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Effective action for QED with fermion self-interaction in D=2 and D=3 dimensions
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In this work we discuss the effect of the quartic fermion self-interaction of Thirring type in QED in
=2 andD =3 dimensions. This is done through the computation of the effective action up to quadratic terms
in the photon field. We analyze the corresponding nonlocal photon propagators nonperturbatikity, in
wherek is the photon momentum and the fermion mass. The poles of the propagators were determined
numerically by using th&ATHEMATICA software. InD=2 there is always a massless pole whereas for strong
enough Thirring coupling a massive pole may appear.0~e13 there are three regions in parameter space. We
may have one or two massive poles or even no pole at all. The interquark static potential is computed
analytically inD=2. We notice that the Thirring interaction contributes with a screening term to the confining
linear potential of massive two-dimensional QED (QfDIn D=3 the static potential must be calculated
numerically. The screening nature of the massive @pBEevails at any distance, indicating that this is a
universal feature oD =3 electromagnetic interaction. Our results become exact for an infinite number of
fermion flavors.
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I. INTRODUCTION - 1 -
z=f DAMszDwexp{if dPx —ZFiﬁ P
In two dimensions, bosonization is a powerful technique

used in a variety of exampld4—3]. In the past years there

have been many attempts to generalize those ideas to higher X } .,
dimensiong4—12|. For instance, one can derive an effective

action by integrating out the fermion degrees of freedom and

studying the physical properties of the resulting bosonic ef-

fective theory. Such an approach has been uséd,8—16 yvhereN is the num_ber of fermio_n flavors. It is conv_enient to
to show that the static potential in three-dimensional QEDNtroduce an auxiliary vector fiel@, and work with the
(QED;) is of screening type. 1f4] we have used the pertur- physically equivalent generating functional:

bative path integral bosonization in boh=2 andD=3

QED. It is remarkable that in QEDat the quadratic approxi-

mation in the gauge fields but without any expansiok/im, z:j DA, DB, Dy DZex;{ if dPx
there are only massless pol[d3, which is in agreement with

i&—m—iA lﬂj_g_z(@ ryl)2
N 2N Y

1, 1o
~ 3 Fh.t5B,B

what has been observed [iti7], but differs from the result
obtained through perturbativen{e) calculation of[18]. In +@ ip—m— iA_ iB) IS 2
three dimensions it was shown that there is a massive exci- \/N \/N

tation which depends on the dimensionless parameter
16w m/e? and a simple approximated expression for this . _ o _
function has been founfet]. This in fact generalizes the cal-  After integration over the fermionic fields we obtain
culations of{ 5], which were obtained at leading order of the
derivative expansion, and that [df9] carried out at a higher ]
N
: 3

1, 1
~3Fi.t 5B,B

order ink/m, which in its turn is related to consistent higher z:f DAMDBMeXp{iJ d"x
derivative action§20-24.
The aim of this work is to analyze the influence of adding 1
a Thirring term to QED in the static potential as well as in xde{iﬁ—m— —(e A+gB)
the particle content of the theory. In particular, we conclude \/N
that such a term does not change the large distance physics.
We start by introducing the notation which will be used in
both D=2 andD=3. The generating functional for QED The fermion determinant can be evaluated perturbatively in
with Thirring self-interaction is given by 1/N and Furry’s theorem guarantees that only an even num-
ber of vertices contribute. Since each vertex is of ordeNL/
the leading contribution with two vertices will be

*Email address: everton@feg.unesp.br N-independent. The next to leading contribution with four
TEmail address: dalmazi@feg.unesp.br vertices is of order N and will be neglected henceforth
*Email address: dutra@feg.unesp.br [25]. Therefore, at leading order inN/ we have the qua-
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de A V|2 1A
(ZW)D{—A,L(—k)[g’L ke—k“k"]A, (k)

1
sirB.Al-5 |

+BH(K)B,(—k) +(eA,+gB,)(KII* (A,

+9B)(—Kk)}, 4)
whereA (k) and B, (k) represent the Fourier transforma-

tions (_)fAM(x) andB,(k), respectively, andl*” is the po-
larization tensor:
7”]-

(5

D

d”p
tr
(2m)P

1

" 1
Y
p—m+ie

(p+k)—m+ie

H'”(k)=if

The actionS7} [B,A] is exact in theN— oo limit.
In order to proceed further we have to calculdi¢”
which depends on the dimensionality of the space-time.

Il. EFFECTIVE POTENTIALIN D=2

Using dimensional regularization we have

TIAY 5(k) = g2T1 (k?) 07, ()
where 9= g~ — k#k*/k? and
figey= |1y 1A (L ame) L
—Zl142 N .
T 2 (1_4m2/k2)l/2 (1_4m2/k2)1/2_1
()

Plugging back inS(?B,A] and performing the Gaussian
integral oveB* we end up with the gauge invariant effective
action for the gauge field:

d’k -
—(ZW)ZA“(_ k)

—k?+¢€?

1
S@ral== f _

et 2 1+9°M0
X 0*A (K). (8)

If g—0 we reproduce the QEDresult of[4], and when

m— 0 we recover the result of the Schwinger-Thirring model
[26]. Introducing a gauge fixing term we can obtain the pho

ton propagator whose gauge invariant piece is given by
(1+11¢?)

DH = — g Vo
am[g¥(z—a)ll+z] "

ya%

(k) 9
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FIG. 1. Photon effective mass ib=2 for a<1 and 0.25g
<1.5.

As already stressed if4] the expression7) for II is
correct fork?<0 and we have used it to check tHayg,, is
causal and no tachyonic poles appear. In analyzing the par-
ticle content of S A] we restrict ourselves to the region

0=1z<1, which is below the pair creation thresholz=1).
In that regionll must be continued to

~ B 1 z
H(z)—; 1—[2(1_2)]1/2arcta 13

0=z<1. (12)

Forz—0, I becomes linear iz and, therefore, for arbi-
trary values of the dimensionless parametarand g, we
always have a massless simple pkfe=0 as in pure QED

[4]. Sincell=<0 for 0=<z<1 it is clear thatz+ g°Il(z—a)
will never vanish fora=1 and we are left with only a mass-
less pole. Fora<l there is always a massive pole at
k?/2m?=M ,p(a,g), which was numerically evaluated and
plotted in Fig. 1 in the region 02a<0.93 and 0.25.g
<1.5.

As we see in Fig. 1, when we decrease the Thirring cou-
pling the mass of the pole tends to reach the pair creation
thresholdz— 1~ and becomes nonphysical.

At this point, we observe that the effect of the Thirring
self-interaction in the pole structure of Q&L to introduce
a massive pole if the Thirring coupling is strong enough, i.e.,
mg?/4m>e?/16mm. The massless pole of pure QEWith
massive fermions remains untouched for any value of the
coupling e and g, which is compatible with a recent study
[27].

Now two comments are in order. First, though the

used also i =3:

k2

Z= )
4m?

eZ

a= .
4 m?g?

(10

Notice thatg is another dimensionless quantity n=2.

propagator the gauge symmetry is not broken. As we see in
Eq. (8) this is only possible because the action is nonlocal. If
we try to make it local, for instance by making a derivative
expansion fom— oo, we will miss the massive pole since the
Thirring contribution will be neglected at first order in the
derivative expansion. The massive pole will be only seen in
the next to leading order in a higher derivative theory. Sec-
ond, for anyg#0 it is always possible to find a value ff

such that 11 g?=0 and thereforeDuwzo. That is, the
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Thirring self-interaction originates a region in momentum a3k _
space(hyperboloid of forbidden momenta. We are not aware ~ S@{A]= f ——AL(—K)
of similar observations in the literature and we do not have a (2m)

2
e
—k*+ —
g

deeper understanding of this fact. -

Next we analyze the effect of Thirring interaction for the ( 1— 97k, +1 wy
effective potential between two static charges. We assume (g2K2TI,+ 1)2—g4k2Hf
that two charge®) and —Q are located ak=L/2 andx=
—L/2. From the equation of motion coming fro zf)f[A] i e’Tl, sk VR (k)
we obtain the potential produced by the positive charge: (gzk2H2+1)2—g4k2H§6 p [ PRI

17

Once again we recover the pure QEf@sult forg—0. As in
theD =2 caseS{?){ A] is gauge invariant and, after introduc-
where ing a gauge fixing term, we can write the gauge invariant

piece of the photon propagator as

d%k !
AM(X)zf (Zw)zf dZX'DlL,,(k)e'k(X*X )JV(X/)’ (12)

L
Vi) — r_ 0
I Q5( X1 2) 0 (13 Ma,b,z) i e2f, y
V:— V_ - 5 ., _ € v, 1
Do e . “4mD.D_ " 327mkD,D_ "
andD,,, is given in Eq.(9). The only non-vanishing compo- (18)
nent of the potential i\y, which can be obtained analyti-
cally through a contour integral: wherea is defined as in E¢(10) and
V(L)=Ag(x=—L/2) mg
L 2a g~ 2miuL am
-Q 2( 28 s (u-ai(w-a N=(1+bz B)[bla-2)f,~1]-ba-2)f2, (19
3
" D.=b(a-2)G.—\z, (20
(14
1 (1++z)?
whereu is the non-vanishing solution of G.= % Tt———fi|. (22)
g%(z—a)ll(z)+2z=0, (15)

Both G.. are monotonically decreasing functions which sat-
- isfy

with IT given in Eqg.(12). The screeningeffect, second term
in V(L), only exists fora<l and is a pure consequence of
the Thirring coupling. At large distances thenfiningnature
massive QED prevails and the influence of the Thirring
term fades away.

1sG_=<2 and G, .s=-2 (22

for z<1. Therefore when looking for the poles of the propa-
gator

D,D_=0, (23

lll. THE MASSIVE POLES IN D=3
) _ ) _ ~ it is natural to split the analysis in two regions.
Using a parity and gauge invariant regulator, we obtain, in

this case, A. a<l(e’16mm<m g¥/4m)
I+ (k)=11,i e*°k,+I1,k?6*", In this case we can hav@, =0 for somez>a andD _
=0 for somez<a. Indeed we have always been able to find
where, for 6=z<1, we have the parametric functions: massive poles in both regiong>a andz<a) for arbitrary

values ofb and 0<z<1.

1 [1+27 We might say that these poles have distinct origins. The

8wl =f,(2)=— ZT/zln 1) first one is due to the fermion self-interaction, whereas the

second one has its origin due to the dynamically generated

1 147 Chern-Simons term. This can be seen if one works with the
16mmIl,=f,(z)= |1+ _)fl} (16) reducible representation for the gamma matrices 44. In

z 2 this case the fermion mass term is invariant under parity

transformation and, as a consequence, no parity-odd term is
Again, plugging back ir8%[B,A] and integrating oveB,  dynamically generated; then the gauge invariant piece of the
we obtain propagator is given by
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B (1+bzfy)
o amiba—2z)f,—1] "

which is obtained by takindl;=0 in Eg. (17). Sincef,
=<0 for 0<z<1 one can check that there is always a mass-
less pole and another onezt>a which satisfies

b(a—z,)fs(z,)—1=0.

In pure QELRQ with reducible representation no topological
mass is dynamically generated for the gauge field, conse-
guently the massive pole found from the equation above has
its origin in the Thirring term.

FIG. 2. Behavior of the photon effective massDr+ 3.
B. a=1(e¥16mm=m g%4m)
) ) ) proximation in the literature, thus one might argue that our
In this QED; dominated region we can only have poles cgcyations only make sense for small coupl@guch that
from D_=0 or equivalently: we are below the boune?=167m. This is certainly sen-
\/Z sible at the leading order in the derivative expansion, as in
bG_=——-:. (24)  [13] sincem—o, but it is not true in general. In particular,
for QED; with a large number of flavors, we have argued
Since the right-hand side of ER4) is a monotonically in-  that the quadratic approximation for the effective action cor-
creasing function of in the range 8<z<1 andG_ is lim- ~ responds to the leadingN/contribution and no restriction is
ited according to Eq(22), it is clear that there are no solu- "equired one or m, therefore the problem persists.
tions for D_=0 wheneverb=1/(a—1); i.e., a=1+ 1. Similarly to theD =2 case we now move to the calcula-

Therefore in terms of QEPand Thirring couplings, if tion of the effect of the Thirring self-interaction on the po-
tential between two static chargesQ and —Q located at

Q2 m ¢ (x,y)+=(L/2,0) and &,y) _=(—L/2,0). That s, the current
=>_ - of the positive charge is
167Tm> g +1, (25 p 9 ]
. H Viy!)— r_ ’ v0
the propagatot18) has no poles whatsoever; this may hap- J'(x")=Q 5(X 2) a(y’) 6", (26)

pen as an artifact of the approximation. It is possible that, as

at this order no poles do appear, the usually negligible nexthe potential produced by the above charge is

perturbative contribution could introduce back the massive .

pole. We have found numerically that the above bound in- (x) = J’ e f d°k
o(X) =

ei k(X7X,)Doa(k)Ja(X’)

deed exists. For ang<1/(a—1) we have always been able (2m)3
to find one massive pole & _ =0 for arbitrary values of the 27
parameter in the regiona>1.
Summarizing, and
(i) If €2/16 7 m<m ¢?/4 1, then two massive poleD(. L
=0) are present. V(L):Ao(x=——,y=0)
(i) If mg?lAm<e?/167rm<m g?/47+1, just one pole 2

(D_=0) appears. "
(iii ) Finally, if e2/16 w m=m ¢?/4 7+ 1, no poles appear _Q Jo(k L)
at all. 4m?Jo D,D_ "~
Now two remarks follow. First, concerning the depen-
dence on the QEpand Thirring couplings on the massive Wherek=yki + ki and we have used,,,d"J*=0. The
pole found fromD_=0, for b<1/(a—1), we have found fact that the current is static gives rise t@ky) upon inte-
numerically and it is plotted in Fig. 2 that the mass increasegration overdxg . Sincek,=0 we havek?= — (k% + k?) and
along with the QED coupling and decreases for growing AM/D. D_ in Eq. (28) are the continuations of the expres-
Thirring coupling. If we take both smaling® and large sions(19) and (20) for the regionk? < 0 according to the
e’/4m we tend to violate the conditione?/167 m formula If(1-z)/(1++2z)]=2i arctang). The Bessel
<m ¢?/47+1 and the pole tends to go beyond the pair cre-function Jo(k L) appears after integration over the angular
ation thresholdZ=1) as we see on the top of the hill in Fig. variable. Different fromD =2 we are no longer able to cal-
2. The second comment regards the pure QHDit (g culateV(L) analytically and we have to appeal to a numeric
—0) for which there is still a region without poles in the computation as if130]. We have plotted the result in Fig. 3
propagator, i.e.e?/16 wm=1. This seems to have gone un- for specific values ofn, a andb. We have noticed that the
noticed in the literatur¢4,28,29. Sometimes the quadratic screening form of the potential is insensitive to the param-

approximation forS(ezf)f[A] is called a small coupling ap- etersm, a andb, which is quite surprising in view of our

(28)
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FIG. 3. Inter-fermion effective potential fob=3 and m=1
(black dotted ling and m=0.1 (gray dotted ling For each color,
the upper curve correspondsde-4, and the lower one ta=1/2.
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FIG. 4. Logarithm of the absolute value of the inter-fermion

effective potential fob=3, m=1 anda=4.

function wash out any detail of the photon propagator lead-

ing always to a screening potential ih=3. Besides, it is

previous analysis of the pole content of the propagator. Thevorth mentioning that Fig. 4 indicates a nearly exponential
presence of the Thirring self-interaction seems to be Il'l’e|asymptotic behavior for the screening potential. Finally,
evant for the static potential even at small distances. Ougimilar to D=2 it is always possible to find? such that

conclusion is in disagreement wif28] (see alsd 31]) who

Ma,b,z)=0 and the symmetric part of the photon propaga-

claims that because of the Thirring term, a repulsive barriefor [see Eq.(18)] will vanish for those special values of

appears at low distances. The authof2#] makes use of the
derivative expansion in the quadratic actiSf)[A], which

is presumably a good approximation for large fermion

masse%/2m—0. We have also checked théfL) keeps its
screening shape, even for large masses, for any distance
Changing the values of the couplingsande will not change
the shape o/ (L) either (see Figs. 3 and 4 for the typical

momenta.
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