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Abstract

Background: Hemangioma is a common benign tumor in the childhood; however our knowledge about the
molecular mechanisms of hemangioma development and progression are still limited. Currently, microRNAs
(miRNAs) have been shown as gene expression regulators with an important role in disease pathogenesis. Our
goals were to identify miRNA-mRNA expression networks associated with infantile hemangioma.

Methods: We performed a meta-analysis of previously published gene expression datasets including 98
hemangioma samples. Deregulated genes were further used to identify microRNAs as potential regulators of
gene expression in infantile hemangioma. Data were integrated using bioinformatics methods, and genes
were mapped in proteins, which were then used to construct protein-protein interaction networks.

Results: Deregulated genes play roles in cell growth and differentiation, cell signaling, angiogenesis and
vasculogenesis. Regulatory networks identified included microRNAs miR-9, miR-939 and let-7 family; these
microRNAs showed the most number of interactions with deregulated genes in infantile hemangioma, suggesting
that they may have an important role in the molecular mechanisms of disease. Additionally, results were used to
identify drug-gene interactions and druggable gene categories using Drug-Gene Interaction Database. We show
that microRNAs and microRNA-target genes may be useful biomarkers for the development of novel therapeutic

strategies for patients with infantile hemangioma.

Conclusions: microRNA-regulated pathways may play a role in infantile hemangioma development and progression
and may be potentially useful for future development of novel therapeutic strategies for patients with infantile

hemangioma.
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Background

Infantile Hemangioma, a common benign tumor in
childhood, occurs in 10 % of children, more frequently
in prematures and females [1]. It shows a cycle with
three phases: an initial proliferative phase (rapid growth
during the first year), a plateau and an involution phase
(spontaneous regression over 1-8 years) [2, 3]. In a
study by Chang et al. [4], growth characteristics were
examined in a large number (n=526) of infantile
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hemangiomas and the results showed that infantile
hemangioma growth occurred mainly in infancy, at a
mean age of 3 months. Infantile hemangiomas may
be deep or superficial, classified based on the depth
of lesions. Deep infantile hemangiomas usually appear
later in life and may be associated with a longer
growth phase compared to the superficial form.
Superficial infantile hemangiomas may be focal or
segmental [4]. Segmental lesions are associated with a
longer proliferative phase and could require a longer
period of treatment [5].

The body area more frequently affected by hemangioma
is the head and neck, mainly the face, with an association
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with the embryological development of the face [6]. Avail-
able treatment for patients with infantile hemangioma
includes the use of corticosteroids and/or surgical
resection of the tumor. The standard of care treat-
ment strategy is the use of propranolol hydrochloride, a
[-blocker entered as a safer form of treatment for prolifer-
ating infantile hemangioma [7, 8]. Although the advances
in therapeutic strategies for infantile hemangioma, the
main clinical problems are still the lack of reliable parame-
ters able to distinguish proliferative from involuting IH le-
sions and the diverse response rates of patients to
treatment.

Therefore, the identification of genetic and epigenetic
alterations in proliferating and involuting infantile
hemangioma lesions will likely contribute to better
understand the underlying molecular mechanisms of
development and progression of this disease, which is a
leading cause of morbidity in affected children. Indeed,
differences in the expression of genomic biomarkers
have been reported in infantile hemangioma; e.g.,
insulin-like growth factor 2 (IGF-2) was found as highly
expressed in proliferative lesions compared to involuting
lesions [9].

In infantile hemangioma, neural crest markers (NG2
and nestin), pericytes markers (8-like kinase, smooth
muscle actin, calponin and CD90) and stem cell markers
(OCT4, NANOG and SOX2) are frequently over-
expressed both at mRNA and protein levels. In addition,
pericytes (perivascular cells surrounding microvessels
and that are related to the development and regulation
of angiogenesis) and the derm of the face are derived
from neural crest, suggesting that the neural crest
may be involved in disease pathogenesis [10]. Import-
antly, expression of lymphatic endothelial hyaluronan
receptor-1 (LYVE-1) has been reported in kaposiform
hemangioendothelioma and tufted angioma [11]. LYVE-1
was detected as strongly expressed in proliferative infantile
hemangiomas but not in pyogenic granulomas or
intramuscular hemangioma lesions, suggesting an import-
ant role of these markers in the biology of infantile
hemangioma [12]. microRNAs (miRNAs) play an import-
ant role in gene expression regulation and have been dem-
onstrated to play a role in the pathogenesis of several
human diseases [13]. miRNAs are small, non-coding
RNAs containing ~18-24 nucleotides. They can bind to
the 3’ and 5’ends of the mRNA, leading, in most cases, to
translation inhibition or mRNA degradation [14, 15].
Furthermore, miRNAs are related to important bio-
logical processes, such as embryonic development, dif-
ferentiation, apoptosis, cell proliferation [16-18] and
oncogenesis [19-21]. To date, 2588 miRNAs were
identified and characterized as to their sequence and
function in the human genome (http://www.mirbase.org/
cgi-bin/browse.pl?org=hsa) [22-26].
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Different mechanisms can lead to deregulated miRNA
expression, including genomic alterations, such as
DNA gains or amplifications and mutations, epige-
nomic changes including DNA methylation and de-
fects in miRNA biogenesis, including transcription
and processing of miRNAs [27, 28]. miRNAs that are
altered by these mechanisms may lead to deregulated
gene expression.

The understanding of genetic and epigenetic mecha-
nisms, such as deregulated miRNA and target gene ex-
pression, as well as molecular pathways regulated by
miRNAs, may contribute for the development of new
strategies for diagnosis and treatment of complex human
diseases [13, 14, 16]. Currently, it is known that miRNAs
and miRNA-target genes may represent useful bio-
markers to help improve diagnosis, prognosis and treat-
ment of human diseases, such as cancer [29, 30].
Although some gene expression studies have been previ-
ously published [31-37], there are no current data on
miRNAs or deregulated protein-protein interaction
networks in hemangioma. Such data integration strat-
egy is important to understand the functional signifi-
cance of deregulated genes, miRNAs and molecular
pathways involved in hemangioma development and
progression. In addition, miRNAs and their target
genes may be clinically applicable as therapeutic tar-
gets. Indeed, a systematic integration of data derived
from multiple sources may achieve the appropriate
statistical power and lead to robust, reproducible and
accurate predictions [38].

To the best of our knowledge, there are no studies on
global miRNA expression in infantile hemangioma. A re-
cent PubMed search (August 19, 2015) showed only one
published study on the involvement of miRNAs in senile
hemangioma [39], which reported decreased miR-424
expression and increased levels of CCNE1 and MEK1
proteins, which are targeted by miR-424, in patient sam-
ples. This study suggested that abnormal proliferation in
senile hemangioma may be regulated, at least in part, by
miR-424 [39].

Herein, we performed a comprehensive meta-analysis
of gene expression data in infantile hemangioma and
identified miRNAs as potential regulators of target genes
in these tumors. Gene expression datasets were inte-
grated with miRNAs for the identification of molecular
pathways potentially involved in infantile hemangioma
development and progression. These data may be clinic-
ally valuable to predict which infantile hemangioma le-
sions may respond and which lesions will be resistant to
currently available treatment modalities. Furthermore,
these data are useful for the identification of robust
biomarkers applicable in the development of novel and
better molecularly-targeted treatment strategies in in-
fantile hemangioma.
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Methods

Meta-analysis of gene expression data in infantile
hemangioma

Meta-analysis study design followed the stages of the
PRISMA Statement [40] (Fig. 1). Herein, we performed a
meta-analysis of previously published gene expression
data in infantile hemangioma, by searching PubMed
(http://www.ncbi.nlm.nih.gov/pubmed). Key words used
were: “infantile hemangioma AND global gene expres-
sion”, ‘“infantile hemangioma AND gene signature”,
“infantile hemangioma AND microRNAs”, “microRNA in
infantile hemangioma”, “infantile hemangioma AND
microarray”, infantile hemangioma AND mRNA expres-
sion”. Meta-analysis searches comprised studies pub-
lished between the years of 2000—-2015. Considering that
our searches did not retrieve any records on miRNA
studies in infantile hemangioma, we included only gene
expression studies in this meta-analysis. Deregulated
genes reported in selected studies were further used for
bioinformatics prediction of miRNAs as potential regula-
tors of gene expression, as described below.

Inclusion criteria were: gene expression data in pri-
mary patient samples of infantile hemangioma or pure
cell populations of infantile hemangioma, any subtype of
disease, inclusion of normal tissues for comparison, data
subjected to independent validation. Exclusion criteria
were: non- infantile hemangioma, patients treated before
molecular genetic analysis and in vivo model studies.
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Identification of miRNAs as potential modulators of
deregulated genes in infantile hemangioma

Deregulated genes identified in the meta-analysis were
used for bioinformatics prediction of miRNAs as regula-
tors of gene expression. We used microRNA Data
Integration Portal, mirDIP [41], a computational tool
that integrates several predicted and validated miRNA
databases. mirDIP allows searching for genes that are
targeted by miRNAs as well as for miRNAs predicted to
regulate genes. Additionally, relevant biological pathways
for differentially expressed genes were identified using
Biological Networks Gene Ontology (BiNGO) tool,
application available in Cytoscape v3.1.1 [42]. BINGO al-
lows recognizing which of Gene Ontology (GO) categor-
ies are statistically more represented in a specific set of
genes. Protein-protein interaction (PPI) networks were
then generated using Metasearch STRING v9.1 [43, 44]
and visualization and annotation data of PPI and
miRNA-gene interaction networks were generated using
Cytoscape v3.1.1 [45, 46]. Furthermore, we identified
drug-gene interactions using Drug-Gene Interaction
Database (DGIdb), a database and web-interface for
identifying known and potential drug-gene relationships.
Genes were defined by Entrez Gene and Ensembl and
matched with genes from drug-gene interactions and
druggable gene categories. Drugs were defined by
searching PubChem and then matched with drugs from
drug-gene interaction data. Drug-gene interactions were

63 records identified through
database searching

Identification

l

7 records after duplicates removed |

l

Screening

| 56 records screened '—bl 49 records excluded
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Fig. 1 Flowchart of meta-analysis process
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obtained from multiple sources, including DrugBank,
Therapeutic Target Database (TTD) and Pharmacogen-
omics Knowledge Base (PharmGKB) [47].

Results

Protein-protein interaction networks Identified in infantile
hemangioma

According to the meta-analysis study design and the
inclusion and exclusion criteria (Fig. 1), we selected 7
studies reporting gene expression data in infantile
hemangioma [31-37] (Table 1). Altogether, these studies
reported a total of 54 differentially expressed genes
(36 over- and 18 under-expressed) in 98 patient sam-
ples (Table 2).

Enrichment pathways analysis showed information on
the biological role of differentially expressed genes in in-
fantile hemangioma. Gene Ontology (GO) categories
were divided into 3 hierarchically structured groups, in
order to identify proteins encoded by deregulated genes
in infantile hemangioma, and associated with biological
processes, molecular functions and cellular components.
The top 10 statistically significant enriched GO terms
are shown in Fig. 2. Integrated, complex interactome
analysis for deregulated genes in infantile hemangioma
and functional annotations are shown in Fig. 3. A higher
number of interactions was identified between genes with
roles in vascular and matrix remodeling, hematopoiesis,
cell growth and differentiation and transcriptional control.
An interaction network between genes and miRNAs
predicted to regulate the expression of these specific
genes is shown in Fig. 4. The red and green triangles
represent up-regulated and down-regulated genes,
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respectively. Notably, DGIdb data showed that 5 genes
were predicted to interact with drugs that have been

demonstrated as clinically useful in other tumor types
(Table 3).

Discussion

Molecular pathways deregulated in hemangioma
Molecular pathogenesis of infantile hemangioma is not
well understood. Advances in methods of global genetic
and epigenetic analyses represent an extremely valuable
approach for the identification of disease development
mechanisms and have the potential to identify bio-
markers and/or pathways that may be useful for the
development of better treatment approaches, including
molecularly-targeted therapies.

Our meta-analysis approach allowed us to integrate
mRNA expression data in infantile hemangioma and to
predict which miRNAs are potential regulators of gene
expression. Among the different mechanisms that can
lead to gene expression alterations; miRNA alteration is
an important mechanism of over- or under-expression of
target genes [48]. Herein, we aimed to utilize data on
deregulated genes in infantile hemangioma, in order to
predict which miRNAs could potentially regulate these
genes, and to construct interaction networks between
genes and miRNAs.

Gene enrichment analysis showed that deregulated
genes previously reported in infantile hemangioma
[31-37] are mainly involved in cell signaling and
angiogenesis, functioning in vascular and matrix re-
modeling, hematopoiesis, cell growth and differenti-
ation and transcriptional control.

Table 1 Description of publicly available studies used in the meta-analysis

Reference ID Sample size Gene expression analysis and validation analysis platforms
[31] 6 hemangiomas and 7 normal term placental tissues U95Av2 GeneChip oligonucleotide microarrays (Affymetrix)
[32] 7 hemangiomas (3 proliferating, 4 involuting) and 3 normal Human Genome U133 Plus 2.0 (Affymetrix)

term placental tissues

[33] 4 pairs of early proliferative stage and spontaneously early

lllumina Human-6 bead chip, QRT-PCR

involution stage of the same hemangiomas, 11 hemangiomas
(6 proliferative and 5 involuting), 5 controls (normal skin)
Serum from 69 patients with hemangioma (46 proliferative
and 23 involuting), 20 patients with venous malformations
and 31 negative controls (children with cheilopalatognathus)

[34] GSE43742
controls (neonatal foreskin)

HEMECs, HDMVECs, 16 infantile hemangioma, 4 normal

[llumina HumanHT-12 V4.0 expression beadchip
Immunohistochemistry

[35] hemSCs, bm-MPCs, HDMECs, cbEPCs and abEPCs RQ-PCR, Functional assays, Immunofluorescence
[36] HemSCs, HemECs, HDMECs and MSCs RQ-PCR, Immunofluorescence
[37] 48 hemangiomas, 9 vascular malformations and vascular GenefFilter GF211 (Invitrogen)

tumor specimens, 11 neonatal foreskin controls and HemECs

from proliferating hemangioma

QRT-PCR quantitative reverse-transcription polymerase chain reaction, HEMECs infantile hemangioma endothelial cells, HDMVECs dermal microvascular endothelial
cells, HemECs hemangioma-derived endothelial cells, hemSCs proliferating hemangioma-derived CD133+ cells, HDMECs human dermal microvascular endothelial
cells, cbEPCs cord blood endothelial progenitor cells, abEPCs adult blood endothelial progenitor cells, bm-MPCs bone marrow-mesenchymal progenitor cells,

HemSCs hemangioma-derived stem cells, MSCs mesenchymal stem cells
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Table 2 List of 54 deregulated genes identified in infantile hemangioma, as reported by the seven studies included in the meta-

analysis
Gene symbol Gene name Gene function Gene ID
Over-expressed
SMARCET SWI/SNF related, matrix associated, actin dependent regulator chromatin remodelling 6605
of chromatin, subfamily e, member 1
RGS5 Regulator of G-protein signaling 5 cell signaling 8490
CTAG2 Cancer/testis antigen 2 autoimmunogenic tumor antigen 30848
LTBP2 Latent transforming growth factor beta binding protein 2 cell growth and differentiation 4053
ANG Angiogenin, ribonuclease, RNase A family, 5 cell growth and differentiation 283
IGF2 Insulin-like growth factor 2 cell growth and differentiation 3481
TBX2 T-box 2 transcription factor 6909
NOTCH3 Notch 3 cell fate and signalling 4854
HSD17B2 Hydroxysteroid (17-beta) dehydrogenase 2 uncharacterized 3294
TFPI2 Tissue factor pathway inhibitor 2 tumor supressor 7980
GNGT1 Guanine nucleotide binding protein (G protein), gamma 11 cell signaling 2791
NID1 Nidogen 1 cell interactions 4811
COL4AT Collagen, type IV, alpha 1 basement membrane/metabolism 1282
KDR Kinase insert domain receptor (a type Ill receptor tyrosine kinase) cell growth and differentiation 3791
FCGR2B Fc fragment of IgG, low affinity llb, receptor (CD32) immunocomplex phagocytosis/antibody 2213
production regulation
PLAGL1 Pleiomorphic adenoma gene-like 1 tumor supressor 5325
DLK1 Delta-like 1 homolog (Drosophila) cell growth and differentiation 8788
JAM3 Junctional adhesion molecule 3 cell adhesion 83700
NID2 Nidogen 2 (osteonidogen) cell adhesion 22795
MEOX2 Mesenchyme homeobox 2 myogenesis regulation 4223
GABRE Gamma-aminobutyric acid (GABA) A receptor, epsilon synaptic transmission 2564
CEACAMIT Carcinoembryonic antigen-related cell adhesion molecule 1 cell adhesion 634
(biliary glycoprotein)
BETT Bet1 golgi vesicular membrane trafficking protein vesicular transport 10282
MXRAS Matrix-remodelling associated 5 matrix remodelling 25878
IGFBP7 Insulin-like growth factor binding protein 7 cell growth and differentiation 3490
NETO2 Neuropilin (NRP) and tolloid (TLL)-like 2 cell signaling 81831
BAI3 Brain-specific angiogenesis inhibitor 3 angiogenesis 577
PLXDCT Plexin domain containing 1 uncharacterized 57125
JAGT Jagged 1 hematopoiesis 182
EDNRA Endothelin receptor type A cell signaling 1909
ICAM2 Intercellular adhesion molecule 2 cell adhesion 3384
NOTCH4 Notch 4 cell fate 4855
STABIT Stabilin 1 cell growth and differentiation 23166
EPHB3 EPH receptor B3 cell signaling 2049
LPHN1 Latrophilin 1 cell adhesion/signal transduction 22859
NPR1 Natriuretic peptide receptor 1 cell signaling 4881
Under-expressed
GPR37 G protein-coupled receptor 37 (endothelin receptor type B-like) cell signaling 2861
IGFBP3 Insulin-like growth factor binding protein 3 cell growth and differentiation 3486
FLT1 Fms-related tyrosine kinase 1 cell growth and differentiation 2321
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Table 2 List of 54 deregulated genes identified in infantile hemangioma, as reported by the seven studies included in the meta-

analysis (Continued)

PDGFRA Platelet-derived growth factor receptor, alpha polypeptide cell growth and differentiation 5156
TGFBR3 Transforming growth factor, beta receptor |ll cell growth and differentiation 7049
LPART Lysophosphatidic acid receptor 1 cell growth and differentiation 1902
IGFBP5 Insulin-like growth factor binding protein 5 cell growth and differentiation 3488
EDNRB Endothelin receptor type B cell signaling 1910
PDGFC Platelet derived growth factor C cell growth and differentiation 56034
BMP4 Bone morphogenetic protein 4 cell growth and differentiation 652
ANGPTL1 Angiopoietin-like 1 cell growth and differentiation 9068
VCAMT Vascular cell adhesion molecule 1 cell adhesion 7412
BMP5 bone morphogenetic protein 5 cell growth and differentiation 653
IGFIR Insulin-like growth factor 1 receptor cell growth and differentiation 3480
ANGPT2 Angiopoietin 2 vascular remodeling 285
ANTXR1 Anthrax toxin receptor 1 cell signaling 84168
CLDNT1 Claudin 11 cell adhesion 5010
KISS1 KiSS-1 metastasis-suppressor cell adhesion 3814
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It is known that the formation of vascular tumors
including infantile hemangioma is partly related to in-
creased expression of angiogenic growth factors, such as
basic fibroblast growth factor (bFGF) and vascular endo-
thelial growth factor (VEGF), which lead to the develop-
ment of a disorganized blood vessel mass [49]. Indeed,
angiogenesis is mainly regulated by the vascular endo-
thelium [50].

miRNAs control and modulate cell response of vas-
cular endothelium to angiogenic stimuli; for example,
miR-126 is a positive regulator of angiogenic signaling

and vascular endothelial integrity. Vascular develop-
ment defects were demonstrated in an in vitro model
of miR-126-depleted cells, which did not respond to
bFGF and VEGF angiogenic factors [51]. Angiogenic
response is also controlled by miRNAs, such as miR-221
and miR-222, which play a role as inhibitors of stem cell
factors. Other miRNAs, such as miR-27b and miR-let-7f,
play a pro-angiogenic role, since their expression pro-
motes angiogenesis [51]. Notably, miRNA expression in
vascular endothelial cells can be modified in response to
cellular stimuli or to the microenvironment. For example,
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Table 3 Potential target agents identified based on protein-protein interaction networks of deregulated genes in infantile

hemangioma

Gene symbol Gene name Selected target agent

Clinical relevance

Nilotinib, Masitinib, Sorafenib, Sunitinib, Regorafenib,

EDNRA endothelin receptor type A Zibotentan, Atrasentan
IGFIR insulin-like growth factor 1
receptor Cixutumumab, Robatumumab
PDGFC platelet derived growth factor C  Sunitinib
PDGFRA platelet-derived growth factor
receptor, alpha polypeptide Nintedanib, Pazopanib, Tandutinib, Crenolanib,
Dovitinib, Telatinib, Vatalanib, Axitinib, Lenvatinib,
Imatinib
VEGFA vascular endothelial growth Ziv-aflibercept, Bevacizumab, Sorafenib tosylate,

factor A

Linsitinib, Ganitumab, Figitumumab, Dalotuzumab,

Motesanib, Ramucirumab, Midostaurin, Amuvatinib,

Lenalidomide, Thalidomide, Aflibercept

Colorectal [62], prostate [63] and renal cell [64]
carcinomas

Adrenocortical [65], ovarian [66], non-small cell
lung [67], colorectal [68, 69] carcinomas and
soft tissue sarcoma [70]

Renal cell carcinoma [71] and breast
carcinomas [72]

Colorectal [73, 74], hepatocellular [75-78],
kidney [79], non-small [80] and small cell
lung [81], pancreatic [82-84], colon [85],
gastrointestinal [86], renal cell [71, 87],
breast [72, 88], melanoma [89], thyroid [90]
carcinomas and soft tissue sarcoma [91]

Colorectal [92, 93] ovarian [94], non-small cell
lung [95], hepatocellular [96] carcinomas and
multiple myeloma [97]

a hypoxic environment promotes the production of
miR-210, which has pro-angiogenic activity. Therefore,
increase in pro-angiogenic miRNA expression in endothe-
lial cells may stimulate the production of angiogenic fac-
tors, contributing to the process of tumorigenesis [51].

VEGFA plays an important role in vascular develop-
ment and in pathological angiogenesis and its protein is
highly expressed in vessels of proliferating infantile
hemangioma [52]. Interestingly, angiogenin protein
(ANG), which is required for cell proliferation and is an
important mediator of blood vessel formation, regulates
VEGFA expression [53]. Although VEGFA was not iden-
tified among the deregulated genes reported in the stud-
ies used for meta-analysis, VEGFA is shown in the PPI
and miRNA-gene interaction networks, likely due to its
important role in angiogenesis and to its indirect inter-
action with other proteins in the network.

To our knowledge, the only available previously pub-
lished study on miRNAs in hemangioma identified
miR-424 under-expression in senile hemangioma [39].
miR-424 is shown interacting with VEGFA in our
miRNA-gene network analysis. miR-424 over-
expression has been associated with greater cell mo-
tility, decreased cell adhesion and other alterations as-
sociated with epithelial-to-mesenchymal transition
(EMT) [54]. Notably, this study showed that miR-424
expression levels are increased in primary tumors and
decreased in metastasis compared to primary breast
tumors and additional functional data suggested that
miR-424 may play different roles in the different
stages of tumor development and progression [54].

Several genes with roles in vascular and matrix re-
modeling, hematopoiesis, cell growth and differenti-
ation and transcriptional regulation were shown in
the PPI and miRNA-gene interation network. Among
these, ANGPT2, MXRA5, JAG1, VEGFA and TBX2

showed a large number of interactions. Interestingly,
some of these genes also play roles in cell signaling
pathways that have been linked to the pathogenesis of
infantile hemangioma [55]; namely, VEGFA in the
VEGF/VEGEFR pathway, ANGPT2 and ANGPTL1 in the
Tie2/Angiopoietin signaling pathway and NOTCHS3,
NOTCH4 and JAG1 in the Notch pathway. Growth fac-
tors and angiopoietins have roles in embryonic develop-
ment and angiogenesis-dependent diseases and Notch
components are involved in modulation of cell fate and
differentiation [55].

Herein, miRNA-gene interaction networks generated
by integrative meta-analysis showed miRNAs with a
large number of interactions (miR-9, miR-939, and let-7
family of miRNAs); these miRNAs are likely acting as
main regulators in the network. Notably, miR-9 has been
demonstrated as pro-metastatic and suppressor of E-
cadherin in breast cancer cells, promoting cell motility
and increasing invasive potential of carcinoma cells, be-
sides activating B-catenin signaling, which in turn con-
tributes to high VEGFA expression and consequently to
induction of angiogenesis [56]. Increased miR-9 expres-
sion levels were also associated with EMT in breast can-
cer cells and with poor prognosis of patients with breast
cancer [57]. In ovarian cancer, miR-939 plays an import-
ant role in the progression and regulation of cell growth
and cell cycle; it has been demonstrated that ES-2 cells
transfected with miR-939 mimic show APC2 decreased
expression, suggesting that APC2 may be a target of
miR-939 [58].

A recent meta-analysis suggested that the let-7 family
of miRNAs are potential biomarkers for tumor grade
prediction in breast cancer [59] as well as in other cancers,
since let-7 family is highly conserved across species [60].

Among other miRNAs with a significant number of
interactions, miR-637 links to main networks through
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direct interactions with VEGFA and CEACAM,; the latter
interacting with miR-9 and miR-939. Functional data has
shown that miR-637 is one of the effective regulators of
HER2 signaling; in HER2-positive trastuzumab non-
responsive cell lines, miR-637 was efficient to inhibit
breast cancer cell growth [61].

Conclusion

Herein, we identified several interconnected genes and
miRNAs as potential regulators of gene expression. Such
miRNAs and genes may play important roles in the de-
velopment and progression of infantile hemangioma.
Additionally, these molecules show potential to be
targets for drugs that may be clinically useful in the de-
velopment of new therapies for infants and children af-
fected by this tumor. Data generated herein may be used
for validation of expression of miRNAs and genes regu-
lated by miRNAs in infantile hemangioma. Validation
analysis in a large representative cohort of primary un-
treated patient samples is necessary in order to establish
robust biomarkers for prediction of treatment response
and for the development of better treatment modalities.
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