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Effective action for QED with fermion self-interaction in DÄ2 and DÄ3 dimensions
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In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED inD
52 andD53 dimensions. This is done through the computation of the effective action up to quadratic terms
in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatively ink/m,
wherek is the photon momentum andm the fermion mass. The poles of the propagators were determined
numerically by using theMATHEMATICA software. InD52 there is always a massless pole whereas for strong
enough Thirring coupling a massive pole may appear. ForD53 there are three regions in parameter space. We
may have one or two massive poles or even no pole at all. The interquark static potential is computed
analytically inD52. We notice that the Thirring interaction contributes with a screening term to the confining
linear potential of massive two-dimensional QED (QED2). In D53 the static potential must be calculated
numerically. The screening nature of the massive QED3 prevails at any distance, indicating that this is a
universal feature ofD53 electromagnetic interaction. Our results become exact for an infinite number of
fermion flavors.
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I. INTRODUCTION

In two dimensions, bosonization is a powerful techniq
used in a variety of examples@1–3#. In the past years ther
have been many attempts to generalize those ideas to h
dimensions@4–12#. For instance, one can derive an effecti
action by integrating out the fermion degrees of freedom
studying the physical properties of the resulting bosonic
fective theory. Such an approach has been used in@4,13–16#
to show that the static potential in three-dimensional Q
(QED3) is of screening type. In@4# we have used the pertur
bative path integral bosonization in bothD52 and D53
QED. It is remarkable that in QED2 at the quadratic approxi
mation in the gauge fields but without any expansion ink/m,
there are only massless poles@4#, which is in agreement with
what has been observed in@17#, but differs from the result
obtained through perturbative (m/e) calculation of@18#. In
three dimensions it was shown that there is a massive e
tation which depends on the dimensionless param
16p m/e2 and a simple approximated expression for t
function has been found@4#. This in fact generalizes the ca
culations of@5#, which were obtained at leading order of th
derivative expansion, and that of@19# carried out at a highe
order ink/m, which in its turn is related to consistent high
derivative actions@20–24#.

The aim of this work is to analyze the influence of addi
a Thirring term to QED in the static potential as well as
the particle content of the theory. In particular, we conclu
that such a term does not change the large distance phy

We start by introducing the notation which will be used
both D52 and D53. The generating functional for QED
with Thirring self-interaction is given by
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Z5E DAmDc Dc̄ expH i E dDxF2
1

4
Fmn

2 1c̄ j

3S i ]”2m2
e

AN
A” D c j2

g2

2N
~ c̄ jgmc j !2G J , ~1!

whereN is the number of fermion flavors. It is convenient
introduce an auxiliary vector fieldBm and work with the
physically equivalent generating functional:

Z5E DAmDBmDc Dc̄ expH i E dDxF2
1

4
Fmn

2 1
1

2
BmBm

1c̄ j S i ]”2m2
e

AN
A” 2

g

AN
B” D c j G J . ~2!

After integration over the fermionic fields we obtain

Z5E DAmDBmexpH i E dnxF2
1

4
Fmn

2 1
1

2
BmBmG J

3detF i ]”2m2
1

AN
~e A” 1gB” !GN

. ~3!

The fermion determinant can be evaluated perturbatively
1/N and Furry’s theorem guarantees that only an even n
ber of vertices contribute. Since each vertex is of order 1/AN
the leading contribution with two vertices will b
N-independent. The next to leading contribution with fo
vertices is of order 1/N and will be neglected hencefort
@25#. Therefore, at leading order in 1/N, we have the qua-
dratic effective action:
©2002 The American Physical Society30-1
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Se f f
(2)@B,A#5

1

2E dDk

~2p!D
$2Ãm~2k!@gmnk22kmkn#Ãn~k!

1B̃m~k!B̃m~2k!1~e Ãm1g B̃m!~k!Pmn~e Ãn

1g B̃n!~2k!%, ~4!

where Ãm(k) and B̃m(k) represent the Fourier transform
tions of Am(x) andBm(k), respectively, andPmn is the po-
larization tensor:

Pmn~k!5 i E dDp

~2p!D
trF 1

p”2m1 i e
gm

1

~p”1k” !2m1 i e
gnG .

~5!

The actionSe f f
(2) @B,A# is exact in theN→` limit.

In order to proceed further we have to calculatePmn

which depends on the dimensionality of the space-time.

II. EFFECTIVE POTENTIAL IN DÄ2

Using dimensional regularization we have

PD52
mn ~k!5g2P̃~k2!umn, ~6!

whereumn5gmn2kmkn/k2 and

P̃~k2!5
1

p F11
1

2

4m2/k2

~124m2/k2!1/2
ln

~124m2/k2!1/211

~124m2/k2!1/221
G .

~7!

Plugging back inSe f f
(2)@B,A# and performing the Gaussia

integral overBm we end up with the gauge invariant effectiv
action for the gauge field:

Se f f
(2)@A#5

1

2E d2k

~2p!2
Ãm~2k!F2k21e2

P̃

11g2P̃
G

3umnÃn~k!. ~8!

If g→0 we reproduce the QED2 result of @4#, and when
m→0 we recover the result of the Schwinger-Thirring mod
@26#. Introducing a gauge fixing term we can obtain the ph
ton propagator whose gauge invariant piece is given by

D i
mn~k!5

~11P̃ g2!

4 m2@g2~z2a!P̃1z#
gmn , ~9!

where we define the dimensionless quantities which will
used also inD53:

z5
k2

4 m2
,

a5
e2

4 m2g2
. ~10!

Notice thatg is another dimensionless quantity inD52.
12503
l
-
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As already stressed in@4# the expression~7! for P̃ is
correct fork2,0 and we have used it to check thatDmn is
causal and no tachyonic poles appear. In analyzing the
ticle content ofSe f f

(2)@A# we restrict ourselves to the regio
0<z,1, which is below the pair creation threshold (z51).

In that regionP̃ must be continued to

P̃~z!5
1

p F12
1

@z~12z!#1/2
arctanA z

12zG ,

0<z,1. ~11!

For z→0, P̃ becomes linear inz and, therefore, for arbi-
trary values of the dimensionless parametersa and g, we
always have a massless simple polek250 as in pure QED2
@4#. SinceP̃<0 for 0<z,1 it is clear thatz1g2P̃(z2a)
will never vanish fora>1 and we are left with only a mass
less pole. Fora,1 there is always a massive pole
k2/2m25M2D(a,g), which was numerically evaluated an
plotted in Fig. 1 in the region 0.1<a<0.93 and 0.25,g
,1.5.

As we see in Fig. 1, when we decrease the Thirring c
pling the mass of the pole tends to reach the pair crea
thresholdz→12 and becomes nonphysical.

At this point, we observe that the effect of the Thirrin
self-interaction in the pole structure of QED2 is to introduce
a massive pole if the Thirring coupling is strong enough, i
mg2/4p.e2/16pm. The massless pole of pure QED2 with
massive fermions remains untouched for any value of
coupling e and g, which is compatible with a recent stud
@27#.

Now two comments are in order. First, though t
Thirring interaction may introduce a mass in the phot
propagator the gauge symmetry is not broken. As we se
Eq. ~8! this is only possible because the action is nonlocal
we try to make it local, for instance by making a derivati
expansion form→`, we will miss the massive pole since th
Thirring contribution will be neglected at first order in th
derivative expansion. The massive pole will be only seen
the next to leading order in a higher derivative theory. S
ond, for anygÞ0 it is always possible to find a value fork2

such that 11P̃ g250 and thereforeDmn
i 50. That is, the

FIG. 1. Photon effective mass inD52 for a,1 and 0.25,g
,1.5.
0-2
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Thirring self-interaction originates a region in momentu
space~hyperboloid! of forbidden momenta. We are not awa
of similar observations in the literature and we do not hav
deeper understanding of this fact.

Next we analyze the effect of Thirring interaction for th
effective potential between two static charges. We assu
that two chargesQ and 2Q are located atx5L/2 andx5
2L/2. From the equation of motion coming fromSe f f

(2)@A#
we obtain the potential produced by the positive charge:

Am~x!5E d2k

~2p!2E d2x8Dmn
i ~k!eik(x2x8)Jn~x8!, ~12!

where

Jn~x8!5QdS x182
L

2D dn0 ~13!

andDmn
i is given in Eq.~9!. The only non-vanishing compo

nent of the potential isA0, which can be obtained analyt
cally through a contour integral:

V~L !5A0~x52L/2!

5QF L

2S 11
2ag2

3p D1
2a

mAu

e22mAuL

~u2a!2P̃~u!2aG
~14!

whereu is the non-vanishing solution of

g2~z2a!P̃~z!1z50, ~15!

with P̃ given in Eq.~12!. Thescreeningeffect, second term
in V(L), only exists fora,1 and is a pure consequence
the Thirring coupling. At large distances theconfiningnature
massive QED2 prevails and the influence of the Thirrin
term fades away.

III. THE MASSIVE POLES IN DÄ3

Using a parity and gauge invariant regulator, we obtain
this case,

Pmn~k!5P1i emnrkr1P2k2umn,

where, for 0<z,1, we have the parametric functions:

8p P15 f 1~z!52
1

z1/2
lnS 11z1/2

12z1/2D ,

16pm P25 f 2~z!5
1

z F11S 11z

2 D f 1G . ~16!

Again, plugging back inSe f f
(2)@B,A# and integrating overBm

we obtain
12503
a

e

n

Se f f
(2)@A#5E d3k

~2p!3
Ãm~2k!H F2k21

e2

g2

3S 12
g2k2P211

~g2k2P211!22g4k2P1
2D Gumn

1 i
e2P1

~g2k2P211!22g4k2P1
2
emnrkrJ Ãn~k!.

~17!

Once again we recover the pure QED3 result forg→0. As in
theD52 caseSe f f

(2)@A# is gauge invariant and, after introduc
ing a gauge fixing term, we can write the gauge invaria
piece of the photon propagator as

Dmn5
N~a,b,z!

4 m2D1D2

gmn2
i e2f 1

32p m2k2D1D2

emnrkr,

~18!

wherea is defined as in Eq.~10! and

b5
m g2

4p
,

N5~11b z f2!@b~a2z! f 221#2b2~a2z! f 1
2 , ~19!

D65b~a2z!G62Az, ~20!

G65
1

Az
F11

~16Az!2

2
f 1G . ~21!

Both G6 are monotonically decreasing functions which s
isfy

1<G2<2 and G1<22 ~22!

for z<1. Therefore when looking for the poles of the prop
gator

D1D250, ~23!

it is natural to split the analysis in two regions.

A. aË1„e2Õ16pmËm g2Õ4p…

In this case we can haveD150 for somez.a andD2

50 for somez,a. Indeed we have always been able to fi
massive poles in both regions (z.a andz,a) for arbitrary
values ofb and 0,z,1.

We might say that these poles have distinct origins. T
first one is due to the fermion self-interaction, whereas
second one has its origin due to the dynamically genera
Chern-Simons term. This can be seen if one works with
reducible representation for the gamma matrices (434). In
this case the fermion mass term is invariant under pa
transformation and, as a consequence, no parity-odd ter
dynamically generated; then the gauge invariant piece of
propagator is given by
0-3
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Dmn5
~11b z f2!

4 m2z@b~a2z! f 221#
gmn

which is obtained by takingP150 in Eq. ~17!. Since f 2
<0 for 0<z,1 one can check that there is always a ma
less pole and another one atzo.a which satisfies

b~a2zo! f 2~zo!2150.

In pure QED3 with reducible representation no topologic
mass is dynamically generated for the gauge field, con
quently the massive pole found from the equation above
its origin in the Thirring term.

B. aÐ1„e2Õ16pmÐm g2Õ4p…

In this QED3 dominated region we can only have pol
from D250 or equivalently:

b G25
Az

a2z
. ~24!

Since the right-hand side of Eq.~24! is a monotonically in-
creasing function ofz in the range 0,z,1 andG2 is lim-
ited according to Eq.~22!, it is clear that there are no solu
tions for D250 wheneverb>1/(a21); i.e., a>111/b.
Therefore in terms of QED3 and Thirring couplings, if

e2

16p m
>

m g2

4 p
11, ~25!

the propagator~18! has no poles whatsoever; this may ha
pen as an artifact of the approximation. It is possible that
at this order no poles do appear, the usually negligible n
perturbative contribution could introduce back the mass
pole. We have found numerically that the above bound
deed exists. For anyb,1/(a21) we have always been ab
to find one massive pole atD250 for arbitrary values of the
parametera in the regiona.1.

Summarizing,
~i! If e2/16p m,m g2/4p, then two massive poles (D6

50) are present.
~ii ! If m g2/4p<e2/16p m,m g2/4p11, just one pole

(D250) appears.
~iii ! Finally, if e2/16p m>m g2/4p11, no poles appea

at all.
Now two remarks follow. First, concerning the depe

dence on the QED3 and Thirring couplings on the massiv
pole found fromD250, for b,1/(a21), we have found
numerically and it is plotted in Fig. 2 that the mass increa
along with the QED3 coupling and decreases for growin
Thirring coupling. If we take both smallmg2 and large
e2/4m we tend to violate the conditione2/16p m
,m g2/4p11 and the pole tends to go beyond the pair c
ation threshold (z>1) as we see on the top of the hill in Fig
2. The second comment regards the pure QED3 limit ( g
→0) for which there is still a region without poles in th
propagator, i.e.,e2/16p m>1. This seems to have gone u
noticed in the literature@4,28,29#. Sometimes the quadrati
approximation forSe f f

(2)@A# is called a small coupling ap
12503
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s
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proximation in the literature, thus one might argue that o
calculations only make sense for small couplinge, such that
we are below the bounde2516p m. This is certainly sen-
sible at the leading order in the derivative expansion, as
@13# sincem→`, but it is not true in general. In particula
for QED3 with a large number of flavors, we have argu
that the quadratic approximation for the effective action c
responds to the leading 1/N contribution and no restriction is
required one or m, therefore the problem persists.

Similarly to theD52 case we now move to the calcula
tion of the effect of the Thirring self-interaction on the p
tential between two static charges1Q and 2Q located at
(x,y)15(L/2,0) and (x,y)25(2L/2,0). That is, the curren
of the positive charge is

Jn~x8!5Q dS x82
L

2D d~y8!dn0, ~26!

the potential produced by the above charge is

A0~x! 5 E d3x8 E d3k

~2p!3
ei k(x2x8)D0a~k!Ja~x8!

~27!

and

V~L !5A0S x52
L

2
, y50D

5
Q

4 m2E0

`

dk k
J0~k L! N
D1 D2

, ~28!

where k5Akx
2 1 ky

2 and we have usede0ag]gJa 5 0. The
fact that the current is static gives rise to ad(k0) upon inte-
gration overdx08 . Sincek050 we havek252(kx

2 1 ky
2) and

N/D1 D2 in Eq. ~28! are the continuations of the expre
sions ~19! and ~20! for the regionk2 , 0 according to the
formula ln@(12Az)/(11Az)#52 i arctan(z). The Bessel
function J0(k L) appears after integration over the angu
variable. Different fromD52 we are no longer able to ca
culateV(L) analytically and we have to appeal to a nume
computation as in@30#. We have plotted the result in Fig.
for specific values ofm, a and b. We have noticed that the
screening form of the potential is insensitive to the para
etersm, a and b, which is quite surprising in view of our

FIG. 2. Behavior of the photon effective mass inD53.
0-4
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previous analysis of the pole content of the propagator.
presence of the Thirring self-interaction seems to be ir
evant for the static potential even at small distances.
conclusion is in disagreement with@28# ~see also@31#! who
claims that because of the Thirring term, a repulsive bar
appears at low distances. The author of@28# makes use of the
derivative expansion in the quadratic actionSe f f

(2)@A#, which
is presumably a good approximation for large fermi
massesk/2m→0. We have also checked thatV(L) keeps its
screening shape, even for large masses, for any distanL.
Changing the values of the couplingsg ande will not change
the shape ofV(L) either ~see Figs. 3 and 4 for the typica
shape!. The point is that the rapid oscillations of the Bess

FIG. 3. Inter-fermion effective potential forb53 and m51
~black dotted line! and m50.1 ~gray dotted line!. For each color,
the upper curve corresponds toa54, and the lower one toa51/2.
s.

cl.

12503
e
l-
ur

r

l

function wash out any detail of the photon propagator le
ing always to a screening potential inD53. Besides, it is
worth mentioning that Fig. 4 indicates a nearly exponen
asymptotic behavior for the screening potential. Fina
similar to D52 it is always possible to findk2 such that
N(a,b,z)50 and the symmetric part of the photon propag
tor @see Eq.~18!# will vanish for those special values o
momenta.
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