

PROGRAMA DE PÓS-GRADUAÇÃO EM CIÊNCIAS BIOLÓGICAS (MICROBIOLOGIA APLICADA)

RODOLFO BIZARRIA JÚNIOR

LACK OF HOST FIDELITY AND LOW VIRULENCE OF THE FILAMENTOUS FUNGUS Escovopsis trichodermoides

Dissertação apresentada ao Instituto de Biociências, do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestre em Ciências Biológicas (Microbiologia Aplicada).

Março - 2019

RODOLFO BIZARRIA JÚNIOR

LACK OF HOST FIDELITY AND LOW VIRULENCE OF THE FILAMENTOUS FUNGUS *Escovopsis trichodermoides*

Dissertação apresentada ao Instituto de Biociências, do Câmpus de Rio Claro, Universidade Estadual Paulista, como parte dos requisitos para obtenção do título de Mestre em Ciências Biológicas (Microbiologia Aplicada).

Orientador: Prof. Dr. André Rodrigues

Rio Claro - SP

Março - 2019

Bizarria Júnior, RodolfoB6251Lack of host fidelity and low virulence of the
filamentous fungus Escovopsis trichodermoides / RodolfoBizarria Júnior. -- Rio Claro, 2019
62 f. : il., tabs., fotosDissertação (mestrado) - Universidade Estadual Paulista
(Unesp), Instituto de Biociências, Rio Claro
Orientador: André Rodrigues1. Simbiose. 2. Fungos. 3. Micologia. 4. Fungicultura.

5. Formigas cultivadoras de fungos. I. Título.

Sistema de geração automática de fichas catalográficas da Unesp. Biblioteca do Instituto de Biociências, Rio Claro. Dados fornecidos pelo autor(a).

UNIVERSIDADE ESTADUAL PAULISTA

Câmpus de Rio Claro

CERTIFICADO DE APROVAÇÃO

TÍTULO DA DISSERTAÇÃO: LACK OF HOST PREFERENCE AND LOW INFECTION OF THE FILAMENTOUS FUNGUS Escovopsis trichodermoides

AUTOR: RODOLFO BIZARRIA JÚNIOR ORIENTADOR: ANDRÉ RODRIGUES

Aprovado como parte das exigências para obtenção do Título de Mestre em CIÊNCIAS BIOLÓGICAS (MICROBIOLOGIA APLICADA), área: Microbiologia Aplicada pela Comissão Examinadora:

Prof. Dr. ANDRÉ RODRIGUES Departamento de Bioquímica e Microbiologia / UNESP - Instituto de Biociências de Rio Claro - SP

Prof. Dr. SIMON LUKE ELLIOT Departamento de Entomologia / Universidade Federal de Viçosa

andie fore Von Juben

Prof. Dr. CLAUDIO JOSÉ VON ZUBEN Departamento de Zoologia / UNESP - Instituto de Biociências de Rio Claro - SP

Rio Claro, 22 de fevereiro de 2019

Título alterado para: "Lack of host fidelity and low virulence of the filamentous fungus *Escovopsis trichodermoides*"

Instituto de Bioclências - Câmpus de Rio Claro -Av. 24-A no. 1515, 13506900, Rio Claro - São Paulo CNPJ: 48.031.918/0018-72.

Dedico esse trabalho aos meus professores, fontes de inspiração.

AGRADECIMENTOS

Agradeço,

Primeiramente ao Prof. Dr. André Rodrigues, pela orientação, dedicação, compromisso, paciência, pela confiança que dispoz em meu trabalho e por todos os ensinamentos que contribuiram grandemente para a minha formação como cientista.

Ao Departamento de Bioquímica e Microbiologia e ao Laboratório de Ecologia e Sistemática de Fungos (LESF), pela estrutura concedida para o desenvolvimento do projeto.

Aos professores e funcionários da Universidade Estadual Paulista "Júlio de Mesquita Filho" – Câmpus de Rio Claro, do Programa de Pós-graduação em Ciências Biológicas (Microbiologia Aplicada) e do Departamento de Bioquímica e Microbiologia, pelo acolhimento e dedicação.

Aos amigos do LESF e do programa, pela ajuda e pelos momentos vivenciados durante o mestrado. Aos amigos da vida e aos meus familiares que me acompanharam e incentivaram ao longo dessa jornada. A minha companheira, Ariane, que sempre esteve ao meu lado, nos bons e maus momentos.

Agradeço à Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP), pela concessão da bolsa de mestrado (processo nº 2017/10631-9) e pelo auxílio financeiro concedido ao LESF (Processo nº 2017/12689-4) para o desenvolvimento desse estudo. O presente trabalho também foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.

"I've seen things you people wouldn't believe. Attack ships on fire off the shoulder of Orion. I watched C-beams glitter in the dark near the Tannhäuser Gate. All those moments will be lost in time, like tears in rain. Time to die" Roy Batty, replicant (Blade Runner)

RESUMO

Uma das associações simbióticas fascinantes na natureza é o mutualismo entre as formigas da tribo Attini (atíneas) e fungos que cultivam como alimento. Fungos do gênero Escovopsis são considerados parasitas dos fungos cultivados por esses insetos. Tais parasitas são especializados a determinados fungos das formigas, embora eventuais trocas de hospedeiros ocorreram durante a evolução. Recentemente, nosso grupo de pesquisa descreveu o fungo Escovopsis trichodermoides em colônias de atíneas basais. Entretanto, a especificidade e infectividade frente aos fungos cultivados por esses insetos ainda não foram abordados. Evidências provenientes de ensaios in vitro e em colônias sugerem um padrão generalista de infecção de *E. trichodermoides*, com ausência de fidelidade frente a diferentes fungos mutualistas. A produção de metabólitos inibitórios está envolvida no antagonismo de E. trichodermoides, caracterizando a competição por interferência como mecanismo frente aos diferentes hospedeiros. Além disso, foi observada baixa suscetibilidade de colônias de Mycocepurus goeldii (uma atínea basal) à infecção de E. trichodermoides, com alta porcentagem de sobrevivência. No geral, os resultados confirmam o antagonismo de E. trichodermoides, entretanto, com baixa virulência e ausência de fidelidade frente a diferentes cultivares, padrão ainda não observado na fungicultura das formigas atíneas.

Palavras-chave: Fungicultura. Antibiose. Antagonismo. Formigas cultivadoras de fungos. Simbiose.

ABSTRACT

A fascinating symbiotic association in nature is the mutualism between ants in the tribe Attini (attine) and fungi they cultivate for food. Fungi in the genus *Escovopsis* are parasites of the ant fungal cultivars. Such parasites are specialized to certain fungal cultivars, although host-switching events occurred during the evolution of this parasite. Recently, our research group described *E. trichodermoides* associated with lower attine ant colonies. However, the specificity and infectivity towards the ant fungal cultivars are still elusive. Evidence from *in vitro* assays as well as experiments in live ant colonies indicates a generalist pattern of infection of *E. trichodermoides*, with lack of host fidelity. The production of inhibitory metabolites is implicated in the antagonism of *E. trichodermoides*, characterizing interference competition as a mechanism towards the different hosts. In addition, colonies of the ant species *Mycocepurus goeldii* (a lower attine ant) showed high survival rates after exposure to conidia of *E. trichodermoides*. Collectively, our results confirm the antagonism of *E. trichodermoides*, with low virulence and absence of fidelity towards different fungal cultivars, a pattern first reported in the fungiculture of attine ants.

Keywords: Fungiculture. Antibiosis. Antagonism. Fungus-growing ants. Symbiosis.

INTRODUÇÃO	9
LACK OF HOST FIDELITY AND LOW VIRULENCE OF THE FILAME	NTOUS FUNGUS
ESCOVOPSIS TRICHODERMOIDES	11
ABSTRACT	12
1. INTRODUCTION	12
2. MATERIAL AND METHODS	14
2.1. Preservation and maintenance of fungal cultures	14
2.2. Molecular characterization of cultivars	14
2.3. Pairwise culture assays	15
2.4. Bioassays with multiple host possibilities	16
2.5. Production of soluble antifungal metabolites	16
2.6. Assays in live colonies of Mycocepurus goeldii	17
2.7. Statistical analysis	
3. RESULTS	20
3.1. Inhibition of different hosts by Escovopsis trichodermoides	20
3.2. Lack of host fidelity by Escovopsis trichodermoides	20
3.3. Interference competition by <i>Escovopsis trichodermoides</i>	21
3.4. Low virulence of <i>Escovopsis trichodermoides</i> in ant colonies	21
4. DISCUSSION	22
5. ACKNOWLEDGEMENTS	24
6. CONFLICT OF INTEREST	24
7. REFERENCES	25
Tables	29
Figures	31
8. SUPPLEMENTARY MATERIAL	

SUMÁRIO

INTRODUÇÃO

Simbiose pode ser definida como uma estreita interação entre organismos, tendo como resultado associações benéficas ou não. Associações entre plantas e endófitos, leguminosas e bactérias fixadoras de nitrogênio, algas e fungos formando líquens são alguns exemplos de tais interações. Uma simbiose fascinante é o mutualismo obrigatório entre formigas da subtribo Attina¹ e fungos basidiomicetos (ordem Agaricales, gêneros *Leucocoprinus* e *Leucoagaricus*), originado há cerca de 50 milhões de anos. Esses insetos cultivam o parceiro fúngico como única fonte de alimento para as larvas e a rainha; em contrapartida, a formiga providencia: substrato para o crescimento do fungo, meios para sua dispersão e proteção contra antagonistas.

Diferentes tipos de fungicultura são praticados pelas atíneas e são definidos pelo fungo associado e pelos hábitos de forrageamento das formigas. Cinco fungiculturas são descritas, sendo: (i) fungicultura das atíneas basais (i.e. na filogenia da subtribo), que cultivam diferentes espécies de fungos do gênero *Leucocoprinus* sp. (família Agaricaceae), e forrageiam detritos vegetais, fezes e carcaças de insetos para nutrição do simbionte; (ii) Fungicultura de fungos-coral, realizado por formigas do gênero *Apterostigma* que cultivam fungos da família Pterulaceae; (iii) Fungicultura praticada por formigas do gênero *Cyphomyrmex* gr. *rimosus*, que cultivam o fungo em forma de levedura; (iv) Fungicultura das atíneas derivadas (i.e. formigas mais derivadas na filogenia), praticada pelos gêneros *Trachmymyrmex* e *Sericomyrmex*, consideradas não cortadeiras de folhas; e (v) Fungicultura das formigas cortadeiras, uma subdivisão das derivadas (gêneros *Atta* e *Acromyrmex*) que cultivam o fungo *Leucoagaricus gongylophorus* e cortam folhas e flores frescas para nutrição do fungo.

Nessa relação, outro simbionte descrito é o fungo do gênero *Escovopsis*, considerado micoparasita que infecta os jardins de fungo² e que potencialmente pode devastar as colônias das formigas atíneas. Esse parasita apresenta adaptações que o auxiliam sobrepujar as defesas do fungo cultivado e das próprias formigas. Encontrado unicamente associado às colônias desses insetos, *Escovopsis* causa diminuição do crescimento do jardim, o qual não acumula biomassa fúngica para suprir a colônia. Os mecanismos do parasitismo estão associados à produção de enzimas, reconhecimento de metabólitos produzidos pelo fungo mutualista e de mecanismos estruturais, com degeneração das hifas do hospedeiro pelo contato direto com hifas de *Escovopsis* parasita do fungo cultivado pelas formigas.

¹ **Formigas da subtribo Attina.** Conhecidas também como "atíneas", são informalmente divididas em derivadas e basais, segundo características morfológicas, ecológicas, filogenia e fungicultura.

² **Jardim de fungo.** Estrutura elaborada pelas formigas que compreende o fungo mutualista e o substrato (vegetal ou restos e fezes de insetos) coletado pelas operárias.

A co-evolução entre o parasita e o hospedeiro pode resultar em co-cladogênese e especialização dos simbiontes. Nesse contexto, há superação das defesas do hospedeiro pelo parasita e a intensificação dos mecanismos defensivos pelo hospedeiro, responsáveis por manter os padrões de especificidade da interação, fenômeno previsto pela hipótese evolutiva da Rainha Vermelha (*Red Queen hypothesis*). Existem linhagens de *Escovopsis* que apresentam padrões de especificidade para com os tipos de fungiculturas praticados pelas atíneas. Entretanto, alguns estudos indicam incongruências na co-cladogênese entre *Escovopsis* e o fungo mutualista. Eventos de troca de hospedeiro por *Escovopsis* foram relatados, os quais podem estar associados às incongruências observadas.

O requerimento para que haja troca de hospedeiro na natureza, é que um parasita seja capaz de superar as defesas do novo hospedeiro e estabelecer com sucesso a infecção. Parasitas com arsenal diverso para infecção e mecanismos eficientes de transmissão possuem vantagem na infecção de hospedeiros diferentes. Entretanto, a diversidade de espécies de *Escovopsis* é ainda desconhecida, assim como seus modos de transmissão entre colônias. Nosso grupo de pesquisa descreveu *Escovopsis trichodermoides*, um fungo associado à colônias de diferentes espécies de atíneas basais. O estilo de vida desse fungo, bem como aspectos de sua infectividade e preferência de hospedeiros ainda são desconhecidos.

Baseado no papel descrito para espécies conhecidas de *Escovopsis* que infectam jardins de formigas atíneas derivadas e basais, o estudo teve como objetivo: (i) Descrever os padrões de interação de *E. trichodermoides* frente a diferentes fungos mutualistas; (ii) Descrever os padrões de preferência e fidelidade do fungo frente aos hospedeiros; (iii) Determinar se a infecção está associada a mecanismos químicos de ação e (iv) Determinar a infectividade de *E. trichodermoides*.

Para atingir os objetivos, ensaios de cultivo pareado entre *E. trichodermoides* e diferentes fungos mutualistas foram realizados, assim como ensaios com chance de escolha de hospedeiros. Também foi avaliada a interação entre os fungos mutualistas e os metabólitos produzidos por *E. trichodermoides*. Colônias da formiga atínea basal *Mycocepurus goeldii* foram coletadas e utilizadas como modelo de estudo para avaliar a infectividade de *E. trichodermoides*.

Ainda existem lacunas sobre a evolução do parasitismo em *Escovopsis* e sobre aspectos ecológicos na interação com as formigas atíneas. Utilizando *E. trichodermoides* como modelo de estudo, pretende-se com o presente trabalho, adicionar novos elementos para esse campo de estudo.

LACK OF HOST FIDELITY AND LOW VIRULENCE OF THE FILAMENTOUS FUNGUS *ESCOVOPSIS TRICHODERMOIDES*

Rodolfo Bizarria Jr¹ and Andre Rodrigues^{1,2*}

¹ Department of Biochemistry and Microbiology, UNESP – São Paulo State University, Rio Claro, SP, Brazil.

² Center for the Study of Social Insects, UNESP – São Paulo State University, Rio Claro, SP, Brazil.

Target journal: Fungal Biology

Running title: Labile host-parasite associations in attine gardens

* Corresponding author:

Andre Rodrigues (andrer@rc.unesp.br) – Universidade Estadual Paulista – UNESP.

Av. 24-A, n. 1515, Bela Vista, Rio Claro, SP, Brazil.

Zipcode: 13.506-900, Phone #: + 55 19 3526-4364

ABSTRACT

Symbioses are widespread in several forms of life, with ecological and evolutionary implications for the organisms involved. Several insects maintain symbioses with microorganisms and a paramount example is the fungus-growing ants, known to practice fungiculture for food. Their basidiomycetous fungal cultivars are threatened by fungal parasites in the genus Escovopsis (Ascomycota: Hypocreales) that shows patterns of specificity towards its host. Escovopsis trichodermoides was recently described to be associated with colonies of the lower attine Mycocepurus goeldii, however its ecological role is still unknown. Here we provide clues of the generalist nature of E. trichodermoides, with lack of fidelity to fungal hosts and low infection in ant colonies. Our results also indicate the production of inhibitory soluble compounds by E. trichodermoides as a mechanism of interference competition. The generalist lifestyle of E. trichodermoides may have allowed host-switching events towards different fungal cultivars of the lower attine ants. Interestingly this lifestyle is not a common trait of Escovopsis species, which usually shows partner fidelity. Thus, our study indicates that *Escovopsis* has adicional lifestyles then previously thought, prompting further investigations on the evolution of Escovopsis in the attine antfungal symbiosis.

Keywords: Fungiculture, antibiosis, antagonism, fungus-growing ants, symbiosis.

1. INTRODUCTION

Symbiosis implies in close relationships between organisms, establishing beneficial or detrimental associations, such interactions are important models for studying evolution. In nature, different organisms live in symbiosis with fungi (BATRA 1963; DEJEAN et al., 2005; HELGASON et al., 1998; KÄMPER et al., 2006; LUTZONI et al., 2001; MARTIN et al., 2017; SIMARD et al., 1997; SPRIBILLE et al., 2016; WEBB 1945; WEBER 1972). The ecological success of these interactions involves many factors, related to the health of organisms as well as the environment they live.

Some social insects maintain symbiotic associations with fungi (MUELLER; GERARDO, 2002). Fungus-growing ants (Hymenoptera: Attini: Attina, hereafter named "attine ants"), have grown basidiomycetous fungi (Agaricales: Agaricaceae: *Leucoagaricus gongylophorus* or *Leucocoprinus* spp.) over the last 50 million of years in an obligatory

mutualism, as the main food source for the larvae and queen (SCHULTZ, BRADY; 2008). Meanwhile, the ants disperse the fungus and provide a stable environment for its development, providing substrate and protection against competitors.

Among the several undesirable microbes found in attine ant colonies, the fungal genus *Escovopsis* (Ascomycota: Hypocreales) has been reported as a specialized parasite of the ants' cultivars (CURRIE; MUELLER; MALLOCH, 1999; CURRIE, 2001). Infections with this parasite weaken the fungus garden, consequently decreasing the ant workforce (CURRIE, 2001). *Escovopsis* shows host fidelity (i.e., one strain of the parasite associated with phylogenetically related hosts) and production of inhibitory compounds towards its hosts (CURRIE; MUELLER; MALLOCH, 1999; CURRIE, 2001; DHODARY et al., 2018; GERARDO et al., 2006a; HEINE et al., 2018; REYNOLDS; CURRIE, 2004).

The fungiculture of attine ants has been described as an ancient tripartite coevolution, with phylogenetic congruence between the ants, their cultivars, and *Escovopsis* (CURRIE et al., 2003; GERARDO et al., 2006b). Such congruence is maintained by host or parasite adaptations and counter-adaptations, which drive a coevolutionary arms race (ANTONOVICS et al., 2013; BIRNBAUM; GERARDO, 2016). As a result of this coevolution some traits can be noted such as *Escovopsis* host fidelity at in finer and broader phylogenetic scales (BIRNBAUM; GERARDO, 2016; CUSTODIO; RODRIGUES, 2019; GERARDO et al., 2006a). However, host-switching events may have occurred during the evolution of these organisms. Some *Escovopsis* strains can overcome the defenses from phylogenetically distantly related fungal hosts (BIRNBAUM; GERARDO, 2016; GERARDO, 2016; GERARDO et al., 2006b; MEIRELLES et al., 2015).

Fungus-growing ants are usually and informally classified in higher and lower attines, according to their morphological characteristics, social aspects, phylogeny and type of fungiculture (MUELLER et al., 2018). The cultivars are vertically transmitted (from parental to offspring colonies) during the establishment of a new colony (CHAPELA et al., 1994). In the case of lower attines, they may also recruit new fungi from free-living stocks, increasing the genetic variability in the symbiosis (KELLNER et al., 2013; MEHDIABADI, SCHULTZ, 2009; MUELLER et. al., 1998). Such aquisitions might provide protective mechanisms towards infections (KELLNER et al., 2018). Althought horizontal transmission of *Escovopsis* has been proposed (CURRIE et al., 1999; AUGUSTIN et al., 2017), the amplitude of this mechanism and its ecological role in ant colonies are still poorly addressed.

Escovopsis trichodermoides is a recently described fungus associated with different lower attine ant species (MASIULIONIS et al., 2015; AR personal observation). This fungus

differs from other species of *Escovopsis* by the highly branched conidiophores and absence of vesicles, in addition to vertucose conidia. The patterns of interaction and the mechanisms involved towards its hosts are still unknown. To reveal new ecological traits in *Escovopsis*, we provide clues about the generalist nature of *E. trichodermoides*, with lack of host fidelity and low infection towards cultivars of lower attine ant colonies. This lifestyle of *E. trichodermoides* is uncommon and reported for the first time in the attine ant-fungal symbiosis.

2. MATERIAL AND METHODS

2.1. Preservation and maintenance of fungal cultures

Fungi examined in this study are kept in the collection of the Laboratory of Fungal Ecology and Systematics (LESF), UNESP - Rio Claro, State of São Paulo, Brazil (Table 1). *Escovopsis* fungi (n = 6 strains) were maintained as conidial suspensions (in glycerol 10%) at -80 °C and in sterile distilled water at 10 °C. Strains were revived on Potato Dextrose Agar medium (PDA; Acumedia, final pH: 5.6 \pm 0.2) supplemented with 150 µg mL⁻¹ of chloramphenicol, and incubated at 25 °C, in the dark, for 7 days. *Escovopsis* strains were maintained in agar slants with PDA and stored at 10 °C (working stocks). Cultures of the mutualistic fungi (n = 4 strains) were maintained by successive transfers on PDA every 20 days and kept at 25 °C in darkness.

All fungi were evaluated periodically to confirm the purity and maintenance of vigor of strains. Before each assay, fungal strains were previously grown on PDA at 25 °C in darkness until the 7th (for Ascomycetes) or the 20th days (for the mutualistic fungi).

2.2. Molecular characterization of fungal cultivars

The mutualistic fungi used in this study were characterized. Mycelium of fungal isolates, previously grown on PDA, was harvested for genomic DNA extraction. This extraction was conducted by physical-chemical lysis following Lacerda et al. (2018).

The internal transcribed spacer (ITS) region, a fragment of the ribosomal large subunit (LSU) gene, and a segment of the translation elongation factor-1 alpha gene (*tef*1) were used in the molecular analyses (Table S1 for primers and conditions). The amplicons were purified with ExoSAP-ITTM PCR Product Cleanup kit (Thermo Fisher Scientific), and sequenced

using BigDye Terminator[®] v. 3.1 kit (Thermo Fisher Scientific). Forward and reverse sequences were generated on ABI 3500 sequencer (Thermo Fisher Scientific) and assembled in BioEdit v.7.0.5.3 (HALL, 1999). The consensus sequences were compared with homologous sequences deposited in GenBank. For the phylogenetic analyzes each gene/region were aligned with the dataset available in Mueller et al. (2018) in MAFFT v.7. (KATOH et al., 2013), followed by edition in GBLOCKS (CASTRESANA, 2000). All sequences used and their information are available in Table S2.

The datasets were concatenated in Winclada v. 1.00.08 (NIXON, 2002). The final alignment comprised 168 sequences and a total of 1511 bp (characters 1-417, 418-950 and, 951-1511 for *tef*1, ITS and LSU, respectively). Phylogenetic trees were reconstructed in MrBayes v.3.2.2 (RONQUIST et al. 2012) under the Bayesian inference. Nucleotide substitution models were selected in JModelTest 2 (DARRIBA et al., 2012), using Bayesian Information Criterion with 95% of confidence interval. The selected models were: HKY+I+G for *tef*1 and ITS partitions, and GTR+I+G for LSU. Analyzes were carried out with 55.600.000 Markov Chain Monte Carlo (MCMC) generations, until the standard deviation of split frequencies was below 0.015. The first 25% of the MCMC generations were discarded, and the final tree was edited in FigTree v.1.4.3 (RAMBAUT, 2016). *Chlorophyllum agaricoides* (AFTOL 440) was used as outgroup of the analysis, according to Mueller et al. (2018).

2.3. Pairwise culture assays

To determine the antagonism of *E. trichodermoides* towards different strains of *Leucocoprinus* sp. (i.e. the ant fungal cultivars), dual-culture assays were performed following the method by Silva et al. (2006), and herein referred as Dual-culture type 1. Mycelial fragments (0.5 cm²) of the mutualistic fungus were placed 1.5 cm from the edge of a Petri dish containing PDA. This system was incubated for 14 days at 25 °C in darkness. Then, a mycelial fragment (0.5 cm²) from each of the six *E. trichodermoides* strains was placed 3 cm from the mycelium of the mutualistic fungus (Figure S1). Two controls were prepared: (i) *Leucocoprinus* sp. strains growing alone, and (ii) *E. trichodermoides* strains growing alone.

The dual-cultures as well as the controls were incubated for 10 days at 25 °C in darkness, and plates were scanned on the days 1, 2, 3, 5, 7 and 10. Growth areas of both fungi were measured (in cm²) in ImageJ v.1.8.0_112 (SCHNEIDER; RASBAND; ELICEIRI, 2012). Each of the six *E. trichodermoides* strains were considered as a replicate in these

experiments (using the mean of eight plates per strain). Each control was prepared containing six plates as replicates.

2.4. Bioassays with multiple host possibilities

To determine the host fidelity by E. trichodermoides towards different host possibilities, bioassays with chance of choice were performed (herein referred as Dual-culture type 2). These bioassays were conducted according to Gerardo et al. (2006a) and an experimental design was performed with Petri dishes (150 x 15 mm) containing 60 mL of PDA (Figure S1). The culture medium was cut with a sterile scalpel to create six equidistant tracks. Two sets were carried out to provide different host possibilities: in the first set (i) mycelium fragments of the four *Leucocoprinus* strains (AR01, AR02, QVM2 and QVM12) were placed at the end of the four tracks, a mycelium fragment of Moniliophthora perniciosa (LESF1140) was placed on the fifth end, and the sixth end was left blank (control). In the second set (ii) mycelium fragments of *Leucocoprinus* strains (AR01, QVM2, QVM11 and RB03) were placed at the end of the four tracks, a mycelium fragment of *Leucoagaricus* gongylophorus (RB02) was placed on the fifth end, and the sixth end was left blank (control). The bioassays were incubated for seven days at 25 °C in darkness. The selection of M. perniciosa as a distant group was based on its phylogenetic distance, its distinct ecological role (i.e. plant pathogen, MONDEGO et al., 2008), and also the non-related lifestyle with attine ant gardens. In addition, this fungus was also selected as a comparative group in another study (AUGUSTIN et al., 2017).

Afterwards, a mycelium fragment (0.5 cm^2) of each *E. trichodermoides* strain or *T. atroviride* (LESF118) as placed at the center of the plate. This system was incubated at 25 °C in the dark for 28 and 14 days for the first and second bioassays, respectively. Growth distances (in cm) towards each end of the tracks were measured as described (item 2.3). *Trichoderma atroviride* (LESF 118) was used as a comparative group for *E. trichodermoides*, due to its ecological role (i.e. mycoparasite) and because it belongs to Hypocreaceae but did not coevolve with the ants (DE MAN et al., 2016; DRUZHININA et al., 2009; KUBICEK et al., 2011). Each assay was conducted with ten plates, and each *E. trichodermoides* strain was considered a replicate (using the mean of ten plates per strain).

2.5. Production of soluble antifungal metabolites

To evaluate if the antagonism of *E. trichodermoides* could be mediated by interference competition, the production of metabolites was assessed following the method by Varanda-Haifig et al. (2017) with modifications. Two types of *E. trichodermoides* filtrates were obtained: (i) in the absence of the mutualistic fungi (Et1) and (ii) in the presence of the mutualistic fungi (Et2). For the production of both filtrates, *E. trichodermoides* strains were previously grown on PDA at 25 °C for 10 days. Conidial suspensions were prepared according to Newmeyer (1990) in 0.05% Tween 80 solution and adjusted to 10^6 conidia mL⁻¹ in a NeuBauer chamber.

Two Erlenmeyer flasks (125 mL) with 90 mL of Potato Dextrose Broth medium (PDB; Acumedia, final pH: 5.1 ± 0.2) were used for production of filtrates. To prepare the Et1 filtrates, 1 mL of the conidia suspension was inoculated in flasks and then incubated at 25 °C at 120 rpm for 14 days. To prepare the Et2 filtrates, five fragments (0.5 cm²) of each mutualistic fungus were inoculated, and the flasks incubated at 25 °C at 120 rpm for 3 days. Then, 1 mL of conidia suspension was inoculated, and the flasks incubated under the same conditions for 14 days. After incubation the medium was filtrated in a 0.45 µm membrane (MF-Millipore, MCE membrane) and mixtured with double-strengthened PDA medium in a 1:1 ratio (v/v). For the control, PDB was added in a 1:1 ratio (v/v) with double-strengthened PDA, simulating absence of metabolic production.

Then, a mycelium fragment (0.5 cm^2) of each mutualistic fungus was placed at the center of a Petri plate with the respective prepared media. Plates were incubated at 25 °C in darkness, and growth areas (in cm²) were recorded at the 3, 7, 10, 14, 21, 28 and 35 days of incubation (item 2.3). Each of the six *E. trichodermoides* strain was considered a biological replicate (using the mean of eight plates per strain). The control consisted in six plates.

2.6. Assays in live colonies of Mycocepurus goeldii

We performed assays in colonies of *Mycocepurus goeldii* to characterize the effects of *E. trichodermoides* infections. A total of twenty queen-less colonies were collected in Anhembi (State of São Paulo, Brazil), from March 18^{th} to 20^{th} , 2018. After excavation, fungus gardens along with tending workers and brood were collected in plastic containers with a fine layer of gypsum at the base. The containers were previously submitted to UV exposure for 30 minutes. Fungal isolation from colonies was conducted following Rodrigues et al. (2008a) transferring seven gardens fragments to PDA plates supplemented with 150 µg mL⁻¹ of chloramphenicol (see details in the Supplementary Material). Colonies were transferred to

new containers of 250 mL or 500 mL depending on the size of the fungus gardens. These containers had one or two holes (1.0 cm in diameter) for ant mobility. Finally, these containers with fungus gardens were placed in a larger container (1000 mL) with a hole to insert or remove cornneal flour as substrate for ant foraging (Figure S1). Such system was kept for acclimation in darkness for three days.

The experimental design comprised 20 colonies distributed in groups of five, considering the size and age for homogeneity between treatments. Conidial suspensions of the *E. trichodermoides* LESF 003, LESF 895 and LESF 927 (selected for these experiments because they were isolated from *M. goeldii* colonies) were prepared in 0.05 % Tween 80 solution and adjusted to 10^6 , 10^7 and 10^8 conidia mL⁻¹ in a NeuBauer chamber. Using a hand spray (previously exposed to UV light for 30 minutes) 2 mL of each suspension were distributed in the fungus garden starting from 10^6 conidia mL⁻¹ and increasing the concentrations in intervals of seven days, for a total of 21 days. The sham-treated group consisted of 0.05 % of sterile Tween 80 solution only. Each conidial suspension was also spread on PDA plates to check for conidia viability. Every two days, 0.2 g of cornmeal flakes was offered as food and the gypsum humidified with 1 mL of sterile deionized water.

The colonies were evaluated daily regarding the (i) survivalship, (ii) food incorporation on fungus gardens, (iii) presence of fungal infection indicated by fungal mycelium overgrowing the fungus gardens, (iv) final aspect of the fungus garden after consecutive exposures, and (v) accumulated garden weight relative to waste weight (considering the sum of the ratio between waste and garden weight for each exposure).

2.7. Statistical analyses

Mycelial growth areas of mutualistic fungi in the Dual-culture type 1 assays were compared to the control after 3, 5 and 10 days of experiment by: (i) Two Sample T-test with an alpha threshold of 0.05, or Welch Two Sample T-test for treatments that violated the parametric assumptions. We selected these days since they represent the first contact between fungi (day 3); the complete overgrowth of mutualistic fungi by *E. trichodermoides* (day 5); and the last day of experiment (day 10); (ii) One-way ANOVA followed by Tukey posthoc test with an alpha threshold of 0.05 for multiple comparisons, using the model available in Agricolae package (DE MENDIBURU, 2014). In this analysis we compared the relative growth of each mutualistic fungus (ratio of treatment by the respective control); (iii) Inhibition percentage (I %) of each mutualistic fungi with the formula: I = [(C - Et)/C] *100,

where C indicates mean growth of control group, and Et the growth in the presence of *E*. *trichodermoides* on the tenth day of incubation. Shapiro-wilk and Bartlett tests were applied to check the normality and homoscedasticity assumptions of the data. Analyses were conducted in R v. 3.3.3 (R CORE TEAM, 2017).

The growth of *E. trichodermoides* towards the different mutualistic fungi in the Dualculture type 1 was compared to the control using: (i) Mixed-ANOVA using treatments (between-subjects) and the days of culture (within-subjects) as factors. Multiple comparisons were conducted with Two-Sample T-test with an alpha threshold of 0.05 with Bonferroni correction. Data were transformed to log (x) for validation of parametric assumptions; (ii) The mycelial growth over time was also analyzed with non-parametric test for longitudinal data for repeated measures (nparLD with an alpha threshold of 0.05), using the same factors. The nparLD analysis was conducted using the "F1-LD-F1" model. Wald-type and ANOVA-type analyses were used, followed by paired comparisons between curves with model available in package nparLD (NOGUCHI et al., 2012). Both analyses were conducted during five days of growth, since the mycelium of *E. trichodermoides* completely covered the mycelium of *Leucocoprinus* at this time. Analyses were conducted in R v. 3.3.3 (R CORE TEAM, 2017).

Fidelity patterns on the Dual-culture type 2 were evaluated in radar charts disposing length values (in cm) over time, with each track of the Petri dish as the axis of the chart. Growth data were compared daily with Friedman test with an alpha threshold of 0.05, followed by Wilcoxon signed-rank test with an alpha threshold of 0.05 for multiple comparisons. Analyses were conducted separately for each day of growth, and were conducted in R.

The final growth of the mutualistic fungus in the presence of metabolites of *E*. *trichodermoides* was evaluated by: (i) One-way ANOVA followed by Tukey posthoc test with an alpha threshold of 0.05 for multiple comparisons. For treatments that violated the parametric assumptions, we applied Kruskal-Wallis, followed by Mann-Whitney U tests both with an alpha threshold of 0.05; (ii) Relative growth of each mutualistic fungus after 35 days of culture with One-way ANOVA, followed by Tukey posthoc test with an alpha threshold of 0.05 for multiple comparisons; (iii) Inhibition percentage (I %) using the growth values of control and treatments in the presence of metabolites (type 1 or 2) after 35 days of incubation. Analyzes were conducted in R.

For the *in vivo* assays, the colony survival percentage was expressed in a survival chart over time (Kaplan-Meier curve) with survival package (LUMLEY; THERNEAU, 2004) in R. The effect of successive exposures was evaluated by non-parametric multidimensional scaling (NMDS) using Bray-Curtis index as the dissimilarity measure. Binary values were used to indicate survival and presence of fungal infection; absolute values for the amount of waste produced and number of times that food was incorporated; as well as ordinal data for final aspect of the fungus gardens (Figure S2). Charts were computed in PAST v.3.22 (HAMMER, HARPER, RYAN; 2001), in two-dimensions with the first two coordinates.

3. RESULTS

3.1. Inhibition of different hosts by Escovopsis trichodermoides

Escovopsis trichodermoides inhibited different strains of *Leucocoprinus* (Figure 1 and Table S3; Two Sample T-test and Welch Two Sample T-test, P < 0.05) with the lowest values of relative growth for QVM12 (Table 2; Tukey posthoc test, P < 0.05). The *Leucocoprinus* used in assays clustered in two distint clades within clade-2 of the lower attine ant fungiculture (Figure 1). Mycelial area was reduced at least 1.8 times for all strains towards *E. trichodermoides* compared to the control. In addition, we observed a darkening pattern in the colony of the mutualistic fungi at the contact zones with the antagonist (Figure 2), followed by host mycelial degeneration (Table S3). Inhibition was observed on the fifth day when cultivars were overlapped by *E. trichodermoides* mycelium, except for *Leucocoprinus* sp. QVM12 on the third day (Table 2 and Table S3; Two Sample T-test and Welch Two Sample T-test, P < 0.05). High inhibition percentage was observed in the tenth day (48.0%, 43.8%, 46.2%, 57.5% for AR01, AR02, QVM2 and QVM12, respectively).

Contrary to what as expected, we did not observe growth maximization of *E*. *trichodermoides* towards the different hosts (Figure 2). No statistical differences were observed between treatments and the control group (Figure 2; Mixed-ANOVA, P> 0.05), with a general pattern of growth.

3.2. Lack of host fidelity by Escovopsis trichodermoides

Absence of host preference was observed for *E. trichodermoides* towards the different mutualistic fungi (Figure 1 and 3). Growth until the end of the track was observed towards all mutualistic fungi (Tables S4 and S5). The growth pattern was similar to other fungi that did not coevolve with the ant cultivars such as *T. atroviridae* (Figure S3). On the other hand, *E. trichodermoides* was inhibited by *M. perniciosa* (Fig. S4), and was not inhibited by *L.*

gongylophorus (RB02), the fungus cultived by some leafcutter ant species (Tables S4 and S5). Thus, the absence of efficient defensive barriers towards *E. trichodermoides* was observed even for fungal cultivars that are phylogenetically distantly related (Figure 1 and 3; Wilcoxon signed-rank test, P < 0.05).

3.3. Interference competition by Escovopsis trichodermoides

Soluble metabolites produced by *E. trichodermoides* inhibited all *Leucocoprinus* strains in culture (Figure 4). Chemical compounds produced in both Et1 and Et2 filtrates had interference on the mutualistic fungi and reduced the mycelial growth area of the mutualistic fungi (Table S6; Tukey posthoc test, P < 0.05; Mann-Whitney U test, P < 0.05).

No statistical differences were observed between both methods by the end of the assays, however, in some cases, inhibition above 50% was observed in relation to control group (Table S6). The fungal cultivar QVM2 was the least inhibited (Tukey posthoc test, P< 0.05). Curiously, the mutualistic fungus AR02 presented initial basidiome formation in the presence of metabolites of *E. trichodermoides* (Figure 4 and Figure S5). Overall, the results indicated no differences in inhibition between the two methods used to produce metabolites.

3.4. Low virulence of Escovopsis trichodermoides in ant colonies

The experiments using queen-less colonies showed that *E. trichodermoides* does not present a destructive profile *in vivo* (Figure 5). The effects observed on infected colonies of *M. goeldii* indicated that the arsenal of *E. trichodermoides* is insufficient to overcome the colony defenses (i.e., mutualistic fungus, the ants and associated microbiome from the fungus garden). The first colony died after 12 days of experiment, despite the large amount of conidia inoculated in the second exposure (Figure 5). Colony death by fungal infection and total removal of the fungus garden by the ants were observed only in five out of twenty colonies (Figure 5 and S2). Thus, colony viability was stable until the second exposure, when the first death was recorded (Figure 5). Food incorporation was also observed along the experiments for two colonies exposed to *E. trichodermoides* LESF 927 (Fig. S2), and may have contributed for colony stability.

Phylogenetic analyses indicated that the majority of fungi maintained by *M. goeldii* colonies used in the experiment clustered with the same fungal strains used the dual-culture bioassays (Figure S6). Thus, essentially the fungal hosts from these colonies were similar to

the ones used in the *in vitro* experiments. Therefore, the generalist trait of *E. trichodermoides* is not efficient to overcome the colony defenses.

Colonies exposed to *E. trichodermoides* show stability towards the large number of viable conidia sprayed. Only colonies exposed to strain LESF 895 presented different spatial dispersion of the data for the evaluated parameters (Figure 6). After the third and final exposure, healthy colonies had viable conidia of *E. trichodermoides* isolated from the garden surface (Figure S7), indicating that the fungus remained in the system.

4. DISCUSSION

Symbiotic interactions are mediated by chemical metabolites for recognition, interference, and nutrition of symbiotic partners (AKIYAMA et al., 2005; GERARDO et al., 2006a; HEINE et al., 2018). *Escovopsis* fungi show host fidelity mediated in part by chemical interaction between the parasite and its host (BIRNBAUM; GERARDO, 2016; GERARDO et al., 2006a). However, occasional host-switching events occurred over the evolution of this interaction (GERARDO et al., 2004, 2006b; MEIRELLES et al., 2015; TAERUM et al., 2007). Here we showed that *E. trichodermoides* presents a generalist pattern with no host fidelity to different strains of *Leucocoprinus*. Such pattern is reported for the first time for the *Escovopsis*-ant cultivar association.

Escovopsis trichodermoides caused high growth inhibition towards the different cultivars tested *in vitro*. The defensive barriers of ant cultivars were insufficient to prevent infection by the antagonist. However, the mechanisms of infection of *E. trichodermoides* were insufficient towards queen-less colonies of *M. goeldii*, and damage was only observed after three successive exposures, with increased conidia dosages. Such patterns differ from other *Escovopsis* species, which were described to have high virulence and high host fidelity (CURRIE; MUELLER; MALLOCH, 1999; CURRIE, 2001; CUSTODIO; RODRIGUES, 2019; GERARDO et al., 2006a). Towards *L. gongylophorus*, the cultivar of some leafcutter ant species (MUELLER et al., 2018), we observed no defensive barriers that prevented *E. trichodermoides* to overgrow this cultivar (even considering the large phylogenetic distance from the lower attine ant cultivars). This is not the case for *Escovopsis kreiselii*, which is also associated with lower attine ants, but it could not overgrow the *L. gongylophorus* mycelium (CUSTODIO; RODRIGUES, 2019). These observations support the generalist pattern of *E. trichodermoides*.

Escovopsis trichodermoides has been found in low frequency only associated with lower attines (AR personal observation). Additional defensive barriers and complexity of colonies can play a role to prevent a successful infection in other fungicultures of attine ants in nature, since, not only the host defenses account for the host-parasite interaction (CURRIE et al., 1999; CURRIE; STUART, 2001; FERNÁNDEZ-MARÍN et al., 2006; RODRIGUES et al., 2008b). Despite the generalist pattern, there is a trade-off between the overcome of a new host (exhibiting new defenses) and the performance of the infection (ANTONOVICS et al., 2013). No differences in the growth of *E. trichodermoides* towards cultivars of attine ants were observed, but inhibition of the parasite was only observed against *M. perniciosa* (a fungus phylogenetic distant of the ant fungal cultivars). The phylogenetic distances between *Leucocoprinus* hosts did not prevent the infection by *E. trichodermoides*, different from the parasitism described for other *Escovopsis* (BIRNBAUM; GERARDO, 2016; GERARDO et al., 2006a), and in other symbiotic systems (GILBERT; WEBB, 2007).

Chemical mechanisms are associated with inhibition by E. trichodermoides. We observed a darkening pattern and mycelium degeneration in the mutualistic fungi at the contact zones with the antagonist, pattern also observed in other studies that performed similar experiments (SILVA et al., 2006; VARANDA-HAIFIG et al., 2017). It is believed this darkening of the colony might be associated with cell degeneration or antibiosis as a response by the host (FOLGARAIT; MARFETÁN; CAFARO, 2011; SAVOIE; MATA; BILLETTE, 1998; SILVA et al., 2006; VARANDA-HAIFIG et al., 2017). The production of soluble compounds as a mechanism of interference competition (WICKLOW 1992) was observed for E. trichodermoides, and also for other Escovopsis strains (DHODARY et al., 2018; HEINE et al., 2018; VARANDA-HAIFIG et al., 2017). This feature can be essential for colony infection. Interestingly, a strain of *Leucocoprinus* initiated the formation of a basidiome only in the presence of metabolites of E. trichodermoides. The event of a basidiome formation was previously reported in laboratory conditions for Leucocoprinus fungi associated with lower attines (MUELLER, 2002). The event we observed in this study might be associated with stress conditions or activation of metabolic patways for basidiome formation, by the soluble compounds of E. trichodermoides.

Escovopsis trichodermoides is so far found only associated with healthy colonies of lower attine ants (AR personal observation). Low infection was observed on queen-less colonies even when experimentally infected with high amounts of conidia. Susceptibility can be understood by the equilibrium of the interaction between the ants, *Escovopsis* and the fungal cultivar (KELLNER et al., 2018). In our assays, the ants were not highly affected by *E*.

trichodermoides, and the majority of colonies resisted to three successive exposures of conidia. Although *in vitro* assays with isolated cultivars showed high inhibition of the mutualistic fungus, *in vivo* assays indicated the role of the ants in maintaining the stability of the system. Here, towards *E. trichodermoides*, the queen-less colonies showed high survival percentage, besides the interference of not having a queen in this symbiotic system (KELLER; NONACS, 1993).

In the lower attine fungiculture, acquisition of free-living fungal cultivars by ants promotes the genetic diversity of the association (KELLNER et al., 2013; MEHDIABADI, SCHULTZ, 2009; MUELLER et. al., 1998). Such diversity can provide a better defense for the colonies against specialized pathogens (KELLNER et al., 2018). On the other hand, generalist antagonists may increase their own fitness by host-switching events. Our study revealed new ecological traits in the *Escovopsis*-fungal cultivar interaction, with low infection and lack of host fidelity, an antagonistic lifestyle that may have allowd host-switching events over the evolutionary time.

5. ACKNOWLEDGEMENTS

The authors would like to thank "Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)" for financial support (grant #2017/12689-4 to AR) and for a scholarship (grant # 2017/10631-9) to RBJ. The study was also supported by the "Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brazil (CAPES)" - Financial Code 001. AR thanks "Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)" for fellowship (grant #305341/2015-4). We would like to thank to Maria Jesus Sutta Martiarena, Tatiane de Castro Pietrobon, and Nilson Satoru Nagamoto for assistance during field work. We also thank Quimi Vidaurre Montoya for his assistance on the fungal choice assays and Dr. Simone Possedente de Lira (ESALQ/USP) for providing a strain of *Moniliophthora perniciosa*.

6. CONFLICT OF INTEREST

The authors have declared no conflicts of interest.

7. REFERENCES

AKIYAMA, K.; MATSUZAKI, K.I.; HAYASHI, H. Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. **Nature**, v. 435, p. 824–27, 2005.

ANTONOVICS, J.; BOOTS, M.; EBERT, D.; KOSKELLA, B.; POSS, M.; SADD, B. M. The origin of specificity by means of natural selection: evolved and nonhost resistance in host–pathogen interactions. **Evolution**, v. 67, n. 1, p. 1–9, 2013

AUGUSTIN, J. O.; SIMÕES, T. G.; DIJKSTERHUIS, J.; ELLIOT, S. L; EVANS, H. C. Putting the waste out: a proposed mechanism for transmission of the mycoparasite *Escovopsis* between leafcutter ant colonies. **Royal Society Open Science**, v. 4, n. 5, p.161013, 2017.

BATRA, L. R. Ecology of ambrosia fungi and their dissemination by beetles. **Transactions of the Kansas Academy of Science**, v. 66, n. 2, p. 213–236, 1963.

BIRNBAUM, S. S. L; GERARDO, N. M. Patterns of specificity of the pathogen *Escovopsis* across the fungus-growing ant symbiosis. **The American Naturalist**, v. 188, n. 1, p. 52–65, 2016.

CASTRESANA, J. Selection of conserved blocks from multiple alignments for their use in phylogenetic analysis. **Molecular Biology and Evolution**, Chicago, v. 17, n. 4, p. 540–552, 2000.

CHAPELA, I. H., REHNER, S. A., SCHULTZ, T. R., MUELLER, U. G. Evolutionary history of the symbiosis between fungus-growing ants and their fungi. **Science**, v. 266, n. 5191, p. 1691–1694, 1994.

CURRIE, C. R. Prevalence and impact of a virulent parasite on a tripartite mutualism. **Oecologia**, v. 128, n. 1, p. 99–106, 2001.

CURRIE, C. R.; MUELLER, U. G.; MALLOCH, D. The agricultural pathology of ant fungus gardens. **Proceedings of the National Academy of Sciences USA**, v. 96, n. 14, p. 7998–8002, 1999.

CURRIE, C.R.; SCOTT, J.A.; SUMMERBELL, R.C.; MALLOCH, D. Fungus-growing ants use antibiotic-producing bacteria to control garden parasites. **Nature**, v. 398, n. 6729, p. 701–704, 1999.

CURRIE, C. R.; STUART, A. E. Weeding and grooming of pathogens in agriculture by ants. **Proceedings of the Royal Society of London B: Biological Sciences**, v. 268, n. 1471, p. 1033–1039, 2001.

CURRIE, C. R.; WONG, B.; STUART, A. E.; SCHULTZ, T. R.; REHNER, S. A.; MUELLER, U. G.; SUNG, G.; SPATAFORA, J. W.; STRAUS, N. A. Ancient tripartite coevolution in the attine antmicrobe symbiosis. **Science**, v. 299, n. 5605, p. 386–388, 2003.

CUSTODIO, B. C., RODRIGUES, A. *Escovopsis kreiselii* specialization to its native hosts in the fungiculture of the lower attine ant *Mycetophylax morschi*. **Antonie van Leeuwenhoek**, v. 112, n. 2, p. 305–317, 2019.

DARRIBA, D., TABOADA, G. L., DOALLO, R., POSADA, D. jModelTest 2: more models, new heuristics and parallel computing. **Nature methods**, v. 9, n. 8, p. 772, 2012.

DE MAN, T. J.; STAJICH, J. E.; KUBICEK, C. P.; TEILING, C.; CHENTHAMARA, K.; ATANASOVA, L.; DRUZHININA, I. S.; LEVENKOVA, N.; BIRNBAUM, S. S.; BARRIBEAU, S. M; BOZICK, B. A. Small genome of the fungus *Escovopsis weberi*, a specialized disease agent of ant agriculture. **Proceedings of the National Academy of Sciences USA**, v. 113, n. 13, p. 3567–3572, 2016.

DE MENDIBURU, F. Package 'agricolae'. Statistical procedures for agricultural reserarch. **R** package version, v. 1, n. 1, 2017.

DHODARY, B.; SCHILG, M.; WIRTH, R.; SPITELLER, D. Secondary metabolites from *Escovopsis weberi* and their role in attacking the garden fungus of leaf-cutting ants. **Chemistry**, v. 24, n. 17, p. 4445–4452, 2018.

DEJEAN, A.; SOLANO, P. J.; AYROLES, J.; CORBARA, B.; ORIVEL, J. Insect behaviour: arboreal ants build traps to capture prey. **Nature**, v. 434, n. 7036, p. 973, 2005.

DRUZHININA, I. S.; SEIDL-SEIBOTH, V.; HERRERA-ESTRELLA, A.; HORWITZ, B. A.; KENERLEY, C. M.; MONTE, E.; MUKHERJEE, P. K.; ZEILINGER, S.; GRIGORIEV, I. V.; KUBICEK, C. P. *Trichoderma*: the genomics of opportunistic success. **Nature Reviews Microbiology**, v. 9, n. 10, p. 749–59, 2011.

FERNÁNDEZ-MARÍN, H.; ZIMMERMAN, J. K.; REHNER, S. A.; WCISLO, W. T. Active use of the metapleural glands by ants in controlling fungal infection. **Proceedings of the Royal Society of London B: Biological Sciences**, v. 273, n. 1594, p.749–759, 2006.

FOLGARAIT, P. J.; MARFETÁN, J. A.; CAFARO, M. J. Growth and conidiation response of *Escovopsis weberi* (Ascomycota: Hypocreales) against the fungal cultivar of *Acromyrmex lundii* (Hymenoptera: Formicidae). **Environmental entomology**, v. 40, n. 2, p. 342–349, 2011.

GERARDO, N. M.; JACOBS, S. R.; CURRIE, C. R.; MUELLER, U. G. Ancient host-pathogen associations maintained by specificity of chemotaxis and antibiosis. **PLoS Biology**, v. 4, n. 8, p. 1358–1363, 2006a.

GERARDO, N. M.; MUELLER, U. G.; PRICE, S. L.; CURRIE, C. R. Exploiting a mutualism: parasite specialization on cultivars within the fungus–growing ant symbiosis. **Proceedings of the Royal Society of London B: Biological Sciences**, v. 271, n. 1550, p. 1791–1798, 2004.

GERARDO, N. M.; MUELLER, U. G.; CURRIE, C. R. Complex host-pathogen coevolution in the *Apterostigma* fungus-growing ant-microbe symbiosis. **BMC Evolutionary Biology**, v. 6, n. 1, p. 88–96, 2006b.

GILBERT, G. S; WEBB, C. O. Phylogenetic signal in plant pathogen–host range. **Proceedings of the** National Academy of Sciences USA, v. 104, n. 12, p. 4979–4983, 2007.

HALL, T. A. BioEdit 5.0.9: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. **Nucleic Acids Symposium Series**, v. 41, n. 41, p. 95–98, 1999.

HAMMER, Ø.; HARPER, D. A. T.; RYAN, P. D. PAST: Paleontological statistics software package for education and data analysis. **Palaeontologia Electronica**, v. 4, n. 1, p. 1–9, 2001.

HEINE, D.; HOLMES, N. A.; WORSLEY, S. F.; SANTOS, A. C.; INNOCENT, T. M.; SCHERLACH, K.; PATRICK, E. H.; DOUGLAS, W. Y.; MURRELL, J. C.; VIERIA, P. C.; BOOMSMA, J. J. Chemical warfare between leafcutter ant symbionts and a co-evolved pathogen. **Nature Communications**, v. 9, n. 1, p. 2208, 2018.

HELGASON, T.; DANIELL, T. J.; HUSBAND, R.; FITTER, A. H.; YOUNG, J. P. W. Ploughing up the wood-wide web?. **Nature**, v. 394, p. 431, 1998.

KÄMPER, J. et al. Insights from the genome of the biotrophic fungal plant pathogen *Ustilago maydis*. **Nature**, v. 444, n. 7115, p. 97, 2006.

KATOH, K.; STANDLEY, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. **Molecular Biology and Evolution**, v. 30, n. 4, p. 772–780, 2013.

KELLER, L.; NONACS, P. The role of queen pheromones in social insects: queen control or queen signal? **Animal Behaviour**, v. 45, n. 4, p. 787–794, 1993.

KELLNER, K.; FERNANDEZ-MARIN, H.; ISHAK, H.D.; SEN, R.; LINKSVAYER, T.A.; MUELLER, U.G. Co-evolutionary patterns and diversification of ant-fungus associations in the asexual fungus-farming ant *Mycocepurus smithii* in Panama. **Journal of Evolutionary Biology**, v. 26, n. 6, p. 1353–1362, 2013.

KELLNER, K.; KARDISH, M.R.; SEAL, J.N.; LINKSVAYER, T.A.; MUELLER, U.G. Symbiontmediated host-parasite dynamics in a funus-gardening ant. **Microbial Ecology**, v. 76, n. 2, p. 530–543, 2018.

KUBICEK, C. P. et al. Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of *Trichoderma*. Genome Biology, v. 12, n. 4, p. 1, 2011.

LACERDA, L. T.; GUSMÃO, L. F. P.; RODRIGUES, A. Diversity of endophytic fungi in *Eucalyptus microcorys* assessed by complementary isolation methods. **Mycological Progress**, v. 17, n. 6, p. 719–727, 2018.

LI, H., SOSA-CALVO, J., HORN, H. A., PUPO, M. T., CLARDY, J., RABELING, C., SCHULTZ, T. R., CURRIE, C. R. Convergent evolution of complex structures for ant-bacterial defensive symbiosis in fungus-farming ants. **Proceedings of the National Academy of Sciences USA**, v. 115, n. 42, p. 10720–10725, 2018.

LUMLEY, T., THERNEAU, T. The survival package. **R News**, v. 4, n. 1, p. 26–28, 2004.

LUTZONI, F.; PAGEL, M.; REEB, V. Major fungal lineages are derived from lichen symbiotic ancestors. Nature, v. 411, n. 6840, p. 937, 2001.

MARTIN, F. M.; UROZ, S.; BARKER, D. G. Ancestral alliances: plant mutualistic symbioses with fungi and bacteria. **Science**, v. 356, n. 6340, p. eaad4501, 2017.

MASIULIONIS, V. E.; CABELLO, M. N.; SEIFERT, K. A.; RODRIGUES, A.; PAGNOCCA, F. C. *Escovopsis trichodermoides* sp. nov., isolated from a nest of the lower attine ant *Mycocepurus goeldii*. Antonie van Leeuwenhoek, v. 107, n. 3, p. 731–740, 2015.

MEHDIABADI, N. J.; SCHULTZ, T. R. Natural history and phylogeny of the fungus-farming ants (Hymenoptera: Formicidae: Myrmicinae: Attini). **Myrmecological News**, v. 13, p. 37–55, 2009.

MEIRELLES, L. A.; SOLOMON, S. E.; BACCI JR, M.; WRIGHT, A. M.; MUELLER, U. G.; RODRIGUES, A. Shared *Escovopsis* parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. **Royal Society Open Science**, v. 2, n. 9, p. 1–11, 2015.

MONDEGO, J. M. et al. A genome survey of *Moniliophthora perniciosa* gives new insights into Witches' Broom Disease of cacao. **BMC Genomics**, v. 9, n. 1, p. 548, 2008.

MUELLER, U. G., GERARDO, N. Fungus-farming insects: multiple origins and diverse evolutionary histories. **Proceedings of the National Academy of Sciences USA**, v. 99, n. 24, p. 15247–15249, 2002.

MUELLER, U. G.; KARDISH, M. R.; ISHAK, H. D.; WRIGHT, A. M.; SOLOMON, S. E.; BRUSCHI, S. M.; CARLSON, A. L.; BACCI JR, M. Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. **Molecular ecology**, v. 27, n. 10, p. 2414–2434, 2018.

MUELLER, U. G.; REHNER, S. A.; SCHULTZ, T. R. The evolution of agriculture in ants. Science, v. 281, n. 5385, p. 2034–2038, 1998.

NEWMEYER, D. Filtering small quantities of conidial suspensions to remove mycelial fragments. Fungal Genetics Newsletter, Manhattan, v.37, p. 27, 1990.

NIXON, K. C. WinClada ver. 1.00. 08. Published by the author, Ithaca, NY, 2002.

NOGUCHI, K., GEL, Y. R., BRUNNER, E., KONIETSCHKE, F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software, v. 50, n. 12, 2012.

R CORE TEAM. R: A language and environment for statistical computing. **R Foundation for Statistical Computing**, Vienna, Austria. URL http://www.R-project.org/., 2017.

RAMBAUT, A. Figtree v. 1.4.3. Available from: http://tree.bio.ed.ac.uk/software/figtree/, 2016.

REYNOLDS, H. T.; CURRIE, C. R. Pathogenicity of *Escovopsis weberi*: The parasite of the attinemicrobe symbiosis directly consumes the ant-cultivated fungus. **Mycologia**, v. 96, n. 5, p. 955–959, 2004.

RODRIGUES, A., BACCI, M., MUELLER, U. G., ORTIZ, A., PAGNOCCA, F. C. Microfungal "weeds" in the leafcutter ant symbiosis. **Microbial Ecology** v. 56, p. 604–614, 2008a.

RODRIGUES, A.; CARLETTI, C. D.; PAGNOCCA, F. C. Leaf-cutting ant faecal fluid and mandibular gland secretion: effects on microfungi spore germination. **Brazilian Journal of Microbiology**, v. 39, n. 1, p. 64–67, 2008b.

RONQUIST, F., TESLENKO, M., VAN DER MARK, P., AYRES, D. L., DARLING, A., HÖHNA, S., LARGET, B., LIU, L., SUCHARD, S. A., HUELSENBECK, J. P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. **Systematic Biology**, v. 61, n. 3, p. 539–542, 2012.

SAVOIE, J. M.; MATA, G.; BILLETTE, C. Extracellular laccase production during hyphal interactions between *Trichoderma* sp. and Shiitake, *Lentinula edodes*. Applied Microbiology and Biotechnology, v. 49, n. 5, p. 589–593, 1998.

SCHNEIDER, C. A., RASBAND, W. S., ELICEIRI, K. W. NIH Image to ImageJ: 25 years of image analysis. **Nature Methods**, v. 9, n. 7, p. 671–675, 2012.

SCHULTZ, T. R.; BRADY, S. G. Major evolutionary transitions in ant agriculture. **Proceedings of the National Academy of Sciences USA**, v. 105, n. 14, p. 5435–5440, 2008.

SILVA, A.; RODRIGUES, A; BACCI, Jr. M.; PAGNOCCA, F. C.; BUENO, O. C. Susceptibility of ant-cultivated fungus *Leucogaricus gongylophorus* (Agaricales: Basidiomycota) towards microfungi. **Mycopathologia**, v. 162, n. 2, p. 115–119, 2006.

SIMARD, S. W.; PERRY, D. A.; JONES, M. D.; MYROLD, D. D.; DURALL, D. M.; MOLINA, R. Net transfer of carbon between ectomycorrhizal tree species in the field. **Nature**, v. 388, n. 6642, p. 579, 1997.

SPRIBILLE, T.; TUOVINEN, V.; RESL, P.; VANDERPOOL, D.; WOLINSKI, H.; AIME, M. C.; SCHNEIDER, K.; STABENTHEINER, E.; TOOME-HELLER, M.; THOR, G.; MAYRHOFER, H.; JOHANNESSON, H.; MCCUTCHEON, J. P. Basidiomycete yeasts in the cortex of ascomycete macrolichens. **Science**, v. 353, n. 6298, p. 488–492, 2016.

TAERUM, S. J.; CAFARO, M. J.; LITTLE, A. E. F.; SCHULTZ, T. R.; CURRIE, C. R. Low host– pathogen specificity in the leaf-cutting ant–microbe symbiosis. **Proceedings of the Royal Society of London B: Biological Sciences**, v. 274, n. 1621, p. 1971–1978, 2007.

VARANDA-HAIFIG, S. S.; ALBARICI, T. R.; NUNES, P. H.; HAIFIG, I.; VIEIRA, P. C.; RODRIGUES, A. Nature of the interactions between hypocrealean fungi and the mutualistic fungus of leaf-cutter ants. **Antonie van Leeuwenhoek**, v. 110, n. 4, p. 593–605, 2017.

WEBB, S. Australian ambrosia fungi. **Proceedings of the Royal Society of Victoria**, v. 57, p. 57–79, 1945.

WEBER, N.A. 1972. Gardening Ants: The Attines. Memoirs of the American Philosophical Society, 1992.

WICKLOW, D. T. Interference competition. The fungal community: its organization and role in the ecosystem, 2nd Edn. Carroll, GC and Wicklow, DT, Eds., 1992. p. 265–274.

Tables

Fungal ID ¹	Fungi	Isolation source	Ant colony ID	City, State
LESF 003	Escovopsis trichodermoides	Mycocepurus goeldii	VM1	Rio Claro, SP
LESF 310	Escovopsis trichodermoides	Mycetophylax morschi	AR14022604A1	Florianópolis, SC
LESF 311	Escovopsis trichodermoides	Mycetophylax morschi	AR14022604A2	Florianópolis, SC
LESF 312	Escovopsis trichodermoides	Mycetophylax morschi	AR14022604ALA	Florianópolis, SC
LESF 895	Escovopsis trichodermoides	Mycocepurus goeldii	QVM160527-03	Anhembi, SP
LESF 927	Escovopsis trichodermoides	Mycocepurus goeldii	QVM160528-07	Anhembi, SP
LESF 118	Trichoderma atroviride	Atta sexdens rubropilosa	Nest 39	Corumbataí, SP
AR01	Leucocoprinus sp.	Mycetophylax morschi	AR140227-01	Florianópolis, SC
AR02	Leucocoprinus sp.	Mycetophylax morschi	AR140227-02	Florianópolis, SC
QVM2	Leucocoprinus sp.	Mycocepurus goeldii	QVM160527-03	Anhembi, SP
QVM12	Leucocoprinus sp.	Mycocepurus goeldii	QVM160528-01	Anhembi, SP
QVM11	Leucocoprinus sp.	Mycocepurus goeldii	QVM160527-15	Anhembi, SP
RB03	Leucocoprinus sp.	Mycocepurus goeldii	RB180518-03	Anhembi, SP
RB02	Leucoagaricus gongylophorus	Acromyrmex coronatus	BLS170701-01	Rio Claro, SP
LESF 1140	Moniliophthora perniciosa	Theobroma cacao	CP44	-

Table 1. Fungi examined in the present study.

¹LESF: Laboratory of Fungal Ecology and Systematics (UNESP, Rio Claro, SP).

Table 2. Leucocoprinus growth in the dual-culture assays. Figures indicate the mean of relative mycelial area (± SD) between the control group and towards Escovopsis trichodermoides (Et). Different letters indicate significant statistical differences between groups on each day (Tukey test at 5%).

Days	AR01 ¹	AR021	QVM2 ²	QVM12 ²
3	$0,94 \pm 0,07a$	0,98 ± 0,06a	$0,96 \pm 0,03a$	$0,84 \pm 0,03b$
5	$0,75 \pm 0,05$ ab	$0,82 \pm 0,06a$	$0,81 \pm 0,04a$	$0,69 \pm 0,02b$
10	$0,52 \pm 0,05a$	$0,56 \pm 0,04a$	$0,54 \pm 0,03a$	$0,\!43 \pm 0,\!02b$

¹ Mutualistic fungi of *Mycetophylax morshi*. ² Mutualistic fungi of *Mycocepurus goeldii*.

Figure 1. Phylogeny of fungal cultivars based on *tef*1, ITS and LSU markers (with 1511 bp in the final alignment). To characterize the position of strains from this study, the sequences were aligned with sequences from cultivars from Mueller et al. (2018). Free-living fungi (not in association with ant colonies) are shown in bold. *Chlorophyllum agaricoides* (AFTOL 440) were used as outgroup. Red squares on each clade indicate the position of strains from this study. The analysis was conduced using the Bayersian inference algorithm and the numbers on branches indicate posterior probabilities greater than or equal to 0.7. Information on the strains is available in Table S2. Each strain is indicated by the Sample ID code. Pictures of basidiomes of cultivars produced in culture. A: *Leucoagaricus gongylophorus* (RB02) associated with *Acromyrmex coronatus*. B and C: *Leucocoprinus* sp. associated with *Mycetophylax morschi* (AR01 and AR02, respectively). D: *Leucocoprinus* sp. associated with *Mycocepurus goeldii* (QVM2). Photos by Salomé Urrea Valencia (AR01), and Rodolfo Bizarria Jr. (RB02, AR02, and QVM2).

Figure 2. *Escovopsis trichodermoides* shows a generalist pattern of inhibition. A. Mycelial growth pattern in the absence (Control) and in interaction (dual-culture) with *Leucocoprinus* fungi. Photos indicate the 3^{rd} , 5^{rd} and 10^{th} days of interaction between *E. trichodermoides* (Et) LESF 927 and *Leucocoprinus* (L) QVM2. B. Boxplot of relative growth of mutualistic fungi after 10 days of culture, different letters indicate significant differences (Tukey test, *P*< 0.05). Dual-culture plate after 10 days of assay showing darkening of the mutualistic fungus. Right and left indicate: mutualistic fungus in the absence and in the presence of *E. trichodermoides*, respectively. C. Heat maps of *E. trichodermoides* growth in dual-culture (values in cm²). No significant differences with the control group (Mixed-ANOVA, *P*> 0.05 and nparLD, *P*> 0.05).

Figure 3. Lack of host fidelity by *Escovopsis trichodermoides*. Growth pattern of *E. trichodermoides* on PDA towards multiple fungal cultivars (hosts) in two sets, after the 3^{rd} , 7^{th} and 14^{th} days of incubation. Information regarding the sets was described on session 2.4 of Material and Methods. Pictures show the growth of *E. trichodermoides* LESF 311 (First set) and LESF 895 (Second set). Radar charts on the right show the growth of *E. trichodermoides* over time (squares indicate each day of growth). The fungal cultivar strains IDs are indicated on the vertices of each chart. LESF 1140 and RB02 stand for *Moniliophthora perniciosa* and *Leucoagaricus gongylophorus*, respectively. The others IDs stand for *Leucocoprinus* sp. strains. Red dots on axis inficates lower values in relation to control group, while black dots indicate higher values (Wilcoxon signed-rank test, P < 0.05).

Figure 4. Interference competition by *Escovopsis trichodermoides* via metabolites production. Mycelial growth pattern of fungal cultivar *Leucocoprinus* spp. (AR01, AR02, QVM2 and QVM12) in the presence of metabolites of *E. trichodermoides* obtained from isolated culture (Et1), in dual-culture (Et2), and absence of metabolites (Control). Plates represent 35 days-old cultures. Note the presence of initial basidiome formation (for AR02 in Et1 and Et2) in the presence of metabolites.

Figure 5. Low infection of *Escovopsis trichodermoides* in colonies of the lower attine ant *Mycocepurus goeldii*. A. Colony survival after three successive exposures with increased concentrations of conidia over time (days). Vertical dashed lines indicate the second and third exposures. Concentrations of 10^6 , 10^7 and 10^8 conidia mL⁻¹ were used for the first, second and third exposures, respectively. B. Initial and final condition (after the third exposure) of colonies on trials with each *E. trichodermoides* strain.

Figure 6. Effects of conidia exposure of *Escovopsis trichodermoides* on *Mycocepurus goeldii* colonies. Non-metric multidimensional scaling (NMDS) using Bray-Curtis dissimilarity index. NMDS analyses clearly discriminates differences between control and exposure with *E. trichodermoides* LESF 895.

8. SUPPLEMENTARY MATERIAL

8.1. MATERIAL AND METHODS

8.1.1. Basidiome formation by *Leucocoprinus* sp.

To access the morphological differences between cultivars, we induced basidiome formation of *Leucocoprinus* sp. isolates. Mycelium fragments of a 20 day-old culture were transferred to 500 mL Erlenmeyers containing 200 mL of oatmeal agar (OA: 50 g of oat flakes boiled in 1 L of deionized water and 18 g L⁻¹ agar). Flasks were incubated for approximately 2 months at 25 °C in darkness, until the formation of fruiting bodies. For isolate AR02, basidiome formation was observed only in the presence of *Escovopsis trichodermoides* metabolites in Petri dishes (item 2.6). We also evaluated metabolites produced by *Trichoderma atroviride*, however, no basidiome formation was not induced (data not shown). After growth in the presence of *E. trichodermoides* metabolites, a mycelium fragment of the colony of isolate AR02 was transferred to PDA. After vigorous growth, a fragment of the mycelium was transferred to Erlenmeyers containing OA and incubated in the same conditions.

8.1.2. *Escovopsis trichodermoides* growth towards a fungus not related to the attine antfungus symbiosis

To determine the antagonism of *E. trichodermoides* towards a fungus not related to the attine ant-fungus symbiosis, we carried out the Dual-culture type 1 bioassays (item 2.3). Each of the six *E. trichodermoides* strains was challenged with *Moniliophthora perniciosa* (Basidiomycota: Agaricales: Marasmiaceae), a phylogenetic distant group from the cultivars of attine ants, with non-related lifestyle and distinct ecological role (i.e. plant pathogen). Each strain was considered a replicate (mean of eight plates). The control group of *M. perniciosa* was performed with six plates. Growth areas (in cm²) were analyzed after 10 days of incubation at 25 °C in darkness.

8.1.3. Isolation, purification and preservation of fungi obtained in assays using live colonies

To evaluate the presence of *E. trichodermoides* and the cultivar associated to the colonies of *Mycocepurus goeldii* used in the *in vivo* experiments (item 2.6), we performed isolation according to Rodrigues et al. (2008) with modifications. Seven gardens fragments were transferred to PDA plates supplemented with 150 μ g mL⁻¹ of chloramphenicol (Sigma). Two PDA plates were used for each colony. Once growth of *Escovopsis* and *Leucocoprinus* was observed, we transferred these fungi to new PDA plates to obtain axenic cultures. Isolates were purified by monosporic culture, with serial dilution of conidia or mycelial fragments in sterile deionized water. An amount of 100 μ L of suspensions was surface-spread on PDA supplemented with 150 μ g mL⁻¹ of chloramphenicol, and incubated at 25 °C in darkness until vigorous growth was obtained. Then, cultures were transferred to PDA slants and are maintained at 10 °C. Cultures of *Leucocoprinus* spp. are maintained by successive transfer every 30 days on PDA plates.

To evaluate the viability of *E. trichodermoides* in ant colonies after exposure to conidia suspensions, we selected *Mycocepurus goeldii* colonies that survived the treatments for fungal isolation. Isolation, purification and preservation of fungi were conducted as described.

8.1.4. Fungal identification

For morphological identification of *Escovopsis* isolates from colonies of *Mycocepurus goeldii*, fungal colonies were separated into morphotypes, and the traits of *Escovopsis trichodermoides* were evaluated in PDA at 25°C after seven days in the dark. Morphological characteristics such as colony surface, coloration, aerial mycelial growth, and the presence of pigments on agar were evaluated with a stereomicroscope. Slides were prepared with water to evaluate the microscopic characteristics (conidiophores, conidia and chlamydospores). Structures were observed under optical microscopy (LEICA DM 500).

For molecular identification of fungi isolates from colonies of *Mycocepurus goeldii*, *Leucocoprinus* sp. and *Escovopsis trichodermoides* isolates were submitted to DNA extraction (item 2.2). The internal transcribed spacer region (ITS) and elongation factor 1alpha (*tef1*) were used for *Leucocoprinus* spp. and *E. trichodermoides*, respectively. PCR conditions and the primer pairs used are detailed in Table S1. The amplicons were purified with ExoSAP-ITTM PCR Product Cleanup kit (Thermo Fisher Scientific), and sequenced using BigDye Terminator[®] v. 3.1 kit (Thermo Fisher Scientific). Forward and reverse sequences were generated on ABI 3500 sequencer (Thermo Fisher Scientific), and assembled in BioEdit v. 7.0.5.3 (HALL, 1999).

The consensus sequences were compared with homologous sequences deposited in GenBank. For phylogenetic analyzes, sequences were aligned with the sequences found in the dataset of Muller et al. (2018) for *Leucocoprinus* fungi (dataset 1), and with sequences from different studies (GERARDO et al., 2006; MASIULIONIS et al., 2015; MEIRELLES et al., 2015) for *E. trichodermoides* (database 2). Alignments were conducted in MAFFT v.7 (KATOH et al., 2013). In the final alignment, dataset 1 had 107 sequences with 727 bp, and dataset 2 had 139 sequences with 731 bp. All sequences and their respective information are available in Tables S7 and S8.

Phylogenetic inference was performed using Bayersian inference algorithm in MrBayes v.3.2.2 (RONQUIST et al., 2012). Models of nucleotide substitution were selected in jModelTest 2 (DARRIBA et al., 2012), using Akaike information criterion with 95% of confidence interval. GTR+I+G was used as model for nucleotide substitution for dataset 1, and HKY+I+G was used for dataset 2. Analyzes occurred with 2.2 and 1.5 million of Markov Chain Monte Carlo generations for database 1 and 2, respectively, until the standard deviation of split frequencies reached values below 0.01. Twenty-five percent of the first generations were discarded as burn-in, and final trees were generated and edited in FigTree v. 1.4. (RAMBAUT, 2016).

8.2. Tables

Marker	Foward $(5' \rightarrow 3')$	Reverse $(5' \rightarrow 3')$	PCR conditions	Reference (Primer)	
ITS (ITS5, ITS4)	GGAAGTAAAAG TCGTAACAAGG	TCCTCCGCTTA TTGATATGC	96 °C for 3 min; 35 cycles of 94 °C for 1 min, 55 °C for 1 min, and 72 °C for 2 min; and 10 °C on hold	White et al. (1990)	
LSU (LBOR LB5 or	ACCCGCTGAACT	TCCTGAGGGAA ACTTCG	96 °C for 3 min; 35 cycles of 94 °C for 1 min, 55 °C	Rehner and Samuels	
$(LR0R, LR5 0)^{1}$	TAAGC	TACTACCACCA AGATCT	for 1 min, and 72 °C for 2 min; and 10 °C on hold	and Hester (1990)	
EF-1α (EF-1α-F, EF- 1α-R)	GTTGCTGTCAAC AAGATGGACACT AC	GCCTTGATGAT ACCAGTCTCGA CACG	94°C for 3 min; 35 cycles of 94°C for 45 s, 51°C for 45 s; and 72°C for 1 s; 72°C for 10 min; and 10°C on hold	Mikheyev et al. (2006)	
<i>tef</i> 1 (EF6–20F, EF6A-1000R)	AAGAACATGATC ACTGGTACCT	CGCATGTCACG GACGGC	96°C for 3 min; 35 cycles of 96°C for 30 s, 61°C for 45 s; and 72°C for 1 min; and 10°C on hold	Meirelles et al. (2015)	

Table S1. Primers and PCR conditions used in the molecular analyses

¹For the systematics analyses a region for a segment of LSU rDNA gene were used that corresponde to the first bases of LSU gene (regions amplified by LROR-LR3 primers) according to Mueller et al. (1998) and Mueller et al. (2018).

GenBank a	ccessions		Specimens information		
ITS	tef1	LSU	Sample ID	Ant host/Fungus	Location
DQ779958	GQ854056		ASM050316-01	Atta insularis	Cuba: Mayabeque Province, Batabanó
JX259044	GQ854104		CR060627-12	Trachymyrmex saussurei	Mexico: Tamaulipas, El Encino, Gomes Farias
JX259045	GQ854358		UGM051203-01	Trachymyrmex desertorum	USA: Arizona, Gila County, 6.3 miles NNW Salt River on Rt288
JX259046	GQ854117		JS030115-02	Trachymyrmex saussurei	Mexico: Chiapas, Palenque
JX259051	JX258948	KT898385	CR050811-02	Trachymyrmex arizonensis	USA: Arizona, Cochise County, Chiricahua Mountains
DQ779956	GQ853928		Ae124	Acromyrmex echinatior	Panamá: Canal Zone, Gamboa
JX259047	GQ854260		SES050730-04	Atta cephalotes	Venezuela: Aragua, Rancho Grande Biological Station
EU561492	DQ767904		MPK11	Atta colombica	Panamá: Canal Zone, Gamboa
EU561491	DQ767905		MPK7	Atta cephalotes	Panamá: Canal Zone, Gamboa
EU561489	DQ767911		G216 = CC01110-06	Acromyrmex sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road km2
		KP406344	TRS100401-09-B2	Apterostigma megacephala	Brazil: Pará, Carajás National Forest
EU561490	DQ767906		G57 = UGM960411-05	Acromyrmex cf. hystrix	Guyana: Kurupukari
JX259048	GQ854055		ASM050315-05	Atta insularis	Cuba: Mayabeque Province, Batabanó
JX259049	GQ854270		SES050804-02	Atta cephalotes	Venezuela: Merida, Parque Recreacional La Palmita
DQ779959	GQ854243		SES020607-01	Atta cephalotes	Panamá: Bocas del Toro, Isla Colon
DQ779960	GQ854170		SES030112-01	Atta cephalotes	Mexico: Veracruz, Sierra de los Tuxtlas
JX259050	JX258949		UGM070517-01 = UGM060511-01	Atta texana	USA: Texas, Travis County, Hornsby Bend, Center for Environmental Research
JX259052	GQ854261		SES050801-05	Atta cephalotes	Venezuela: Aragua, Parque Nacional

Table S2. Metadata of sequences from fungal strains used in the molecular identification.

					Henri Pittier
JX259053	JX258950		SES090113-05	Trachymyrmex wheeleri	Brazil: Amazonas, Manaus, Fazenda
					Dimona
JX259054	JX258951	KT898386	SES080911-08	Acromyrmex cf. balzani	Brazil: Minas Gerais, Base de Estudos
					do Pantanal
JX259055	GQ854291		SES050817-06	Acromyrmex hystrix	Venezuela: Delta Amacuro,
					Campamento Rio Grande
	GQ854325		UGM050718-08	Trachymyrmex intermedius	French Guiana: Arrondissement of
					Cayenne, Kaw
	GQ854326		UGM050718-11	Trachymyrmex intermedius	French Guiana: Arrondissement of
	GOOF 1100		505001115.00		Cayenne, Kaw
JX259056	GQ854108		FOR931115-02	Atta sexdens	Brazil: Sao Paulo, Botocatu
JX259062	JX258952		SES080921-01	Trachymyrmex species L	Brazil: Minas Gerais, Uberlândia
JX259057	JX258953		SES080909-09	Trachymyrmex sp.	Brazil: Mato Grosso do Sul, Fazenda
					Sao Bento
GU202430	DQ767909		G202 = UGM960816-01	Sericomyrmex cf. amabilis	Panamá: Chiriqui Province, Tole
JX259058	JX258954		UGM080930-01	Atta laevigata	Brazil: Goias, Jussara, Fazenda Pau,
					Reserve 19
JX259059	Footnote1		SES090111-02	Trachymyrmex sp.	Brazil: Amazonas, Manaus
GU202429	DQ767910		G219 = NMG011030-02	Sericomyrmex sp.	Panamá: Canal Zone, Parque
					Soberanía, Pipeline Road
EU561500	EU561426		JS02	Trachymyrmex septentrionalis	USA: Louisiana, Beauregard Parish,
					DeRidder
JX259088	JX258955		DA386	Trachymyrmex papulatus	Argentina: Tucumán Province,
					Tucumán, Ruta 340 between Las Tipas
					& San Javier
JX259060	JX258956		SES080911-04	<i>Trachymyrmex</i> sp.	Brazil: Mato Grosso do Sul,
					Fazenda Sao Bento, Capao
KT898377	GQ854036		AOMB150904-01	Acromyrmex crassispinus	Brazil: Paraná, Tibagi
JX259061	JX258957	KT898387	SES081108-04	Trachymyrmex fuscus	Brazil: Bahia, Palmeiras
JX259063	Footnote2		SES080924-01	Trachymyrmex species AV	Brazil: Minas Gerais,

					Uberlândia
JX259064	GQ854361		UGM060515-05	Trachymyrmex septentrionalis	USA: Texas, Baylor County,
					Round Timber, River Road
EU561499	EU561425		JS01	Trachymyrmexseptentrional is	USA: Illinois, Madison County,
					Highland
JX259065	GQ854098	KT898388	CR050806-01	Trachymyrmex arizonensis	USA: Arizona, Cochise
					County, Chiricahua Mountains
JX259066	GQ854099		CR050806-02	Trachymyrmex carinatus	USA: Arizona, Cochise
					County, Chiricahua Mountains
EU561497	EU561413		AGH011019-03	Trachymyrmex septentrionalis	USA: Texas, Bastrop County,
		_			Stengl Biological Station
EU561493	EU561411		TV011019-01	Trachymyrmex septentrionalis	USA: Texas, Bastrop County,
					Stengl Biological Station
EU561498	EU561415		JJS011102-02	Trachymyrmex septentrionalis	USA: Texas, Bastrop County,
					Stengl Biological Station
JX259067	JX258958		SES081027-03	Trachymyrmex species BI	Brazil: Piauí, São Felix
EU561501	EU561433		ASM020824-01	Trachymyrmex septentrionalis	USA: Illinois, Pope County,
					Dixon Springs
JX259068	GQ854329	KT898389	UGM050720-02	Trachymyrmex intermedius	French Guiana:
					Arrondissement of
					Cayenne, Kaw
JX259069	JX258959		UGM050717-02	Trachymyrmex intermedius	French Guiana:
		_			Arrondissement of Cayenne, Kaw
KT898378	GQ854042		AOMB170904-02	Atta laevigata	Brazil: São Paulo, Thermas de
					Santa Barbara
KT898379	GQ854287		SES050816-06	Atta laevigata	Venezuela: Ciudad Guyana,
					Bolívar
KT898380	GQ854079		CC030404-01	Atta vollenweideri	Argentina: Chaco Province,
					Resistencia
KT898381	GQ854301		SP030404-03	Atta vollenweideri	Argentina: Chaco Province,
					Resistencia
KT898382	GQ853939		FR2005-2	Atta vollenweideri	Argentina: Formosa Province, Reserva

					Ecólogica El Bagual
KT898383	GQ854318		UGM030404-02	Acromyrmex striatus	Argentina: Chaco Province,
					Resistencia
EU561494	EU561412		TV011102-02	Trachymyrmex septentrionalis	USA: Texas, Bastrop County, Stengl
					Biological Station
JX259070	JX258960		SES090117-01	Trachymyrmex relictus	Brazil: Amazonas, Manaus, Fazenda
11/050051	00054146		D) 0 () 050105 00		Dimona
JX259071	GQ854146		RMMA050105-29	Trachymyrmex cf. zeteki	Panama: Canal Zone, Gamboa
GU202428	DQ767907		G60 = UGM960412-13	<i>Trachymyrmex</i> sp.	Guyana: Upper Takutu-Upper
12250070	IV.25.00.61		959000116 00		Essequibo Region, Annai
JX259072	JX258961		SES090116-02	Trachymyrmex species AG	Brazil: Amazonas, Manaus, Fazenda
IX250073	IX258062		SES000213-02	Trachymyrmax species C	Dimona Brazil: Pará Parauapahas
JA259075	JX258902		SES090213-02	Truchymyrmex species C	Drazil: Dará Altar da Chas
JA259074	JA238903		SES090128-02	Trachymyrmex species AK	Brazil: Para, Alter do Chao
EU561495	EU561427		ASM040418-01	Trachymyrmex septentrionalis	USA: Texas, Jasper County, at Martin Dies State Park
JX259075	JX258964	KT898390	SES090309-03	Trachymyrmex cf. iheringi	Brazil: Rio Grande do Sul, Taquara
JX259076	JX258965		SES080921-03	Trachymyrmex species E	Brazil: Minas Gerais, Uberlândia
JX259077	JX258966		SES080924-02	Trachymyrmex species AC	Brazil: Minas Gerais, Uberlândia
JX259078	JX258967		SES080618-02	Trachymyrmex sp.	Brazil: São Paulo, Rio Claro, UNESP
					Campus
KT898384	GQ854077		CC030403-09	Acromyrmex laticeps	Argentina: Misiones Province, Parque
					Salto Encantado
JX259079	JX258968		SES080319-04	Trachymyrmex species G	Brazil: São Paulo, Rio Claro, UNESP
					Campus
JX259080	JX258969		SES090113-01	Trachymyrmex diversus	Brazil: Amazonas, Manaus, Fazenda
					Dimona
JX259081	JX258970	КТ898391	SES090310-02	Trachymyrmex species F	Brazil: Rio Grande do Sul, Gramado
JX259082	JX258971		SES080922-03	Trachymyrmex species C	Brazil: Minas Gerais, Uberlândia
JX259083	JX258972		SES090206-03	Sericomyrmex sp.	Brazil: Pará, Belem
JX259084	JX258973		SES090117-08	Trachymyrmex sp.	Brazil: Amazonas, Manaus; Fazenda

					Dimona
AF079725	JX258974	AF079643	OC7 = TRS920824-01	Mycetarotes paralellus	Brazil: Amazonas, São Gabriel
AF079754	JX258975	AF079672	DA373	Trachymyrmex papulatus	Argentina: Tucumán Province, Tucumán, Instituto Lillo Garden
JX259085	JX258976		SES090128-03	Trachymyrmex species BG	Brazil: Pará, Alter do Chao
JX259086	JX258977		CTL080717-01	Trachymyrmex species BF	Brazil: São Paulo, Corumbatai
AF079673	DQ767912.2	AF079591	S1 = UGM951124-02	Apterostigma auriculatum	Panamá: Canal Zone, Gamboa
AF079715	DQ767915.2	AF079633	S16 = UGM951222-01	Myrmicocrypta ednaella	Panamá: Canal Zone, Gamboa
AF079710	JX258978	AF079628	S32 = UGM960120-02	Mycocepurus tardus	Panamá: Canal Zone, Parque Soberanía, Pipeline Road km6
AF079697	JX258979	AF079615	G21 = UGM960415-12	Mycocepurus goeldii	Guyana: Potaro-Siparuni Region, Paramaketoi
AF079698	JX258980	AF079616	CR2 = UGM950616-01	Mycocepurus smithii	Costa Rica: Limón Province, Puerto Limón, Playa Vizcaya
AF079737	GQ854136	AF079655	PA234	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road km6
	GQ854021		AOMB120904-07	Trachymyrmex iheringi	Santana da Boa Vista, Rio Grande do Sul, Brazil
	GQ854002		AOMB090904-06	Trachymyrmex iheringi	Brazil: Rio Grande do Sul, Taquara
JQ405705	JX258981		RS100403-01 ch2	Mycocepurus smithii	Panamá: Canal Zone, Gamboa
AF079728	JX258982	AF079646	CR8 = UGM950613-02	Mycetosoritis vinsoni	Costa Rica: Guanacaste, Parque Nacional Santa Rosa
AF079699	JX258983	AF079617	S30 = UGM960116-01	Mycocepurus smithii	Panamá: Canal Zone, Gamboa
AF079727	JX258984	AF079645	OC29	Mycetosoritis hartmanni	USA: Texas, Walker County, Sam Houston National Forest
EU561488	DQ767916		S20 = UGM951229-02	Mycocepurus smithii	Panamá: Canal Zone, Gamboa
AF079740	JX258985	AF079658	PA272	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
AF079692	JX258986	AF079610	G6 = UGM960408-14	Cyphomyrmex rimosus	Guyana: Upper Demerara-Berbice Region, Kurupukari
AF079683	JX258987	AF079601	UGM950112-08	Cyphomyrmex minutus	Trinidad: Mansanillo – Mayaro Road,

					km44
AF079688	JX258988	AF079606	G10 = UGM960408-19	Cyphomyrmex minutus	Guyana: Upper Demerara-Berbice Region, Kurupukari
AF079696	DQ767913	AF079614	S80 = UGM960104-08	Cyphomyrmex salvini	Panamá: Canal Zone, Parque Soberanía, Pipeline Road km6
AF079681	JX258989	AF079599	UGM950106-02	Cyphomyrmex minutus	Trinidad: Simla Biological Station
EF527344	JX258990		PA607	Leucocoprinus sp.	Panamá: Panamá Province, El Llano – Cartí Road
AF079695	JX258991	AF079613	OC9 = UGM930224-05	Cyphomyrmex rimosus	Costa Rica: Heredia Province, La Selva Biological Station
AF079686	JX258992	AF079604	FL2 = UGM930317-05	Cyphomyrmex minutus	USA: Florida, Archbold Biological Station Location
AF079745	JX258993	AF079663	PA302	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
AF079691	JX258994	AF079609	FL6 = UGM930813-01	Cyphomyrmex rimosus	USA: Florida, Archbold Biological Station
AF079687	JX258995	AF079605	FL3 = UGM930801-01	Cyphomyrmex minutus	USA: Florida, Orlando
AF079689	JX258996	AF079607	S57 = UGM951216-02	Cyphomyrmex minutus	Panamá: Canal Zone, Gamboa
AF079693	JX258997	AF079611	G9 = UGM960408-18	Cyphomyrmex rimosus	Guyana: Upper Demerara-Berbice Region, Kurupukari
AF079684	DQ767914	AF079602	UGM950113-09	Cyphomyrmex minutus	Trinidad: Simla Biological Station, radiotower road
AF079682	JX258998	AF079600	UGM950106-03	Cyphomyrmex minutus	Trinidad: Simla Biological Station
JX259087	JX258999		AR090307-02	Mycetophylax cf. simplex	Brazil: Santa Catarina, Florianópolis
EF527365	JX259000		PA634	Leucocoprinus sp.	Panamá: Canal Zone, Gamboa
AF079743	JX259001	AF079661	PA294	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
AF079721	JX259002	AF079639	G26 = UGM960421-02	Mycetophylax conformis	Guyana: Georgetown, Timehri Airport (now Cheddi Jagan)
AF079676	JX259003	AF079594	S92 = UGM960619-01	Cyphomyrmex costatus	Panamá: Canal Zone, Parque Soberanía, Pipeline Road km6

AF079716	JX259004	AF079634	G11 = UGM960410-14	Myrmicocrypta cf. infuscata	Guyana: Upper Demerara-Berbice Region, Kurupukari
EF527323	JX259005		PA298	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
EF527392	JX259006		PA673	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
AF079736	JX259007	AF079654	PA205	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
EF527360	JX259008		PA628	Leucocoprinus sp.	Panamá: Canal Zone, Gamboa
AF079751	JX259009	AF079669	PA375	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
EF527364	JX259010		PA633	Leucocoprinus sp.	Panamá: Canal Zone, Gamboa
EF527400	JX259011		TX008A	Leucocoprinus sp.	USA: Texas, Travis County, Austin, Bridle Path 2400
AF482859	HM488931		6279	Leucocoprinus brebissonii	Netherlands
AF079738	DQ767922	AF079656	PA250	Leucocoprinus cf. fragilissimus	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
AF079730	JX259012	AF079648	PA148	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
EF527396	JX259013		PA678	Leucocoprinus sp.	Panamá: Canal Zone, Barro Colorado Island
AF079748	JX259014	AF079666	PA351	Leucocoprinus sp.	Panamá: Canal Zone, Parque Soberanía, Pipeline Road
AF079678	JX259015	AF079596	OC19 = TRS920823-01	Mycetophylax faunulus	Brazil: Amazonas, São Gabriel
AF079714	JX259016	AF079632	G7 = UGM960408-15	Myrmicocrypta cf. buenzlii	Guyana: Upper Demerara-Berbice Region, Kurupukari
AF079713	JX259017	AF079631	G24 = UGM960416-05	Myrmicocrypta cf. buenzlii	Guyana: Potaro-Siparuni Region, Paramaketoi
AF079677	JX259018	AF079595	G15 = UGM960414-16	Mycetophylax faunulus	Guyana: Potaro-Siparuni Region, Paramaketoi
JQ405710	JX259019		UGM100408-02ch1	Mycocepurus smithii	Panamá: Panamá Oeste Province, Corozales Afuera

AF079726	JX259020	AF079644	OC23 = TRS920807-11	Mycetarotes acutus	Brazil: Amazonas, Reserva Ducke
AF079722	JX259021	AF079640	G27 = UGM960421-06	Mycetophylax conformis	Guyana: Georgetown, Timehri Airport (now Cheddi Jagan)
AF079724	JX259022	AF079642	G28 = UGM960404-10	Kalathomyrmex emeryi	Guyana: Upper Takutu-Upper Essequibo Region, Pirara
AF079717	JX259023	AF079635	S26 = UGM960107-15	Myrmicocrypta species 1	Panamá: Panamá Province, El Llano – Cartí Road
AF079711	JX259024	AF079629	G14 = UGM960412-14	Myrmicocrypta cf. buenzlii	Guyana: Upper Takutu-Upper Essequibo Region, Annai
AF079709	JX259025	AF079627	CR10 = UGM950612-03	Mycocepurus curvispinosus	Costa Rica: Guanacaste, Parque Nacional Santa Rosa
EF527398	JX259026		PA681	Leucocoprinus sp.	Panamá: Canal Zone, Barro Colorado Island
AF079675	DQ767917	AF079593	S77 = UGM960503-03	Cyphomyrmex costatus	Panamá: Parque Soberanía, Pipeline Road km8
AF079680	DQ767918	AF079598	S59 = UGM951227-05	Cyphomyrmex muelleri	Panamá: Parque Soberanía, Pipeline Road km14
AF079700	JX259027	AF079618	S6 = UGM951213-01	Mycocepurus smithii	Panamá: Canal Zone, Gamboa
AF079708	JX259028	AF079626	S28 = UGM960110-03	Mycocepurus cf. curvispinosus	Panamá: Canal Zone, Gamboa
AF079741	JX259029	AF079659	PA280	Leucocoprinus sp.	Panamá: Canal Zone, Gamboa
EU561487	DQ767923		PA408	Leucocoprinus cf. zamurensis	Panamá: Canal Zone, Gamboa
AF079753	JX259030	AF079671	PA415	Leucocoprinus cf. zamurensis	Panamá: Canal Zone, Gamboa
AF079732	JX259031	AF079650	PA156	Lepiota cf. abruptibulba	Panamá: Canal Zone, Gamboa
AF079734	JX259032	AF079652	PA170	Leucocoprinus sp.	Panamá: Canal Zone, Gamboa
AF079750	DQ767919	AF079668	PA363	Leucocoprinus sp.	Panamá: Canal Zone, Gamboa
AF079701	DQ767920	AF079619	S60 = UGM951229-01	Mycocepurus smithii	Panamá: Canal Zone, Gamboa
EF527399	JX259033		TX006	Lepiotaceae sp.	USA: Texas, Travis County, Austin, Bridle Path 2300
EF527348	JX259034		PA611	Lepiotaceae sp.	Panamá: Canal Zone, Gamboa
EF527334	JX259035		PA493	Lepiotaceae sp.	Panamá: Parque Soberanía, Pipeline Road

EF527335	JX259036		PA501	<i>Lepiotaceae</i> sp.	Panamá: Parque Soberanía, Pipeline
					Road
EF527327	JX259037		PA455	<i>Lepiotaceae</i> sp.	Panamá: Parque Soberanía, Pipeline
					Road
AF079733	JX259038	AF079651	PA165	Lepiotaceae sp.	Panamá: Canal Zone, Gamboa
EF527394	JX259039		PA676	Lepiotaceae sp.	Panamá: Canal Zone, Gamboa
AF079731	JX259040	AF079649	PA152	<i>Lepiotaceae</i> sp.	Panamá: Canal Zone, Gamboa
EF527367	JX259041		PA636	Lepiotaceae sp.	Panamá: Canal Zone, Gamboa
AF079735	DQ767921	AF079653	PA185	Leucocoprinus cf.	Panamá: Parque Soberanía, Pipeline
	-			subclypeolaria	Road km6
EF527380	JX259042		PA654	Lepiotaceae sp.	Panamá: Parque Soberanía, Pipeline
				1 1	Road km6
DQ200928	DQ457631	AY700187	AFTOL 440	Chlorophyllum agaricoides	Greece
-	-	-	AR01	Mycetophylax morschi	Brazil: Santa Catarina, Florianópolis
-	-	-	AR02	Mycetophylax morschi	Brazil: Santa Catarina, Florianópolis
-	-	-	QVM1	Sp.1	Brazil: São Paulo, Anhembi
-	-	-	QVM2	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
-	-	-	QVM3	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
-	-	-	QVM11	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
-	-	-	QVM12	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
-	-	-	QVM13	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
-	-	-	RB01 ³	Acromyrmex coronatus	Brazil: São Paulo, Rio Claro
-	-	-	RB02	Acromyrmex coronatus	Brazil: São Paulo, Rio Claro
_	_	_	RB03	Mycocepurus goeldii	Brazil: São Paulo, Anhembi

¹Sequence for *tef*1 gene for isolate SES090111-02 was used in analyses and are available in the supplementary material of Mueller et al. (2018). ²Sequence for *tef*1 gene for isolate SES080924-01 was used in analyses and are available in the supplementary material of Mueller et al. (2018). ³Sequences obtained from a basidiome of *Leucoagaricus gongylophorus*.

Table S3. *Leucocoprinus* spp. growth in the absence and presence of *Escovopsis trichodermoides*. Values indicate mycelial area in cm² (\pm SD) of the control group (C), in the presence of *E. trichodermoides* (Et). Growth values in bold are statistically different from respective control group (Two Sample T-test, *P*< 0.05 for AR01 and AR02; and Welch Two Sample T-test, *P*< 0.05 for QVM2 and QVM12).

	AR01 ¹	AR02 ¹	QVM2 ²	QVM12 ²
Days	C Et	C Et	C Et	C Et
0	$\begin{array}{rrr} 8.73 & 8.88 \\ \pm \ 0.8 & \pm \ 0.3 \end{array}$	$\begin{array}{rrr} 7.67 & 7.74 \\ \pm \ 0.3 & \pm \ 0.2 \end{array}$	$\begin{array}{ccc} 11.95 & 12.31 \\ \pm \ 1.0 & \pm \ 0.2 \end{array}$	$\begin{array}{rrr} 4.56 & 4.57 \\ \pm \ 0.3 & \pm \ 0.1 \end{array}$
1	$\begin{array}{ccc} 10.27 & 10.08 \\ \pm \ 0.7 & \pm \ 0.3 \end{array}$	$\begin{array}{rrr} 8.43 & 8.47 \\ \pm \ 0.2 & \pm \ 0.4 \end{array}$	$\begin{array}{rrrr} 13.53 & 13.84 \\ \pm \ 1.4 & \pm \ 0.5 \end{array}$	$\begin{array}{rrr} 5.62 & 5.39 \\ \pm \ 0.2 & \pm \ 0.3 \end{array}$
2	$\begin{array}{rrr} 11.34 & 10.97 \\ \pm \ 0.9 & \pm \ 0.6 \end{array}$	$\begin{array}{rrr} 9.21 & 9.06 \\ \pm \ 0.3 & \pm \ 0.6 \end{array}$	$\begin{array}{rrr} 15.29 & 15.25 \\ \pm \ 1.5 & \pm \ 0.5 \end{array}$	$\begin{array}{ccc} 6.89 & 6.09 \\ \pm \ 0.7 & \pm \ 0.3 \end{array}$
3	$\begin{array}{rrr} 12.24 & 11.54 \\ \pm \ 0.9 & \pm \ 0.9 \end{array}$	$\begin{array}{rrr} 10.05 & 9.88 \\ \pm \ 0.3 & \pm \ 0.6 \end{array}$	$\begin{array}{rrr} 16.89 & 16.28 \\ \pm \ 1.5 & \pm \ 0.5 \end{array}$	7.62 6.39 ± 0.7 ± 0.2
5	14.59 11.00 ± 1.1 ± 0.8	11.91 9.78 ± 0.5 ± 0.7	19.91 16.17 ± 1.9 ± 0.7	9.21 6.39 ± 0.8 ± 0.2
7	$\begin{array}{rrr} 17.09 & 10.96 \\ \pm 1.1 & \pm 1.1 \end{array}$	$\begin{array}{rrr} 13.86 & 9.67 \\ \pm \ 0.7 & \pm \ 0.5 \end{array}$	$\begin{array}{r} 23.28 \\ \pm 2.1 \\ \pm 0.9 \end{array}$	$\begin{array}{rrr} 10.98 & 6.07 \\ \pm \ 1.0 & \pm \ 0.3 \end{array}$
10	19.90 10.35 ± 1.0 ± 1.0	16.72 9.40 ± 0.6 ± 0.6	27.71 14.92 ± 2.3 ± 0.8	13.73 5.84 ± 0.8 ± 0.3

¹ Mutualistic fungi of *Mycetophylax morshi*.

² Mutualistic fungi of *Mycocepurus goeldii*.

Table S4. Mycelial growth of *Escovopsis trichodermoides* "assay 1" towards different host possibilities. Figures indicate means in cm (\pm SD) for each host possibility during 7 days of incubation. * indicates higher values in relation to the control group, while \blacksquare indicates lower values. Statistical differences were assessed by Friedman test with an alpha threshold of 0.05, performed for each day, followed by Wilcoxon signed-rank test for multiple comparisons.

	2	U	1 1			
Days	AR01 ¹	AR02 ¹	QVM2 ²	QVM12 ²	LESF1140 ³	Control
1	1.03 ± 0.1	1.10 ± 0.1	1.08 ± 0.1 *	1.05 ± 0.1	1.01 ± 0.1	1.03 ± 0.1
2	2.44 ± 0.5	2.43 ± 0.5	2.53 ± 0.5 *	2.32 ± 0.6	1.76 ± 0.3 ■	2.41 ± 0.5
3	4.52 ± 1.0	4.46 ± 0.9	4.68 ± 0.9	4.17 ± 1.1 ■	1.91 ± 0.3 ■	4.49 ± 1.0
4	6.35 ± 1.3	6.40 ± 1.5	6.56 ± 1.3	5.92 ± 1.5	2.01 ± 0.2 ■	5.81 ± 1.0
5	7.18 ± 0.8	7.05 ± 1.1	7.20 ± 0.7	7.05 ± 1.1	2.06 ± 0.2 ■	7.11 ± 0.7
6	7.45 ± 0.1	7.28 ± 0.5	7.50 ± 0.0	7.29 ± 0.5	2.10 ± 0.2 ■	7.39 ± 0.3
7	7.50 ± 0.0	7.44 ± 0.1	7.50 ± 0.0	7.50 ± 0.0	2.10 ± 0.2 ■	7.50 ± 0.0

¹ Mutualistic fungi of *Mycetophylax morshi*.

² Mutualistic fungi of *Mycocepurus goeldii*.

³ Comparative fungal group (Moniliophthora perniciosa).

Table S5. Mycelial growth of Escovopsis trichodermoides "assay 2" towards different host possibilities. Figures indicate means in cm (±SD) for each host possibility during 7 days of incubation. * indicates higher values in relation to the control group, while I indicates lower values. Statistical differences were assessed by Friedman test with an alpha threshold of 0.05, performed for each day, followed by Wilcoxon signed-rank test for multiple comparisons.

Ionowea	бу тисохон	signed funk test for	manuple com	Jui 150115.		
Days	RB02 ¹	QVM11 ²	QVM2 ²	RB03 ²	AR01 ³	Control
1	0.88 ± 0.3	■ 0.90 ± 0.3 ■	$0.98 \pm \ 0.4$	$0.95 \pm \ 0.4$	$0.97 \pm \ 0.4$	0.97 ± 0.3
2	2.05 ± 0.7	2.04 ± 0.7	2.10 ± 0.7	$2.18 \pm \ 0.8$	2.19 ± 0.7	2.12 ± 0.8
3	3.95 ± 1.0	3.91 ± 1.0	$4.00\pm\ 0.9$	$4.15 \pm \ 1.0$	4.21 ± 0.8	4.01 ± 0.9
4	5.99 ± 1.2	6.15 ± 1.2	6.30 ± 1.1	$6.39 \pm 1.0 *$	6.39 ± 1.0	6.16 ± 1.1
5	7.15 ± 0.8	7.21 ± 0.7	7.30 ± 0.5	7.31 ± 0.5	$7.30\pm\ 0.5$	7.17 ± 0.7
6	7.50 ± 0.0	7.49 ± 0.0	7.50 ± 0.0	$7.50\pm\ 0.0$	7.49 ± 0.0	$7.50\pm~0.0$
7	7.50 ± 0.0	$7.50\pm\ 0.0$	$7.50\pm\ 0.0$	$7.50\pm\ 0.0$	$7.50\pm\ 0.0$	$7.50\pm~0.0$
1	a					

¹Mutualistic fungus of *Acromyrmex coronatus*.

² Mutualistic fungi of *Mycocepurus goeldii*.
³ Mutualistic fungus of *Mycetophylax morshi*.

Table S6. *Leucocoprinus* spp. growth in the presence and absence of *Escovopsis trichodermoides* metabolites. Values indicate mycelial area in cm² (\pm SD) of the control group (C), in the presence of metabolites of *E. trichodermoides* grown alone (Et1) and in dual culture (Et2). Bold values are statistically different from respective control group in final day (Tukey test, *P*< 0.05; Mann-Whitney U test, *P*< 0.05 for QVM12). Different letters indicate significant differences between groups of relative growth (RG) after 35 days of culture (Tukey test, *P*< 0.05).

		AR011			AR021			QVM2	2	(VM12	2
Days	С	Et1	Et2	С	Et1	Et2	 С	Et1	Et2	 С	Et1	Et2
0	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.50 \\ \pm \ 0.0 \end{array}$
3	$\begin{array}{c} 0.89 \\ \pm \ 0.1 \end{array}$	$\begin{array}{c} 0.87 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.92 \\ \pm \ 0.1 \end{array}$	$\begin{array}{c} 0.81 \\ \pm \ 0.1 \end{array}$	$\begin{array}{c} 0.79 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.85 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.87 \\ \pm \ 0.1 \end{array}$	$\begin{array}{c} 0.79 \\ \pm \ 0.1 \end{array}$	$\begin{array}{c} 0.83 \\ \pm \ 0.1 \end{array}$	0.75 ± 0.1	$\begin{array}{c} 0.71 \\ \pm \ 0.0 \end{array}$	$\begin{array}{c} 0.75 \\ \pm \ 0.1 \end{array}$
7	1.79 ± 0.2	$\begin{array}{c} 1.82 \\ \pm \ 0.3 \end{array}$	1.44 ± 0.2	$\begin{array}{c} 2.02 \\ \pm \ 0.2 \end{array}$	1.59 ± 0.2	$\begin{array}{c} 1.40 \\ \pm \ 0.1 \end{array}$	2.08 ± 0.3	1.62 ± 0.3	1.53 ± 0.1	1.40 ± 0.3	1.21 ± 0.1	1.09 ± 0.2
10	4.27 ± 0.3	$\begin{array}{c} 2.78 \\ \pm \ 0.5 \end{array}$	2.24 ± 0.6	3.92 ± 0.7	2.46 ± 0.3	$\begin{array}{c} 2.56 \\ \pm \ 0.5 \end{array}$	4.23 ± 0.5	$\begin{array}{c} 2.82 \\ \pm \ 0.5 \end{array}$	3.22 ± 0.5	4.30 ± 0.4	1.80 ± 0.1	$\begin{array}{c} 1.98 \\ \pm \ 0.8 \end{array}$
14	7.43 ± 0.8	4.63 ± 0.8	3.58 ± 1.2	6.53 ± 0.2	4.27 ± 0.5	4.12 ± 0.4	$\begin{array}{c} 8.22 \\ \pm \ 0.8 \end{array}$	$\begin{array}{c} 6.03 \\ \pm \ 0.8 \end{array}$	5.81 ± 0.6	6.44 ± 0.5	3.24 ± 0.4	3.69 ± 1.7
21	$\begin{array}{c} 14.71 \\ \pm \ 2.0 \end{array}$	$\begin{array}{c} 8.44 \\ \pm \ 0.8 \end{array}$	6.41 ± 2.0	12.56 ± 0.9	7.79 ± 0.6	$\begin{array}{c} 6.98 \\ \pm \ 0.9 \end{array}$	17.70 ± 1.8	14.48 ± 2.1	12.75 ± 2.0	13.56 ± 1.6	6.84 ± 1.0	7.81 ± 3.5
28	25.87 ± 2.5	13.48 ± 1.3	11.37 ± 2.8	22.11 ± 1.7	12.51 ± 1.3	12.04 ± 1.6	32.63 ± 2.3	29.03 ± 3.4	26.04 ± 2.9	24.43 ± 1.4	12.81 ± 1.7	14.74 ± 5.5
35	34.31 ± 2.9	18.94 ± 1.8	15.86 ± 3.8	30.21 ± 2.5	17.72 ± 1.6	16.47 ± 2.5	45.98 ± 3.9	41.73 ± 3.2	38.20 ± 4.3	33.79 ± 2.4	19.84 ± 2.3	21.23 ± 6.4
RG ³		0.55b	0.46b		0.59b	0.55b		0.91a	0.83a		0.59b	0.63b
I% ⁴		44.8	53.8		41.3	45.5		9.2	16.9		41.3	37.2

¹ Mutualistic fungi of *Mycetophylax morshi*.

² Mutualistic fungi of *Mycocepurus goeldii*.

³ Relative growth

⁴Inhibition percentage

ITS			
GenBank	Sample ID ¹	Ant colony	Location
accessions			
Х	AR01 (AR140227-01)	Mycetophylax morschi	Brazil: Santa Catarina, Florianópolis
Х	AR02 (AR140227-02)	Mycetophylax morschi	Brazil: Santa Catarina, Florianópolis
Х	AR02b $(AR140227-02)^2$	Mycetophylax morschi	Brazil: Santa Catarina, Florianópolis
Х	QVM2 (QVM160527-03)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	QVM3 (QVM160527-06)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	QVM6 (QVM160527-09)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	QVM12 (QVM160528-01)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	QVM13 (QVM160528-05)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB03 (RB180518-03)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB05 (RB180518-05)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB06 (RB180518-06)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB07 (RB180518-07)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB08 (RB180518-08)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB09 (RB180518-09)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	EB10 (RB180518-10)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	EB11 (RB180519-01)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB12 (RB180519-02)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB15 (RB180519-06)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB16 (RB180519-07)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB17 (RB180519-08)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB19 (RB180519-10)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB20 (RB180519-11)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB21 (RB180519-12)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB22 (RB180519-13)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB23 (RB180520-01)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB24 (RB180520-02)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi
Х	RB29 (RB180519-04)	Mycocepurus goeldii	Brazil: São Paulo, Anhembi

Table S7. Information of *Leucocoprinus* isolates used on all experiments.

¹Sample ID indicate the fungal code ID, followed by the colony code ID in parentheses. ² Sequences obtained from Basidiome of *Leucocoprinus* sp.

<i>tef1</i> GenBank access	Sample ID	Host	Location				
Escovopsis strains from Meirelles et al. (2015) dataset							
KM817142	NL001	Atta capiguara	Brazil: São Paulo, Botucatu				
KM817143	NL002	Atta capiguara	Brazil: São Paulo, Botucatu				
KM817144	NL005	Atta sexdens	Brazil: São Paulo, Botucatu				
KF240730	NL007	Atta sexdens	Brazil: São Paulo, Botucatu				
KM817123	ES002	Atta sexdens	Brazil: São Paulo, Rio Claro				
KM817132	ES011	Atta sexdens	Brazil: São Paulo, Corumbatai				
KM817133	ES012	Atta sexdens	Brazil: São Paulo, Corumbatai				

Table S8. Information of *Escovopsis* sequences used in phylogenetic analyses.

KM817134	ES013	Atta sexdens	Brazil: São Paulo, Corumbatai
KM817135	ES014	Atta sexdens	Brazil: São Paulo, Corumbatai
KM817124	ES003	Atta cephalotes	Brazil: Pernambuco, Frei Caneca
KM817126	ES005	Atta cephalotes	Brazil: Mato Grosso, Alta Floresta
KM817130	ES009	Atta cephalotes	Brazil: Amazonas, Carreio da Varzea
KM817141	ES033	Atta cephalotes	Brazil: Pernambuco, Parauapebas
KM817145	RS105	Atta laevigata	Brazil: São Paulo, T. de S. Bárbara
KM817116	BA001	Atta cephalotes	Brazil: Bahia, Camacan
KM817117	BA002	Atta cephalotes	Brazil: Bahia, Camacan
KM817118	BA003	Atta cephalotes	Brazil: Bahia, Camacan
KM817119	BA004	Atta cephalotes	Brazil: Bahia, Camacan
KM817120	BA005	Atta cephalotes	Brazil: Bahia, Camacan
KM817121	BA006	Atta cephalotes	Brazil: Bahia, Camacan
KM817125	ES004	Acromyrmex sp.	Brazil: Bahia, Camacan
KM817127	ES006	Acromyrmex coronatus	Brazil: Mato Grosso, Alta Floresta
KM817128	ES007	Ac. coronatus	Brazil: Mato Grosso, Alta Floresta
KM817129	ES008	Acromyrmex sp.	Brazil: Pará, Santarem
KM817131	ES010	Ac. landolti	Brazil: São Paulo, Rio Claro
KM817136	ES025	Ac. balzanii	Brazil: São Paulo, Botucatu
KM817138	ES027	Ac. rug. rugosus	Brazil: São Paulo, Rio Claro
			Brazil: Rio Grande do Sul, Nova
EU082802	RS019	Ac. ambiguus	Petropolis Prozil: Pio Crando do Sul, Nova
EU082803	RS020	Ac. laticeps	Petropolis
EU082795	RS030	Ac. lundi	Brazil: Rio Grande do Sul, São Marcos
EU082797	RS053	Ac. lundi	Brazil: Rio Grande do Sul, Chuvisca
EU082796	RS055	Ac. heyeri	Brazil: Rio Grande do Sul, Chuvisca
EU082799	RS061	Ac. heyeri	Brazil: Rio Grande do Sul, Pelotas
EU082801	RS076	Ac. coronatus	Brazil: Rio Grande do Sul, Vacaria
KM817152	SES008	Acromyrmex sp.	Brazil: Rondonia, Faz. S. Sebastião
KM817113	AR003	Ac. balzanii	Brazil: Bahia, Ilhéus
KM817114	AR022	Acromyrmex sp.	Brazil: Bahia, Camacan
KM817115	AR033	Acromyrmex sp.	Brazil: Bahia, Camacan
KM817122	ES001	Trachymyrmex sp.	Rio Claro - SP, Brazil
KM817137	ES026	Trachymyrmex sp.	Rio Claro - SP, Brazil
KM817139	ES029	Trachymyrmex sp.	Brazil: Tocantis, Palmas
KM817140	ES030	Trachymyrmex sp.	Brazil: Tocantis, Palmas
KM817146	SES001	Trachymyrmex sp.	Brazil: São Paulo, Rio Claro
KM817147	SES002	Trachymyrmex sp.	Brazil: Goiás, Fazenda Pau Brasil
KM817148	SES003	Trachymyrmex sp.	Brazil: Minas Gerais, Uberlândia
KF240731	SES005	Trachymyrmex sp.	Brazil: Minas Gerais, Uberlândia
KM817150	SES006	T. dichrous	Brazil: Minas Gerais, Uberlândia
KM817151	SES007	Trachymyrmex sp.	Brazil: Minas Gerais, Uberlândia
KM817153	SES009	Trachymyrmex sp.	Brazil: Bahia, Palmeiras
KM817154	SES010	T. diversus	Brazil: Amazonas. Manaus
KM817149	SES004	S. luederwaldti	Brazil: Minas Gerais. Uberlândia
AY172623	Escovopsis weberi	Atta sp.	Brazil
		r .	

KJ935030	Escovopsis microspora	Ac. sub. molestans.	Brazil: Minas Gerais, Viçosa		
JQ855712	Escovopsis moelleri	Ac. sub. molestans.	Brazil: Minas Gerais, Viçosa		
JQ855714	Escovopsis lentecrescens	Ac. sub. subterraneus	Brazil: Minas Gerais, Viçosa		
KM817155	UT001	Ac. octospinosus	Caribbean island of Guadeloupe		
KM817156	UT002	Acromyrmex sp.	Caribbean island of Guadeloupe		
KM817157	UT003	Acromyrmex sp.	Panama: Gamboa		
KM817158	UT004	Atta colombica	Gamboa, Panama		
KM817159	UT005	Acromyrmex sp.	Argentina: Misiones		
KM817160	UT006	Atta cephalotes	Panama: Gamboa		
KM817161	UT007	Atta colombica	Panama: Gamboa		
KM817162	UT008	Atta colombica	Panama: Gamboa		
KM817163	UT009	Atta colombica	Panama: Gamboa		
KM817164	UT010	Atta sexdens	Panama: Coclecito		
KM817165	UT011	Trachymyrmex sp.	Panama: Gamboa		
KM817166	UT012	Trachymyrmex sp.	Panama: "Canal Zone"		
KM817167	UT014	Atta colombica	Panama: Darien		
KM817168	UT015	Atta colombica	Panama: Darien		
KM817169	UT016	Trachymyrmex sp.	Mexico: Palenque		
KM817170	UT017	Atta colombica	Panama: Gamboa		
KM817171	UT018	Trachymyrmex sp.	Panama: Gamboa		
KM817172	UT019	Atta cephalotes	Mexico: Palenque		
KM817173	UT020	Trachymyrmex sp.	Mexico: Palenque		
AY172632	Escovopsis aspergilloides	Trachymyrmex ruthae	Trinidad and Tobago		
JQ855713	Escovopsioides nivea	Ac. sub. subterraneus	Brazil: Minas Gerais, Viçosa		
KJ808766	Escovopsis kreiselii	Mycetophylax morschi	Brasil: Santa Catarina, Florianópolis		
Escovopsis strains from Gerardo et al. (2006b) dataset					

Escovopsis strains from Gerardo et al. (2006b) dataset

DQ848209	nmg011101-03	Cyphomyrmex longiscapus	Panama
DQ848208	ugm030327-05 esc4	Apterostigma sp.	Argentina
DQ848207	cc030106-02 escb	Apterostigma sp.	Panama
DQ848206	nmg031218-01 esc2	Apterostigma auriculatum	Panama
DQ848205	nmg031212-06	Apterostigma sp.	Panama
DQ848204	nmg031215-04	Apterostigma sp.	Panama
DQ848203	agh031215-02	Apterostigma sp.	Panama
DQ848202	nmg030614-01 esc1	Apterostigma cf. pilosum	Ecuador
DQ848201	cc030327-01 esc4	Apterostigma sp.	Argentina
DQ848200	sv030615-05 esc1	Apterostigma sp.	Ecuador
DQ848199	sv030615-04 esc1	Apterostigma sp.	Ecuador
DQ848198	cc030101-01	Apterostigma sp.	Panama
DQ848197	agh030627-03 esc2	Apterostigma sp.	Ecuador
DQ848196	agh030627-01 esc1	Apterostigma cf. dentigerum	Ecuador
DQ848195	agh030618-02 esc1	Apterostigma sp.	Ecuador
DQ848194	agh030609-03 esc1	Apterostigma sp.	Ecuador
DQ848193	nmg011029-03 esc1	Apterostigma sp.	Panama
DQ848192	ugm020531-04 esc1	Apterostigma sp.	Panama
DQ848191	al030609-03 esc1	Apterostigma sp.	Ecuador
DQ848190	nmg020521-04 esc1	Apterostigma dentigerum	Panama

DQ448189 aD,9018-10-8c1 Apterostigma Sp. ECuador DQ448184 agh0300222-12 Apterostigma Gr. pilosum Costa Rica DQ848184 agh030222-12 Apterostigma Gr. pilosum Ecuador DQ848184 nmg02051-02-esc2 Apterostigma Gr. pilosum Ecuador DQ848183 ugn03010-02-esc2 Apterostigma Gr. pilosum Ecuador DQ848184 ug030251-01-esc2 Apterostigma Gr. pilosum Ecuador DQ848183 ug030251-01-esc2 Apterostigma Gr.pilosum Facuador DQ848181 c010325-06-esc2 Apterostigma Gr.pilosum Panama DQ848182 agh03067-07-8 csc1 Apterostigma duriculatum Panama DQ848183 c01102-02-esc1 Apterostigma duriculatum Panama DQ848175 c011013-31-sc1 Apterostigma duriculatum Panama DQ848174 c011018-04-esc1 Apterostigma dentigerum Panama DQ848175 mg020611-02-esc7 Apterostigma dentigerum Costa Rica DQ848174 agh020709-10-2 esc3 Apterostigma dentigerum Costa Rica DQ848172 agh020710-01 esc3 Apterostigma dentigerum Costa Rica DQ848174 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848164 agh	DO040100	1020(10.10.1	A	
DQ441816 upm000100-02 esc1 Apterostigma denigerum Costa Rica DQ448185 nmg020619-02 esc2 Apterostigma denigerum Panama DQ448184 nmg020619-02 esc2 Apterostigma denigerum Panama DQ481818 umg020619-01 esc1 Apterostigma denigerum Panama DQ848184 umg020619-01 esc1 Apterostigma denigerum Panama DQ848183 ugn020531-01 esc2 Apterostigma duriculatum Panama DQ848184 agh020627-08 esc1 Apterostigma duriculatum Panama DQ848184 sp011112-01 esc11 Apterostigma duriculatum Panama DQ848176 c011029-02 esc1 Apterostigma duriculatum Panama DQ848177 c011018-04 esc1 Apterostigma denigerum Costa Rica DQ848176 agb020701-02 esc5 Apterostigma denigerum Costa Rica DQ848173 agb020701-02 esc5 Apterostigma denigerum Costa Rica DQ848173 agb020709-10 esc11 Apterostigma denigerum Costa Rica DQ848173 agb020709-10 esc11 Apterostigma denigerum Costa Rica DQ848170 agb020709-10 esc11 Apterostigma denigerum Costa Rica DQ848171 agb020709-10 esc1 Apterostigma denigerum Costa Rica DQ8481	DQ848189	al030618-10 esc1	Apterostigma sp.	Ecuador
DQ448185 agb00222-12 Apterostigma demigerum Costa Rica DQ448184 mmg030618-01 esc1 Apterostigma demigerum Panama DQ448183 mmg030618-01 esc1 Apterostigma demigerum Panama DQ448184 mmg030618-01 esc2 Apterostigma demigerum Panama DQ448184 co10325-06 esc2 Apterostigma demigerum Panama DQ448184 co10325-06 esc2 Apterostigma demigerum Panama DQ448187 co111213-31 esc1 Apterostigma demigerum Panama DQ448178 co111029-02 esc1 Apterostigma demigerum Panama DQ448178 co111029-02 esc1 Apterostigma demigerum Panama DQ448176 agb020630-01 esc1 Apterostigma demigerum Panama DQ448175 ang020611-02 esc7 Apterostigma demigerum Panama DQ448173 agb020709-10 esc1 Apterostigma demigerum Costa Rica DQ448173 agb020709-10 esc1 Apterostigma demigerum Costa Rica DQ448170 agb020709-10 esc1 Apterostigma demigerum Costa Rica DQ448170 agb020709-10 esc1 Apterostigma demigerum Costa Rica DQ448164 agb020709-10 esc1 Apterostigma demigerum Costa Rica DQ448165 ugm02602-02 esc6 Apterostigma demigerum Costa Rica DQ448164 agb02020-02 esc1 Apterostigma demigerum Panama DQ448165 ugm02602-02 esc4 Apterostigma demigerum Panama DQ448164 agb02020-02 esc1 Apterostigma demigerum Panama DQ448165 ugm02602-02 esc1 Apterostigma demigerum Panama DQ448165 ugm02602-02 esc1 Apterostigma demigerum Panama DQ448164 agb02020-02 esc1 Apterostigma demigerum Panama DQ44816	DQ848188	ugm050106-02 escc	Apterostigma sp.	Panama Costa Dise
DQ448185 mmg02051-02 esc1 Apterostigma cf. pilosum Panama DQ448183 ugm020531-01 esc2 Apterostigma cf. pilosum Panama DQ448183 ugm020531-01 esc2 Apterostigma deritigerum Panama DQ448182 agb030627-06 esc1 Apterostigma duriculatum Panama DQ448183 ugm020531-01 esc2 Apterostigma duriculatum Panama DQ448183 ugm020531-01 esc1 Apterostigma duriculatum Panama DQ448183 c011029-00 esc1 Apterostigma duriculatum Panama DQ448177 c011018-04 esc1 Apterostigma duriculatum Panama DQ448178 c011029-02 esc1 Apterostigma duriculatum Panama DQ448177 c011018-04 esc1 Apterostigma duriculatum Panama DQ448176 agb020630-01 esc1 Apterostigma duriculatum Panama DQ448176 agb020630-01 esc1 Apterostigma duritugerum Panama DQ448176 agb020630-01 esc1 Apterostigma duritugerum Panama DQ448173 ugb020712-04 esc1 Apterostigma duritugerum Panama DQ448173 ugb020701-01 esc8 Apterostigma duritugerum Costa Rica DQ448173 ugb020709-10 esc3 Apterostigma duritugerum Costa Rica DQ448170 agb020709-10 esc3 Apterostigma duritugerum Costa Rica DQ448170 ugb020709-10 esc3 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc3 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc3 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc1 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc1 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc2 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc1 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc1 Apterostigma duritugerum Costa Rica DQ448164 ugb020709-10 esc1 Apterostigma duritugerum Costa Rica DQ448164 ugb02062-02 esc1 Apterostigma duritugerum Costa Rica DQ448164 ugb02062-02 esc1 Apterostigma duritugerum Panama DQ448165 ugb02062-02 esc1 Apterostigma duritugerum Panama DQ448164 ugb02061-02 esc2 Apterostigma duritugerum Panama DQ448165 ugb02062-02 esc1 Apterostigma duritugerum Panama DQ448164 ugb02061-02 esc2 Apterostigma duritugerum Panama DQ448165 ugb020605-04 esc4 Apterostigma duritugerum Panama DQ448165 ugb02062-02 esc1 Apterostigma duritugerum Panama DQ44	DQ848187	agn030222-12	Apterostigma aentigerum	
DQ44183 mmg0306149.01 esc1 Apterostigma deritigerum Panama Ecuador DQ448184 ugm020531-01 esc2 Apterostigma deritigerum Panama DQ448183 ugm020531-01 esc2 Apterostigma deritigerum Panama DQ448183 ugm020531-01 esc1 Apterostigma auriculatum Panama DQ448179 cc011029-02 esc1 Apterostigma auriculatum Panama DQ448179 cc011029-02 esc1 Apterostigma auriculatum Panama DQ448178 cc011029-02 esc1 Apterostigma deritigerum Costa Rica DQ448176 agh020630-01 esc1 Apterostigma deritigerum Panama DQ448175 nng020611-02 esc7 Apterostigma deritigerum Panama DQ448173 agh020709-10 esc8 Apterostigma deritigerum Panama DQ448171 agh020709-10 esc8 Apterostigma deritigerum Costa Rica DQ448173 agh020709-10 esc8 Apterostigma deritigerum Costa Rica DQ448173 agh020709-10 esc1 Apterostigma deritigerum Costa Rica DQ448171 agh020709-10 esc1 Apterostigma deritigerum Costa Rica DQ448173 agh020709-10 esc1 Apterostigma deritigerum Costa Rica DQ448164 agh020709-10 esc1 Apterostigma deritigerum Costa Rica DQ448165 ugm02060-20-20 esc6 Apterostigma deritigerum Costa Rica DQ448164 agh020709-10 esc1 Apterostigma deritigerum Costa Rica DQ448164 agh020709-10 esc1 Apterostigma deritigerum Costa Rica DQ448165 ugm02060-20-20 esc6 Apterostigma deritigerum Costa Rica DQ448164 agh020709-10 esc1 Apterostigma deritigerum Costa Rica DQ448164 agh02020-20 esc6 Apterostigma deritigerum Costa Rica DQ448165 ugm02061-02 esc1 Apterostigma deritigerum Costa Rica DQ448157 nng01081-02 esc2 Apterostigma deritigerum Panama DQ448164 mng02061-02 esc1 Apterostigma deritigerum Panama DQ448165 ugm02062-02 esc4 Apterostigma deritigerum Panama DQ448164 nng02061-02 esc2 Apterostigma deritigerum Panama DQ448157 nng01081-02 esc1 Apterostigma deritigerum Panama DQ448159 nng010818-21 esc2 Apterostigma deritigerum Panama DQ448159 nng010818-21 esc2 Apterostigma deritigerum Panama DQ448159 nng010818-21 esc2 Ap	DQ848186	sv030614-02 esc1	Apterostigma cf. pilosum	Ecuador
DQ848184 nmg0.0961.8-01 esc1 Apterostigma denitgerum Panama DQ848183 agh030627-08 esc1 Apterostigma apriculatum Panama DQ848181 cc010235-06 css2 Apterostigma dentigerum Panama DQ848180 sp011112-01 csc11 Apterostigma duriculatum Panama DQ848179 cc011213-31 esc1 Apterostigma duriculatum Panama DQ848179 cc011018-04 esc1 Apterostigma duriculatum Panama DQ848170 cc011018-04 esc1 Apterostigma dentigerum Panama DQ848175 mmg020611-02 csc7 Apterostigma dentigerum Costa Rica DQ848174 mmg020611-02 csc6 Apterostigma dentigerum Costa Rica DQ848173 agb020709-10 csc3 Apterostigma dentigerum Costa Rica DQ848170 agb020709-10 esc3 Apterostigma dentigerum Costa Rica DQ848170 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848170 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848169 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848169 agb020706-01 Apterostigma de	DQ848185	nmg020519-02 esc2	Apterostigma cf. pilosum	Panama
DQ44818.5 ugm0.005.1.01 esc2 Apterostigma dentigerum Panama DQ44818.2 agh030627.06 esc2 Apterostigma auriculatum Panama DQ44818.0 sp011112.01 esc11 Apterostigma auriculatum Panama DQ448179 cc011213.31 esc1 Apterostigma auriculatum Panama DQ448176 cc011029.02 esc1 Apterostigma auriculatum Panama DQ448176 agh020630.01 esc1 Apterostigma dentigerum Costa Rica DQ448175 nmg020611-02 esc7 Apterostigma dentigerum Panama DQ448173 agh020630.01 esc1 Apterostigma dentigerum Costa Rica DQ448173 agh020702.04 esc1 Apterostigma dentigerum Costa Rica DQ448173 agh0207012.04 esc1 Apterostigma dentigerum Costa Rica DQ448173 agh020709.10 esc3 Apterostigma dentigerum Costa Rica DQ448170 agh020709.10 esc1 Apterostigma dentigerum Costa Rica DQ448169 agh020709.10 esc1 Apterostigma dentigerum Costa Rica DQ448169 agh020709.10 esc1 Apterostigma dentigerum Costa Rica DQ448163 agh020709.10 esc1 Apterostigma dentigerum Costa Rica DQ448163 agh020709.10 esc1 Apterostigma dentigerum Costa Rica DQ448164 agh020709.10 esc1 Apterostigma dentigerum Costa Rica DQ448165 agh02062.07 esc1 Apterostigma dentigerum Costa Rica DQ448163 egh02060.102 esc2 Apterostigma dentigerum Costa Rica DQ448164 agh02060.102 esc2 Apterostigma dentigerum Costa Rica DQ448164 agh02060.102 esc1 Apterostigma dentigerum Costa Rica DQ448163 egh02060.102 esc1 Apterostigma dentigerum Costa Rica DQ448164 agh02060.102 esc1 Apterostigma dentigerum Costa Rica DQ448163 egh02060.102 esc1 Apterostigma dentigerum Costa Rica DQ448164 agh02060.102 esc1 Apterostigma dentigerum Panama DQ448164 agh02060.102 esc1 Apterostigma dentigerum Panama DQ448159 nmg010816.05 esc1 Apterostigma dentigerum Costa Rica DQ448164 agh02069.102 esc1 Apterostigma dentigerum Panama DQ448164 agh02069.102 esc1 Apterostigma dentigerum Panama DQ448165 ugm02060.104 esc4 Apterostigma dentigerum Panama DQ448164 agh02061.02 esc1 Apterostigma dentigerum Panama DQ448159 nmg010816.05 esc1 Apterostigma dentigerum Panama DQ448159 nmg010816.05 esc1 Apterostigma dentigerum Panama DQ448150 nmg010816.05 esc1 Apterostigma dentigerum	DQ848184	nmg030618-01 esc1	Apterostigma cf. pilosum	Ecuador
DQ8481812 appl0.0962/-08 esc1 Apterostigma auriculatum Punama DQ848183 sc01112-01 esc11 Apterostigma auriculatum Panama DQ848179 cc011029-02 csc1 Apterostigma auriculatum Panama DQ848176 cc011029-02 csc1 Apterostigma auriculatum Panama DQ848176 cc011029-02 csc1 Apterostigma dentigerum Ponama DQ848176 agh020630-01 csc1 Apterostigma dentigerum Panama DQ848175 nmg020611-02 esc6 Apterostigma dentigerum Panama DQ848173 agh020709-10 esc8 Apterostigma dentigerum Costa Rica DQ848171 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848171 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848171 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848167 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848168 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848169 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848161 agh020620-20 esc6 Apterosti	DQ848183	ugm020531-01 esc2	Apterostigma dentigerum	Panama
DQ448181 cc010425-06 esc2 Apterostigma duriculatum Panama DQ448180 sp011112-01 esc11 Apterostigma duriculatum Panama DQ448177 cc011018-04 esc1 Apterostigma dentigerum Costa Rica DQ448173 agh02063-01 esc1 Apterostigma dentigerum Panama DQ448173 agh020701-02 esc6 Apterostigma dentigerum Costa Rica DQ448173 agh020709-10 esc3 Apterostigma dentigerum Costa Rica DQ448170 agh020709-10 esc3 Apterostigma dentigerum Costa Rica DQ448170 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448170 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448163 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448164 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448165 ugn020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448163 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448164 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448165 ugn020629-02 esc6 Apterostigma dentigerum Costa Rica DQ448165 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ448166 agh020629-02 esc6 Apterostigma dentigerum Costa Rica DQ448163 es0011-02 esc2 Apterostigma dentigerum Costa Rica DQ448164 nmg20601-02 esc1 Apterostigma dentigerum Panama DQ448165 ugn020602-02 esc4 Apterostigma dentigerum Panama DQ448164 ng02061-02 esc1 Apterostigma dentigerum Panama DQ448164 agh020629-02 esc4 Apterostigma dentigerum Panama DQ448165 ugn020602-02 esc1 Apterostigma dentigerum Panama DQ448164 ng02061-02 esc1 Apterostigma dentigerum Panama DQ448159 ng01081-02 esc2 Apterostigma dentigerum Panama DQ448164 ng020629-02 esc4 Apterostigma dentigerum Panama DQ448165 ng0108062-02 esc1 Apterostigma dentigerum Panama DQ448164 ng020629-02 esc1 Apterostigma dentigerum Panama DQ448165 ng0108062-02 esc1	DQ848182	agh030627-08 esc1	Apterostigma sp.	Ecuador
DQ848180 sp011112-01 esc11 Apterostigma duriculatum Panama DQ848179 cc011213-31 esc1 Apterostigma auriculatum Panama DQ848176 cc011029-02 esc1 Apterostigma auriculatum Panama DQ848177 cc011018-04 esc1 Apterostigma dentigerum Costa Rica DQ848176 apb020630-01 esc1 Apterostigma dentigerum Panama DQ848174 nmg020611-02 esc6 Apterostigma dentigerum Panama DQ848173 agb020709-10 esc8 Apterostigma dentigerum Costa Rica DQ848171 agb020709-10 esc3 Apterostigma dentigerum Costa Rica DQ848170 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848170 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848164 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848165 agb020706-01 Apterostigma dentigerum Costa Rica DQ848164 abb02062-02 esc6 Apterostigma dentigerum Costa Rica DQ848165 ugm020602-07 esc1 Apterostigma dentigerum Costa Rica DQ848164 agb020702-10 esc1 Apterostigma dentigerum Costa Rica DQ848165 ugm020602-07 esc1 Apterostigma dentigerum Costa Rica	DQ848181	cc010325-06 esc2	Apterostigma auriculatum	Panama
DQ848179 cc011213-31 esc1 Apterostigma auriculatum Panama DQ848178 cc011018-04 esc1 Apterostigma auriculatum Panama DQ848176 agb020630-01 esc1 Apterostigma dentigerum Costa Rica DQ848175 nmg020611-02 esc6 Apterostigma dentigerum Panama DQ848173 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848171 agb020709-10 esc3 Apterostigma dentigerum Costa Rica DQ848170 agb020709-10 esc3 Apterostigma dentigerum Costa Rica DQ848170 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848163 agb020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848164 agb020706-01 Apterostigma dentigerum Costa Rica DQ848165 agb020706-02 Apterostigma dentigerum Costa Rica DQ848164 agb020706-01 Apterostigma dentigerum Costa Rica DQ848165 agb020702-02 esc6 Apterostigma dentigerum Costa Rica DQ848164 agb02062-07 esc1 Apterostigma dentigerum Costa Rica DQ848165 um02061-02 esc2 Apterostigma dentigerum Panama DQ848164 agb02062-02 esc4 Apterostigma dentigerum Panama DQ8	DQ848180	sp011112-01 esc11	Apterostigma dentigerum	Panama
DQ848178 cc011029-02 esc1 Apterostigma auriculatum Panama DQ848177 cc011018-04 esc1 Apterostigma dentigerum Costa Rica DQ848175 nmg020611-02 esc7 Apterostigma dentigerum Panama DQ848174 nmg020611-02 esc7 Apterostigma dentigerum Panama DQ848173 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848170 agh020709-10 esc3 Apterostigma dentigerum Costa Rica DQ848170 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848164 agh020702-02 esc6 Apterostigma dentigerum Costa Rica DQ848165 ugm020602-07 esc1 Apterostigma dentigerum Costa Rica DQ848164 agh02062-02 esc4 Apterostigma dentigerum Poata Rica DQ848161 agh02062-02 esc4 Apterostigma dentigerum Poata Rica DQ848163 ex020602-02 esc4 Apterostigma dentigerum Poata Rica </td <td>DQ848179</td> <td>cc011213-31 esc1</td> <td>Apterostigma auriculatum</td> <td>Panama</td>	DQ848179	cc011213-31 esc1	Apterostigma auriculatum	Panama
DQ848177col11018-04 esc1Apterostigma sp.PanamaDQ848175agh020630-01 esc1Apterostigma dentigerumCosta RicaDQ848174nmg020611-02 esc6Apterostigma dentigerumPanamaDQ848173agh020712-04 esc1Apterostigma dentigerumCosta RicaDQ848171agh020709-10 esc8Apterostigma dentigerumCosta RicaDQ848171agh020709-10 esc3Apterostigma dentigerumCosta RicaDQ848170agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848169agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848164agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848165agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848164agh020706-01Apterostigma dentigerumCosta RicaDQ848165ugm02060-07 esc1Apterostigma genuCosta RicaDQ848165ugm02060-07 esc1Apterostigma sp.PanamaDQ848164nmg020611-02 esc2Apterostigma dentigerumPanamaDQ848165ugm020621-02 esc2Apterostigma dentigerumPanamaDQ848164agh02062-07 esc4Apterostigma dentigerumPanamaDQ848163ec020605-04 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848163nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848150nmg010816-05 esc19 <td>DQ848178</td> <td>cc011029-02 esc1</td> <td>Apterostigma auriculatum</td> <td>Panama</td>	DQ848178	cc011029-02 esc1	Apterostigma auriculatum	Panama
DQ848176agh020630-01 csc1Apterostigma dentigerumCosta RicaDQ848175nmg020611-02 csc7Apterostigma dentigerumPanamaDQ848173agh020712-04 esc1Apterostigma dentigerumCosta RicaDQ848173agh020709-10 esc8Apterostigma dentigerumCosta RicaDQ848174agh020709-10 esc3Apterostigma dentigerumCosta RicaDQ848170agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848169agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848164agh020706-01Apterostigma dentigerumCosta RicaDQ848165agh020706-01Apterostigma dentigerumCosta RicaDQ848166abs020621-02 esc6Apterostigma dentigerumCosta RicaDQ848163ugn020602-07 esc1Apterostigma dentigerumCosta RicaDQ848164nmg020611-02 esc2Apterostigma dentigerumPanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848150agh020621-05 esc1Apterostigma dentigerumPanamaDQ848150nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848150nmg0	DQ848177	cc011018-04 esc1	Apterostigma sp.	Panama
DQ848175nmg020611-02 esc?Apterostigma dentigerumPanamaDQ848174nmg020611-02 esc6Apterostigma dentigerumCosta RicaDQ848173agh0207109-10 esc8Apterostigma dentigerumCosta RicaDQ848170agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848169agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848168agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848168agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848167agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848168agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma dentigerumCosta RicaDQ848161ex020601-02 esc2Apterostigma dentigerumPanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156 </td <td>DQ848176</td> <td>agh020630-01 esc1</td> <td>Apterostigma dentigerum</td> <td>Costa Rica</td>	DQ848176	agh020630-01 esc1	Apterostigma dentigerum	Costa Rica
DQ848174 nmg020611-02 esc6 Apterostigma dentigerum Panama DQ848173 agh020712-04 esc1 Apterostigma dentigerum Costa Rica DQ848172 agh020709-10 csc3 Apterostigma dentigerum Costa Rica DQ848170 agh020709-10 csc3 Apterostigma dentigerum Costa Rica DQ848170 agh020709-10 esc1 Apterostigma dentigerum Costa Rica DQ848163 agh020706-01 Apterostigma dentigerum Costa Rica DQ848164 agh020706-01 Apterostigma dentigerum Costa Rica DQ848165 agh020706-01 Apterostigma dentigerum Costa Rica DQ848164 agh020629-02 esc6 Apterostigma dentigerum Costa Rica DQ848165 ugm020601-02 esc1 Apterostigma sp. Panama DQ848164 nmg020611-02 esc2 Apterostigma dentigerum Panama DQ848163 c020605-04 esc4 Apterostigma dentigerum Panama DQ848164 agh020629-02 esc4 Apterostigma dentigerum Panama DQ848163 agh020621-02 esc1 Apterostigma dentigerum Panama <t< td=""><td>DQ848175</td><td>nmg020611-02 esc7</td><td>Apterostigma dentigerum</td><td>Panama</td></t<>	DQ848175	nmg020611-02 esc7	Apterostigma dentigerum	Panama
DQ848173agh020712-04 esc1Apterostigma dentigerumCosta RicaDQ848172agh020709-10 esc8Apterostigma dentigerumCosta RicaDQ848171agh020709-10 esc3Apterostigma dentigerumCosta RicaDQ848170agh020709-10 esc11Apterostigma dentigerumCosta RicaDQ848169agh020709-10 esc11Apterostigma dentigerumCosta RicaDQ848169agh020706-01Apterostigma dentigerumCosta RicaDQ848164agh020706-01Apterostigma dentigerumCosta RicaDQ848165ugm020602-02 esc1Apterostigma dentigerumCosta RicaDQ848164nmg020611-02 esc1Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma sp.PanamaDQ848164nmg020611-02 esc2Apterostigma sp.PanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848164agh02020-02 esc4Apterostigma dentigerumPanamaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1 <td>DQ848174</td> <td>nmg020611-02 esc6</td> <td>Apterostigma dentigerum</td> <td>Panama</td>	DQ848174	nmg020611-02 esc6	Apterostigma dentigerum	Panama
DQ848172agh020709-10 esc8Apterostigma dentigerumCosta RicaDQ848171agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848170agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848168agh020706-01Apterostigma dentigerumCosta RicaDQ848166agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848166abs020621-02 esc1Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma dentigerumCosta RicaDQ848163co20605-04 esc4Apterostigma dentigerumPanamaDQ848163co20605-04 esc4Apterostigma dentigerumPanamaDQ848161agh020621-02 esc4Apterostigma dentigerumPanamaDQ848161agh020621-05 esc2Apterostigma dentigerumPanamaDQ848163agh020621-05 esc2Apterostigma dentigerumPanamaDQ848161agh020621-05 esc2Apterostigma dentigerumPanamaDQ848158nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaLoster vetfrom Masi	DQ848173	agh020712-04 esc1	Apterostigma dentigerum	Costa Rica
DQ848171agh020709-10 esc3Apterostigma dentigerumCosta RicaDQ848170agh020709-10 esc11Apterostigma dentigerumCosta RicaDQ848169agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848168agh020706-01Apterostigma dentigerumCosta RicaDQ848167agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848166abs020621-02 esc1Apterostigma dentigerumCosta RicaDQ848163ugm020602-07 esc1Apterostigma dentigerumPanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848163sp011112-01 esc1Apterostigma dentigerumPanamaDQ848164agh020621-02 esc4Apterostigma dentigerumPanamaDQ848163agh020621-05 esc2Apterostigma dentigerumPanamaDQ848150agh020621-05 esc2Apterostigma dentigerumPanamaDQ848150nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05	DQ848172	agh020709-10 esc8	Apterostigma dentigerum	Costa Rica
DQ848170agh020709-10 esc11Apterostigma dentigerumCosta RicaDQ848169agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848163agh020706-01Apterostigma dentigerumCosta RicaDQ848164agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma dentigerumCosta RicaDQ848163co20605-04 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848163co20605-04 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848150agh020621-05 esc2Apterostigma dentigerumPanamaDQ848158nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaISecovopsis trichodermoidesMycocepurus goeldiiESC013Mycocepurus goeldii	DQ848171	agh020709-10 esc3	Apterostigma dentigerum	Costa Rica
DQ848169agh020709-10 esc1Apterostigma dentigerumCosta RicaDQ848168agh020706-01Apterostigma dentigerumCosta RicaDQ848167agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848166abs020621-02 esc1Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma dentigerumCosta RicaDQ848163cc020605-04 esc4Apterostigma sp.PanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848164agh020621-02 esc4Apterostigma dentigerumPanamaDQ848160agh020621-02 esc4Apterostigma dentigerumCosta RicaDQ848160agh020621-02 esc4Apterostigma dentigerumCosta RicaDQ848160agh020621-02 esc4Apterostigma dentigerumCosta RicaDQ848150nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg01082-02 esc1Apterostigma dentigerumPanamaDQ848156ng010802-02 esc1Apterostigma dentigerumPanamaDQ848156ng010802-02 esc1Apterostigma dentigerumPanamaDQ848156ng010802-02 esc1Apterostigma dentigerumPanamaDQ848156ng010802-02 esc1Apterostigma dentigerumPanamaEscovopsis trichodermoides <td< td=""><td>DQ848170</td><td>agh020709-10 esc11</td><td>Apterostigma dentigerum</td><td>Costa Rica</td></td<>	DQ848170	agh020709-10 esc11	Apterostigma dentigerum	Costa Rica
DQ848168agh020706-01Apterostigma dentigerumCosta RicaDQ848167agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848166abs020621-02 esc1Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma dentigerumPanamaDQ848164nmg020611-02 esc2Apterostigma dentigerumPanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848164agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848150nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156ng010802-02 esc1Apterostigma dentigerumPanamaDQ848156ng010802-02 esc1Apterostigma dentigerumPanamaDQ848156ng010802-02 esc1Apterostigma dentigerumPanamaEscovopsis trichodermoidesMycocepurus goeldiiGreenIsolates of this stutterESCO20Mycocepurus goeldiiPOS1 <td>DQ848169</td> <td>agh020709-10 esc1</td> <td>Apterostigma dentigerum</td> <td>Costa Rica</td>	DQ848169	agh020709-10 esc1	Apterostigma dentigerum	Costa Rica
DQ848167agh020629-02 esc6Apterostigma dentigerumCosta RicaDQ848166abs020621-02 esc1Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma ap.PanamaDQ848164nmg020611-02 esc2Apterostigma dentigerumPanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848150agh020621-05 esc2Apterostigma dentigerumCosta RicaDQ848150agh020621-05 esc2Apterostigma dentigerumPanamaDQ848158nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848157nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovapsis derivettrichodermoidesMycocepurus goeldiiaFESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldiiPobsi-serie viride </td <td>DQ848168</td> <td>agh020706-01</td> <td>Apterostigma dentigerum</td> <td>Costa Rica</td>	DQ848168	agh020706-01	Apterostigma dentigerum	Costa Rica
DQ848166abs020621-02 esc1Apterostigma dentigerumCosta RicaDQ848165ugm020602-07 esc1Apterostigma sp.PanamaDQ848164nmg020611-02 esc2Apterostigma dentigerumPanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848162sp011112-01 esc1Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848160agh020621-05 esc2Apterostigma dentigerumCosta RicaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derived from Masiulionis et al. (2015FESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldiiAf534525Trichoderma hamatumAf534624Trichoderma hamatum-	DQ848167	agh020629-02 esc6	Apterostigma dentigerum	Costa Rica
DQ848165ugm020602-07 esc1Apterostigma sp.PanamaDQ848164nmg020611-02 esc2Apterostigma dentigerumPanamaDQ848163cc020605-04 esc4Apterostigma dentigerumPanamaDQ848162sp011112-01 esc1Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848160agh020621-05 esc2Apterostigma dentigerumCosta RicaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis trichodermoidesMycocepurus goeldiiBrazilIsolates of this stutESCO13Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldiiPOS4Trichoderma virideAF534620Trichoderma hamatumAF534624Trichoderma nubescens	DQ848166	abs020621-02 esc1	Apterostigma dentigerum	Costa Rica
DQ848164 nmg020611-02 esc2 Apterostigma dentigerum Panama DQ848163 cc020605-04 esc4 Apterostigma sp. Panama DQ848162 sp011112-01 esc1 Apterostigma dentigerum Panama DQ848161 agh020629-02 esc4 Apterostigma dentigerum Costa Rica DQ848160 agh020621-05 esc2 Apterostigma dentigerum Costa Rica DQ848159 nmg010318-21 esc2 Apterostigma dentigerum Panama DQ848158 nmg010816-05 esc19 Apterostigma dentigerum Panama DQ848156 nmg010816-05 esc1 Apterostigma dentigerum Panama DQ848156 nmg010802-02 esc1 Apterostigma dentigerum Panama DQ848156 nmg010802-02 esc1 Apterostigma dentigerum Panama Escovopsis trichodermoides Mycocepurus goeldii Brazil Isolates of this strichodermoides Mycocepurus goeldii - - ESCO13 Mycocepurus goeldii - - POS1 Mycocepurus goeldii - - POS3 Mycocepurus goeldii	DQ848165	ugm020602-07 esc1	Apterostigma sp.	Panama
DQ848163cc020605-04 esc4Apterostigma ap.PanamaDQ848162sp011112-01 esc1Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848160agh020621-05 esc2Apterostigma dentigerumPanamaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derivet from Masiulionis et al. (2015)VPanamaFisolates of this studyFisolates of this studyPossMycocepurus goeldiiPOS3Apterostigma dentigerum soeldiiPOS3Mycocepurus goeldiiPOSPose= so typocreaceae used as outgroupPosPosPosPosPosPosPosPosPosPosPosPosPosPosPos </td <td>DQ848164</td> <td>nmg020611-02 esc2</td> <td>Apterostigma dentigerum</td> <td>Panama</td>	DQ848164	nmg020611-02 esc2	Apterostigma dentigerum	Panama
DQ848162sp011112-01 esc1Apterostigma dentigerumPanamaDQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848160agh020621-05 esc2Apterostigma dentigerumCosta RicaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848157nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis deriverfrom Masiulionis et al. (2015)FarailFarailIsolates of this stucture- ESCO13Mycocepurus goeldiiPOS1Mycocepurus goeldiiOther species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534624Trichoderma pubescens	DQ848163	cc020605-04 esc4	Apterostigma sp.	Panama
DQ848161agh020629-02 esc4Apterostigma dentigerumCosta RicaDQ848160agh020621-05 esc2Apterostigma dentigerumCosta RicaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848157nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derivet from Masiulionis et al. (2015)Escovopsis trichodermoidesMycocepurus goeldiiBrazilEscovopsis trichodermoidesMycocepurus goeldiiESCO13Mycocepurus goeldiiPOS1Mycocepurus goeldii-Other species of Hyporeaceae used as outgroupAF534520Trichoderma hamatum <tr< td=""><td>DQ848162</td><td>sp011112-01 esc1</td><td>Apterostigma dentigerum</td><td>Panama</td></tr<>	DQ848162	sp011112-01 esc1	Apterostigma dentigerum	Panama
DQ848160agh020621-05 esc2Apterostigma dentigerumCosta RicaDQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848157nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derivet from Masiulionis et al. (2015)Freise and State and St	DQ848161	agh020629-02 esc4	Apterostigma dentigerum	Costa Rica
DQ848159nmg010318-21 esc2Apterostigma dentigerumPanamaDQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848157nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derivet from Masiulionis et al. (2015)From Masiulionis et al. (2015)From Masiulionis et al. (2015)KF033128Escovopsis trichodermoidesMycocepurus goeldiiBrazilIsolates of thisFSCO20Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534520Trichoderma hamatumAF534624Trichoderma pubescens	DQ848160	agh020621-05 esc2	Apterostigma dentigerum	Costa Rica
DQ848158nmg010816-05 esc19Apterostigma dentigerumPanamaDQ848157nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derived from Masiulionis et al. (2015)Escovopsis derived from Masiulionis et al. (2015)BrazilIsolates of this study-ESCO13Mycocepurus goeldiiBrazil-ESCO20Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534624Trichoderma pubescens	DQ848159	nmg010318-21 esc2	Apterostigma dentigerum	Panama
DQ848157nmg010816-05 esc1Apterostigma dentigerumPanamaDQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derived from Masiulionis et al. (2015)Kf033128Escovopsis trichodermoidesMycocepurus goeldiiBrazilIsolates of this studyESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldiiOther species of Hypocreaceae used as outgroupAF534520Trichoderma virideAF534624Trichoderma pubescens	DQ848158	nmg010816-05 esc19	Apterostigma dentigerum	Panama
DQ848156nmg010802-02 esc1Apterostigma dentigerumPanamaEscovopsis derived from Masiulionis et al. (2015)KF033128Escovopsis trichodermoidesMycocepurus goeldiiBrazilIsolates of this study-ESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534520Trichoderma viride-AF534624Trichoderma pubescens	DQ848157	nmg010816-05 esc1	Apterostigma dentigerum	Panama
Escovopsis derived from Masiulionis et al. (2015)KF033128Escovopsis trichodermoidesMycocepurus goeldiiBrazilIsolates of this studyESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma viride-AF534620Trichoderma numatum-AF534624Trichoderma pubescens-	DQ848156	nmg010802-02 esc1	Apterostigma dentigerum	Panama
KF033128Escovopsis trichodermoidesMycocepurus goeldiiBrazilIsolates of this studyESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534620Trichoderma num tumAF534624Trichoderma pubescens	Escovopsis deriv	ed from Masiulionis et al. (2015	j)	
Isolates of this study-ESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534620Trichoderma pubescensAF534624Trichoderma pubescens	KF033128	Escovopsis trichodermoides	Mycocepurus goeldii	Brazil
-ESCO13Mycocepurus goeldiiESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534620Trichoderma hamatumAF534624Trichoderma pubescens	Isolates of this st	udy		
-ESCO20Mycocepurus goeldiiPOS1Mycocepurus goeldiiPOS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534620Trichoderma hamatumAF534624Trichoderma pubescens	-	ESCO13	Mycocepurus goeldii	-
POS1Mycocepurus goeldii-POS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534620Trichoderma hamatumAF534624Trichoderma pubescens	-	ESCO20	Mycocepurus goeldii	-
-POS3Mycocepurus goeldii-Other species of Hypocreaceae used as outgroupAF534585Trichoderma virideAF534620Trichoderma hamatumAF534624Trichoderma pubescens	-	POS1	Mycocepurus goeldii	-
Other species of Hypocreaceae used as outgroup AF534585 Trichoderma viride AF534620 Trichoderma hamatum AF534624 Trichoderma pubescens	-	POS3	Mycocepurus goeldii	-
AF534585Trichoderma viride-AF534620Trichoderma hamatum-AF534624Trichoderma pubescens-	Other species of	Hypocreaceae used as outgroup		
AF534620Trichoderma hamatumAF534624Trichoderma pubescens	AF534585	Trichoderma viride	_	_
AF534624 Trichoderma pubescens	AF534620	Trichoderma hamatum	-	-
	AF534624	Trichoderma pubescens	-	_

8.3. Figures

Figure S1. Experimental setup used in the plate assays. A. Pairwise culture assays displaying *Leucocoprinus* strains (L), its growth (after 14 days, dashed lines), and *Escovopsis trichodermoides* (Et). B. Bioassays with multiple host possibilities displaying *Leucocoprinus* strains (L) or a comparative group (CG), *E. trichodermoides* (Et) and Control (C) in the six equidistant tracks. C. Container (with gypsum at the base) used for assays with ant colonies (in the center), and feeding location (x) where cornmeal flakes were offered.

Figure S2. Assays performed in live colonies of *Mycocepurus goeldii*. A. Final aspects of different fungus garden after three successive exposures to *Escovopsis trichodermoides* conidia (the numbers indicate the ordination used for non-parametric multidimensional scaling). B. Initial aspect of the fungus garden (left) and after incorporation of food provided

(right). C. E. trichodermoides conidia grown on PDA plates in the viability check of the inoculum.

Figure S3. Growth pattern of *Trichoderma atroviride* in the fungal choice assay (Dual-culture type 2). In this assay growth of *T. atroviride* was observed on PDA in two sets. Information about the sets was described on session 2.4 of Material and Methods. Observations were carried out on the 3^{rd} , 7^{th} and 14^{th} day of incubation.

Figure S4. Growth of *Escovopsis trichodermoides* LESF 927 (Et) towards *Moniliophthora perniciosa* LESF 1140 (M) in the dual-culture type 1 experiment. No change in *M. perniciosa* growth was observed after 10 days of incubation (Mann-Whitney test, P = 0.4848). Pictures denote (A) the growth of *M. perniciosa*; (B) the interaction between *E. trichodermoides* and

M. perniciosa and(C) the growth of *E. trichodermoides* on the 5^{th} day of incubation. Note the growth inhibition of *E. trichodermoides* relative to its control.

Figure S5. Basidiome formation of the fungal cultivar *Leucocoprinus* sp. AR02. A. Colony aspect after 35 days of incubation on PDA supplemented with metabolites produced by *Escovopsis trichodermoides*. B. Early stages of basidiome formation. C. Macromorphological changes in the colony, before (up) and after exposed to metabolites (bottom). D. Basidiomes after 2 months on OA.

Figure S6. Phylogeny of *Leucocoprinus* fungi based on ITS marker (with 727 pairs of bases in the final alignment). The sequences correspond to lower attine cultivars (from Mueller et al., 2018). Clade-1 and Clade-2 are named according to Mueller et al. (1998). Free-living fungi (not in association with ant colonies) are shown in bold. Free-living fungi (*Leucocoprinus* sp. PA493 and PA501) were used as outgroup. A red squared on each clade indicates the position of strains found in this study. The analysis was conduced using the Bayersian inference algorithm. Figures on branches indicate posterior probabilities greater than or equal to 0.7. Information on the strains are available in Table S2 (ITS sequences of lower attine cultivars and free-living fungi) and Table S7. Each strain was indicated by the Sample ID code. Pictures of basidiomes of *Leucocoprinus* sp. fungi produced in culture. A and B: fungi associated with *Mycetophylax morschi* (AR01 and AR02, respectively). C: fungi associated with *Mycocepurus goeldii* (QVM2). Photos by Salomé Urrea Valencia (AR01), and Rodolfo Bizarria Jr. (AR02, QVM2).

Figure S7. *Escovopsis* phylogeny based on a segment of the translation elongation factor 1alpha (*tef1*) with 731 bp in the final alignment (tree shown in the upper left inset). *Escovopsis trichodermoides* clade is highlighted in yellow, comprehending all strains from this study. Three species of Hypocreaceae fungi were used as outgroup according to Meirelles et al. (2015). The analysis was conduced using the Bayersian inference algorithm. Figures on branches indicate posterior probabilities greater than or equal to 0.7. Information about strains used is available in Table S8. Each strain was indicated by the isolate ID code. ^{ET}: ex-type strains.

8.4. REFERENCES

DARRIBA, D., TABOADA, G. L., DOALLO, R., POSADA, D. jModelTest 2: more models, new heuristics and parallel computing. **Nature Methods**, v. 9, n. 8, p. 772, 2012.

DE MENDIBURU, F. Package 'agricolae'. Statistical procedures for agricultural reserarch. **R** package version, v. 1, n. 1, 2017.

GERARDO, N. M.; MUELLER, U. G.; CURRIE, C. R. Complex host-pathogen coevolution in the *Apterostigma* fungus-growing ant-microbe symbiosis. **BMC Evolutionary Biology**, v. 6, n. 1, p. 88–96, 2006.

HALL, T. A. BioEdit 5.0.9: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symposium Series, v. 41, n. 41, p. 95–98, 1999.

KATOH, K.; STANDLEY, D. M. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. **Molecular Biology and Evolution**, v. 30, n. 4, p. 772–780, 2013.

MASIULIONIS, V. E.; CABELLO, M. N.; SEIFERT, K. A.; RODRIGUES, A.; PAGNOCCA, F. C. *Escovopsis trichodermoides* sp. nov., isolated from a nest of the lower attine ant *Mycocepurus goeldii*. **Antonie van Leeuwenhoek**, v. 107, n. 3, p. 731–740, 2015.

MEIRELLES, L. A.; SOLOMON, S. E.; BACCI JR, M.; WRIGHT, A. M.; MUELLER, U. G.; RODRIGUES, A. Shared *Escovopsis* parasites between leaf-cutting and non-leaf-cutting ants in the higher attine fungus-growing ant symbiosis. **Royal Society Open Science**, v. 2, n. 9, p. 1–11, 2015.

MIKHEYEV, A. S.; MUELLER, U. G.; ABBOT, P. Cryptic sex and many-to-one coevolution in the fungus-growing ant symbiosis. **Proceedings of the National Academy of Sciences USA**, v. 103, n. 28, p. 10702–10706, 2006.

MUELLER, U. G.; KARDISH, M. R.; ISHAK, H. D.; WRIGHT, A. M.; SOLOMON, S. E.; BRUSCHI, S. M.; CARLSON, A. L.; BACCI JR, M. Phylogenetic patterns of ant-fungus associations indicate that farming strategies, not only a superior fungal cultivar, explain the ecological success of leafcutter ants. **Molecular Ecology**, v. 27, n. 10, p. 2414–2434, 2018.

MUELLER, U. G.; REHNER, S. A.; SCHULTZ, T. R. The evolution of agriculture in ants. Science, v. 281, n. 5385, p. 2034–2038, 1998.

NOGUCHI, K., GEL, Y. R., BRUNNER, E., KONIETSCHKE, F. nparLD: an R software package for the nonparametric analysis of longitudinal data in factorial experiments. Journal of Statistical Software, v. 50, n. 12, 2012.

R CORE TEAM. R: A language and environment for statistical computing. **R Foundation for Statistical Computing**, Vienna, Austria. URL http://www.R-project.org/., 2017.

RAMBAUT, A. Figtree v. 1.4.3. Available from: http://tree.bio.ed.ac.uk/software/figtree/, 2016.

REHNER, S. A.; SAMUELS, G. J. Taxonomy and phylogeny of *Gliocladium* analysed from nuclear large subunit ribosomal DNA sequences. **Mycological Research**, v. 98, n. 6, p. 625–634, 1994.

RONQUIST, F., TESLENKO, M., VAN DER MARK, P., AYRES, D. L., DARLING, A., HÖHNA, S., LARGET, B., LIU, L., SUCHARD, S. A., HUELSENBECK, J. P. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. **Systematic Biology**, v. 61, n. 3, p. 539–542, 2012.

VILGALYS, R.; HESTER, M. Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several *Cryptococcus* species. **Journal of Bacteriology**, v. 172, n. 8, p. 4238–4246, 1990.

WHITE, T. J.; BRUNS, T., LEE, S. J. W. T., TAYLOR, J. L. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. **PCR protocols: a guide to methods and applications**, v. 18, n. 1, p. 315–322, 1990.