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Abstract. Currently, the state-of-the art methods for image denoising are patch-based approaches. Redundant
information present in nonlocal regions (patches) of the image is considered for better image modeling, resulting
in an improved quality of filtering. In this respect, nonlocal Markov random field (MRF) models are proposed by
redefining the energy functions of classical MRF models to adopt a nonlocal approach. With the new energy
functions, the pairwise pixel interaction is weighted according to the similarities between the patches corre-
sponding to each pair. Also, a maximum pseudolikelihood estimation of the spatial dependency parameter (β)
for these models is presented here. For evaluating this proposal, these models are used as an a priori model in
a maximum a posteriori estimation to denoise additive white Gaussian noise in images. Finally, results display
a notable improvement in both quantitative and qualitative terms in comparison with the local MRFs. © 2016 SPIE
and IS&T [DOI: 10.1117/1.JEI.25.1.013003]
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1 Introduction
Suitable image modeling can provide great advances to solve
problems in image processing.1 One of these problems is
image denoising, which is a basic step for many applications
in image processing and analysis. However, despite the
important advances achieved in the last 10 years, this prob-
lem is still open.2

Historically, the Wiener filter3 is the traditional method to
denoise images. It is the optimum filter in the sense of linear
minimum mean square error (MSE) estimation. The 90s
were a very productive decade for image denoising propos-
als, with four approaches emerging as solutions for this prob-
lem,4,5 as well as several posterior combinations of them:
anisotropic diffusion,6–9 total variation,10,11 wavelets,12 and
bilateral filtering.13,14

Anisotropic diffusion is a multiscale technique based on
partial differential equations for a heat diffusion equation,
where the diffusion coefficient is a function of the image gra-
dient.6 Thus, the idea is to convolve the image with Gaussian
kernels on various scales (variances) to obtain blurred images
in several resolutions but with smoothing controlled accord-
ing to the probability of a pixel being a boundary region,
causing an effect of reduction or stopping of the diffusion
process on edge regions (edges are less smoothed).6

Total variation for image denoising was introduced by
Ref. 10. Basically, this approach defines the denoising prob-
lem as an optimization process to estimate the free-noise
image that minimizes the MSE with a regularization term
defined in terms of the integral of the magnitude of the
image gradient (total variation).10,11 In other words, defining
the regularization parameter (λ) tending to infinity leads to
smoothing the image (total variation tends to zero), but

preserving more edge regions (in the boundaries, the MSE
is close to zero).

In turn, image denoising by using wavelets was first pro-
posed by Ref. 12, corresponding to wavelet shrinkage. In
general, techniques in this approach apply a wavelet trans-
form to obtain the coefficients in the sparse domain of wave-
lets by using a wavelet basis. In this domain, noise corrupts
all coefficients only slightly, turning null coefficients to non-
null coefficients. Thus, according to a threshold T, smaller
coefficients should be defined to zero, while larger coeffi-
cients are attenuated or remained unchanged. Basically, a
key point here is to determine T.

A bilateral filter13,14 estimates the noise-free pixel by
an average mean of the neighbor pixels. In this approach,
the weights are defined in terms of two local dissimilarities:
spatial and radiometric differences among the central and
their neighbor pixels.

Recently, in the last decade, techniques for two
approaches have been proposed: nonlocal approaches4,15

and compressive sensing.16,17 In the first case, two tech-
niques based on nonlocal approaches have been developed,
corresponding to the state-of-art ones for image denoising:
nonlocal means (NLM)4 and block matching and three-
dimensional filtering (BM3D).15 Techniques in this approach
model the redundant information in images for a better esti-
mation of the noise-free pixel. More details, mainly about
NLM, are discussed in the text. The latter, compressive sens-
ing,16,17 also defines a regularization problem, but it is now
based on L1-minimization of the sparse coefficients.

Mathematically, the degradation, measurement model for
the image denoising problem can be described by the follow-
ing equation:

EQ-TARGET;temp:intralink-;e001;326;115~y ¼ ~zþ ~η; (1)
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where ~y is an observed noisy image, ~z is an original (noise-
free) image to be estimated, and ~η is the noise.

A solution for this problem can be defined by adopting
a maximum a posteriori (MAP) estimation criterion as

EQ-TARGET;temp:intralink-;e002;63;534~̂z ¼ max
z

pðzjyÞ ∝ max
z

pðyjzÞpðzÞ; (2)

where ẑ is an estimated noise-free image, pðzjyÞ is the a pos-
teriori probability density function, pðyjzÞ is the likelihood,
and pðzÞ is an a priori probability density function.

This filtering process is an ill-posed inverse problem, such
that constraints or other a priori knowledge are very impor-
tant to restrict the solution by modeling the likelihood and
a priori probability density functions. Among the character-
istics that can be represented are sparsity, redundancy, noise,
and spatial correlation between the pixels. Usually, the latter
is modeled by Markov random fields (MRFs).18 However,
MRF models, such as Potts,19 generalized multilevel logistic
(GIMLL),19 Gaussian Markov random field (GMRF), or
autonormal,19,20 tend to oversmooth the images or generate
poor quality of edges, as can be noted in Fig. 1. These results
are obtained by using these models in a MAP estimation
(i.e., a MAP–MRF framework), as performed in Ref. 21.

Therefore, more suitable MRF models for image denois-
ing problems are necessary. In this paper, we propose to
extend classical MRF models by weighting the potential
cliques in a nonlocal patch-based approach. In other words,
these new models consist of a nonlocal Markov random field
(NLMRF) approach. This improved modeling is in accor-
dance with the proposals in the state-of-the art methods for
image denoising,22 such as NLM4 and BM3D collaborative
filtering.15

In the literature, several methods, such as those in
Refs. 23–26, follow a NLMRF approach. Basically, Chen
et al.23,24 propose a nonlocal Markovian model for computed
tomography and positron emission tomography reconstruc-
tion, respectively. In this model, the energy function is
defined as a weighted sum of Euclidean distances between
pixels in the field. However, fixed values were used for the
spatial dependency parameter (β). In turn, Zhao et al.25 pro-
pose a nonlocal Markovian model for satellite image decon-
volution by weighting an L1-norm of differences between
neighbor pixels and assuming the parameter β as a regulari-
zation term in an energy function to be minimized. An
L-curve method was used to estimate this parameter. In
Ref. 26, an NLMRF model based on a field of experts

was proposed for image restoration, mainly image denoising
and inpainting problems, by using a gradient-based discrimi-
nation learning framework for training the model (the param-
eter β was not explicitly specified).

In the present paper, nonlocal patch-based versions for
GMRF, Potts, and GIMLL, as well as their parameter
estimation, are proposed. In case of nonlocal GMRF
(NLGRMF), a closed formula was found to estimate the
spatial dependency parameter (β) of the model. These
new models were applied for image denoising problems
to evaluate them.

This paper is organized as follows. In Sec. 2, the MRF
theory is briefly described. In Sec. 3, the proposed models
are specified in detail, and their parameter estimation by
using a maximum pseudolikelihood estimation (MPLE) are
presented in Sec. 4. Section 5 describes the methodology
used for the proposal evaluation, and Sec. 6 displays and dis-
cusses the denoising results. Finally, conclusions and future
works are presented in Sec. 7.

2 Markov Random Fields
MRFs can be understood based on the following idea in stat-
istical mechanics to characterize the total energy between
particle interactions systems: the contribution of each

Fig. 1 Results for image denoising by using local Markov random field (MRF) priors (c)–(e) in a maximum
a posteriori (MAP)-MRF framework: (a) original, (b) noisy, (c) Gaussian Markov random field (GMRF),
(d) Potts, and (e) generalized multilevel logistic (GIMLL). Only a section of the classical Jet Plane image
is shown.

Fig. 2 Illustration of the nonlocal patch-based approach proposed for
MRF.

Journal of Electronic Imaging 013003-2 Jan∕Feb 2016 • Vol. 25(1)

Salvadeo, Mascarenhas, and Levada: Nonlocal Markovian models for image denoising

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 13 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



Fig. 3 Block diagram of the proposal methodology, where the dashed line represents an optional step.

Fig. 4 Results for denoising image Buildings by using iterated condi-
tional modes (ICM) and several MRF models, with the noise variance
σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) Gaussian
Markov random field (GMRF), (f) nonlocal Gaussian Markov random
field (NLGMRF), (g) GIMLL, (h) nonlocal generalized multilevel logis-
tic (NLGIMLL), (i) NLM, and (j) block matching and three-dimensional
(BM3D) filtering.

Fig. 5 Results for denoising image Ships by using ICM and several
MRF models, with the noise variance σ2 ¼ 0.025: (a) original,
(b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.
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particle to the total energy depends on the interaction of
the particle with its neighbors. In terms of image processing,
this means that the definition of a certain pixel depends on
its neighborhood only. This defines the Markovianity, that is,
the main property of MRF, being described mathematically
as27

EQ-TARGET;temp:intralink-;e003;63;400pðxsjfxt; t ∈ L \ sgÞ ¼ pðxsjfxt; t ∈ ηsgÞ; (3)

where L \ s is the field except the pixel xs and ηs corresponds
to the neighborhood of xs.

Thus, an MRF defines a local model, which is completely
characterized by the local conditional probabilities, given
a tuple ðL; ηÞ, where L is a lattice and η is a neighborhood
system.27

Besides, an MRF model can be also defined in terms of
a Gibbs Markov Random Field (GRF)27 regarding only the
interactions between the current and their neighbor pixels

Fig. 6 Results for denoising image Castle by using ICM and several MRF models, with the noise
variance σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.

Fig. 7 Results for denoising image Rope by using ICM and several MRF models, with the noise
variance σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.
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to calculate the global energy from the local energies, as
established by the Hammersley–Clifford theorem.27

Therefore, an MRF can be globally defined by a Gibbs
(joint) distribution:27

EQ-TARGET;temp:intralink-;e004;63;708pxð~xÞ ¼
1

Z
e−Uð~xÞ; (4)

where Uð~xÞ is the energy function and Z is a normalization
constant regarding all occurrences of ~x.

The energy function Uð~xÞ is calculated as a sum of clique
potentials Vcð~xÞ of all field elements, which is a function of
random variables that the field comprises, where c ∈ C is a
clique in the set of all cliques C in a graphG. In graph theory,
a clique c is a complete subgraph in a graph G, i.e., all ver-
tices of c have an edge to each other. In images, we can
relate a vertex to a pixel and their adjacent vertices to the
neighbor pixels.

Mathematically, Uð~xÞ is calculated as a sum of clique
potential of all field elements, i.e.,

EQ-TARGET;temp:intralink-;e005;63;535Uð~xÞ ¼
X

c∈C
Vcð~xÞ: (5)

In MRF, a clique is conditioned to the chosen neighbor-
hood system. In other words, the global energy is calculated
by the influence of the interaction between neighbor pixels
of a clique of the pixels in image. However, to calculate
the local energy, only the current pixel and its neighbors are
considered.

Some local MRF models can be found in the litera-
ture.19,27 First, the Potts model19 establishes a smoothing
constraint in the noise-free pixel estimation, whose local
conditional probability is defined by

EQ-TARGET;temp:intralink-;e006;63;383pðxs ¼ mjfxt; t ∈ ηsg; βÞ ¼
eβUsðmÞ

P
M
l eβUsðlÞ ; (6)

where xs is a pixel at position s, ηs corresponds to the neigh-
borhood of xs, and m is a pixel value among M possible
ones. In our case, M corresponds to the number of levels
in the grayscale, i.e., M ¼ 256. In turn, UsðmÞ is the energy
function that corresponds to the number of neighbor pixels
that have the same value m and can be described by the
following equation:

EQ-TARGET;temp:intralink-;e007;63;259UsðmÞ ¼
X

xt;t∈ηs

δðm − xtÞ; (7)

where δðxÞ is a Dirac Delta.
GIMLL19 extends the Potts model by considering a

continuous contribution of the neighbor pixels. Its energy
function UsðmÞ is defined by

EQ-TARGET;temp:intralink-;e008;63;171UsðmÞ ¼
X

xt;t∈ηs

½1 − 2e−ðm−xtÞ2 �: (8)

Finally, another usual model is the GMRF,19 also called
autonormal model, whose local conditional probabilities are
given by

EQ-TARGET;temp:intralink-;e009;326;752pðxsjfxt; t ∈ ηsg; β; μs; σ2sÞ ¼
1ffiffiffiffiffiffiffiffiffiffi
2πσ2s

p e
−1
2σ2s

½xs−μs−β
P

xt;t∈ηs

ðxt−μsÞ�2
;

(9)

where μs and σ2s are the local mean and variance estimated in
a window around s, respectively.

3 Nonlocal Markov Random Fields
The local MRF models seen in Sec. 2 can be extended to
comprise radiometric information by weighting each of
the pixelwise interaction pairs according to the similarity

Fig. 8 Results for denoising image Dog by using ICM and several
MRF models, with the noise variance σ2 ¼ 0.025: (a) original,
(b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.
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ωðs; tÞ between the current s and their neighbor patches t.
This nonlocal patch-based approach is illustrated in Fig. 2.
Basically, this modification extends the smoothing constraint
to be defined not only in terms of neighbor pixels (local
regions) but also by nonlocal regions (patches), which are
also restricted to neighbor patches. In other words, there
is now a double smoothing constraint, which generates a
better model.

The similarities ωðs; tÞ can be defined in the same way as
done for the NLM method:4

EQ-TARGET;temp:intralink-;e010;63;642ωðs; tÞ ¼ e−
1
h

P
k∈P

jys;k−yt;kj2 ; (10)

where k is the k’th pixel in a patch of size P, y is the noisy
image, and h controls the smoothing level to be applied.
It is important to emphasize that the Euclidean distance is
suitable for Gaussian noise. However, similarity measures
adapted to other noise distributions (e.g., Gamma, Poisson,
or Rayleigh) can be derived as done in Refs. 28–30 by a
weighted maximum likelihood estimation (MLE). So, in
this case, these new NLMRF models also become adaptive
to the kind of noise.

Therefore, based on the proposed idea, nonlocal versions
of each model described in Sec. 2 are now described in detail.

Basically, NLPotts and NLGIMLL models can be obtained
by changing their local energy functions to incorporate a

Fig. 9 Results for denoising image Jet Plane by using ICM and several MRF models, with the noise
variance σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.
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nonlocal pairwise interaction. Thus, Eqs. (7) and (8) are,
respectively, extended to

EQ-TARGET;temp:intralink-;e011;63;730UNLPotts
s ðmÞ ¼

X

xt;t∈ηs

ωðs; tÞδðm − xtÞ; (11)

EQ-TARGET;temp:intralink-;e012;63;686UNLGIMLL
s ðmÞ ¼

X

xt;t∈ηs

ωðs; tÞ½1 − 2e−ðm−xtÞ2 �: (12)

In turn, the local conditional probabilities for nonlocal
GRMF (NLGMRF) model are defined by

EQ-TARGET;temp:intralink-;e013;326;752pðxsjfxt; t ∈ ηsg; β; μs; σ2s ; ~ωÞ

¼ 1ffiffiffiffiffiffiffiffiffiffi
2πσ2s

p e
−1
2σ2s

½xs−μs−β
P

xt;t∈ηs
ωðs;tÞðxt−μsÞ�2

;
(13)

where ~ω is a matrix of similarities relating each patch in the
image. The factor ωðs; tÞ only changes the mean value of xs.
Therefore, the integral of the Gaussian in xs remains unitary.
This means that the pdf in Eq. (13) is a valid probability
density function.

It is noteworthy that as the β parameter is a constant, we
can define a weighting such that βs;t ¼ βωðs; tÞ. In other

Fig. 10 Results for denoising image Lena by using ICM and several MRF models, with the noise vari-
ance σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.
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words, it is equivalent to state that there is a β parameter for
each pair of elements s and t in the field. So, these new mod-
els seem suitable to represent nonstationary fields.

4 Spatial Dependency Parameter (β) Estimation
The common parameter for all cited MRF models in this
paper is the spatial dependency parameter β. This parameter
is defined as the inverse temperature of the system at that
particular moment (the higher the temperature, the lower
the strength of interactions). In other words, it is necessary
to know β to infer some thermodynamic properties of
the system (statistics, information-theoretic measures, etc.)

when it is operating under a given regime. Although we
are dealing with a static 2-D image, as a snapshot of the sys-
tem, it is necessary to know the approximate temperature of
the system at the time this picture was taken, which is a key
aspect to compute the intrinsic properties of the system at
that particular moment. The inverse temperature parameter
provides valuable information about the expected global
behavior. So, the definition of the parameter β is essential
for a suitable modeling of the constraint.

Due to the intractability of the parameter Z of GRF, esti-
mating parameters of this distribution by using an MLE is
impracticable. In general, an MPLE, proposed by Ref. 31,

Fig. 11 Results for denoising image House by using ICM and several MRF models, with the noise vari-
ance σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.
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is used, whose method uses the local conditional probabil-
ities instead of the joint distribution.

In the literature, the MPLE estimation for Potts,32

GIMLL,33 and GMRF19 can be found. Therefore, in this
section, the MPLE of this parameter for each new proposed
nonlocal MRF models is defined.

To obtain an MPLE estimation for these Potts-based
models, the following equation can be numerically solved:

EQ-TARGET;temp:intralink-;e014;63;664

XN

s

UsðmÞ −
XN

s

P
M
l UsðlÞeβUsðlÞ
P

M
l eβUsðlÞ ; (14)

where N is the number of pixels in the image and UsðmÞ
is the energy function that can be defined according to
Eqs. (11) and (12) for NLPotts and NLGIMLL, respectively.

Finally, the MPLE estimation of the β parameter of the
NLGMRF can be defined in a closed formula:

EQ-TARGET;temp:intralink-;e015;326;697β̂MPLE ¼

P
s½ðxs − μÞ P

xt;t∈ηs
ωðs; tÞðxt − μÞ�

P
s
½Pxt;t∈ηsωðs; tÞðxt − μÞ�2 ; (15)

where μ is the global mean of the observed image.

Fig. 12 Results for denoising image Peppers by using ICM and several MRF models, with the noise
variance σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.

Journal of Electronic Imaging 013003-9 Jan∕Feb 2016 • Vol. 25(1)

Salvadeo, Mascarenhas, and Levada: Nonlocal Markovian models for image denoising

Downloaded From: https://www.spiedigitallibrary.org/journals/Journal-of-Electronic-Imaging on 13 Jun 2019
Terms of Use: https://www.spiedigitallibrary.org/terms-of-use



5 Evaluation Setup
Basically, to evaluate the new NLMRF priors proposed
in this paper, an MAP–MRF framework was used to
denoise images corrupted by additive white Gaussian noise
(AWGN). Thus, the likelihood was modeled by a Gaussian
distribution.

Moreover, to obtain an approximate MAP estimation, the
classical iterated conditional modes (ICM) algorithm34 was
used, running seven iterations at most. The complexity
time for ICM with classical MRF models is OðjNjÞ for each
iteration, where jNj is the number of pixels in an image.

In addition, Brent’s method35 was chosen to obtain the
numerical solutions of the MPLE of the parameter β for
NLPotts and NLGIMLL, as well as for their local version.
In the case of NLGMRF and GMRF, there is a closed for-
mula to estimate this parameter; therefore, a direct solution
was obtained.

Also, to determine the weights ωðs; tÞ, the algorithm pro-
posed in Ref. 36 was used, which calculates the weights for
the NLM by a fast Fourier transform. It is important to
emphasize that only the part of weights calculation from this
algorithm was used here and not the whole NLM algorithm.

Fig. 13 Results for denoising image Walk Bridge by using ICM and several MRF models, with the noise
variance σ2 ¼ 0.025: (a) original, (b) noisy, (c) Potts, (d) NLPotts, (e) GMRF, (f) NLGMRF, (g) GIMLL,
(h) NLGIMLL, (i) NLM, and (j) BM3D.
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Table 1 Denoising results in terms of peak signal-to-noise ratio (PSNR) for noise variance σ2 ¼ 0.010.

Images Noisy Potts NLPotts GMRF NLGMRF GIMLL NLGIMLL NLM BM3D Mean (Std)

Swan 20.64 (0.02) 25.16 (0.06) 26.96 (0.01) 24.78 (0.01) 26.64 (0.03) 25.00 (0.09) 25.95 (0.04) 29.40 (0.04) 31.18 (0.03) 26.59 (2.03)

Sea Star 20.21 (0.01) 23.38 (0.04) 25.92 (0.01) 22.99 (0.01) 24.35 (0.03) 23.01 (0.03) 23.93 (0.04) 26.12 (0.03) 28.26 (0.02) 24.47 (1.69)

Eskimo 20.23 (0.01) 24.80 (0.05) 26.76 (0.02) 24.75 (0.01) 25.38 (0.03) 24.49 (0.06) 25.14 (0.03) 26.77 (0.03) 28.39 (0.03) 25.60 (1.24)

Bridge 20.59 (0.01) 22.56 (0.07) 24.41 (0.01) 22.10 (0.01) 23.77 (0.03) 22.22 (0.07) 23.36 (0.02) 26.18 (0.02) 28.18 (0.03) 23.82 (1.90)

Butterfly 20.18 (0.02) 22.46 (0.05) 24.99 (0.01) 21.87 (0.01) 23.88 (0.03) 22.18 (0.07) 23.17 (0.02) 26.75 (0.03) 28.82 (0.03) 23.92 (2.19)

Buildings 20.60 (0.02) 21.14 (0.04) 23.11 (0.02) 20.12 (0.01) 22.74 (0.02) 20.86 (0.07) 22.40 (0.01) 26.45 (0.03) 29.50 (0.04) 22.94 (2.78)

Boat and
Bridge

20.26 (0.02) 24.10 (0.04) 25.42 (0.01) 23.79 (0.01) 24.79 (0.03) 23.83 (0.03) 24.59 (0.03) 26.82 (0.03) 28.76 (0.03) 25.04 (1.53)

Ostrich 20.12 (0.02) 27.59 (0.03) 28.69 (0.02) 28.29 (0.02) 28.66 (0.03) 27.51 (0.03) 27.48 (0.05) 29.74 (0.02) 30.99 (0.04) 28.39 (1.14)

Ships 20.36 (0.02) 18.92 (0.04) 20.64 (0.01) 18.03 (0.00) 20.13 (0.01) 18.52 (0.03) 19.85 (0.02) 24.01 (0.02) 27.10 (0.04) 20.54 (2.73)

Buildings and
Boats

20.44 (0.01) 19.30 (0.05) 20.89 (0.01) 18.60 (0.00) 20.01 (0.01) 18.98 (0.05) 19.87 (0.01) 22.88 (0.01) 25.50 (0.03) 20.47 (2.06)

Castle 20.14 (0.01) 23.28 (0.05) 24.70 (0.01) 22.87 (0.01) 24.22 (0.01) 23.04 (0.04) 23.77 (0.02) 27.04 (0.04) 29.31 (0.04) 24.49 (2.00)

Horses 20.16 (0.02) 22.19 (0.04) 23.36 (0.01) 21.83 (0.01) 22.27 (0.02) 21.94 (0.03) 22.14 (0.03) 23.79 (0.02) 26.10 (0.02) 22.76 (1.29)

Miscellaneous 20.24 (0.01) 21.12 (0.04) 22.56 (0.01) 20.35 (0.01) 21.85 (0.03) 20.81 (0.05) 21.55 (0.02) 24.54 (0.03) 27.26 (0.04) 22.23 (2.04)

Rope 20.07 (0.02) 22.13 (0.02) 23.96 (0.01) 21.25 (0.01) 22.46 (0.02) 21.75 (0.04) 22.22 (0.03) 23.87 (0.02) 26.15 (0.01) 22.76 (1.42)

Corn 20.24 (0.01) 21.65 (0.03) 24.47 (0.01) 20.87 (0.01) 22.33 (0.03) 21.15 (0.05) 21.75 (0.06) 24.46 (0.02) 27.54 (0.02) 22.68 (2.06)

Dog 20.06 (0.02) 25.27 (0.04) 26.78 (0.02) 25.23 (0.01) 25.69 (0.03) 25.07 (0.05) 25.38 (0.03) 27.15 (0.03) 28.99 (0.04) 25.99 (1.22)

Zebra 20.09 (0.01) 20.43 (0.04) 21.81 (0.01) 19.26 (0.00) 21.24 (0.02) 20.16 (0.06) 20.72 (0.02) 25.42 (0.03) 27.40 (0.03) 21.71 (2.49)

Church 20.09 (0.01) 20.88 (0.02) 22.32 (0.00) 20.03 (0.00) 21.82 (0.01) 20.54 (0.02) 21.62 (0.02) 24.48 (0.03) 27.59 (0.04) 22.13 (2.19)

Taj Mahal 20.28 (0.02) 22.52 (0.04) 24.36 (0.01) 21.73 (0.01) 23.77 (0.02) 22.16 (0.03) 23.34 (0.03) 26.80 (0.03) 28.94 (0.03) 23.89 (2.20)

Woman 20.11 (0.01) 24.40 (0.05) 26.66 (0.02) 23.71 (0.02) 25.47 (0.03) 23.75 (0.07) 24.64 (0.04) 27.26 (0.03) 30.48 (0.04) 25.43 (2.09)

Jet Plane 20.18 (0.01) 25.15 (0.04) 27.65 (0.01) 24.88 (0.01) 26.91 (0.03) 24.87 (0.05) 25.87 (0.05) 29.41 (0.04) 31.56 (0.03) 26.68 (2.17)

Lake 20.18 (0.01) 23.84 (0.02) 26.67 (0.02) 23.52 (0.00) 25.01 (0.02) 23.48 (0.05) 24.26 (0.03) 27.00 (0.02) 29.11 (0.02) 25.04 (1.84)

Living Room 20.10 (0.01) 24.39 (0.03) 26.24 (0.01) 23.91 (0.01) 25.28 (0.02) 24.03 (0.03) 24.87 (0.03) 26.78 (0.02) 29.51 (0.02) 25.37 (1.67)

Pirate 20.08 (0.01) 25.36 (0.02) 27.20 (0.01) 25.04 (0.01) 26.13 (0.03) 25.04 (0.03) 25.61 (0.03) 27.57 (0.02) 29.47 (0.02) 26.19 (1.40)

Cameraman 20.39 (0.01) 25.48 (0.05) 28.18 (0.02) 25.13 (0.01) 28.01 (0.04) 25.24 (0.05) 26.62 (0.05) 30.19 (0.04) 32.43 (0.04) 27.30 (2.34)

Lena 20.07 (0.01) 26.31 (0.06) 28.49 (0.03) 26.37 (0.01) 28.02 (0.04) 26.05 (0.06) 26.90 (0.05) 29.91 (0.04) 31.97 (0.06) 27.68 (1.88)

House 20.13 (0.01) 27.07 (0.07) 29.88 (0.02) 28.28 (0.02) 30.97 (0.04) 26.97 (0.06) 28.68 (0.03) 33.36 (0.04) 35.46 (0.05) 29.62 (2.75)

Mandril 20.03 (0.01) 23.30 (0.02) 25.38 (0.01) 22.38 (0.01) 23.24 (0.03) 22.80 (0.02) 23.10 (0.01) 24.83 (0.02) 27.72 (0.02) 23.85 (1.59)

Peppers 20.17 (0.01) 26.08 (0.04) 28.23 (0.02) 26.58 (0.02) 28.01 (0.05) 25.91 (0.08) 26.82 (0.05) 29.92 (0.03) 31.21 (0.02) 27.53 (1.74)

Walk Bridge 20.16 (0.01) 22.70 (0.01) 24.52 (0.01) 22.09 (0.01) 22.99 (0.02) 22.29 (0.02) 22.92 (0.01) 24.32 (0.01) 26.34 (0.01) 23.32 (1.29)

Mean 20.22 (0.16) 23.43 (2.17) 25.37 (2.34) 23.02 (2.60) 24.53 (2.58) 23.12 (2.22) 23.95 (2.21) 26.77 (2.36) 29.04 (2.15) 24.61 (2.97)

Note: GMRF, Gaussian Markov random field; NLGMRF, nonlocal Gaussian Markov random field; GIMLL, generalized multilevel logistic; NLGIMLL,
nonlocal generalized multi-level logistic; NLM, nonlocal means; BM3D, block matching and three-dimensional filtering.
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Table 2 Denoising results in terms of structural similarity index (SSIM) for noise variance σ2 ¼ 0.010.

Images Noisy Potts NLPotts GMRF NLGMRF GIMLL NLGIMLL NLM BM3D Mean (Std)

Swan 0.27 (0.00) 0.68 (0.00) 0.72 (0.00) 0.71 (0.00) 0.73 (0.00) 0.68 (0.00) 0.66 (0.00) 0.77 (0.00) 0.83 (0.00) 0.71 (0.05)

Sea Star 0.41 (0.00) 0.63 (0.00) 0.74 (0.00) 0.61 (0.00) 0.66 (0.00) 0.61 (0.00) 0.63 (0.00) 0.72 (0.00) 0.80 (0.00) 0.66 (0.07)

Eskimo 0.36 (0.00) 0.60 (0.00) 0.69 (0.00) 0.58 (0.00) 0.59 (0.00) 0.58 (0.00) 0.58 (0.00) 0.65 (0.00) 0.74 (0.00) 0.62 (0.05)

Bridge 0.38 (0.00) 0.59 (0.00) 0.64 (0.00) 0.56 (0.00) 0.63 (0.00) 0.58 (0.00) 0.59 (0.00) 0.70 (0.00) 0.78 (0.00) 0.62 (0.07)

Butterfly 0.42 (0.00) 0.66 (0.00) 0.75 (0.00) 0.65 (0.00) 0.72 (0.00) 0.65 (0.00) 0.66 (0.00) 0.79 (0.00) 0.85 (0.00) 0.70 (0.07)

Buildings 0.50 (0.00) 0.58 (0.00) 0.65 (0.00) 0.48 (0.00) 0.62 (0.00) 0.57 (0.00) 0.60 (0.00) 0.74 (0.00) 0.85 (0.00) 0.63 (0.10)

Boat and
Bridge

0.34 (0.00) 0.56 (0.00) 0.62 (0.00) 0.54 (0.00) 0.57 (0.00) 0.55 (0.00) 0.55 (0.00) 0.66 (0.00) 0.75 (0.00) 0.59 (0.06)

Ostrich 0.21 (0.00) 0.69 (0.00) 0.69 (0.00) 0.80 (0.00) 0.82 (0.00) 0.71 (0.00) 0.66 (0.00) 0.83 (0.00) 0.87 (0.00) 0.74 (0.07)

Ships 0.53 (0.00) 0.53 (0.00) 0.61 (0.00) 0.46 (0.00) 0.60 (0.00) 0.51 (0.00) 0.56 (0.00) 0.76 (0.00) 0.87 (0.00) 0.60 (0.12)

Buildings and
Boats

0.58 (0.00) 0.49 (0.00) 0.58 (0.00) 0.41 (0.00) 0.51 (0.00) 0.46 (0.00) 0.50 (0.00) 0.66 (0.00) 0.79 (0.00) 0.54 (0.11)

Castle 0.30 (0.00) 0.63 (0.00) 0.67 (0.00) 0.68 (0.00) 0.73 (0.00) 0.64 (0.00) 0.62 (0.00) 0.78 (0.00) 0.85 (0.00) 0.69 (0.07)

Horses 0.44 (0.00) 0.53 (0.00) 0.62 (0.00) 0.47 (0.00) 0.49 (0.00) 0.50 (0.00) 0.50 (0.00) 0.59 (0.00) 0.73 (0.00) 0.54 (0.08)

Miscellaneous 0.40 (0.00) 0.59 (0.00) 0.63 (0.00) 0.58 (0.00) 0.66 (0.00) 0.59 (0.00) 0.58 (0.00) 0.75 (0.00) 0.83 (0.00) 0.64 (0.08)

Rope 0.54 (0.00) 0.55 (0.00) 0.66 (0.00) 0.42 (0.00) 0.53 (0.00) 0.52 (0.00) 0.53 (0.00) 0.63 (0.00) 0.76 (0.00) 0.56 (0.09)

Corn 0.53 (0.00) 0.62 (0.00) 0.75 (0.00) 0.54 (0.00) 0.64 (0.00) 0.58 (0.00) 0.60 (0.00) 0.73 (0.00) 0.85 (0.00) 0.65 (0.09)

Dog 0.32 (0.00) 0.61 (0.00) 0.67 (0.00) 0.62 (0.00) 0.65 (0.00) 0.60 (0.00) 0.59 (0.00) 0.71 (0.00) 0.79 (0.00) 0.64 (0.06)

Zebra 0.41 (0.00) 0.57 (0.00) 0.65 (0.00) 0.54 (0.00) 0.60 (0.00) 0.56 (0.00) 0.55 (0.00) 0.71 (0.00) 0.78 (0.00) 0.61 (0.08)

Church 0.54 (0.00) 0.51 (0.00) 0.60 (0.00) 0.41 (0.00) 0.57 (0.00) 0.49 (0.00) 0.54 (0.00) 0.72 (0.00) 0.86 (0.00) 0.57 (0.12)

Taj Mahal 0.35 (0.00) 0.64 (0.00) 0.68 (0.00) 0.66 (0.00) 0.74 (0.00) 0.64 (0.00) 0.64 (0.00) 0.81 (0.00) 0.86 (0.00) 0.69 (0.08)

Woman 0.32 (0.00) 0.66 (0.00) 0.72 (0.00) 0.66 (0.00) 0.73 (0.00) 0.65 (0.00) 0.64 (0.00) 0.77 (0.00) 0.85 (0.00) 0.70 (0.07)

Jet Plane 0.28 (0.00) 0.70 (0.00) 0.75 (0.00) 0.76 (0.00) 0.80 (0.00) 0.71 (0.00) 0.69 (0.00) 0.84 (0.00) 0.88 (0.00) 0.75 (0.07)

Lake 0.36 (0.00) 0.64 (0.00) 0.72 (0.00) 0.65 (0.00) 0.70 (0.00) 0.64 (0.00) 0.63 (0.00) 0.75 (0.00) 0.81 (0.00) 0.68 (0.06)

Living Room 0.36 (0.00) 0.61 (0.00) 0.69 (0.00) 0.58 (0.00) 0.64 (0.00) 0.59 (0.00) 0.60 (0.00) 0.70 (0.00) 0.81 (0.00) 0.64 (0.07)

Pirate 0.32 (0.00) 0.64 (0.00) 0.71 (0.00) 0.64 (0.00) 0.68 (0.00) 0.63 (0.00) 0.62 (0.00) 0.72 (0.00) 0.80 (0.00) 0.67 (0.06)

Cameraman 0.26 (0.00) 0.71 (0.00) 0.75 (0.00) 0.77 (0.00) 0.82 (0.00) 0.72 (0.00) 0.70 (0.00) 0.83 (0.00) 0.89 (0.00) 0.76 (0.06)

Lena 0.26 (0.00) 0.68 (0.00) 0.73 (0.00) 0.75 (0.00) 0.78 (0.00) 0.69 (0.00) 0.67 (0.00) 0.81 (0.00) 0.86 (0.00) 0.73 (0.06)

House 0.20 (0.00) 0.74 (0.00) 0.77 (0.00) 0.84 (0.00) 0.87 (0.00) 0.75 (0.00) 0.73 (0.00) 0.87 (0.00) 0.92 (0.00) 0.80 (0.07)

Mandril 0.46 (0.00) 0.59 (0.00) 0.72 (0.00) 0.46 (0.00) 0.54 (0.00) 0.54 (0.00) 0.55 (0.00) 0.65 (0.00) 0.81 (0.00) 0.59 (0.10)

Peppers 0.27 (0.00) 0.65 (0.00) 0.70 (0.00) 0.72 (0.00) 0.73 (0.00) 0.66 (0.00) 0.64 (0.00) 0.77 (0.00) 0.79 (0.00) 0.69 (0.05)

Walk Bridge 0.49 (0.00) 0.55 (0.00) 0.66 (0.00) 0.46 (0.00) 0.51 (0.00) 0.51 (0.00) 0.53 (0.00) 0.60 (0.00) 0.74 (0.00) 0.56 (0.08)

Mean 0.38 (0.10) 0.61 (0.06) 0.68 (0.05) 0.60 (0.12) 0.66 (0.10) 0.60 (0.07) 0.61 (0.06) 0.73 (0.07) 0.82 (0.05) 0.65 (0.10)
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Table 3 Denoising results in terms of PSNR for noise variance σ2 ¼ 0.025.

Images Noisy Potts NLPotts GMRF NLGMRF GIMLL NLGIMLL NLM BM3D Mean (Std)

Swan 17.19 (0.01) 24.05 (0.04) 25.24 (0.02) 24.04 (0.02) 25.95 (0.03) 24.02 (0.06) 24.60 (0.05) 27.35 (0.05) 28.30 (0.05) 25.22 (1.46)

Sea Star 16.48 (0.02) 22.67 (0.04) 24.66 (0.04) 22.68 (0.02) 23.46 (0.02) 22.48 (0.04) 22.79 (0.03) 24.85 (0.03) 25.89 (0.04) 23.46 (1.17)

Eskimo 16.42 (0.02) 23.81 (0.03) 25.24 (0.02) 24.31 (0.02) 24.58 (0.03) 23.71 (0.05) 23.86 (0.03) 25.53 (0.03) 26.50 (0.03) 24.50 (0.92)

Bridge 16.89 (0.02) 21.83 (0.05) 23.27 (0.02) 21.63 (0.01) 23.12 (0.03) 21.65 (0.04) 22.39 (0.04) 24.79 (0.04) 25.55 (0.03) 22.81 (1.33)

Butterfly 16.56 (0.01) 21.87 (0.02) 23.95 (0.03) 21.60 (0.02) 23.14 (0.04) 21.70 (0.03) 22.24 (0.04) 25.23 (0.04) 26.06 (0.03) 22.96 (1.54)

Buildings 17.02 (0.03) 20.57 (0.05) 22.24 (0.02) 19.79 (0.01) 22.20 (0.03) 20.38 (0.04) 21.56 (0.03) 24.88 (0.04) 26.14 (0.05) 21.96 (1.97)

Boat and
Bridge

16.49 (0.01) 23.25 (0.03) 24.25 (0.02) 23.43 (0.01) 24.32 (0.03) 23.16 (0.03) 23.50 (0.03) 25.65 (0.04) 26.58 (0.05) 24.07 (1.12)

Ostrich 16.44 (0.02) 26.11 (0.03) 26.79 (0.04) 27.71 (0.03) 27.66 (0.05) 26.24 (0.05) 25.85 (0.03) 27.95 (0.04) 29.36 (0.04) 26.98 (1.10)

Ships 16.59 (0.01) 18.61 (0.02) 20.11 (0.01) 17.87 (0.01) 19.74 (0.02) 18.35 (0.04) 19.35 (0.02) 22.86 (0.04) 23.90 (0.03) 19.83 (1.92)

Buildings and
Boats

16.77 (0.01) 18.99 (0.03) 20.36 (0.01) 18.41 (0.00) 19.60 (0.02) 18.77 (0.04) 19.37 (0.02) 22.00 (0.02) 22.69 (0.02) 19.82 (1.38)

Castle 16.41 (0.02) 22.63 (0.03) 23.75 (0.02) 22.64 (0.01) 23.66 (0.05) 22.55 (0.03) 22.88 (0.03) 25.64 (0.05) 26.78 (0.04) 23.59 (1.41)

Horses 16.42 (0.01) 21.66 (0.02) 22.61 (0.01) 21.64 (0.01) 21.93 (0.03) 21.50 (0.03) 21.51 (0.03) 23.28 (0.03) 23.69 (0.04) 22.07 (0.79)

Miscellaneous 16.55 (0.02) 20.67 (0.03) 21.89 (0.02) 20.16 (0.01) 21.47 (0.03) 20.48 (0.03) 20.99 (0.03) 23.61 (0.03) 24.48 (0.04) 21.51 (1.38)

Rope 16.26 (0.02) 21.56 (0.02) 23.13 (0.02) 21.09 (0.01) 21.78 (0.03) 21.32 (0.03) 21.35 (0.03) 23.10 (0.03) 24.16 (0.03) 22.00 (1.01)

Corn 16.62 (0.02) 21.19 (0.03) 23.51 (0.03) 20.65 (0.01) 21.67 (0.03) 20.84 (0.04) 21.03 (0.04) 23.43 (0.02) 24.85 (0.03) 21.88 (1.43)

Dog 16.27 (0.02) 24.27 (0.03) 25.38 (0.03) 24.92 (0.02) 24.95 (0.03) 24.22 (0.05) 24.13 (0.05) 25.96 (0.03) 26.99 (0.02) 24.91 (0.92)

Zebra 16.24 (0.01) 20.04 (0.04) 21.23 (0.01) 19.15 (0.00) 20.86 (0.03) 19.84 (0.03) 20.27 (0.01) 24.25 (0.02) 24.85 (0.03) 21.05 (1.85)

Church 16.33 (0.02) 20.48 (0.01) 21.74 (0.01) 19.92 (0.01) 21.25 (0.02) 20.25 (0.02) 20.79 (0.02) 23.41 (0.03) 24.92 (0.04) 21.37 (1.53)

Taj Mahal 16.53 (0.01) 21.92 (0.02) 23.38 (0.02) 21.47 (0.01) 23.20 (0.03) 21.72 (0.04) 22.41 (0.03) 25.23 (0.05) 26.22 (0.04) 22.95 (1.54)

Woman 16.32 (0.02) 23.53 (0.06) 25.21 (0.02) 23.43 (0.02) 24.60 (0.05) 23.22 (0.05) 23.49 (0.06) 25.74 (0.04) 27.74 (0.03) 24.34 (1.44)

Jet Plane 16.65 (0.01) 24.21 (0.04) 26.03 (0.03) 24.48 (0.02) 26.11 (0.04) 24.07 (0.04) 24.50 (0.05) 27.48 (0.03) 29.13 (0.05) 25.45 (1.65)

Lake 16.58 (0.01) 23.14 (0.04) 25.30 (0.02) 23.20 (0.02) 24.23 (0.05) 22.94 (0.03) 23.19 (0.05) 25.68 (0.03) 26.92 (0.03) 24.05 (1.36)

Living Room 16.27 (0.02) 23.52 (0.02) 24.91 (0.02) 23.62 (0.01) 24.40 (0.02) 23.33 (0.03) 23.51 (0.04) 25.47 (0.03) 27.13 (0.03) 24.26 (1.20)

Pirate 16.32 (0.01) 24.33 (0.03) 25.70 (0.02) 24.73 (0.02) 25.28 (0.03) 24.20 (0.04) 24.22 (0.03) 26.22 (0.02) 27.48 (0.02) 25.05 (1.07)

Cameraman 16.58 (0.01) 24.25 (0.03) 25.97 (0.03) 24.42 (0.02) 26.92 (0.04) 24.18 (0.06) 24.80 (0.05) 27.53 (0.05) 29.43 (0.08) 25.64 (1.71)

Lena 16.28 (0.01) 25.06 (0.03) 26.55 (0.02) 25.93 (0.01) 26.84 (0.03) 25.03 (0.03) 25.12 (0.02) 27.67 (0.03) 29.87 (0.03) 26.22 (1.51)

House 16.46 (0.02) 25.68 (0.05) 27.42 (0.05) 27.49 (0.05) 29.46 (0.07) 25.69 (0.05) 26.26 (0.07) 29.64 (0.05) 33.29 (0.08) 27.69 (2.35)

Mandril 16.18 (0.01) 22.62 (0.01) 24.29 (0.01) 22.23 (0.01) 22.66 (0.02) 22.29 (0.03) 22.16 (0.03) 23.99 (0.02) 25.23 (0.02) 22.98 (1.06)

Peppers 16.40 (0.01) 24.87 (0.03) 26.29 (0.02) 25.94 (0.02) 26.82 (0.04) 24.86 (0.04) 25.05 (0.03) 27.64 (0.04) 29.33 (0.05) 26.07 (1.43)

Walk Bridge 16.41 (0.01) 22.08 (0.03) 23.57 (0.01) 21.87 (0.01) 22.38 (0.03) 21.83 (0.02) 21.99 (0.02) 23.61 (0.03) 24.26 (0.03) 22.53 (0.88)

Mean 16.50 (0.23) 22.65 (1.86) 24.13 (1.86) 22.68 (2.46) 23.81 (2.35) 22.49 (1.94) 22.84 (1.79) 25.32 (1.78) 26.59 (2.24) 23.57 (2.42)
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Table 4 Denoising results in terms of SSIM for noise variance σ2 ¼ 0.025.

Images Noisy Potts NLPotts GMRF NLGMRF GIMLL NLGIMLL NLM BM3D Mean (Std)

Swan 0.16 (0.00) 0.59 (0.00) 0.62 (0.00) 0.69 (0.00) 0.70 (0.00) 0.60 (0.00) 0.56 (0.00) 0.68 (0.00) 0.78 (0.00) 0.64 (0.07)

Sea Star 0.26 (0.00) 0.57 (0.00) 0.67 (0.00) 0.60 (0.00) 0.61 (0.00) 0.56 (0.00) 0.55 (0.00) 0.65 (0.00) 0.73 (0.00) 0.60 (0.06)

Eskimo 0.21 (0.00) 0.53 (0.00) 0.61 (0.00) 0.56 (0.00) 0.54 (0.00) 0.52 (0.00) 0.49 (0.00) 0.58 (0.00) 0.65 (0.00) 0.55 (0.05)

Bridge 0.24 (0.00) 0.50 (0.00) 0.55 (0.00) 0.52 (0.00) 0.58 (0.00) 0.50 (0.00) 0.48 (0.00) 0.60 (0.00) 0.68 (0.00) 0.54 (0.06)

Butterfly 0.28 (0.00) 0.60 (0.00) 0.68 (0.00) 0.64 (0.00) 0.67 (0.00) 0.60 (0.00) 0.58 (0.00) 0.70 (0.00) 0.79 (0.00) 0.64 (0.06)

Buildings 0.35 (0.00) 0.52 (0.00) 0.59 (0.00) 0.46 (0.00) 0.58 (0.00) 0.51 (0.00) 0.53 (0.00) 0.67 (0.00) 0.75 (0.00) 0.56 (0.08)

Boat and
Bridge

0.21 (0.00) 0.49 (0.00) 0.54 (0.00) 0.52 (0.00) 0.54 (0.00) 0.49 (0.00) 0.46 (0.00) 0.58 (0.00) 0.66 (0.00) 0.52 (0.06)

Ostrich 0.12 (0.00) 0.57 (0.00) 0.57 (0.00) 0.78 (0.00) 0.74 (0.00) 0.60 (0.00) 0.53 (0.00) 0.63 (0.00) 0.83 (0.00) 0.64 (0.10)

Ships 0.40 (0.00) 0.47 (0.00) 0.55 (0.00) 0.45 (0.00) 0.55 (0.00) 0.46 (0.00) 0.48 (0.00) 0.66 (0.00) 0.78 (0.00) 0.53 (0.10)

Buildings and
Boats

0.42 (0.00) 0.44 (0.00) 0.53 (0.00) 0.39 (0.00) 0.47 (0.00) 0.43 (0.00) 0.44 (0.00) 0.62 (0.00) 0.66 (0.00) 0.48 (0.09)

Castle 0.19 (0.00) 0.53 (0.00) 0.56 (0.00) 0.66 (0.00) 0.66 (0.00) 0.55 (0.00) 0.51 (0.00) 0.62 (0.00) 0.79 (0.00) 0.60 (0.08)

Horses 0.29 (0.00) 0.47 (0.00) 0.55 (0.00) 0.46 (0.00) 0.46 (0.00) 0.45 (0.00) 0.43 (0.00) 0.54 (0.00) 0.59 (0.00) 0.48 (0.05)

Miscellaneous 0.28 (0.00) 0.51 (0.00) 0.55 (0.00) 0.57 (0.00) 0.61 (0.00) 0.52 (0.00) 0.48 (0.00) 0.62 (0.00) 0.75 (0.00) 0.56 (0.08)

Rope 0.35 (0.00) 0.51 (0.00) 0.61 (0.00) 0.41 (0.00) 0.49 (0.00) 0.48 (0.00) 0.47 (0.00) 0.59 (0.00) 0.66 (0.00) 0.52 (0.07)

Corn 0.37 (0.00) 0.58 (0.00) 0.70 (0.00) 0.53 (0.00) 0.59 (0.00) 0.55 (0.00) 0.54 (0.00) 0.67 (0.00) 0.76 (0.00) 0.60 (0.08)

Dog 0.18 (0.00) 0.52 (0.00) 0.57 (0.00) 0.60 (0.00) 0.59 (0.00) 0.53 (0.00) 0.48 (0.00) 0.58 (0.00) 0.71 (0.00) 0.56 (0.06)

Zebra 0.28 (0.00) 0.50 (0.00) 0.56 (0.00) 0.53 (0.00) 0.55 (0.00) 0.50 (0.00) 0.47 (0.00) 0.62 (0.00) 0.70 (0.00) 0.54 (0.07)

Church 0.37 (0.00) 0.46 (0.00) 0.54 (0.00) 0.40 (0.00) 0.52 (0.00) 0.45 (0.00) 0.46 (0.00) 0.65 (0.00) 0.76 (0.00) 0.51 (0.10)

Taj Mahal 0.24 (0.00) 0.55 (0.00) 0.59 (0.00) 0.64 (0.00) 0.68 (0.00) 0.56 (0.00) 0.53 (0.00) 0.66 (0.00) 0.81 (0.00) 0.61 (0.08)

Woman 0.20 (0.00) 0.57 (0.00) 0.62 (0.00) 0.64 (0.00) 0.65 (0.00) 0.57 (0.00) 0.53 (0.00) 0.62 (0.00) 0.78 (0.00) 0.61 (0.07)

Jet Plane 0.18 (0.00) 0.61 (0.00) 0.64 (0.00) 0.74 (0.00) 0.75 (0.00) 0.63 (0.00) 0.57 (0.00) 0.69 (0.00) 0.85 (0.00) 0.67 (0.08)

Lake 0.24 (0.00) 0.57 (0.00) 0.64 (0.00) 0.64 (0.00) 0.65 (0.00) 0.58 (0.00) 0.54 (0.00) 0.65 (0.00) 0.76 (0.00) 0.61 (0.06)

Living Room 0.22 (0.00) 0.53 (0.00) 0.60 (0.00) 0.56 (0.00) 0.58 (0.00) 0.53 (0.00) 0.50 (0.00) 0.60 (0.00) 0.73 (0.00) 0.57 (0.07)

Pirate 0.19 (0.00) 0.56 (0.00) 0.62 (0.00) 0.63 (0.00) 0.62 (0.00) 0.56 (0.00) 0.52 (0.00) 0.61 (0.00) 0.73 (0.00) 0.59 (0.06)

Cameraman 0.16 (0.00) 0.59 (0.00) 0.62 (0.00) 0.73 (0.00) 0.76 (0.00) 0.62 (0.00) 0.56 (0.00) 0.66 (0.00) 0.84 (0.00) 0.66 (0.09)

Lena 0.15 (0.00) 0.58 (0.00) 0.62 (0.00) 0.73 (0.00) 0.70 (0.00) 0.60 (0.00) 0.55 (0.00) 0.64 (0.00) 0.82 (0.00) 0.64 (0.08)

House 0.11 (0.00) 0.62 (0.00) 0.64 (0.00) 0.82 (0.00) 0.81 (0.00) 0.65 (0.00) 0.58 (0.00) 0.68 (0.00) 0.90 (0.00) 0.70 (0.10)

Mandril 0.29 (0.00) 0.53 (0.00) 0.65 (0.00) 0.46 (0.00) 0.51 (0.00) 0.50 (0.00) 0.47 (0.00) 0.59 (0.00) 0.69 (0.00) 0.53 (0.08)

Peppers 0.16 (0.00) 0.56 (0.00) 0.59 (0.00) 0.69 (0.00) 0.67 (0.00) 0.58 (0.00) 0.53 (0.00) 0.63 (0.00) 0.76 (0.00) 0.61 (0.07)

Walk Bridge 0.31 (0.00) 0.50 (0.00) 0.60 (0.00) 0.45 (0.00) 0.48 (0.00) 0.47 (0.00) 0.46 (0.00) 0.57 (0.00) 0.61 (0.00) 0.51 (0.06)

Mean 0.25 (0.08) 0.54 (0.05) 0.60 (0.04) 0.58 (0.12) 0.61 (0.09) 0.54 (0.06) 0.51 (0.04) 0.63 (0.04) 0.74 (0.07) 0.58 (0.09)
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So, the increase in the computational cost for our proposal is
minimized.

In turn, two values of the smoothing parameter h for
NLMRF models were tested here: h ¼ 3 and h ¼ 5. For
search area W and patch P sizes 3 × 3 (i.e., eight neighbor
patches or a second order-Markovian neighborhood) and
3 × 3, respectively, were used. It is important to emphasize
that these parameters were not optimized.

Furthermore, the proposed methodology was compared
against two state-of-the-art denoising methods for AWGN:
NLM and BM3D. Basically, the complexity time for these
methods is OðjWjjNj log jNjÞ and OðjNjÞ for NLM36 and
BM3D,15 respectively, where jWj is the size of the search
area W. Thus, given that for the NLMRF models’ calcula-
tion, the fast NLM method was used, the complexity
time for each iteration of ICM with NLMRF models is

Fig. 14 Box plots of denoising results in terms of peak signal-to-noise ratio (PSNR) for Berkeley
Database for noise variance σ2 ¼ 0.010 and h = 5.

Fig. 15 Box plots of denoising results in terms of structural similarity index (SSIM) for Berkeley Database
for noise variance σ2 ¼ 0.010 and h = 5.
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OðjNj þ jWjjNj log jNjÞ ∝ OðjWjjNj log jNjÞ in the case of
only one weights estimation step or OðjWjjNj2 log jNjÞ in
the case of weights re-estimation.

Finally, the methodology was implemented in MATLAB
(Fig. 3 summarizes the proposed methodology). The images
used in the experiments were 10 images of Standard
Database from USC-SPI (such as Jet Plane, Lena, Peppers,
Lake, Pirate) and 20 images from the Berkeley segmentation

dataset37 (such as Castle, Rope, Dog, Buildings, Ships). For a
better evaluation of the methods, for each original image
used in this work, 10 noisy versions of them were generated
by using 10 seeds of random noise.

6 Results
By using the proposed experimental setup described
previously, the denoising results for images corrupted by

Fig. 16 Box plots of denoising results in terms of PSNR for Standard Database for noise variance σ2 ¼
0.010 and h = 5.

Fig. 17 Box plots of denoising results in terms of SSIM for Standard Database for noise variance σ2 ¼
0.010 and h = 5.
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Gaussian noise are presented and discussed in this section.
The results can be found in Figs. 4–13 for visual analysis and
in Tables 1–4 for a quantitative analysis in terms of peak
signal-to-noise ratio (PSNR) and structural similarity index
(SSIM)38 measures, respectively. In addition, some box
plots for each image database used here are displayed in
Figs. 14–21 for further analysis.

In general, it can be observed from Tables 1–4 that
the NLMRF models show considerably superior results
in quantitative terms compared with their local versions.
For instance, NLPotts, NLGMRF, and NLGIMLL achieved
about 1.94, 1.51, and 0.83 dB on average higher than
their local versions, with the noise variance σ2 ¼ 0.01, in
terms of PSNR, respectively. For the noise variance

Fig. 18 Box plots of denoising results in terms of PSNR for Berkeley Database for noise variance σ2 ¼
0.025 and h = 5.

Fig. 19 Box plots of denoising results in terms of SSIM for Berkeley Database for noise variance σ2 ¼
0.025 and h = 5.
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σ2 ¼ 0.025, these values are 1.48, 1.13, and 0.35 dB,
respectively.

In addition, there was also an improvement in terms of
SSIM by using nonlocal Markovian models. For instance,
NLPotts, NLGMRF, and NLGIMLL achieved about 0.07,
0.06, and 0.01 on average higher than their local versions,
with the noise variance σ2 ¼ 0.01, respectively. For the
noise variance σ2 ¼ 0.025, these values are 0.06, 0.03, and

−0.03, respectively. Note that there was a decrease for
the NLGIMLL model. This can also be noted in the box
plots in Figs. 19 and 21.

Although the BM3D filtering displayed the best results
with all tested methods, NLGMRF and NLPotts models
achieved the best results among all MRF models evaluated
and were slightly higher in terms of SSIM than the NLM in
some cases, mainly with higher values for the noise variance

Fig. 20 Box plots of denoising results in terms of PSNR for Standard Database for noise variance σ2 ¼
0.025 and h = 5.

Fig. 21 Box plots of denoising results in terms of SSIM for Standard Database for noise variance σ2 ¼
0.025 and h = 5.
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for Standard Database from USC-SIPI. This can be observed
on box plots in Fig. 21.

Basically, the box plots of Figs. 14–21 summarize the
achieved results of the methods in these experiments.

Finally, visual analysis of Figs. 4–13 seems to corroborate
the quantitative results. It can be noted that the NLMRF
models preserve the details better, mainly edges (see the
results from images “Buildings” and “Ships” for a clear
demonstration of this). Also, it can be noted that NLGMRF
controls the smoothing better in comparison with GMRF (for
instance, see the image “Jet Plane”).

7 Conclusions and Future Works
In this paper, an extension of some classical MRF models
was proposed by weighting the pairwise interaction of
their energy functions. These weights are calculated as per-
formed in the NLMmethod, where a similarity between non-
local regions are calculated. Therefore, this paper proposed
the following new nonlocal MRF model, namely, NLGMRF,
NLPotts, and NLGIMLL. In addition, the MPLE of the spa-
tial dependency parameter (β) for each of these models was
also proposed.

These new models were applied as priors in an MAP–
MRF framework for image denoising, achieving very good
results and substantially increasing the quality of filtering.
Thus, these NLMRF models were demonstrated to be more
suitable for image denoising problems than their local/
classical versions, improving the tradeoff between detail
preservation and noise removal. In addition, obtaining this
superior quality only slightly increased the complexity time,
and was compatible to the NLM.

However, as the new models depend on the similarity
measure used to determine the β weighting, a suitable
smoothing parameter value needs to be estimated. This is
the main limitation of these new models. Higher values
for this parameter can oversmooth some regions of the
images. This can also be observed in the results obtained
by NLM.

In addition, a small search area size was used to obtain
these results. This setup is defined to be compatible
with the second-order Markovian neighborhood used in
classical/local models. It is expected that the result can be
increased by taking a bigger search area size, because
more informative/similarity patches can be used for a better
weights estimation.

Finally, future works include: (1) an automatic estimation
of the smoothing parameter h in the weights calculation,
(2) the evaluation of these new models for other image
processing problems (such as image reconstruction and
image segmentation), (3) the adaptation of these new models
for other kinds of noise by using similarity measures suitable
for each noise model as done for NLM in Ref. 28–30,
(4) study of the parameter of search area size, and (5) exten-
sion to other MRF models.
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