − f ′ ∈
Gn(X) then the corresponding evaluation fibrations (M f (S

n, X), ω f , X) and
(M f ′(Sn, X), ωg, X) are fibre homotopy equivalent. In particular, the path-
components M f (S

n, X) and M± f ′(Sn, X) are homotopy equivalent.

Since Gn(X) ⊆ Pn(X), by Proposition 1.3 the sequence (1.1) splits and we get
an isomorphism

πi (M f (S
n, X)) ≈ πi+n(X) ⊕ πi (X) (1.2)

for any f ∈ Gn(X) and i ≥ 1.
Further, since path-components of the space M(A, X) are in one-to-one corre-

spondence with the set 〈A, X〉, we may say that the quotient map [A, X ] → 〈A, X〉
is given by [ f ] �→ M f (A, X) for [ f ] ∈ [A, X ]. Then, Lupton–Smith’s results [17,
Corollary 2.5 and (8)] imply that [A, X ] → 〈A, X〉 yields a surjection

[A, X ]/G(A, X) → {
M f (A, X); f ∈ 〈A, X〉}/�,

provided A is a co-H -space, where � is the homotopy equivalence relation. In
particular, if X is an H -space then all path-components of M(A, X) are homotopy
equivalent. Further, for A = S

n there is also a surjection

πn(X)/Gn(X) → {
M f (S

n, X); f ∈ 〈Sn, X〉}/�. (1.3)

Now, write πn(X)/±Gn(X) for the quotient set of πn(X) by the relation ∼ with
f ∼ g provided f − g ∈ Gn(X) or f + g ∈ Gn(X) for f, g ∈ πn(X). Since, by
Proposition 1.4, the path-components M f (S

n, X) and M− f (S
n, X) are homotopy

equivalent for any f ∈ πn(X), formula (1.3) leads to a surjection

πn(X)/±Gn(X) → {
M f (S

n, X); f ∈ 〈Sn, X〉}/�. (1.4)

To make use of formula (1.4) in the sequel, given real numbers x, y, we write

χ(x, y) =
⌈

(x − 1)(y − 1)

2

⌉
+

⌈
(x − 1)

2

⌉
+

⌈
(y − 1)

2

⌉
+ 1,

where �r� = min{k ∈ Z; k ≥ r} for any real r , where Z is the integers. Further,
we recall:

Lemma 1.5. ([6, Lemma 1]) For positive integers m,m′, n, n′ with m | n, m′ | n′
andn, n′ ≥ 1, letZm×Zm′ < Zn×Zn′ , mZ×Zm′ < Z×Zn′ andmZ×m′

Z < Z×Z

be the obvious inclusions. Then:

|(Zn × Zn′)/±(Zm × Zm′)| = χ( n
m , n′

m′ );
|(Z × Zn′)/±(mZ × Zm′)| = χ(m, n′

m′ );
|(Z × Z)/±(mZ × m′

Z)| = χ(m,m′).
In particular, |(Zn × Zn′)/±(Zm × Zn′)| = |Zn/±Zm | = χ( n

m , 1).

Let now F be the field of real numbers R, complex numbers C, or the quaternion
algebraH. We write FPn for the projective n-space over F, γn : Sd(n+1)−1 → FPn

for the quotient map where d = dimR F, and iF : Sd = FP1 ↪→ FPn for the
canonical inclusion.
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2. Path-components of the mapping spaces M(Sm,RPn)

We study the homotopy type of path-components of the mapping spaces
M(Sm,RPn).

Since RP1 is a topological group, any two path-components of the space
M(S1,RP1) are homeomorphic and, by (1.1) the evaluationmapMkiR(S1,RP1) →
RP1 is a (weak) homotopy equivalence, for any kiR ∈ π1(RP1) = Z{iR},
the infinite cyclic group. Further, because πm(RP1) = 0 for m ≥ 2, the
space M(Sm,RP1) is path-connected and, again by (1.1) the evaluation map
M(Sm,RP1) → RP1 is a (weak) homotopy equivalence.

In view of [7, Corollary 2.34] it holds Gm(RP2) = πm(RP2) for m ≥ 3.
Notice that Gm(RPn) = πm(RPn) form ≥ 1 and n = 3, 7 becauseRP3 andRP7

are H -spaces. Hence, by (1.3) all path-components of the space M(Sm,RPn) are
homotopy equivalent for m ≥ 3 and n = 2, or m ≥ 1 and n = 3, 7. Further, the
space M(Sm,RPn) is path-connected for 2 ≤ m < n. Consequently (1.2) leads to:

Remark 2.1. There are isomorphisms:

(1) πi (M f (S
m,RP2)) ≈ πi+m(RP2) ⊕ πi (RP2) for any f ∈ πm(RP2), i ≥ 1

and m ≥ 3;
(2) πi (M f (S

m,RPn)) ≈ πi+m(RPn)⊕πi (RPn) for any f ∈ πm(RPn), i,m ≥
1 and n = 1, 3, 7;

(3) πi (M(Sm,RPn)) ≈ πi+m(RPn) ⊕ πi (RPn) for i ≥ 1 and 2 ≤ m < n.

Next, by [8] we have

G1(RPn) =
{
0, for n even,
π1(RPn), for n odd,

and (1.3) implies that any two path-components of M(S1,RPn) are homotopy
equivalent for n ≥ 3 odd. Further, by [20] it holds

Gn(RPn) =
{
0, for n even,
2πn(RPn), for n �= 1, 3, 7 odd.

Hence, by Proposition 1.3 the spaces M f (S
n,RPn) and M f ′(Sn,RPn) are homo-

topy equivalent for n �= 1, 3, 7 odd and any f, f ′ ∈ 2πn(RPn).
Now, we extend the discussion above for the missing cases.

Lemma 2.2. (1) The path-components M f (S
2m,RP2m) and M f ′(S2m,RP2m) are

homotopy equivalent if and only if f = ± f ′ for m ≥ 1.
(2) The number of homotopy types of path-components of M(S4m−1,RP2m) is

finite, for m �= 1, 2, 4.
(3) The path-components M0(S

2m−1,RP2m−1) and Mγ2m−1(S
2m−1,RP2m−1) are

homotopy equivalent if and only if m = 1, 2, 4.
(4) M(S1,RP2m) has two path-components, M0(S

1,RP2m) and MiR(S1,RP2m),
and they are not homotopy equivalent for m ≥ 1.

Proof. We mainly use the result stated in Theorem 1.2.
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(1): If f = ± f ′ then, by Proposition 1.4, the path-components M f (S
2m,RP2m)

and M f ′(S2m,RP2m) are homotopy equivalent for m ≥ 1.
Conversely, given f ∈ π2m(RP2m) the evaluation fibration

M∗ f (S
2m,RP2m) ↪→ M f (S

2m,RP2m)
ω f−→ RP2m

yields the exact sequence

π2m(RP2m)
[ f,−]−−−→ π4m−1(RP2m) → π2m−1(M f (S

2m,RP2m)) → 0

for m > 1. Then, mimicking the proof of [11, Theorem 3.1], we get that
both groups π2m−1(M f (S

2m,RP2m)) and π2m−1(M f ′(S2m,RP2m)) are not
isomorphic provided f �= ± f ′.
Finally, for m = 1 we have the exact sequence

π2(RP2)
[ f,−]−−−→ π3(RP2) → π1(M f (S

2,RP2)) → π1(RP2) → 0.

Because [ι2, ι2] = 2η2, we deduce that Im[ f,−] and Im[ f ′,−] are differ-
ent subgroups of π3(RP2) provided f �= ± f ′. Consequently, the groups
π1(M f (S

2,RP2)) and π1(M f ′(S2,RP2)) are not isomorphic as they are
finite groups with different orders.

(2) 1: We show that for m �= 1, 2, 4 we have am(2m − 1)!/8π4m−1(RP2m) ⊆
G4m−1(RP2m), where am = 1 for m even and am = 2 for m odd.
Let SO(m) be the m-special orthogonal group and write � : πi (S

2m) →
πi−1(SO(2m)) for the boundary map coming from the fibration SO(2m) ↪→
SO(2m+1) → S

2m . Then, by [18] the order of�[ι2m, ι2m] is am(2m−1)!/8,
where am = 1 is m is even and am = 2 if m is odd, provided m �= 1, 2, 4.
In view of [7, Corollary 2.34] we deduce am(2m − 1)!/8π4m−1(RP2m) ⊆
G4m−1(RP2m). Then, (2) follows by formula (1.3).

(3): Obviouslym = 1, 2, 4 implies that bothpath-componentsM0(S
2m−1,RP2m−1)

and Mγ2m−1(S
2m−1,RP2m−1) are homotopy equivalent.

Conversely, notice that the evaluation fibration

M0(S
2m−1,RP2m−1) ↪→ M0(S

2m−1,RP2m−1)
ω0−→ RP2m−1

leads to the exact sequence

π2m−1(RP2m−1)
[0,−]−−−→ π4m−3(RP2m−1)

→ π2m−2(M0(S
2m−1,RP2m−1)) → 0

andconsequently, to an isomorphismπ4m−3(RP2m−1)
≈−→ π2m−2(M0(S

2m−1,

RP2m−1)).
Further, the evaluation fibration

M∗γ2m−1(S
2m−1,RP2m−1) ↪→ Mγ2m−1(S

2m−1,RP2m−1)
ωγ2m−1−−−−→ RP2m−1

1 We are deeply grateful to Juno Mukai for indicating reference [18] needed in this proof.
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leads to the exact sequence

π2m−1(RP2m−1)
[γ2m−1,−]−−−−−−→ π4m−3(RP2m−1)

→ π2m−2(Mγ2m−1(S
2m−1,RP2m−1)) → 0.

But, the supposed homotopy equivalence of the path-components M0(S
2m−1,

RP2m−1) and Mγ2m−1(S
2m−1,RP2m−1) determines an isomorphism

π2m−2(M0(S
2m−1,RP2m−1))

≈−→ π2m−2(Mγ2m−1(S
2m−1,RP2m−1)).

Since the group π4m−3(RP2m−1) is finite, we deduce that the epimorphism

π4m−3(RP2m−1) → π2m−2(Mγ2m−1(S
2m−1,RP2m−1))

above is an isomorphism. Hence, [γ2m−1, γ2m−1] = 0 and consequently m =
1, 2, 4.

(4): Recall that π1(RP2m) = Z2{iR}, the cyclic group of order two for m ≥ 1.
Given f ∈ π1(RP2m) with m > 1, the evaluation fibration

M∗ f (S
1,RP2m) ↪→ M f (S

1,RP2m)
ω f−→ RP2m

leads to the exact sequence

π2m(RP2m)
[ f,−]−−−→ π2m(RP2m) → π2m−1(M f (S

1,RP2m)) → 0.

If f = 0 then the sequence above implies an isomorphism

π2m(RP2m)
≈−→ π2m−1(M0(S

1,RP2m)).

If f = iR then by [2, (4.1–3)] it holds [iR, γ2m] = −2γ2m �= 0. Then, the
isomorphism

π2m(RP2m)/ Im([iR,−]) ≈−→ π2m−1(MiR(S1,RP2m))

shows that the path-components M0(S
1,RP2m) and MiR(S1,RP2m) are not

homotopy equivalent.
Finally, for m = 1 and f ∈ π1(RP2) the evaluation fibration

M∗ f (S
1,RP2) ↪→ M f (S

1,RP2)
ω f−→ RP2

leads to the exact sequence

0 → π2(RP2)/ Im([ f,−]) → π1(M f (S
1,RP2)) → π1(RP2) → 0.

Since [iR, γ2] = −2γ2 �= 0, we deduce again that the path-components
M0(S

1,RP2) and MiR(S1,RP2) are not homotopy equivalent and the proof
is complete. ��
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Proposition 2.3. Let f ∈ πm+i (RPm) and suppose that M f (S
m+i ,RPm) and

M0(S
m+i ,RPm) are homotopy equivalent for some i ≥ 0 and m ≥ 1. If

γm∗Gm+i (S
m) = Pm+i (RPm) then f ∈ Pm+i (RPm). In particular, it holds if

m ≥ 1 is odd and i ≥ 0, or m = 2 and i ≥ 0, or m ≥ 4 is even and i ≤ m − 2, or
(i,m) = (6, 6), (7, 4), (7, 6).

Proof. Certainly, we may assume that m ≥ 2. Let f ∈ πm+i (RPm). If i = 0 and
m is even, by Lemma 2.2(1) we deduce that f = 0. For other cases, consider the
evaluation fibration

M∗ f (S
m+i ,RPm) ↪→ M f (S

m+i ,RPm) → RPm

which by Theorem 1.2, yields the following short exact homotopy sequence

0 → π j+m+i (RPm) → π j (M0(S
m+i ,RPm)) → π j (RPm) → 0

for f = 0 and j ≥ 1. In particular, for j = m − 1 with m > 2 there is an
isomorphism

π2m+i−1(RPm)
≈−→ πm−1(M0(S

m+i ,RPm)). (2.1)

But the evaluation fibration above leads also to the exact homotopy sequence

πm(RPm)
[ f,−]−−−→ π2m+i−1(RPm) → πm−1(M f (S

m+i ,RPm)) → 0

and consequently we get an isomorphism

π2m+i−1(RPm)/ Im([ f,−]) ≈ πm−1(M f (S
m+i ,RPm)).

Because of πm−1(M f (S
m+i ,RPm))

≈−→ πm−1(M0(S
m+i ,RPm)), the isomor-

phism in (2.1) yields [ f, γm] = 0 since the group π2m+i−1(RPm) is finite provided
i �= 0 or m is odd. Since f = γmα for some α ∈ πm+i (S

m) we conclude that
α ∈ Gm+i (S

m) and then f ∈ γm∗Gm+i (S
m) = Pm+i (RPm).

Now, for m = 2 the evaluation fibration above leads to the exact homotopy
sequence

π2(RP2)
[ f,−]−−−→ πi+3(RP2) → π1(M f (S

i+2,RP2)) → π1(RP2) → 0

which implies the sequence

0 → πi+3(RP2) → π1(M0(S
i+2,RP2)) → π1(RP2) → 0.

Because of π1(M f (S
i+2,RP2))

≈−→ π1(M0(S
i+2,RP2)), we obtain [ f, γ2] = 0.

Since f = γ2α for some α ∈ πi+2(S
2), we conclude that f ∈ γ2∗Gi+2(S

2) =
Pi+2(RP2).

In view of [7, Proposition 2.16, Theorem 2.19], we have that γm∗Gm+i (S
m) =

Pm+i (RPm) under conditions on i,m as in the statement of the current proposition
and the proof follows. ��



410 M. Golasiński et al.

Proposition 2.4. Consider the space M(Sm+i ,RPm) for 1 ≤ i ≤ 7 and m ≥ 1.
If (i,m) �= (3, 4), (3, 2k − 3) for k ≥ 4, (4, 4), (5, 4), (6, 4), (5, 6), (6, 2k − 5)
for k ≥ 5, (7, 8), (7, 11) then the cardinality of the set

{
M f (S

m+i ,RPm); f ∈
〈Sm+i ,RPm〉}/� is:

(i) one for m = 2, 6 or m ≡ 3 (mod 4), and two otherwise, for i = 1;
(ii) one for m ≡ 2, 3 (mod 4), and two otherwise, for i = 2;
(iii) one for m = 2, 3, 5 or m ≡ 7 (mod 8), two for m ≡ 1, 3, 5 (mod 8) with

m ≥ 9, at most seven for m ≡ 2 (mod 4) and m ≥ 6 or m = 12, at most
thirteen for m ≡ 0 (mod 4) and m ≥ 8 with m �= 12, for i = 3;

(iv) one for i = 4, 5;
(v) one for m = 2, 3 or m ≡ 4, 5, 7 (mod 8) with m �= 4, two otherwise, for

i = 6;
(vi) one for m = 2, 3, 5, 7 or m ≡ 15 (mod 16), at most eight or thirty one, for

m = 4, 6 respectively, two for m ≥ 9 odd and m �≡ 15 (mod 16), at most one
hundred twenty one for m ≥ 10 even, for i = 7.

Proof. Recall that by [7, Proposition 2.16, Theorems 2.19, 2.41], Pm+i (RPm) =
Gm+i (RPm) = γm∗Gm+i (S

m) except for the following pairs: (i,m) = (3, 4),
(3, 2k − 3) for k ≥ 4, (4, 4), (5, 4), (6, 4), (5, 6), (6, 2k − 5) for k ≥ 5, (7, 8),
(7, 11).

Hence, for the non-exceptional pairs (i,m), by formula (1.3) the cardinality of
the set

{
M f (S

m+i ,RPm); f ∈ 〈Sm+i ,RPm〉}/� is bounded above by the order
of the quotient group

πm+i (RPm)/γm∗Gm+i (S
m) ≈ πm+i (S

m)/Gm+i (S
m).

Furthermore, by Proposition 1.3 and [17, Theorem 3.10] the path-components
M f (S

m+i ,RPm) and M0(S
m+i ,RPm) are homotopy equivalent if and only if

f ∈ Gm+i (RPm).
If i = 1 then πm+1(S

m) = Z2{ηm} for m ≥ 3 and by [7, (1.15)] the cardinality
of

{
M f (S

m+1,RPm); f ∈ 〈Sm+1,RPm〉}/� is one for m = 2, 6 or m ≡ 3
(mod 4), and two otherwise.

If i = 2 then πm+2(S
m) = Z2{η2m} for m ≥ 2 and by [7, (1.16)] the cardinality

of
{
M f (S

m+2,RPm); f ∈ 〈Sm+2,RPm〉}/� is one for m ≡ 2, 3 (mod 4), and
two otherwise.

If i = 3 andm = 2, 3, 5 orm ≡ 7 (mod 8) then by [7, (1.32)] the cardinality of
the set

{
M f (S

m+3,RPm); f ∈ 〈Sm+3,RPm〉}/� is one. If m ≡ 1, 3, 5 (mod 8)
with m ≥ 9, then by [7, (1.32)] πm+3(S

m) ≈ Z24 and νm /∈ Gm+3(S
m), so the

cardinality is two. If m ≡ 2 (mod 4) and m ≥ 6 or m = 12 then by [7, (1.32)] the
cardinality is at most seven. If m ≡ 0 (mod 4) and m ≥ 8 with m �= 12 then again
by [7, (1.32)] and (1.4) the cardinality is at most thirteen.

If i = 4, 5 then by [7, Proposition 1.30] the cardinality of the set{
M f (S

m+i ,RPm); f ∈ 〈Sm+i ,RPm〉}/� is one.
If i = 6 and m = 2, 3 or m ≡ 4, 5, 7 (mod 8) with m �= 4, then by [7,

Proposition 1.16] the cardinality of
{
M f (S

m+6,RPm); f ∈ 〈Sm+6,RPm〉}/� is
one, and it is two otherwise.
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If i = 7 and m = 2, 3, 5, 7 or m ≡ 15 (mod 16), then by [7, Proposition 1.16
and (1.51)] the cardinality of

{
M f (S

m+7,RPm); f ∈ 〈Sm+7,RPm〉}/� is one.
For m = 4, 6 then again by [7, Proposition 1.16] and (1.4) it is at most eight or
thirty one, respectively. For m ≥ 9 odd and m �≡ 15 (mod 16) by [7, (1.51)] and
Proposition 2.3 the cardinality is two. For m ≥ 10 even, it is at most one hundred
twenty one, by [7, (1.51)], Proposition 2.3 and (1.4). ��

The pairs (i,m) excluded on Proposition 2.4 are considered below.

Proposition 2.5. The cardinality of the set
{
M f (S

m+i ,RPm); f ∈ 〈Sm+i ,RPm〉}/
� is:

(i) at most seventy four for (i,m) = (3, 4);
(ii) at most two for (i,m) = (3, 2k − 3), for k ≥ 4;
(iii) at least two for (i,m) = (4, 4);
(iv) at least two for (i,m) = (5, 4);
(v) at most five for (i,m) = (6, 4);
(vi) at most sixteen for (i,m) = (5, 6);
(vii) two for (i,m) = (6, 2k − 5) for k ≥ 5;
(viii) at most one thousand two hundred sixty one for (i,m) = (7, 8);
(ix) at most five for (i,m) = (7, 11).

Proof. (i): Because π7(RP4) = Z{γ4ν4} ⊕ Z12{γ4Eν′} hence π7(RP4)/12π7
(RP4) ≈ Z12 ⊕ Z12. Since G7(RP4) ⊇ 12π7(RP4) [7, Theo-
rem 2.41(1)] and (1.4) the cardinality of the set

{
M f (S

7,RP4); f ∈
〈S7,RP4〉}/� is at most seventy four.

(ii): Because π2k (RP2k−3) = Z24{γ2k−3ν2k−3} hence π2k (RP2k−3)/2π2k

(RP2k−3) ≈ Z2 for k ≥ 4. Since G2k (RP2k−3) ⊇ 2π(RP2k−3) [7,
Theorem 2.41(2)] and (1.4) the cardinality of

{
M f (S

2k ,RP2k−3); f ∈
〈S2k ,RP2k−3〉}/� is at most two.

(iii)–(iv): Recall that π8(RP4) = Z2{γ4ν4η7} ⊕ Z2{γ4(Eν′)η7} and π9(RP4) =
Z2{γ4ν4η27}⊕Z2{γ4(Eν′)η27}. By [7, Theorem2.19(5)–(6)], P8(RP4) =
Z2{γ4(Eν′)η7} and P9(RP4) = Z2{γ4(Eν′)η27}. Thus, γ4ν4η7 /∈
P8(RP4) and γ4ν4η

2
7 /∈ P9(RP4) and then the homotopy groups

π1(M0(S
ε,RP4)) and π1(M f (S

ε,RP4)) are not isomorphic, where
f = γ4ν4η7 or f = γ4ν4η

2
7, for ε = 8, 9, respectively. Consequently,

the path-componentsM0(S
ε,RP4) andM f (S

ε,RP4) are not homotopy
equivalent and the cardinality of

{
M f (S

ε,RP4); f ∈ 〈Sε,RP4〉}/� is
at least two, for f and ε as above.

(v): Since π10(RP4) = Z8{γ4ν24 }⊕Z3{γ4α1(4)α1(7)}⊕Z3{γ4[ι4, ι4]α1(7)}
we conclude that π10(RP4)/3π10(RP4) ≈ Z3 ⊕ Z3 and since
G10(RP4) ⊇ 3π10(RP4) [7, Theorem 2.41(3)] by (1.4) the cardinality
of the set

{
M f (S

10,RP4); f ∈ 〈S10,RP4〉}/� is at most five.
(vi): Since π11(RP6) = Z{γ6[ι6, ι6]} we obtain π11(RP6)/30π11(RP6) ≈

Z30 and by [7, Theorem 2.41(4)] and (1.4) the cardinality of
{
M f (S

11,

RP6); f ∈ 〈S11,RP6〉}/� is at most sixteen.
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(vii): Because π2i+1(RP2i−5) = Z2{γ2i−5ν
2
2i−5

} and P2i+1(RP2i−5) = 0

by [7, Theorem 2.19(7)], the cardinality of
{
M f (S

2i+1,RP2i−5); f ∈
〈S2i+1,RP2i−5〉}/� is two.

(viii): Because π15(RP8) = Z{γ8σ8} ⊕ Z8{γ8Eσ ′} ⊕ Z3{γ8α2(8)} ⊕ Z5
{γ8α1(8)} hence π15(RP8)/2520π15(RP8) ≈ Z2520. Thus, by [7, The-
orem 2.41(5)] and (1.4) the cardinality of the set

{
M f (S

15,RP8); f ∈
〈S15,RP8〉}/� is at most one thousand two hundred sixty one.

(ix): Because π18(RP11) = Z16{γ11σ11} ⊕Z3{γ11α2(11)} ⊕Z5{γ11α1(11)}
we conclude that π18(RP11)/2π18(RP11) ≈ Z2. Thus, by [7, Theo-
rem 2.41(6)] and (1.4) the cardinality of the set

{
M f (S

18,RP11); f ∈
〈S18,RP11〉}/� is at most two. ��

3. Path-components of the mapping spaces M(Sm,CPn)

Westudy homotopy types of path-components of themapping spacesM(Sm ,CPn).
By [11, Theorem 5.1], the path-components M f (S

2,CP1) and M f ′(S2,CP1)

are homotopy equivalent if and only if f = ± f ′. If m ≥ 3, then [7, Corol-
lary 1.3] gives πm(CP1) = Gm(CP1) and by (1.3) all path-components of the
space M(Sm,CP1) are homotopy equivalent.

The space M(Sm,CPn) is path-connected for m = 1 and n ≥ 1, or 3 ≤ m <

2n + 1, because πm(CPn) = 0 under these conditions. Consequently (1.2) leads
to:

Remark 3.1. There are isomorphismsπi (M(Sm,CPn)) ≈ πi+m(CPn)⊕πi (CPn)

for i ≥ 1, where m = 1 and n ≥ 1, or 3 ≤ m < 2n + 1. In particular,
π1(M(S1,CPn)) ≈ Z, π1(M(S2n,CPn)) ≈ Z, and the space M(Sm,CPn) is
1-connected for 3 ≤ m < 2n.

Next, by [15, Theorem III.8] it holds n!π2n+1(CPn) ⊆ G2n+1(CPn). Then,
(1.3) and (1.4) imply that the number of homotopy types of path-components of
M(S2n+1,CPn) is bounded above by n!

2 + 1.
Now, we examine the homotopy type of path-components of the space

M(Sm,CP2) for m = 1, . . . , 12. If m = 1, 3, 4, the space M(Sm,CP2) was
considered in Remark 3.1. For the remaining cases we make use of (1.3), (1.4) and
[7, Theorems 2.20 and 2.25] to state the following:

Proposition 3.2. (1) If n ≥ 1 and the path-components MkiC(S2,CP2n) and
MliC(S2,CP2n) are homotopy equivalent then k ≡ l (mod 2).

(2) The cardinality of the set
{
M f (S

m,CP2); f ∈ 〈Sm,CP2〉}/� is:
(i) two for m = 5, 6, 7;
(ii) at most two for m = 8, 9;
(iii) one for m = 10, 11, 12.

Proof. (1): Recall that π2(CP2n) = Z{iC} and by [2, (4.1–3)] it holds [iC, γ2n] =
γ2nη4n+1. Given f ∈ π2(CP2n), by Theorem 1.2 the evaluation fibration

M∗ f (S
2,CP2n) ↪→ M f (S

2,CP2n)
ω f−→ CP2n
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leads to the exact sequence

π4n+1(CP2n)
[ f,−]−−−→ π4n+2(CP2n) → π4n(M f (S

2,CP2n)) → 0.

If f = kiC and k is even then [kiC, γ2n] = kγ2nη4n+1 = 0. Hence, by the
sequence above there is an isomorphism

π4n+2(CP2n)
≈−→ π4n(MkiC(S2,CP2n)).

If f = liC and l is odd then [liC, γ2n] = γ2nη4n+1 �= 0. Then, since
π4n+2(CP2n) ≈ Z2 the isomorphism

π4n+2(CP2n)/ Im([liC,−]) ≈−→ π4n(MliC(S2,CP2n))

shows that the path-components MkiC(S2,CP2n) and MliC(S2,CP2n) are not
homotopy equivalent.

Now we prove part (2).

(i): Let m = 5. We have G5(CP2) = P5(CP2) = 2π5(CP2) by [7, Theo-
rems 2.20(1) and 2.44] and so (1.3) implies that there are at most two homo-
topy types on the set of path-components of M(S5,CP2). Next, the evalua-
tion fibration M∗γ2(S

5,CP2) ↪→ Mγ2(S
5,CP2) → CP2 leads, in view of

Theorem 1.2, to the exact sequence

π5(CP2)
[γ2,−]−−−→ π9(CP2) → π4(Mγ2(S

5,CP2)) → 0.

Since [γ2, γ2] = γ2[ι5, ι5] �= 0, we conclude that Mγ2(S
5,CP2) and

M0(S
5,CP2) are not homotopy equivalent. Consequently, there are exactly

two homotopy types of path-components of M(S5,CP2).
Let m = 6. Since π6(CP2) = Z2{γ2η5} and G6(CP2) = 0 by [7, Theo-
rem 2.45], the equation (1.3) implies that there are at most two homotopy
types of path-components of M(S6,CP2). The same argument as for m = 5
and [7, (1.15)] show that Mγ2η5(S

6,CP2) and M0(S
6,CP2) are not homo-

topy equivalent, and consequently there are exactly two homotopy types of
path-components of M(S6,CP2).
Let m = 7. Since π7(CP2) = Z2{γ2η25} and G7(CP2) = P7(CP2) = 0 by
[7, Theorem 2.20(2)], the equation (1.3) guarantees that there are at most two
homotopy types of path-components of M(S7,CP2). The same argument as
above and [7, (1.16)] show that Mγ2η

2
5
(S7,CP2) and M0(S

7,CP2) are not
homotopy equivalent.

(ii): Let m = 8, 9. Recall that π8(CP2) = Z24{γ2ν5} and π9(CP2) = Z2{γ2ν25 },
and by [7, Theorem 2.45(2)] we know that G8(CP2) ⊇ 2π8(CP2). Then,
(1.3) implies the result.

(iii): Since Gm(CP2) = πm(CP2) by [7, Corollary 2.47(1)] for m = 10, 11, 12,
by (1.3) the proof is completed. ��
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4. Path-components of the mapping spaces M(Sm,HPn)

We study the homotopy type of path-components of mapping spaces M(Sm,HPn).
Since πm(HPn) = 0 for m = 1, 2, 3 and n ≥ 1, the space M(Sm,HPn) is

path-connected under these conditions. In view of (1.2), this implies:

Remark 4.1. There are isomorphismsπi (M(Sm,HPn)) ≈ πi+m(HPn)⊕πi (HPn)

for i ≥ 1, m = 1, 2, 3 and n ≥ 1. In particular, π1(M(S3,HPn)) ≈ Z for n ≥ 1,
and the space M(Sm,HPn) is 1-connected for m = 1, 2 and n ≥ 1.

By [7, Theorem 2.49(1)] it holds:

G4n+3(HPn) ⊇
{

(2n + 1)!γn∗π4n+3(S
4n+3), for n even,

2(2n + 1)!γn∗π4n+3(S
4n+3), for n odd.

Since

πk(HPn) = γn∗πk(S
4n+3) ⊕ iH∗Eπk−1(S

3), (4.1)

by (1.3) the number of homotopy types of path-components of M(S4n+3,HPn) is
bounded above by the orders of the finite groups

π4n+3(HPn)/(2n + 1)!γn∗π4n+3(S
4n+3) ≈ Z(2n+1)! ⊕ iH∗Eπ4n+2(S

3)

and

π4n+3(HPn)/2(2n + 1)!γn∗π4n+3(S
4n+3) ≈ Z2(2n+1)! ⊕ iH∗Eπ4n+2(S

3),

for n even and odd, respectively.
By [11, Theorem 5.1], the path-components M f (S

4,HP1) and M f ′(S4,HP1)

are homotopy equivalent if and only if f = ± f ′. Now, we study the homotopy
type of path-components of the spaces M(S4,HPn) for n > 1 and M(Sm,HP1)

for m = 5, . . . , 17. In order to do this we make use of (1.3) and [7, Chapter I].

Proposition 4.2. (1) If n > 1 and the path-components MkiH(S4,HPn) and
MliH(S4,HPn) are homotopy equivalent then (24, k(n + 1)) = (24, l(n + 1)).

(2) The cardinality of the set
{
M f (S

m,HP1); f ∈ πm(HP1)
}
/� is:

(i) one for m = 5, 6, 8, 9, 10, 16, 17;
(ii) at most nineteen for m = 7;
(iii) at most eight for m = 11;
(iv) two for m = 12;
(v) at most four for m = 13;
(vi) at most four for m = 14;
(vii) at most twenty two for m = 15.

Proof.(1): By (4.1), π4(HPn) = Z{iH} for n > 1. Given f ∈ π4(HPn), by
Theorem 1.2 the evaluation fibration

M∗ f (S
4,HPn) ↪→ M f (S

4,HPn) → HPn
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leads to the exact sequence

π4n+3(HPn)
[ f,−]−−−→ π4n+6(HPn) → π4n+2(M f (S

4,HPn))

→ π4n+2(HPn)
[ f,−]−−−→ π4n+5(HPn).

Since π4n+2(HPn) = iH∗Eπ4n+1(S
3), the proof of [7, Lemma 2.8] shows

that [iH, iHEβ] = 0 for any β ∈ π4n+1(S
3) and n > 1, so the map

π4n+2(HPn)
[ f,−]−−−→ π4n+5(HPn) is trivial. Consequently we derive the short

exact sequence

0 → π4n+6(HPn)/ Im([ f,−]) → π4n+2(M f (S
4,HPn))

→ iH∗Eπ4n+1(S
3) → 0.

Let now f = kiH. Because of [2, (4.1–3)] it holds [iH, γn] = ±(n +
1)γnν4n+3.Hence since [iH, iHEβ] = 0 for anyβ ∈ π4n+2(S

3) and n > 1,we
deduce that the group Im([kiH,−]) = {k(n+1)γnν4n+3} has order 24

(24,k(n+1))
since the order #ν4n+3 = 24.
From this we derive that the path-components MkiH(S4,HPn) and MliH
(S4,HPn) are not homotopy equivalent provided (24, k(n+1)) �= (24, l(n+
1)).

(2): First, we notice that the generators of all Gottlieb groups below are from [7,
Chapter I, Section 1.2].

(i): If m = 5, 6, 8, 9, 10, 16, 17 then Gm(HP1) = πm(HP1). Hence (1.3) leads
to a single homotopy type of path-components of M(Sm,HP1).

(ii): If m = 7 then π7(HP1) = Z{ν4} ⊕ Z4{Eν′} ⊕ Z3{α1(4)} and it holds
G7(HP1) = {6ν4+Eν′, 2Eν′}. Thus, the canonical epimorphismsZ{ν4} →
Z12 and Z4{Eν′} → 6Z12 lead to an isomorphism π7(HP1)/G7(HP1) ≈
Z12 ⊕ Z3 and so (1.3) and (1.4) yields at most nineteen homotopy types of
path-components of M(S7,HP1).

(iii): Ifm = 11 then π11(HP1) = Z15{α1(4)+α2(4)} andG11(HP1) = 0. Hence
(1.3) and (1.4) yields at most eight homotopy types of path-components of
M(S11,HP1).

(iv): If m = 12 then π12(HP1) = Z2{ε4} and G12(HP1) = 0. Hence (1.3) and
(1.4) yields two homotopy types of path-components of M(S12,HP1).

(v): Ifm = 13 then π13(HP1) = Z2{ε34}⊕Z2{μ4}⊕Z2{η4ε5} andG13(HP1) =
Z2{ε34}. Hence (1.3) yields at most four homotopy types of path-components
of M(S13,HP1).

(vi): If m = 14 then π14(HP1) = Z8{ν4σ ′} ⊕ Z4{Eε′} ⊕ Z2{η4μ5} ⊕
Z3{α1(4)α2(7)} ⊕ Z3{ν4α2(7)} ⊕ Z5{ν4α1(7)} and G14(HP1) = {ν4σ ′ ±
Eε′, 2Eε′, α1(4)α2(7), ν4α2(7), ν4α1(7)}. Thus, the canonical epimorphisms
Z8{ν4σ ′} → Z2 andZ4{Eε′} → Z2 lead to an isomorphism π14(HP1)/G14
(HP1) ≈ Z2 ⊕ Z2, and by (1.3) and (1.4) there are at most four homotopy
types of path-components of M(S14,HP1).

(vii): If m = 15 then π15(HP1) = Z2{ν4σ ′η14} ⊕ Z2{ν4ν̄7} ⊕ Z2{ν4ε7} ⊕
Z4{Eν′}⊕Z2{ε4ν12}⊕Z2{(Eν′)ε7}⊕Z3{α3(3)}⊕Z7{α1(3)} andG15(HP1)
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= {ν4σ ′η14, ν4ν̄7, ν4ε7, 2Eν′, ε4ν12, (Eν′)ε7}. Because π15(HP1)/G15
(HP1) ≈ Z2⊕Z21, by (1.3) and (1.4) there are at most twenty two homotopy
types of path-components of M(S15,HP1). ��

5. Path-components of the mapping spaces M(E�m,FPn)

Westudyhomotopy types of path-components of themapping spacesM(E�m ,FPn)

for the suspension E�m of a homology m-sphere �m .
First, recall that amap f : X → Y is called ahomology isomorphism if it induces

isomorphisms on all homology groups. Then, according to [5] a space �n is called
a homology n-sphere if there is an isomorphism of homologies Hk(�

n) ≈ Hk(S
n)

for all k ≥ 0. Given a homology n-sphere �n with n ≥ 1, the fundamental group
π1(�

n) is perfect for n ≥ 2 and the abelianizationπ1(�
1)ab ≈ Z, the infinite cyclic

group. Thus, the result of Bousfield–Kan [3, Chapter VII, Proposition 3.2, p. 206]
implies that there is a homology isomorphism hn : �n → S

n for n ≥ 2. It is not
difficult to show that there is also a homology isomorphism h1 : �1 → S

1.
Given a homology isomorphism f : X → Y , let C f be the mapping cone of f .

Since the cofibration X
f−→ Y → C f induces the long homology exact sequence

· · · → Hm(X)
Hm ( f )−−−−→ Hm(Y ) → Hm(C f ) → · · ·

we derive that the reduced homologies H̃m(C f ) = 0 for all m ≥ 0.

Remark 5.1. Let �n be a homology n-sphere with n ≥ 1 and hn : �n → S
n a

homology isomorphism.

(1) If �n is 1-connected and n ≥ 2 then hn : �n → S
n is a weak homotopy

equivalence. This implies that the suspension Ehn : E�n → ESn = S
n+1 is

a weak homotopy equivalence for n ≥ 1.
(2) Since the fundamental group of a co-H -space is free, a co-H -structure on �n

implies that �n is 1-connected for n ≥ 2 and π1(�
1) ≈ Z. Consequently

hn : �n → S
n is a weak homotopy equivalence for n ≥ 1, provided �n has a

co-H -structure.

Proposition 5.2. If f : X → Y is a homology isomorphism then the induced maps
f ∗(Z) : [Y, Z ] → [X, Z ] and (E f )∗(Z) : [EY, Z ] → [EX, Z ] are a surjection of
sets and an epimorphism of groups, respectively for any space Z. In particular, if
�n is a homology n-sphere for n ≥ 1 and hn : �n → S

n a homology isomorphism
then h∗

n(Z) : [Sn, Z ] → [�n, Z ] and (Ehn)∗(Z) : [Sn+1, Z ] → [E�n, Z ] are a
surjection of sets and an epimorphism of groups, respectively for any space Z.

Proof. Let f : X → Y be a homology isomorphism. Then, given β : X → Z ,
the obstruction to find γ : Y → Z such that γ f = β lies in Hm+1(C f ;πm(Z))

for m ≥ 0. Since H̃m(C f ) = 0 for m ≥ 0, the Universal Coefficient Theorem
implies that f ∗(Z) is a surjection. The arguments as above applied to the cofibration

EX
E f−→ EY → CE f imply an epimorphism (E f )∗(Z) : [EY, Z ] → [EX, Z ] of

groups and the proof follows. ��
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Notice that following the procedure above one can easily show that (Ehn)∗(Z)

is an isomorphism.

Corollary 5.3. For any space X the map Ehn : E�n → S
n+1 determines an epi-

morphism of groups πn+1(X)/Gn+1(X) → [E�n, X ]/G(E�n, X).

Proof. In view of Proposition 5.2, the map Ehn : E�n → S
n+1 implies an epimor-

phism of groups (Ehn)∗(X) : πn+1(X) → [E�n, X ] which restricts to a homo-
morphism (Ehn)∗(X) : Gn+1(X) → G(E�n, X). Thus, we get the required epi-
morphism πn+1(X)/Gn+1(X) → [E�n, X ]/G(E�n, X). ��

To state the main result of this section, we need:

Proposition 5.4. Let G × X → X be a free and proper action of a path-connected
topological group G on a space X.

(1) If n ≥ 2 and πn−1(G) = 0 then q∗ : [�n, X ] → [�n, X/G] is surjective.
(2) If n ≥ 2, the quotient map q : X → X/G is a principal G-bundle and

[�n,G] = 0 then q∗ : [�n, X ] → [�n, X/G] is injective. In particular, if
πn(G) = 0 then q∗ is injective.

Proof. (1): If πn−1(G) = 0 then Hm+1(�n;πm(G)) = 0 for all m ≥ 0. By
obstruction theory, this implies that q∗ : [�n, X ] → [�n, X/G] is surjective.
(2): Take f, g ∈ [�n, X ] such that q f � qg. But q : X → X/G is a principal
G-bundle, so by the homotopy lifting property f � g′ for some map g′ : �n → X
with qg′ = qg. Hence, there is a map α : �n → G such that αg � g′, where
(αg)(s) = α(s)g(s) for s ∈ �n . Since [�n,G] = 0, the map α : �n → G is
homotopically trivial and consequently f � g′ � g. Next, by Proposition 5.2,
the map h∗

n(G) : πn(G) = [Sn,G] → [�n,G] is a surjection. Hence, πn(G) = 0
implies [�n,G] = 0 and the proof is complete. ��

Now, by [7, Corollary 3.34(2)] we have G3(RP2) = π3(RP2), and
Lemma 2.2(2) and Proposition 2.5 imply that the quotient group π4n−1(RP2n)/

G4n−1(RP2n) is finite for n ≥ 1. Notice that by Proposition 5.4, the quotient maps

S
n → RPn and S

2n+1 → CPn induce bijections [�m,Sn] ≈−→ [�m,RPn] and
[�m,S2n+1] ≈−→ [�m,CPn].

Then, using (1.3), results from Sect. 2, Proposition 5.2, and Corollary 5.3 we
may state:

Theorem 5.5. (1) The quotient map γn : Sn → RPn induces a bijection

[�m,Sn] ≈−→ [�m,RPn]
form, n ≥ 1. The number of homotopy types of path-components of M(E�m ,RPn)

is bounded above by the order of the finite group πm+1(RPn)/

±Gm+1(RPn) for n ≥ 1, m ≥ 2, with m �= 2n − 1 if n is even.
(2) The quotient map γn : S2n+1 → CPn induces a bijection

[�m,S2n+1] ≈−→ [�m,CPn]
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for m ≥ 3, n ≥ 1. The number of homotopy types of path-components of
M(E�m,CPn) is bounded above by the order of the finite group πm+1(CPn)/±
Gm+1(CPn).
(3) All path-components of the spaces M(E�m,HPn) for m = 1, 2 are homotopy
equivalent. The number of homotopy types of path-components of M(E�m,HPn)

is bounded above by the order of the finite group πm+1(HPn)/±Gm+1(HPn), for
n ≥ 1, m ≥ 4.
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