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Decay of Accelerated Protons and the Existence of the Fulling-Davies-Unruh Effect
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We investigate the weak decay of uniformly accelerated protons in the context of standard quantum
field theory. Because the mean proper lifetime of a particle is a scalar, the same value for this observable
must be obtained in the inertial and coaccelerated frames. We are only able to achieve this equality by
considering the Fulling-Davies-Unruh effect. This reflects the fact that the Fulling-Davies-Unruh effect
is mandatory for the consistency of quantum field theory.
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A couple of years after the discovery by Hawking that
black holes should evaporate [1], Unruh realized that many
features present in the Hawking effect could be better
understood in the simpler context of Minkowski spacetime
[2]. As an extra bonus, he found that the Minkowski
vacuum, i.e., the quantum state associated with the
nonexistence of particles according to inertial observers,
corresponds to a thermal bath of elementary particles at
temperature TFDU � ah̄�2pkc as measured by uniformly
accelerated observers with proper acceleration a. Indeed
this reflects the fact that the particle content of a quantum
field theory (QFT) is observer dependent, as noted by
Fulling [3] and Davies [4] some time before. Thus while
inertial observers in the Minkowski vacuum would be
frozen at 0 K, accelerated ones would be burned provided
that their proper acceleration were high enough.

Perhaps partly because of its “paradoxical looking”
and partly because of the technicalities involved in its
derivation (see, e.g., Ref. [5]), the Fulling-Davies-Unruh
(FDU) effect is still a source of much skepticism.
As a consequence, much effort has been spent to
devise ways of observing it (see, e.g., Ref. [6] and
references therein for a comprehensive list). Since
TFDU � �a��2.5 3 1022 cm�s2�� K, direct manifestations
of the FDU effect would be expected only under ex-
tremely high acceleration regimes. Very recently, e.g.,
Chen and Tajima suggested the possibility of observing
the FDU effect by means of petawatt-class lasers with
which e2’s would reach accelerations of �1028 cm�s2

in every laser cycle [7]. It is well known that accelerated
e2’s suffer recoil because of the radiation reaction force
associated with the Larmor radiation. For instance, an
e2 in a constant electric field E should quiver around a
uniformly accelerated world line with proper acceleration
a � ejEj�me, where e and me are the electron charge
and mass, respectively. Rather than using the radiation
reaction force to calculate the e2 recoil, Chen and Tajima
have estimated it by assuming that the quivering is a
consequence of the random absorption of quanta from
the FDU thermal bath as seen in the e2’s proper frame.
Inspired by this, they call the recoil-induced photon
emission “Unruh radiation.” Eventually they calculate
the emitted power associated with the Unruh radiation
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for an e2 during each laser half cycle and argue that its
observation would consist of an experimental test for the
FDU effect.

Here we look at this issue from a distinct point of
view. Rather than looking for an experimental mani-
festation of the FDU effect when high accelerations are
achieved, which, in general, leads to paramount technical
problems [8], we will take a theoretic-oriented strategy.
This sort of approach is not new [9–11] but we hope that
the comprehensive understanding brought by the FDU ef-
fect to the decay of accelerated p1’s (which is a poten-
tially important phenomenon in its own right [12]) will
be very convincing of the necessity of this effect for the
consistency of QFT. First, we will analyze in the inertial
frame and using standard QFT the decay of uniformly ac-
celerated p1’s and next we will show that the FDU effect
is essential to reproduce the proper decay rate in the uni-
formly accelerated frame.

According to the standard model, inertial p1’s are
stable, which is in agreement with highly accurate experi-
ments �tp . 1.6 3 1025 yr� [13]. As far as we know, the
first ones to comment that noninertial p1’s could decay
were Ginzburg and Syrovatskii [14] but no calculations
were performed until Muller [15] obtained an estimation
of the decay rate associated with the process

�i� p1 a
! n0e1ne

by assuming that all the involved particles are scalars. A
more realistic calculation describing the leptons as fermi-
ons was only performed very recently by the authors [16].
The energy scale of the emitted particles in the p1 instan-
taneous inertial rest frame is of the order of the p1 proper
acceleration a. Thus if a ø mZ0 ,mW6 ��1036 cm�s2�,
a Fermi-like effective theory can be used. The effective
coupling constant is fixed such that the b-decay rate for
inertial n0’s be compatible with observation, i.e., leads to
a mean proper lifetime of 887 s [13].

For our present purposes it is enough to analyze reac-
tion (i) in a 2-dimensional spacetime. Hereafter we use
signature �12� and natural units kB � c � h̄ � 1 unless
stated otherwise. The world line of a uniformly accelerated
p1 in usual Cartesian coordinates of Minkowski spacetime
is given by z2 2 t2 � a21 where

p
amam � a � const is
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the p1 proper acceleration. We construct, thus, the vec-
tor current jm � qumd�

p
z2 2 t2 2 a21� associated with

a uniformly accelerated classical p1 with 4-velocity um,
where q, at this point, is an arbitrary parameter.

In order to allow the p1 to decay, we shall endow the
current with an internal degree of freedom. For this pur-
pose we shall promote q to a self-adjoint operator q̂�t�
[17,18] acting on a 2-dimensional Hilbert space associated
with proton jp� and neutron jn� states. They will be as-
sumed to be energy eigenstates of the proper free Hamil-
tonian Ĥ of the proton/neutron system: Ĥjp� � mpjp�,
Ĥjn� � mnjn�, where mp and mn are the p1 and n0

masses, respectively. In this context, jp� and jn� will be
seen as unexcited and excited states of the nucleon, respec-
tively. Further we will define the effective Fermi constant
as GF 	 j
pjq̂�0�jn�j, where q̂�t� 	 eiĤtq̂�0�e2iĤt and
t is the p1 proper time.

In the inertial frame, the fermionic fields describing the
leptons in (i) can be written as

Ĉ�t, z� �
X

s�6

Z 1`

2`
dk �âksc

�1v�
ks 1 ĉ

y
ksc

�2v�
2k2s� , (1)

where v �
p
m2 1 k2 $ m, and m, k, and s represent

mass, momentum, and polarization quantum numbers,
respectively. In the Dirac representation [19], the
Minkowski modes, i.e., the ones defined with respect
to the inertial Killing field ≠�≠t, are c

�6v�
ks �t, z� 	

l
�6v�
ks ei�7vt1kz��

p
2p with

l
�6v�
k1 �

0BBBBB@
6

p
�v 6 m��2v

0

k�
p

2v�v 6 m�
0

1CCCCCA , (2)

and

l
�6v�
k2 �

0BBBBB@
0

6
p

�v 6 m��2v

0

2k�
p

2v�v 6 m�

1CCCCCA . (3)

Then the annihilation âks, ĉks and creation â
y
ks, ĉ

y
ks oper-

ators satisfy �âks , â
y
k0s 0� � �ĉks, ĉ

y
k 0s 0� � d�k 2 k0�dss 0

and �âks, âk 0s 0� � �ĉks, ĉk 0s 0� � �âks, ĉk 0s 0� � �âks ,
ĉ
y
k 0s 0� � 0.

Let us assume that the electron and neutrino fields are
coupled to the nucleon current according to the Fermi-like
action

ŜI �
Z
d2x

p
2g ĵm� ˆ̄CngmĈe 1 ˆ̄Ceg

mĈn� . (4)

(The choice of other interaction actions would not change
conceptually our final conclusions.)

The p1 proper decay rate is written, thus, as

G
p!n
�i� �

1
T

X
se,sn�6

Z 1`

2`
dke

Z 1`

2`
dkn jA

p!n
�i� j2 ,
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where A
p!n
�i� � 
nj ≠ 
e1

kese
, nknsn

jŜI j0� ≠ jp� is the
decay amplitude, at the tree level, and T is the p1 total
proper time. Eventually, we obtain

G
p!n
�i� �

G2
Fm̃ea

2p3�2ep fDm
3 G3 0

1 3

√
m̃2
e

Ç 1

2 1�2, 1�2 1 igDm, 1�2 2 igDm
!

,

(5)

where Gmn
pq is the Meijer function [20], Dm 	 mn 2 mp ,gDm 	 Dm�a, m̃e 	 me�a, and we have assumed mn �

0. The value of the effective Fermi constant GF is fixed
from phenomenology. By making Dm ! 2Dm and a !

0 in Eq. (5), we obtain that the mean proper lifetime of
inertial n0’s due to b decay,

�ii� n0 ! p1e2n̄e ,

is t
n!p
�ii� � 1�G

n!p
�ii� � p��2G2

F

p
Dm2 2 m2

e �. Now let
us assume that the n0 mean lifetime in 2 dimensions is,
e.g., 887 s. In this case, we obtain GF � 9.92 3 10213.
Note that GF ø 1, which corroborates our perturbative
approach. Now we are able to plot in Fig. 1 the p1 mean
proper lifetime t

p!n
�i� � 1�G

p!n
�i� [see Eq. (5)] as a func-

tion of a. (The necessary energy to allow p1’s to decay
is provided by the external accelerating agent.)

Now let us describe the p1 decay from the point of
view of coaccelerated observers according to which the
p1 is immersed in a FDU thermal bath at a temperature
TFDU � a�2p. According to them, process (i) is forbid-
den from energy conservation (since the p1 is static) but
the following ones

�iii� p1e2 a
! n0ne, �iv� p1n̄e

a
! n0e1,

�v� p1e2n̄e
a
! n0

FIG. 1. Tp 	 log10�tp��1 s�� is plotted as a function of
x 	 log10�a��1 MeV��, where tp is the p1 mean proper
lifetime, a its proper acceleration, me � 0.511 MeV, and
Dm � 1.29 MeV. (1 MeV � 4.6 3 1031 cm�s2 .) Note that
tp ! 1` for inertial p1’s.
151301-2



VOLUME 87, NUMBER 15 P H Y S I C A L R E V I E W L E T T E R S 8 OCTOBER 2001
become allowed since the p1 can interact with the lep-
tons of the thermal bath. By comparing process (i) against
processes (iii)–(v), we can see how different are the de-
scriptions given by the inertial and accelerated observers.

The suitable coordinates to analyze the p1 decay ac-
cording to uniformly accelerated observers are the Rindler
ones �y,u�. They are related with the usual Cartesian co-
ordinates by t � u sinhy, z � u coshy, where 0 , u ,
1` and 2` , y , 1`. In these coordinates, the line
element of Minkowski spacetime at the Rindler wedge
�x . jtj� is ds2 � u2dy2 2 du2 and the world line of a
p1 with proper acceleration a is u � a21 � const.

According to uniformly accelerated observers, the
fermionic field is expanded as [21]

Ĉ�y, u� �
X

s�6

Z 1`

0
dv̄ �b̂v̄sxv̄s 1 d̂

y
v̄sx2v̄2s� ,

(6)

where we recall that Rindler frequencies v̄ may assume
arbitrary positive real values since they do not obey any
dispersion relation. Here, xv̄s�y,u� 	 Cv̄jv̄se2iv̄y�a

where Cv̄ 	
p

�m cosh�pv̄�a����2p2a� and

jv̄1 �

0BBB@
Kiv̄�a11�2�mu� 1 iKiv̄�a21�2�mu�

0
2Kiv̄�a11�2�mu� 1 iKiv̄�a21�2�mu�

0

1CCCA , (7)

jv̄2 �

0BBB@
0

Kiv̄�a11�2�mu� 1 iKiv̄�a21�2�mu�
0

Kiv̄�a11�2�mu� 2 iKiv̄�a21�2�mu�

1CCCA (8)

are positive and negative frequency Rindler modes,
i.e., the ones defined with respect to the boost Killing
field a≠�≠y. They are orthonormalized such that the
annihilation bv̄s, dv̄s and creation b

y
v̄s, d

y
v̄s operators

satisfy �b̂v̄s, b̂
y
v̄ 0s 0� � �d̂v̄s , d̂

y
v̄ 0s 0� � d�v̄ 2 v̄0�dss 0

and also �b̂v̄s , b̂v̄ 0s 0� � �d̂v̄s, d̂v̄ 0s 0� � �b̂v̄s , d̂v̄ 0s 0� �
�b̂v̄s, d̂

y
v̄ 0s 0� � 0.

The transition rates associated with processes (iii)–(v)
are given by

G
p!n
�iii� �

1
T

X
se2 ,sn�6

Z 1`

0
dv̄e2

Z 1`

0
dv̄n jA

p!n
�iii� j2

3 nF �v̄e2� �1 2 nF�v̄n�� ,

G
p!n
�iv� �

1
T

X
se1 ,sn̄�6

Z 1`

0
dv̄e1

Z 1`

0
dv̄n̄ jA

p!n
�iv� j2

3 nF �v̄n̄� �1 2 nF�v̄e1�� ,

G
p!n
�v� �

1
T

X
se2 ,sn̄�6

Z 1`

0
dv̄e2

Z 1`

0
dv̄n̄ jA

p!n
�v� j2

3 nF �v̄e2�nF�v̄n̄� ,

where at the tree level
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A
p!n
�iii� � 
nj ≠ 
nv̄nsn

jŜI je
2
v̄e2se2

� ≠ jp� ,

A
p!n
�iv� � 
nj ≠ 
e1

v̄e1se1 jŜI jn̄v̄n̄sn̄
� ≠ jp� ,

A
p!n
�v� � 
nj ≠ 
0jŜI je2

v̄e2se2 n̄v̄n̄sn̄
� ≠ jp� ,

and we recall that in the Rindler wedge the gm in ŜI
[see Eq. (4)] should be replaced by g

m
R (see Ref. [21]).

Here nF�v̄� 	 1��1 1 ev̄�TFDU� is the fermionic thermal
factor which appears because of the presence of the FDU
thermal bath.

After some calculations, we obtain

G
p!n
�iii� � A

Z 1`fDm d ˜̄ve2

Ki ˜̄ve211�2�m̃e�Ki ˜̄ve221�2�m̃e�

cosh�p� ˜̄ve2 2 gDm��
,

G
p!n
�iv� � A

Z 1`

0
d ˜̄ve1

Ki ˜̄ve111�2�m̃e�Ki ˜̄ve121�2�m̃e�

cosh�p� ˜̄ve1 1 gDm��
,

G
p!n
�v� � A

Z fDm
0

d ˜̄ve2

Ki ˜̄ve211�2�m̃e�Ki ˜̄ve221�2�m̃e�

cosh�p� ˜̄ve2 2 gDm��
,

where A 	 �G2
Fm̃ea���p2ep fDm�. A branching ratio analy-

sis [22] indicates that for small accelerations, where “few”
high-energy particles are available in the FDU thermal
bath, process (v) dominates over processes (iii) and (iv),
while for high accelerations, processes (iii) and (iv) domi-
nate over process (v).

The p1 total proper decay rate is obtained by adding up
all contributions:

G
p!n
tot � G

p!n
�iii� 1 G

p!n
�iv� 1 G

p!n
�v�

� A
Z 1`

2`

d ˜̄v
Ki ˜̄v11�2�m̃e�Ki ˜̄v21�2�m̃e�

cosh�p� ˜̄v 2 gDm��
. (9)

Now, G
p!n
�i� and G

p!n
tot must coincide. Equation (9) is dif-

ficult to solve analytically because the integral variable is
in the function index. (This can be seen as reflecting the
essentially distinct inertial and coaccelerated frame calcu-
lations.) Hence we solve Eq. (9) numerically. Finally, by
plotting ttot � 1�G

p!n
tot as a function of a, we precisely

obtain Fig. 1 [23]. We emphasize that we would not have
obtained any agreement if we did not assume the FDU
effect.

The confusion about what the FDU effect means has led
to a number of erroneous conclusions in the literature. For
instance, a p1 with proper acceleration a � const in the
Minkowski vacuum does not have to behave as if it were
static in a (usual) Minkowski thermal bath at a temperature
T � a�2p. (The FDU effect does not ensure any such
coincidence.) The FDU effect can be rigorously derived
[24] from the general Bisognano and Wichmann’s theorem
[25] obtained independently from axiomatic QFT (which
is not even restricted to linear quantum fields). More-
over the necessity of the FDU effect for the consistency
of the (successfully tested) standard QFT in Minkowski
spacetime means that this effect was already observed
[26]. We have illustrated it through the decay of acceler-
ated p1’s but other situations can be devised. Concerning
151301-3
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electromagnetic processes, e.g., the FDU thermal bath is
crucial to reproduce the response of a uniformly acceler-
ated e2 to the Larmor radiation in the coaccelerated frame
[10]. The same must be true if one takes into account the
extra radiation induced by the e2 recoil. There is no ques-
tion about the existence of the FDU effect provided one
accepts the validity of the results obtained with standard
QFT in flat spacetime.
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