

UNIVERSIDADE ESTADUAL PAULISTA "JULIO DE MESQUITA FILHO" INSTITUTO DE GEOCIÊNCIAS E CIÊNCIAS EXATAS

Pós-Graduação em Geociências e Meio Ambiente

UNIVERSIDADE ESTADUAL PAULISTA

Instituto de Geociências e Ciências Exatas

Campus de Rio Claro

CALIBRAÇÃO DE DETECTORES CINTILADORES E SUA APLICAÇÃO EM MEDIDAS RADIOMÉTRICAS

EDER QUEIROZ BARBOSA

Dissertação de Mestrado apresentada ao Instituto de Geociências e Ciências Exatas do Câmpus de Rio Claro, da Universidade Estadual Paulista "Júlio de Mesquita Filho", como parte dos requisitos para obtenção do título de Mestre em *Geociências e Meio Ambiente*.

Orientador: Prof. Dr. Daniel Marcos Bonotto

Rio Claro

2016

551.9 Barbosa, Eder Queiroz

B238c Calibração de detectores cintiladores e sua aplicação em medidas radiométricas / Eder Queiroz Barbosa. - Rio Claro, 2016
 191 f. : il., figs., gráfs., tabs., quadros, mapas, plant.
 Dissertação (mestrado) - Universidade Estadual Paulista,

Dissertação (mestrado) - Universidade Estadual Paulista, Instituto de Geociências e Ciências Exatas Orientador: Daniel Marcos Bonotto

1. Geoquímica. 2. Gamaespectrometria. 3. Cintilador. 4. Radônio. 5. Dosimetria. I. Título.

Ficha Catalográfica elaborada pela STATI - Biblioteca da UNESP Campus de Rio Claro/SP

EDER QUEIROZ BARBOSA

CALIBRAÇÃO DE DETECTORES CINTILADORES E SUA APLICAÇÃO EM MEDIDAS RADIOMÉTRICAS

Dissertação de Mestrado apresentada ao Instituto de Geociências e Ciências Exatas do Câmpus de Rio Claro, da Universidade Estadual Paulista "Júlio de Mesquita Filho", como parte dos requisitos para obtenção do título de Mestre em *Geociências e Meio Ambiente*.

Comissão Examinadora Prof. Dr. Daniel Marcos Bonotto Instituto de Geociência e Ciências Exatas (IGCE/Unesp) Prof. Dr. Francisco Yukio Hiodo Instituto de Astronomia, Geofísica e Ciências Atmosféricas (IAG/USP) Prof. Dr. Carlos Renato Corso Instituto de Biociências (IB/Unesp)

Resultado: APROVADO

Rio Claro, 3 de Outubro de 2016.

À Deus, pela vida e pelo olhar protetor, acolhedor e misericordioso que sempre reergue a esperança e a alegria da caminhada.

Em memória da minha estimada Dona Adelina, pelo carinho, sabedoria e motivação.

RESUMO

O presente trabalho descreve etapas realizadas para a viabilização de novas metodologias de calibração de sistemas radiométricos portáteis utilizados no LABIDRO (Laboratório de Isótopos e Hidroquímica) do DPM (Departamento de Petrologia e Metalogenia) do IGCE (Instituto de Geociências e Ciências Exatas) da UNESP, Campus de Rio Claro. Dentre os tópicos abordados estão a determinação de tempos de detecção de maior precisão, curvas de calibração dosimétrica e a aquisição de dados de dosimetria no ar, para ambientes indoor e outdoor, por intermédio de gamaespectrômetros portáteis. Dois métodos foram empregados para a verificação da curva teórica do equilíbrio radioativo secular entre o ²²²Rn e seu progenitor ²²⁶Ra na série de decaimento do ²³⁸U. A aquisição de dados de taxa de contagem do ²²²Rn pelo método contínuo não permitiu atingir esse objetivo proposto. Por outro lado, a quantificação e plotagem da curva de concentração de atividade pelo método *quasi*, foi satisfatória para este estudo, fornecendo o valor máximo de atividade do ²²²Rn, no interior do circuito fechado, que é necessário para o cálculo do fator de calibração para a conversão da taxa de contagem por unidade volume $(cpm/m^3, cps/m^3, cpm/L, cps/L)$, em atividade de radônio por unidade de volume $(Bq/L, Bq/m^3, pCi/L, pCi/m^3)$. O teste do χ^2 foi utilizado para os dados de taxa de contagem dos detectores gamaespectrométricos de NaI(Tl) e BGO 2"x 2", para dez diferentes tempos e permitiu determinar quais deles correspondem ao de maior precisão. Para os dados de calibração do detector de NaI(Tl) da ORTEC, constatou-se que apenas os padrões K2, K1, U3, U2, U1, Th3, Th2 e Th1 forneceram valores acima do limite de detecção para cada tempo calculado, apesar disto, as equações de calibração do Nal(Tl) foram satisfatórias e com significativa precisão. Os modelos geoestatísticos gerados a partir da conversão de dados em dose efetiva para os locais analisados nos departamentos do Curso de Geologia da UNESP de Rio Claro (SP), demonstraram que apesar de existirem alguns valores situados acima daqueles recomendados pela ICRP e norma CNEN-NN-3.01 de 1 mSv.ano⁻¹, não há a necessidade de intervenção nos locais onde ocorreram (Museu Heinz Ebert; Litoteca do DPM) pois, não são de uso frequente e, além disso, situam-se abaixo do limite recomendado de 20 mSv.ano⁻¹ para indivíduos ocupacionalmente expostos.

Palavras-chave: Gamaespectrometria, cintilador, radônio, calibração, dosimetria.

ABSTRACT

The present work describes steps undertaken for the viability of new radiometric methodologies of the portable systems calibration used in the LABIDRO (Isotopes and Hydrochemistry Laboratory) of DPM (Petrology and Metalogeny Department) of IGCE (Geoscience and Exact Sciences Institute) at UNESP, Rio Claro Campus. Among the topics covered are the determination of detection times with greater accuracy, dosimetric calibration curves and dosimetry data acquisition in the air, for *indoor* and *outdoor* environments, through gamma spectrometer detectors. Two methods were employed in order to check the theoretical curve of the radioactive secular equilibrium between the ²²²Rn and his progenitor ²²⁶Ra in the ²³⁸U decay chain. Data acquisition of count rate of ²²²Rn by continuous method not allowed to achieve this objective. On the other hand, the quantification and plotting of the activity concentration curve by quasi method was satisfactory for this study, providing the maximum ²²²Rn activity, in a closed system, that is necessary to calculate the calibration factor for conversion of the count rate per unit volume $(cpm/m^3, cps/m^3, cpm/L, cps/L)$, in activity of radon per unit volume $(Bq/L, Bq/m^3, pCi/L, pCi/m^3)$. The χ^2 test was used for the data of count rate of the gamma spectrometer detectors of NaI(Tl) and GO 2"x 2", for ten different times and allowed to determine which of them correspond to greater accuracy. For the calibration data of the ORTEC NaI(Tl) detector, it was found that only the standard sources K2, K1, U1, U2, U3, Th3, Th1 and Th2 provided values above of the detection limit for each calculated time, despite this, calibration equations of NaI(Tl) were satisfactory and with significant accuracy. Geostatistical models generated from the conversion of data, to the sites analyzed in the departments of Geology Course at UNESP, in effective dose, have shown that although there are some values set above those recommended by ICRP and by legal norm CNEN-NN-3.01 of 1 mSv.year⁻¹, there is no need to intervene in places where it occurred (Heinz Ebert Museum; Deposit of rocks and minerals - DPM), Since these sites are of short period of visit time and, in addition, are below the recommended limit of 20 mSv.year⁻¹ for occupationally exposed individuals.

Keywords: Gamma ray spectrometry, scintillator, radon, calibration, dosimetry

ÍNDICE DE FIGURAS

Figura 1 - Distribuição da dose à população entre as várias fontes de radiação de fundo (NCRP 160)
(NCRP, 2009)
Figura 2 - Energia de ligação por núcleon para isótopos comuns (adaptado de SHYTI, 2013)
Figura 3 - Representação tridimensional do vale de estabilidade (adaptado de SHYTI, 2013) 8
Figura 4 - Representação das reações envolvidas na interação de partículas dos raios cósmicos
primários com a atmosfera, originando raios cósmicos secundários (adaptado de Shyti, 2013) 10
Figura 5 – (a) Atividade do ²²² Rn e seus filhos em função do tempo segundo Lima (1993); (b)
Equilíbrio radioativo entre o ²²⁶ Ra e seu "filho" ²²² Rn 19
Figura 6 - Esquema de decaimento do ⁴⁰ K, por intermédio dos seguintes modos: (1) captura eletrônica
com emissão de raios γ , (2) captura eletrônica sem emissão de raios γ , (3) emissão de pósitron, e (4)
emissão beta. Também estão indicadas as energias 20
Figura 7 - Variação do conteúdo médio de K, eTh e eU para rochas ígneas intrusivas e extrusivas com
o aumento no conteúdo de sílica (modificado de DICKSON; SCOTT, 1997)
Figura 8 - Regiões de predominância das 3 formas de interação da radiação γ. As curva indicam os
valores de Z e hu para os quais as probabilidades dos processos vizinhos são iguais (EVANS, 1955).45
Figura 9 – Ilustração da absorção fotoelétrica, onde o raio gama incidente cede toda sua energia para
o elétron e desaparece. O espectro à direita ilustra uma distribuição diferencial de uma série de
absorções fotoelétricas (KNOLL, 1989) 46
Figura 10 - Representação do espalhamento Compton. O espectro à direita ilustra a distribuição da
energia do elétron Compton de recuo (KNOLL, 1989) 47
Figura 11 - Representação da formação de pares. À direita, está representada a posição do pico de
escape duplo no espectro de raios gama (KNOLL, 1989) 49
Figura 12 - Interações na função resposta do detector (KNOLL, 1989)
Figura 13 - Espectros diferenciais para detectores comerciais, (KNOLL, 1989)
Figura 14 - Espectro de linha da emissão de raios gama do: a) potássio; b) urânio; c) tório 52
Figura 15 - Espectro de raios gama típico de detector de NaI(Tl) mostrando a posição das janelas de
energia convencionais
Figura 16 - Alguns tipos de interações secundárias que podem interferir na função resposta dos
detectores comerciais (KNOLL, 1989) 55
Figura 17 - Influência da radiação secundária na resposta do detector (KNOLL, 1989) 55
Figura 18 - Estrutura da banda de energia de um cristal cintilador ativado (KNOLL, 2010) 56
Figura 19 - Esquema de uma fotomultiplicadora (adaptada de CHERRY et al., 2003) 57

Figura 20 - Diagrama ilustrando a resolução de energia do espectrômetro de raios gama. A energia de resolução do espectrômetro é definida como a largura total de um fotopico à meia altura da amplitude Figura 21 - Ilustra a eficiência da conversão de luz de cintilação em elétrons no fotocatodo (LIMA, **Figura 22** – Eficiência de fotopico para diferentes energias de emissão gama para o $NaI(Tl) \in BGO$ Figura 23 - Tempo de contagens (para um espectrômetro GR320 com um detector de NaI(Tl) de 3"x Figura 24 - Tempo de contagens (para um espectrômetro GR320 com um detector de NaI(Tl) de 3"x **Figura 25** – Tempo de contagens (para um espectrômetro GR320 com um detector de NaI(Tl) de 3"x Figura 26 - Mecanismo direto e indireto de ação da radiação sobre o DNA (BRANDÃO, 2009)..... 71 Figura 27 - Principais tipos de aberrações cromossômicas instáveis radioinduzidas: 1) cromossos dicêntricos; 2) anel cromossômico; 3) fragmentos cromossômicos (IAEA, 2001)......72 Figura 28 - Transformação de células expostas à radiação do ⁶⁰Co e nêutrons do espectro de fissão, Figura 30 - Tempo de latência para aparecimento de câncer após irradiação (TAUHATA et al., 2014). **Figura 31** – Monitor Pylon AB6A com Célula de Lucas modelo 600A utilizada nas análises Figura 32 - Configuração do sistema de detecção com o detector Pylon para o método standard Figura 33 - Esquemas de decaimento do (a) ¹³⁷Cs, (b) ⁶⁰Co e (c) ¹³³Ba (DUARTE et al., 2002). 90 Figura 42 - Resolução do cristal 2"x 2" Nal(Tl) para a energia de 2,61 MeV do ²⁰⁸Tl (²³²Th)....... 95

Figura 43 - (a) Dimensões dos anéis de chumbo utilizados na blindagem da radiação lateral; (b, c)
posicionamento do detector na blindagem para a tomada dos dados de calibração
Figura 44 - Esquema representativo das interações entre as janelas de K, U e Th. A interferência entre
janelas de energia denominado fator de stripping é usada para remover a interferência segundo as setas
indicadas acima. Comumente são usados os fatores de stripping α , β e γ . Os fatores a, b e g são
geralmente pequenos ou iguais a zero e por isso normalmente ignorados (GOMES, 2003)
Figura 45 - Análise de regressão linear múltipla do software Excel com uma breve descrição de cada
parâmetro fornecido (BRANCHI, 2010) 105
Figura 46 - Valores do fator de conversão dose no ar para dose na água e no tecido muscular em
função da energia do fóton (TAUHATA, et al., 2014)
Figura 47 - Esquema dos parâmetros utilizados na modelagem do cálculo da taxa de exposição em
função da geometria circular de espessura desprezível (FISICANET, 1997) 109
Figura 48 - Curva teórica do tempo necessário para o Rn-222 entrar em equilíbrio secular com o Ra-
226 ($A = 1 nCi$)
Figura 49 - Dados da análise pelo detector Pylon AB6A do padrão (D) de Ra-226 para calibração dos
detectores de radônio do LABIDRO. Os pontos foram plotados com base na média horária, tendo sido
as análises realizadas pelo método contínuo (standard continuous) e programadas para ciclos de 5
minutos
Figura 50 - (a) Variação da umidade relativa ($RH\%$) em função do tempo; (b) Gráfico da taxa de
contagem (cpm) de ²²² Rn vs. $RH(\%)$
Figura 51 - (a) Variação da temperatura (°C) em função do tempo; (b) Gráfico da taxa de contagem de
²²² Rn (<i>cpm</i>) vc. Temperatura (°C)
Figura 52 - (a) Variação da pressão (kPa) em função do tempo; (b) Gráfico da taxa de contagem de
²²² Rn (<i>cpm</i>) vs. <i>P</i> (<i>kPa</i>)
Figura 53 – Dados obtidos pelo detector Pylon AB6A na análise do padrão (D) de Ra-226 para
calibração dos detectores de radônio do LABIDRO. Os pontos foram plotados com base na média a
cada 4 horas, tendo sido as análises realizadas pelo método Quasi com ciclos de 2 minutos para cada
leitura, com bombeamento durante 4 minutos e bomba desligada por 4 horas 117
Figura 54 - Dados ajustados ao fator de calibração segundo a equação 48
Figura 55 - Gráfico da relação entre a taxa de contagem experimental vc. taxa de contagem estimada
pelo modelo de calibração para o potássio (K-40) 120
Figura 56 - Gráfico da relação entre a taxa de contagem experimental vc. taxa de contagem estimada
pelo modelo de calibração para o potássio (U-238) 120
Figura 57 - Gráfico da relação entre a taxa de contagem experimental vc. taxa de contagem estimada
pelo modelo de calibração para o potássio (Th-232)

Figura 59 - Limite de detecção para diferentes tempos (min) de análise do background	. 125
Figura 60 - Calibração da taxa de dose absorvida no ar a partir da taxa de contagem de K no (a)	
<i>Nal(Tl)</i> e (b) <i>BGO</i>	. 126
Figura 61 - Calibração da taxa de dose absorvida no ar a partir da taxa de contagem de eU no (a)	
<i>Nal(Tl)</i> e (b) <i>BGO</i>	. 126
Figura 62 – Gráfico de isolinhas para a dose efetiva na sala do docente do DPM responsável pela	
disciplina de Mineralogia	. 127
Figura 63 - Gráfico de isolinhas para a dose efetiva na Litoteca do DPM	. 127
Figura 64 - Gráfico de isolinhas para a dose efetiva no Museu de Minerais e Rochas Heinz Ebert -	-
DPM	. 128
Figura 65 - Gráfico de isolinhas para a dose efetiva na Litoteca do UNESPetro	. 129
Figura 66 - Gráfico de isolinhas para a dose efetiva no pátio do UNESPetro	. 129

ÍNDICE DE TABELAS

Tabela 1 - Série de decaimento do urânio, ²³⁸ U (IVANOVICH e HARMON, 1982) 12
Tabela 2 - Série de decaimento do actínio, ²³⁵ U (IVANOVICH e HARMON, 1982). 13
Tabela 3 - Série de decaimento do tório, ²³² Th (IVANOVICH e HARMON, 1982). 14
Tabela 4 - Grandezas e unidades de radioatividade derivadas do SI. SI
Tabela 5 - Conversão da concentração de radioelementos para atividade específica (IAEA, 1989, 2003). 32
Tabela 6 - Taxas de exposição teórica de raios gama e taxas de dose gama a 1 m acima de um solo
homogêneo semi-infinito por unidade de concentração do radioelemento, supondo equilíbrio radioativo
na série de decaimento do U e do Th (IAEA, 1989; IAEA, 1991; LΦVBORG, 1984)
Tabela 7 - Dose efetiva anual média global de fontes naturais de radiação (UNSCEAR, 1988)
Tabela 8 - Taxa de dose efetiva outdoor para um adulto por unidade de concentração de radionuclídeos
naturais no solo (UNSCEAR, 2000)
Tabela 9 - Limites de dose devida a radiação natural em alguns países da Europa (LOPEZ et al., 2004).
Tabela 10 - Riscos de danos à saúde (TAUHATA, 2013). 40
Tabela 11 - Propriedades comparativas entre o cristal de NaI(Tl) e o BGO (STOLLER, et al., 1994). 64
Tabela 12 - Quantificando a vantagem estatística do BGO. Incertezas de tório (Th), urânio (U) e de
potássio (K) os dados de saída são apresentados para acumulados de 1 segundo em um padrão de xisto.
Desvios padrão da concentração de U, Th e K estimados para o BGO apresentam um decréscimo de
30% em relação ao NaI(Tl) (STOLLER, et al., 1994)
Tabela 13 - Síndrome de irradiação aguda (TAUHATA, 2014). 80
Tabela 14 - Sintomas de doença resultantes da exposição aguda à radiação ionizante, em função do
tempo (TAUHATA, 2014)
Tabela 15 - Elementos filhos da série de decaimento do ²²⁶ Ra. 84
Tabela 16 - Especificações da Célula 600A do detector Pylon AB6A
Tabela 17 - Descrição dos padrões utilizados na calibração e aplicação de outros procedimentos
realizados neste trabalho
Tabela 18 - Determinação do centróide para a energia (0,661 MeV) do ¹³⁷ Cs com base no ajuste do
ganho do aparelho e da voltagem
Tabela 19 - Dados da calibração em Energia. 94
Tabela 20 - Intervalo em canais dos fotopicos de interesse com base nas janelas de energia indicadas
pela IAEA, 1991

Tabela 21 - Desvio Máximo para o critério de Chauvenet (YOUNG, 1962).	98
Tabela 22 – Valores da taxa de exposição, fator de conversão de exposição para dose equivalente	e e
atividade específica (IAEA, 2008 e TAUHATA, 2014) 1	06
Tabela 23 - Dados da configuração do sistema fechado para análise de Rn-222 no detector pylon AB6	σĀ.
	17
Tabela 24 – Tempos, em segundos (s), a partir do qual intervalo de χ^2 foi atendido, sugerindo que	os
dados, para tempos iguais ou superiores, podem ser compreendidos dentro de uma distribuição	de
Poisson 1	18
Tabela 25 – Fatores de Remoção de Interferência calculados com base nos coeficientes matrici-	ais
fornecidos pela Equação 581	21
Tabela 26 - Valores de concentração dos padrões analisados com os respectivos valores estimados pa	ara
taxa de exposição no tecido (X'tecido), no ar (X'Ar), taxa de dose absorvida no ar $(D'Ar)$ e a de	ose
efetiva (<i>E</i>)1	23
Tabela 27 – Valores dos números de contagens, descontados da média da radiação de fundo, para ca	ıda
janela (K,eU, eTh e Cont. total);valores reais e estimados pelas equações de calibração o	las
concentrações de cada das janelas com seus respectivos resíduos1	24
Tabela 28 - Cálculo do χ^2 dos padrões de Potássio para $NaI(Tl)$ e <i>BGO</i> para a janela de K-40 1	63
Tabela 29 - Cálculo do χ^2 dos padrões de Potássio para $NaI(Tl)$ e <i>BGO</i> para a janela de Bi-214 1	63
Tabela 30 - Cálculo do χ^2 dos padrões de Potássio para $NaI(Tl)$ e <i>BGO</i> para a janela de Tl-208 1	64
Tabela 31 - Cálculo do χ^2 dos padrões de Potássio para NaI(Tl) e BGO para a janela de Contage	em
Total 1	64
Tabela 32 - Cálculo do χ^2 dos padrões de Pechblenda para <i>Nal</i> (<i>Tl</i>) e <i>BGO</i> para a janela de K-40 1	65
Tabela 33 - Cálculo do χ^2 dos padrões de Pechblenda para $NaI(Tl)$ e BGO para a janela de Bi-2	14.
	65
Tabela 34 - Cálculo do χ^2 dos padrões de Pechblenda para <i>Nal</i> (<i>Tl</i>) e <i>BGO</i> para a janela de TI-20	08.
	66
Tabela 35 - Cálculo do χ^2 dos padrões de Pechblenda para $NaI(Tl)$ e BGO para a janela de contago	em
total1	66
Tabela 36 - Cálculo do χ^2 dos padrões de Areia Monazítica para <i>NaI(Tl)</i> e <i>BGO</i> para a janela de K-4	40.
	67
Tabela 37 - Cálculo do χ^2 dos padrões de Areia Monazítica para $NaI(Tl)$ e BGO para a janela de l	Bi-
2141	67
Tabela 38 - Cálculo do χ^2 dos padrões de Areia Monazítica para $NaI(Tl)$ e BGO para a janela de '	Г1-
208	.68

Tabela 39 - Cálculo do χ^2 dos padrões de Are	a Monazítica para $NaI(Tl)$ e BGO para a janela de
contagem total	

Sumário

CAPÍT	ULO 1	1
INTRO	DUÇÃO	1
1.1.	Justificativa e objetivos	5
CAPÍT	ULO 2	7
RADIO	ATIVIDADE	7
2.1.	Princípios gerais	7
2.1.1.	Radiação cósmica	8
2.1.2.	Tipos de decaimento radioativo	10
2.1.3.	Natureza estatística do decaimento radioativo	14
2.1.4.	Lei de Decaimento e Equilíbrio Radioativo	16
2.2.	Fontes naturais de radiação	19
2.2.1.	Ocorrência nas rochas	21
2.2.1.1.	Urânio	21
2.2.1.2.	Tório	22
2.2.1.3.	Potássio	23
2.2.1.4.	Desequilíbrio radioativo	24
2.2.2.	Rádio	25
2.2.3.	Radônio	26
2.2.4.	Distribuição de K, U e Th em solos e rochas	27
2.3.	Grandezas e unidades derivadas do SI e unidades aceitas não pertencentes ao SI	28
2.3.1.	Unidades de concentração de radioelementos terrestres e constantes de conversão	31
2.3.1.1.	Unidades terrestres convencionais reportadas	32
2.3.2.	Doses absorvidas naturais e antrópicas	33
2.3.3.	Estimativas de exposição às radiações	35
2.3.3.1.	Exposição Externa indoor e outdoor	36
2.4.	Radioproteção e regulamentação	38
CAPÍT	ULO 3	41
GAMA	ESPECTROMETRIA E EMANOMETRIA	41
3.1.	Alguns estudos pioneiros	41
3.2.	Usos dos raios gama	41
3.3.	O detector cintilador de NaI(Tl)	43
3.4.	Interação da radiação gama com a matéria	44
3.4.1.	Absorção fotoelétrica	46

3.4.2.	Espalhamento Compton	. 47
3.4.3.	Produção de pares	.49
3.5.	Resposta de detectores comerciais	50
3.6.	Geometria fonte-detector	51
3.7.	Eventos que interferem na função resposta do detector	.53
3.7.1.	Escape de elétrons secundários	53
3.7.2.	Escape de Bremsstrahlung	53
3.7.3.	Escape de raio-X característico	53
3.7.4.	Interações secundárias criadas pelo decaimento radioativo	.53
3.7.4.1.	Radiação de aniquilação	53
3.7.4.2.	Bremsstrahlung	54
3.7.5.	Efeitos dos materiais envoltórios	54
3.8.	Principais propriedades dos cintiladores	.55
3.8.1.	Resolução em energia	57
3.8.1.1.	Produção de elétrons no fotocátodo da fotomultiplicadora	.58
3.8.1.2.	Outros fatores que interferem na perda de resolução	59
3.8.1.3.	Prevenção da perda de resolução	60
3.8.2.	Linearidade	60
3.8.3.	Detecção	60
3.8.3.1.	Forma do cristal	60
3.8.3.2.	Eficiência de detecção	61
3.8.3.3.	Tempo de resposta	.62
3.9.	Espectrômetros portáteis de raios gama	63
3.9.1.	Instrumentação	63
3.9.2.	NaI(Tl) versus BGO	63
3.10.	Medidas no campo	.66
3.11.	Métodos de detecção de radônio	68
CAPÍTU	ЛЕО 4	.70
EFEITC	OS BIOLÓGICOS DA RADIAÇÃO	.70
4.1.	Radiobiologia celular	.70
4.2.	Interação da radiação com o tecido biológico	.72
4.2.1.	Formas e tipos de irradiação	72
4.2.1.1.	Exposição única, fracionada ou periódica	.73
4.2.1.2.	Exposição de corpo inteiro, parcial ou colimada	.74
4.2.1.3.	Exposição a feixes intensos, médios e fracos	.74
4.2.1.4.	Exposição a fótons, partículas carregadas ou nêutrons	74

4.2.2.	Danos celulares	75
4.2.3.	Mutações	75
4.2.4.	Modificação celular pela radiação	76
4.2.5.	Morte celular	76
4.2.6.	Curva de sobrevivência	77
4.3.	Classificação dos efeitos biológicos	77
4.3.1.	Denominação dos efeitos biológicos	77
4.3.2.	Efeitos estocáticos	77
4.3.3.	Efeitos determinísticos	78
4.3.4.	Efeitos somáticos	79
4.3.5.	Efeitos genéticos ou hereditários	79
4.3.6.	Efeitos imediatos ou tardios	79
4.4.	Exposição de corpo inteiro de um adulto	79
CAPÍTU	JLO 5	81
MATER	RIAL E MÉTODOS	81
5.1.	Etapas prévias de calibração do detector de ²²² Rn	81
5.2.	O monitor Pylon AB6A	84
5.2.1.	Análise pelo método standard continuous	86
5.2.2.	Análise pelo método quasi	87
5.3.	Monitores gama espectrométricos portáteis	88
5.3.1.	Calibração em energia do detector gama de $NaI(Tl)$	90
5.3.1.1.	Resolução do sistema utilizado	94
5.3.1.2.	Fotopicos de interesse para o NaI(Tl)	95
5.3.2.	Blindagem para calibração do detector de Nal(Tl) 2"x 2"	95
5.3.3.	Cálculo das concentrações do espectrômetro NaI(Tl) 2"x 2"	96
5.3.3.1.	Rejeição de dados	97
5.3.3.2.	Equações de calibração	99
5.3.3.3.	O método dos fatores de remoção de interferência	99
5.3.3.4.	O método do sistema linear1	.00
5.3.4.	Regressão linear múltipla em Excel 1	.02
5.3.5.	Cálculo da taxa de dose em função da geometria da fonte para a calibração do detector NaI(Tl)	de 105
5.3.6.	Cálculo da taxa de exposição em função da forma geométrica da fonte 1	.09
5.3.7.	Determinação do tempo ótimo para os detectores $[NaI(Tl) 2"x2"]$ e BGO	10
5.3.7.1.	Cálculo de χ^2	.11
CAPÍTU	JLO 61	13

RESULT	FADOS OBTIDOS
6.1.	Curva do ²²² Rn pelo método contínuo com solução padrão de ²²⁶ Ra
6.2.	Curva do ²²² Rn pelo método q <i>uasi</i> com solução padrão de ²²⁶ Ra
6.3.	Determinação do tempo de amostragem para diferentes concentrações118
6.4.	Calibração do gamaespectrômetro portátil de NaITl 2"x 2"119
6.4.1.	Cálculo da taxa de contagem:
6.4.2.	Cálculo da concentração levando em conta fatores de remoção de interferência121
6.4.3.	Cálculo da concentração por meio da taxa de contagem122
6.4.4.	Cálculo da taxa de exposição no ar por meio da taxa de contagem122
6.4.5.	Cálculo da taxa de exposição no tecido por meio da taxa de contagem122
6.4.6.	Cálculo da taxa de dose absorvida no ar por meio da taxa de contagem 122
6.4.7.	Cálculo da dose efetiva por meio da taxa de contagem
6.4.8.	Limites críticos e limites de detecção para cada tempo analisado 125
6.5.	Comparação das curvas obtidas para os detectores de $NaI(Tl)$ e BGO 126
6.6.	Dose efetiva para alguns locais do IGCE - UNESP 127
CAPÍTU	JLO 7
CONCL	USÃO
REFER	ÊNCIAS BIBLIOGRÁFICAS133
ANEXO	S
Anexo 1	Dados de calibração do detector Pylon pelo método Contínuo143
Anexo 2	Dados de calibração do detector Pylon pelo método Quasi147
Anexo 3	Dados dos detectores de <i>Nal</i> (<i>Tl</i>) e <i>BGO</i> (2"x 2") para a definição do tempo mínimo de análise que atende à distribuição de Poisson baseando-se no cálculo de χ^2 para diferentes concentrações de ⁴⁰ K, ²³⁸ U e ²³² Th
Anexo 4	Cálculo de χ^2 para a determinação dos tempos adequados à distribuição de Poisson baseado nos dados espectrais do detector <i>NaI(Tl)</i> e <i>BGO</i> 2" <i>x</i> 2"162
Anexo 5	Dados de calibração do detector ORTEC NaI(Tl) 2" X 2" 169
Anexo 6	Regressão Linear através do Método dos Mínimos Quadrados fornecidas pelo software Excel, com os testes estatísticos de hipótese (H ₀ e H ₁) com $\alpha = 0,05$ 175
Anexo 7	Limites Críticos e Limites de Detecção para diferentes tempos de análise da radiação de fundo baseados nos dados do padrão branco (BKG) do Anexo 5
Anexo 8	Dados Radiométricos dos diferentes compartimentos do DPM e UNESPetro (UNESP Campus de Rio Claro – SP) tomados no ar entre 0,75 – 1,8 m de altura190

CAPÍTULO 1

INTRODUÇÃO

A aplicação da radioatividade em Geociências baseia-se no conhecimento das propriedades físicas de fontes de radiação e em nossa capacidade de detectar estas fontes através da análise dos dados de sensores remotos.

Nos últimos quarenta anos, levantamentos radiométricos, realizados com gama espectrômetros portáteis e aerotransportados, têm sido progressivamente mais utilizados com o propósito de mapear a distribuição de concentração dos elementos que mais contribuem para o estabelecimento da radioatividade natural em diferentes ambientes geológicos. A interpretação dessa distribuição tem sido aplicada com sucesso no mapeamento geológico básico, na prospecção de diferentes recursos minerais e em estudos de radioatividade do meio ambiente (GALBAITH; SAUNDERS, 1983; SHIVES et al., 1997; DICKSON; SCOTT, 1997; WILFORD et al., 1997).

Além disso, mais recentemente, levantamentos radiométricos têm sido utilizados na avaliação da extensão e gravidade da dispersão de elementos radioativos artificiais em consequência de acidentes em instalações nucleares.

Equipamentos adequados para levantamentos espectrométricos de campo, a sua calibração e a metodologia de aquisição de dados no campo começaram a ser desenvolvidos ainda na década de 1960, com trabalhos pioneiros como o de Adams e Freyer (1964) e Doig (1968). Inicialmente propostos como auxiliares na localização de depósitos de urânio, os levantamentos gama-espectrométricos passaram a ter uma amplitude maior de aplicação no mapeamento geológico, principalmente, após a publicação do trabalho de L¢vborg e colaboradores (1971), que demonstraram a sua utilidade na determinação, no campo, das concentrações de urânio e tório na intrusão alcalina de Ilimaussaq no sul da Groenlândia.

É de suma importância realizar a análise do espectro da radiação de fundo, (*background*) devido à radiação cósmica que bombardeia constantemente o planeta, bem como a radiação ambiental devido a radioatividade natural do ambiente. Existem cinco categorias de radiações de fundo que são classificadas como:

- radioatividade natural dos materiais constituintes do detector em si;
- radioatividade natural dos equipamentos auxiliares, suporte e blindagem posicionados nas imediações do detector;

- radiações da atividade da superfície da terra (radiação terrestre), solo, rochas, materiais de construção, materiais de laboratório, ou outras estruturas distantes;
- radioatividade no ar atmosférico no entorno do detector;
- componentes primários e secundários da radiação cósmica.

As fontes mais significativas de radiações de fundo são ²³²Th, ²³⁸U e ⁴⁰K. ⁴⁰K é uma fonte significativa porque tem uma meia-vida maior do que a idade da terra. ²³²Th e ²³⁸U são importantes contribuintes para a radiação de fundo por causa de sua abundância em muitos materiais, bem como os elementos filhos produzidos ao longo de suas respectivas séries de decaimento. Nessas séries de descendência, todos os diferentes tipos de radiação são emitidos numa grande variedade de energias são emitidas (KAPPKE, 2013).

A radiação cósmica também contribui para a radiação de fundo. O planeta é constantemente bombardeado por partículas de alta energia, tais como os múons, píons, nêutrons, elétrons, pósitrons, etc. Essas partículas têm taxas de perda de baixa energia e, portanto, podem ser significativas contribuintes para radiações de fundo. As altas energias podem produzir alturas de grande pulso em um espectro e dar falsas leituras para a fonte que está sendo medida (RITTERSDORF, 2007).

Dessa forma, o ser humano está continuamente exposto a radiações ionizantes de materiais naturalmente radioativos, dentre outras. A origem destes materiais é diversa, por exemplo, crosta terrestre, materiais de construção, ar, água, alimentos, etc. Em todo o mundo, materiais de construção contendo elementos radioativos têm sido usados por gerações. Como os indivíduos permanecem mais de 80% do tempo em locais fechados, as radiações destes locais provocam situações de exposições prolongadas (ICRP, 2005).

Dados apresentados pelo (NCRP, 2009), ilustrados na *Figura 1*, mostram que, em média, metade de toda radiação absorvida por um ser humano, incluindo as naturais e artificiais, é devido ao radônio. Esse elemento, descoberto em 1900 por Dorn, é um gás inerte, incolor e possui uma densidade de 9,73 kg/m³ (a densidade do ar é 1,2 kg/m³). Há vinte isótopos conhecidos do radônio. Dentre eles, os principais são ²²²Rn, ²²⁰Rn e ²¹⁹Rn. O ²²²Rn, da série radioativa natural do ²³⁸U, provém do decaimento do ²²⁶Ra e tem uma meia-vida de 3,82 dias; o ²²⁰Rn, da série radioativa natural do ²³²Th, é oriundo do decaimento do ²²⁴Ra e tem meia-vida de 55,6 segundos; o ²¹⁹Rn, da série radioativa natural do ²³²Th, é oriundo do decaimento do ²²³Ra e tem meia-vida de 3,96 segundos. Todos são emissores de partículas alfa (BARBOSA, 2011).

Figura 1 - Distribuição da dose à população entre as várias fontes de radiação de fundo (NCRP 160) (NCRP, 2009).

O ²²²Rn é motivo de grande preocupação para o homem. Ele é uma das mais importantes fontes de radiação ionizante de origem natural que as pessoas estão expostas, sendo considerado pela OMS (Organização Mundial da Saúde) como o segundo maior causador de câncer de pulmão, depois do cigarro (WHO, 2009). Estima-se que o ²²²Rn dissolvido em água potável causa cerca de 168 mortes por ano, 89% de câncer de pulmão causado pela inalação de radônio liberado da água, e 11 % de câncer de estômago causado por beber água contendo radônio. No *Quadro 1* estão sumarizados os principais eventos relacionados com o radônio, desde sua descoberta.

Sistemas portáteis têm sido extensivamente utilizados nos levantamentos gamaespectrométricos e do gás radônio no ambiente. Segundo Tauhata et al. (2013), para que um dispositivo seja classificado como um detector apropriado para estes sistemas, é necessário que o detector apresente em suas sequências de medição algumas características, tais como:

- a) Repetitividade: definida pelo grau de concordância dos resultados obtidos sob as mesmas condições de medição;
- b) Reprodutibilidade: grau de concordância dos resultados obtidos em diferentes condições de medição;
- c) Estabilidade: aptidão do instrumento em conservar constantes suas características de medição ao longo do tempo;
- d) Exatidão: grau de concordância dos resultados com o "valor verdadeiro" ou "valor de referência" a ser determinado;
- e) Precisão: grau de concordância dos resultados entre si, normalmente expresso pelo desvio padrão em relação à média;
- f) Sensibilidade: razão entre a variação da resposta de um instrumento e a correspondente variação do estímulo; e
- g) Eficiência: capacidade de converter em sinais de medição os estímulos recebidos

Quadro 1 - Cronologia de eventos relacionados com o radônio (COTHERN et al., 1987).

1597 ((1879 H	Georgius Agricola constatou grande nº de casos de câncer de pulmão em trabalhadores de minas (Saxônia e Boemia)
1879 H c	
	Harting e Hess (físicos alemães) dizem que muitas mortes de trabalhadores de minas estão relacionadas com câncer de pulmão (Schneeberg)
1896 A	Antoine Henri Becquerel – descobriu que o sal emite radiações espontâneas
1898 F	Pierre e Marie Curie descobrem outros elementos radioativos (polônio e rádio)
1898 F	Rutherford descobre as partículas alfa e beta
1899 F	Rutherford descobre a emanação do ²³² Th (decaimento até o ²²⁰ Rn)
1900 I	Dorn descobre a emanação do ²³⁸ U (²²⁶ Ra – decai para ²²² Rn)
1901 F	Rutherford e Brooks mostram que o radônio é um gás radioativo
1902 7	Thomson encontra radônio na água
1903 F	Rutherford e Soddy – meia-vida do radônio: 3,7 dias
1913 A	Arnstein identifica morte de trabalhador de mina por câncer de pulmão através de autópsia
1914 F	Primeira consideração de radônio em propósitos médicos
1921 N	Margaret Ulig sugere que o câncer de pulmão é causado pela emanação do radônio nas minas
1925 F	Primeira menção da palavra radônio na literatura
1940 N	Muitas evidências de que o radônio provoca câncer de pulmão
1941 F	Proposta de concentraçõa maxima de radônio no ar de 10 pCi/l (370 Bq/m)
1955 I	Introdução do termo working level
1957 C	Célula de Lucas
1957 N	Novas evidências da presença de radônio na água nos EUA (Maine)
1984 A	Altas concentrações de radônio são encontradas em residências nos EUA (New Jersey)

Quando se estabelecem as condições de medição, estão incluídos a manutenção do mesmo método, o procedimento experimental, o instrumento, as condições de operação, o local, as condições ambientais e a repetição em curto período de tempo.

Na definição da exatidão está envolvido o "*valor verdadeiro*" ou "*valor de referência*". Obviamente que este valor é desconhecido ou indeterminado, pois sua existência implicaria numa incerteza nula. Assim, existe o "*valor verdadeiro convencional*" de uma grandeza, que é o valor atribuído e aceito, às vezes, por convenção, como tendo uma incerteza apropriada para uma dada finalidade e obtida com métodos de medição selecionados. Tomando por base tais informações, o presente trabalho descreve etapas realizadas para a viabilização de novas metodologias de calibração de sistemas radiométricos portáteis utilizados no LABIDRO (Laboratório de Isótopos e Hidroquímica) do DPM (Departamento de Petrologia e Metalogenia) do IGCE (Instituto de Geociências e Ciências Exatas) da Unesp, Campus de Rio Claro. Dentre os tópicos abordados estão a determinação de tempos de detecção de maior precisão, curvas de calibração dosimétrica e a aquisição de dados de dosimetria no ar, para ambientes *indoor* e *outdoor*, por intermédio de gamaespectrômetros portáteis.

1.1. Justificativa e objetivos

O propósito inicial deste trabalho consistiu em implementar metodologias para a calibração do sistema portátil de detecção de radônio Pylon AB6A por intermédio da determinação da concentração de atividade do radônio a partir de uma amostra de água padronizada (atividade de 995,3 *pCi* de ²²⁶Ra). Esta calibração foi efetivada a partir da curva de equilíbrio secular do ²²²Rn com seu progenitor ²²⁶Ra, que se dá por volta de 7 meias-vidas do ²²²Rn. A obtenção de curva experimental semelhante à curva teórica de equilíbrio secular permite determinar um fator de calibração de alta precisão e exatidão. Este procedimento auxiliará em futuros trabalhos realizados no LABIDRO utilizando os sistemas de detecção de radônio (para água, ar e solo), visto que a mensuração deste gás requer o uso de instrumentos com boa exatidão e reprodutibilidade dos dados. Além disso o procedimento de calibração adotado assegura que os resultados das determinações sejam comparáveis com os de um padrão de referência.

Outro propósito desta Dissertação constituiu na calibração de espectrômetros gama portáteis e seu uso para a determinar a dose efetiva em alguns compartimentos dos prédios da Geologia da Unesp (Campus de Rio Claro). Sob essa ótica, as seguintes etapas foram realizadas:

- Calibração de detector de NaI(Tl) 2" x 2" a partir de fontes certificadas utilizadas no LABIDRO (Laboratório de Isótopos e Hidroquímica) da Unesp (campus de Rio Claro), envolvendo o número contagens dos radionuclídeos de interesse (K, eU, e eTh), concentração, taxa de exposição no ar e no tecido (X'_{Ar} e X'_{Tecido}), taxa de dose absorvida no ar (D'_{Ar}) e dose equivalente (E);
- Comparação entre os detectores de Nal(Tl)2"x 2" e BGO, determinando os tempos de medição que melhor se adequam, para ambos os detectores, envolvendo diferentes concentrações de K, U e Th bem como o método do χ²;

 Realização de coleta de dados em alguns compartimentos do interior do DPM (Departamento de Petrologia e Metalogenia) (Museu, litoteca e uma sala de um dos docentes), além do pátio e da litoteca do UNESPetro para determinar a dose equivalente relativa à radiação de fundo e dos materiais presentes.

CAPÍTULO 2

RADIOATIVIDADE

2.1. Princípios gerais

Na natureza existem núcleos estáveis até o chumbo, em torno do qual existe uma zona de núcleos instáveis, ou radioativos, que espontaneamente decaem em núcleos filhos com a emissão de partículas e energia. A estabilidade de um núcleo é determinada pela sua energia de ligação E_b , que corresponde à energia necessária para separar o núcleo em nêutrons e prótons individuais, trazendo-os numa distância para a qual não há nenhuma interação nuclear forte entre eles.

Segundo Shyti (2013) esta energia depende do número de prótons em relação ao número de nêutrons: se o número de nêutrons difere muito do número de prótons, o núcleo é instável. Podemos definir a energia de ligação por núcleon, ε , corresponde à relação entre a energia de ligação do núcleo e seu número de massa:

$$\varepsilon = \frac{E_b}{A}$$

Equação 1

A energia de ligação por núcleon representa a quantidade de energia necessária para dividir um núcleon (próton ou nêutron) em um núcleo de massa A.

Figura 2 - Energia de ligação por núcleon para isótopos comuns (adaptado de SHYTI, 2013).

Da *Figura 2* pode observar que ε aumenta com A, até A < 60 atingindo no ferro um máximo de 8,79 MeV, diminuindo lentamente em seguida. Esta diminuição da energia de ligação posterior ao ferro é devido ao fato de que, como um núcleo torna-se maior, a capacidade da força nuclear forte para neutralizar a repulsão eletrostática entre os prótons torna-se mais

fraca. Os elementos mais pesados que esses isótopos podem produzir energia por fissão nuclear, enquanto os isótopos mais leves podem gerar energia por fusão (SHYTI, 2013).

A estabilidade dos átomos é determinada pelas interações em que seus componentes estão sujeitos. O aumento de Z também aumenta as forças repulsivas de natureza elétrica entre os prótons: a estabilidade nuclear é preservada, aumentando progressivamente o número de nêutrons, a fim de equilibrar o aumento da repulsão e impedir a deterioração do núcleo.

As energias dos núcleos estáveis são inferiores às dos núcleos instáveis. A representação da energia associada com os núcleos em três dimensões mostra que os estáveis formam o vale de estabilidade (*Figura 3*).

Figura 3 - Representação tridimensional do vale de estabilidade (adaptado de SHYTI, 2013).

Os núcleos instáveis estão localizados longe do fundo do vale, num dos seus dois lados a instabilidade é gerada por um excesso de nêutrons ou de prótons. Uma configuração mais estável pode ser obtida por: decaimento α ou β . A instabilidade de um núcleo pode ser causada não só por superabundância de um tipo do núcleon, mas também por um excesso de energia que o núcleo possui quando está em um nível excitado: neste caso, há um terceiro tipo de decaimento no qual ocorre a emissão do excedente de energia na forma de radiação eletromagnética, ou seja, o decaimento γ (SHYTI, 2013).

2.1.1. Radiação cósmica

O resultado do trabalho desenvolvido por Victor Hess, entre os anos de 1911 e 1913, explicou que havia uma radiação penetrante na atmosfera terrestre e que era originada de fora do nosso planeta a que se deu o nome de "raios cósmicos". A radiação cósmica primária provém principalmente de prótons e partículas alfa altamente energéticas de origem extraterrestre que atingem a atmosfera e de partículas secundárias ou radionuclídeos cosmogênicos continuamente gerados pelo bombardeamento de nuclídeos estáveis na atmosfera a partir destes raios cósmicos. Os raios cósmicos primários não têm ainda qualquer tipo de interação com a matéria presente na atmosfera da terra, constituindo principalmente de prótons, partículas alfa e porções de núcleos mais pesados. Assim, a composição primária dos raios cósmicos é muito heterogênea, incluindo; 98% do total - 87% de hidrogênio, 12% de hélio e 1% de núcleos pesados com energias de 102 – 1014 MeV; 2% do total - elétrons e pósitrons (BARTLETT, 2004).

O resultado da radiação cósmica é um contínuo bombardeio da magnetosfera da terra por um fluxo quase isotrópico de partículas carregadas com energias diferentes, no entanto, apenas uma parcela atinge a superfície terrestre. Como as partículas carregadas são desviadas da componente do campo magnético da terra que é perpendicular à direção do movimento das partículas, a radiação cósmica é desviada mais no Equador do que perto dos polos, produzindo um efeito de latitude geomagnética. A taxa de dose absorvida de radiação é cerca de 10% menor no Equador geomagnético do que em latitudes altas. A intensidade da radiação cósmica primária é relativamente constante entre 15° N e 15° S, aumentando rapidamente entre 50° N e 50° S, após o que permanece praticamente constante em direção aos polos (SHYTI, 2013).

Além do campo magnético outros fatores que influenciam são, por exemplo, a atenuação causada pela atmosfera. Assim, apenas uma parte da radiação cósmica incidente atinge a superfície do planeta, irradiando continuamente todos os organismos vivos em seu caminho, incluindo seres humanos. As colisões elásticas e inelásticas de partículas provenientes dos raios cósmicos com átomos na atmosfera causa ionização e perda gradual de sua energia gerando uma cascata de radiação secundária, como mostra a *Figura 4*. Esta radiação secundária inclui *mésons pi* neutros e carregados ($\pi^{\circ} e \pi^{+/-}$) e anti-prótons e anti-nêutrons (p e n), mésons pesados como os káons (K) e híperons (Y) (SHYTI, 2013).

O fluxo de raios cósmicos que atinge a terra varia muito, dependendo da latitude geomagnética e do nível do mar, consistindo principalmente de múons, elétrons e pequena porcentagem de nêutrons e prótons. Múons são os componentes mais penetrantes e em espectroscopia são a principal fonte de ruído proveniente dos raios cósmicos. Pela interação de raios cósmicos com os átomos da atmosfera através dos processos de espalação ou captura de nêutrons têm-se a produção de radionuclídeos cosmogênicos. A espalação é uma reação nuclear em que um núcleo se divide em núcleos mais leves ao colidir com um nêutron de alta energia ou uma partícula carregada (SHYTI, 2013).

Figura 4 - Representação das reações envolvidas na interação de partículas dos raios cósmicos primários com a atmosfera, originando raios cósmicos secundários (adaptado de Shyti, 2013).

A interação de partículas de alta energia ocorre predominantemente com átomos e moléculas de nitrogênio e oxigênio da atmosfera resultando em uma cascata de produtos de interações e reações tais como prótons secundários, nêutrons e píons carregados/descarregados juntamente com núcleos de baixo número atômico (Z) como ³H, ¹⁴C, ⁷Be, ¹⁰Be, etc, também chamados de radionuclídeos cosmogênicos (BARTLETT, 2004). Estes radionuclídeos são emissores beta, com exceção do ⁷Be que decai por captura eletrônica, emite raios-gama característicos de 477,6 keV (intensidade de 10,5%) e é extensivamente usado como um traçador para fenômenos de circulação atmosférica e sua variação diurna. Destes, apenas o ³H e o ¹⁴C oferecem algum risco significativo para a saúde humana. Os prótons secundários e nêutrons geram mais núcleons, iniciando o chamado chuveiro de hádrons (SHYTI, 2013).

2.1.2. Tipos de decaimento radioativo

Existem vários tipos de decaimento radioativo:

- <u>Decaimento alfa</u>: é acompanhado pela liberação de uma partícula alfa (2 prótons e 2 nêutrons);
- <u>Decaimento beta</u>: é realizado com a emissão de uma partícula beta idêntica a um elétron negativamente carregado;
- <u>Decaimento beta⁺</u>: é menos frequente, sendo acompanhado pela emissão de um pósitron (carga positiva);
- <u>Captura eletrônica</u>: ocorre a partir da absorção de um elétron orbital de um átomo pelo núcleo atômico. A substituição da posição do elétron vago é seguida pela emissão de radiação característica (radiação eletromagnética de baixa energia);

- <u>Fissão espontânea</u>: ocorre pela divisão de átomos pesados em dois fragmentos, com a subsequente liberação de nêutrons e energia;
- <u>Decaimento gama</u>: o decaimento de um radionuclídeo geralmente deixa o núcleo recémformado em um estado energético excitado, sendo o excedente de energia irradiado na forma de raios gama.

O tipo de decaimento de nuclídeos instáveis determina a natureza dos átomos recémformados. As equações que representam as transições de um elemento X para um elemento Y por um modo específico de decaimento estão resumidas a seguir:

$$\begin{array}{l} {}^{A}_{Z}X \rightarrow {}^{A-4}_{Z-2}Y + \ \alpha(emissão \ alfa), \\ \\ {}^{A}_{Z}X \rightarrow {}^{A}_{Z+1}Y + \ \beta(emissão \ beta), \\ \\ \\ {}^{A}_{Z}X \rightarrow {}^{A}_{Z-1}Y + \ \alpha(captura \ eletrônica), \\ \end{array}$$
Equação 4

Alguns radionuclídeos podem ter mais de um modo de decaimento. Por exemplo, 66% do ²¹²Bi sofre desintegração por emissão de partículas beta convertendo-se em ²¹²Po, e 34% decai por emissão de partículas alfa para o ²⁰⁸Tl. Mas, independentemente do tipo de radiação, a meia-vida é a mesma.

O decaimento radioativo pode ocorrer também frequentemente em uma série (ou cadeia) com um número de produtos filhos que também são radioativos e que terminam em um isótopo estável. Em um sistema fechado e começando com uma quantidade especificada de um elemento pai, o número de átomos de elementos filhos e suas atividades crescem gradualmente até atingir o equilíbrio radioativo na série de desintegrações. Nesta condição, as atividades de todos os radionuclídeos da série são idênticas. Assim, a medição da concentração de qualquer elemento filho pode ser usada para estimar a concentração de qualquer radionuclídeo na série de decaimento. Em condições de equilíbrio, esta relação pode ser expressa da seguinte forma:

$$\lambda_1. N_1 = \lambda_2. N_2 = \lambda_3. N_3 = \cdots \lambda_i. N_i$$
 Equação 5

Exemplos de cadeias de desintegração são as séries radioativas (ou de decaimento) naturais do ²³⁸U, ²³⁵U e ²³²Th (**Tabela 1**, **Tabela 2** e **Tabela 3**).

	Nuclídeo		Meia-Vida	Maiores energias de radiação (MeV) e intensidades*		
	Nuchdeo	α		β	γ	
	²³⁸ U		4,468x10 ⁹	4,15(23%)	—	—
	¥		anos	4,19(77%)		
	²³⁴ Th		24,1 dias		~0,103(19%)	0,063(3,5%)
	¥				0,191(81%)	0,093(4%)
	↓ ²³⁴ Pa		1,18 min	—	2,29(98%)	0,765(0,30%)
▼ 99,86%	0,14%					1,001(0,60%)
	ł	²³⁴ Pa	6,7 h	—	0,53(66%)	0,10(50%)
	1				1,13(13%)	0,70(24%)
]					0,90(70%)
	◆ ²³⁴ U		2,48x10 ⁵ anos	4,72(28%)		0,053(0,2%)
	↓			4,77(72%)		
	²³⁰ Th		7,52x10 ⁴ anos	4,62(24%)		0,068(0,6%)
	↓			4,68(76%)		0,142(0,07%)
	²²⁶ Ra		1602 anos	4,60(5,5%)		0,186(4%)
	¥			4,78(94,5%		
	$\int 222 Rn$		3,825 dias	5,49(~100%)	_	0,510(0,07%)
99,98%	²¹⁸ Po 0,02%		3,05 min	6,11(100%)	0,33(100%)	_
◆ ²¹⁴ Pb	•		26,8 min	—	1,03(6%)	0,295(19%)
1		7				0,352(36%)
		²¹⁸ At	2 s	6,65(6%)	0,67(94%)	—
				6,70(94%)		
	²¹⁴ Bi		19,7 min	5,61(100%)	3,26(100%)	0,609(47%)
						1,120(17%)
99,96%	0,02%					1,764(17%)
▼ ²¹⁴ Po			164 µs	7,83(100%)	_	0,799(0,014%)
1		²¹⁰ Tl	1,32 min	—	2,3(100%)	0,296(80%)
						0,795(100%)
						1,31(21%)
	²¹⁰ Pb		~22 anos	$3,7(1,8x10^{-8}\%)$	0,017(85%)	0,047(4%)
	↓				0,064%(15%)	
	²¹⁰ Bi		5,02 dias	4,93(60%)	1,155(100%)	_
~100%	~0,00001%			4,89(34%)		
↓ ↓				4,59(5%)		
²¹⁰ Po			138,3 dias	5,30(100%)	_	0,803(0,0011%)
	•	²⁰⁶ Tl	4,19 min	_	1,520(100%)	_
	↓ ²⁰⁶ Pb		Estável		—	_

 Tabela 1 - Série de decaimento do urânio, ²³⁸U (IVANOVICH e HARMON, 1982).

	Nuclídeo	Meia-Vida	Maiores energias de radiação (MeV) e intensidades*			
			α	β	γ	
	²³⁵ U		7,13x10 ⁹	4,36(18%)		0,143(11%)
			anos	4,39(57%)		0,185(54%)
	₩			4,1-4,6(8%)		0,204(5%)
	²³¹ Th		25,64 h	_	0,300(~100%)	0,026(2%)
	Ļ					0,084(10%)
	²³¹ Pa		3,43x10 ⁴	5,01(<20%)	_	0,027(6%)
			anos	4,99(25,4%)		0,29(6%)
	↓			4,94(22,8%)		
	²²⁷ Ac		22 anos	4,95(48,7%)	0,046(100%)	0,070(0,08%)
98,8%				4,94(36,1%)		
•	1,2%			4,87(6,9%)		
²²⁷ Th			18,17 dias	5,76(21%)		0,050(8%)
				5,98(24%)		0,237(15%)
		¥		6,04(23%)		0,31(8%)
		²²³ Fr	21 min	5,34(0,005%)	1,15(100%)	0,050(40%)
						0,080(13%)
	1					0,234(4%)
	▼ ²²³ Ra		11,68 dias	5,61(26%)		0,149(10%)
				5,71(53,7%)		0,270(10%)
	↓			5,75(9,1%)		0,33(6%)
	²¹⁹ Rn		3,92 s	6,42(8%)		0,272(9%)
				6,55(11%)		0,401(5%)
	¥			6,82%(81%)		
	²¹⁵ Po		1,83 ms	7,38(100%)		_
	◆ ²¹¹ Pb		36,1 min	_	0,95(1,4%)	0,405(3,4%)
					0,53(5,5%)	0,427(1,8%)
	↓ ↓				1,36(92,4%)	0,832(3,4%)
0.32%	$\int 2^{211}$ Bi		2,16 min	6,28(17%)	0,60(0,28%)	0,351(14%)
	₹			6,62(83%)	/	· 、 /
▼ ²¹¹ Po	, / -		0,52 min	7,43(99%)	_	0,570(0,5%)
		Ļ	,			0,90(0.5%)
		²⁰⁷ Tl	4,79 min	_	1,44(100%)	0.897(0.16%)
	↓ 207Ph		Estável		_	_
	PD		Estavel	—	—	_

Tabela 2 - Série de decaimento do actínio, ²³⁵U (IVANOVICH e HARMON, 1982).

		Maiores energias de radiação (MeV) e intensidades*		
Nuclídeo	Meia-Vida			
		α	β	γ
²³² Th	1,39x10 ¹⁰	3,95(24%)		
↓ ↓	anos	4,01(76%)		
\downarrow ²²⁸ Ra	5,75 anos	_	0,055(100%)	_
²²⁸ Ac	6,13 h	_	2,11(100%)	0,34(15%)
				0,908(25%)
Ļ				0,96(20%)
²²⁸ Th	1,913 anos	5,34(28%)		0,084(1,6%)
Ļ		5,42(71%)		0,214(0,3%)
²²⁴ Ra	3,64 dias	5,45(5,5%)		0,241(3,7%)
¥		5,68(94,5%		
\perp ²²⁰ Rn	55,6 s	6,30(~100%)	_	0,55(0,07%)
²¹⁶ Po	0,145 s	6,78(100%)	_	_
↓ ²¹² Pb	10,64 h	—	0,580	0,239(47%)
				0,300(3,2%)
²¹² Bi	60,5 min	6,05(70%)	2,25(100%)	0,040(2%)
64,0%		6,09(30%)		0,727(7%)
36,0%				1,620(1,8%)
²¹² Po	304 ns	8,78(100%)	_	_
208	Tl 3,1 min	—	1,80(100%)	0,511(23%)
				0,583(86%)
				0,860(12%)
\checkmark				2,614(100%)
²⁰⁸ Pb	Estável	7,43(99%)	_	_

Tabela 3 - Série de decaimento do tório, ²³²Th (IVANOVICH e HARMON, 1982).

* Intensidades referem-se a porcentagem de desintegrações do nuclídeo em si, e não em relação ao "pai" original da série.

2.1.3. Natureza estatística do decaimento radioativo

O decaimento radioativo é um fenômeno estatístico. Cada desintegração atômica durante o decaimento radioativo ocorre independentemente dos outros eventos de decaimento, e o intervalo de tempo entre as desintegrações não é constante. Para um grande número de desintegrações aleatórias de átomos de um radionuclídeo particular, a freqüência de decaimento radioativo é dada pela distribuição de Poisson: se \bar{n} é a taxa de decaimento média, a probabilidade, *P*, que o número de núcleos atômicos, *n*, irá decair por unidade de tempo é (MAFRA, 1973):

$$P(n) = \frac{\bar{n}^n}{n!} exp(-\bar{n})$$

Equação 6

Para a distribuição de Poisson, isso assegura que a variância σ^2 de uma distribuição seja igual ao seu valor médio, sendo σ o desvio padrão. A faixa de $\pm 1\sigma$ acima da média abrange 68,3% da distribuição, $\pm 2\sigma$ engloba 95,5% da distribuição e $\pm 3\sigma$ engloba 99,7% da distribuição (MAFRA, 1973).

A emissão de partículas e raios gama no decaimento radioativo é proporcional ao número de átomos se desintegrando, e o desvio padrão pode ser usado para estimar o intervalo de desvios e erros de medição radiométrica. Se N contagens são registradas no tempo t, então, o desvio padrão das contagens gravadas é (MAFRA, 1973):

$$\sigma(N) = \sqrt{\overline{N}}$$
Equação 7

Onde \overline{N} é a expectativa matemática do número de contagens (a contagem média de medições repetidas). O desvio padrão fracionário de uma contagem (erro da medição de *N*) é :

$$\frac{\sigma(N)}{\overline{N}} = \frac{1}{\sqrt{\overline{N}}}$$

Equação 8

Para uma taxa de contagem n = N/t (c/s), o desvio padrão é dado por:

$$\sigma(n) = \frac{\sqrt{N}}{t} = \sqrt{\frac{n}{t}}$$

Equação 9

O desvio padrão fracionário da taxa de contagem n (erro da medida de n) é:

$$\frac{\sigma(n)}{n} = \frac{1}{\sqrt{nt}}$$

Equação 10

O "desvio provável" (P = 0,5) é $0,674\sigma$, um múltiplo do desvio padrão. As equações (Equação 8, Equação 9 e Equação 10) indicam que a precisão das medições radiométricas pode ser elevada pelo (a) aumento das contagens, N, (b) aumento da taxa de contagem, n e (c) aumento do tempo de contagem, t. Isso pode ser feito pelo uso de equipamentos mais sensíveis, melhorando a geometria de medição, ou incremento do tempo de contagem. Na prática, os erros também são afetados pela radiação de fundo. A radiação de fundo deve ser mantida a um mínimo, protegendo o detector. Uma descrição mais detalhada da teoria da radioatividade pode ser encontrada em Adams e Gasparini, 1970, Kogan et al., 1971 e Mares et al., 1984.

2.1.4. Lei de Decaimento e Equilíbrio Radioativo

O número de prótons no núcleo de um elemento, X, é designado como Z (número atômico) e a soma dos prótons e nêutrons (núcleons) como A (número de massa). Átomos com o mesmo Z, mas diferentes A são chamados de isótopos, representados como - ^AX. Os isótopos têm mesmas propriedades químicas, mas propriedades físicas diferentes. Átomos com o mesmo número de nêutrons são chamados de isótonos e com o mesmo A de isóbaros. O termo nuclídeo é usado quando se está referindo a núcleos ou isótopos/isótonos/isóbaros (KAPLAN, 1978).

Os núcleos atômicos de alguns isótopos têm um excedente de energia, são instáveis e desintegram-se para formar núcleos mais estáveis. Este processo é acompanhado pela emissão de partículas ou de energia, denominados de radiação nuclear. Nuclídeos com esta característica são chamados de radionuclídeos e o processo é chamado de decaimento nuclear ou desintegração. Numa série natural, a radioatividade pode ser medida através da atividade (A) dos nuclídeos, definida como:

$$A = \left| -\frac{dN}{dt} \right|$$

Equação 11

Nesta expressão, dN/dt é a taxa de variação do número de nuclídeos por unidade de tempo:

$$\frac{dN}{dt} = -\lambda N$$

Equação 12

O coeficiente λ é a constante de decaimento que representa a probabilidade de um nuclídeo desintegrar-se espontaneamente por unidade de tempo (dimensão de tempo⁻¹) e *N* é o número de átomos no sistema num tempo t (KAPLAN, 1978).

A integração da Equação 12 fornece a expressão:

$$N = N_o e^{-\lambda t}$$

Equação 13

Onde $N_t = n$ úmero de átomos presentes após o tempo t(s)

 $N_0 = n$ úmero de átomos presentes no tempo t = 0

 $\lambda = constante de decaimento de um determinado radionuclídeo (s⁻¹)$

O produto λN fornece a atividade (*Bq*) do radionuclídeo. O decaimento radioativo é independente de outras condições físicas. Se $T_{\frac{1}{2}}$ é o tempo para a desintegração de metade dos átomos do sistema (meia-vida do nuclídeo), então, é possível escrever:

Equação 14

Uma situação interessante ocorre quando se permite que um nuclídeo "filho" seja acumulado num recipiente juntamente com o seu "pai". No início do processo de acumulação tem-se apenas o nuclídeo "pai" puro, sendo o "filho" gerado na mesma proporção em que o "pai" se desintegra. Entretanto, à medida que se tem o acúmulo do "filho", sua taxa uniforme de criação entra em equilíbrio com a taxa crescente de decaimento do "pai". Após um intervalo de tempo, as duas taxas tornam-se praticamente iguais e a atividade do "filho" entra em equilíbrio com a do "pai". A atividade do nuclídeo "filho" fica condicionada à do nuclídeo "pai", não a ultrapassando. O acúmulo dos produtos de decaimento em uma série radioativa, para um número muito grande de átomos, é descrito pelo sistema de equações diferenciais:

$$dN_1 = \lambda_1 N_1 dt$$

$$dN_2 = (\lambda_1 N_1 - \lambda_2 N_2) dt$$

$$dN_3 = (\lambda_2 N_2 - \lambda_3 N_3) dt$$

...

$$dN_i = (\lambda_{i-1} N_{i-1} - \lambda_i N_i) dt$$

Equação 15

Cada N_i é o número de átomos do i-ésimo elemento da série radioativa presente no instante $t \in \lambda_i$ é a sua respectiva constante de decaimento (KAPLAN, 1978). Se o índice "0" corresponder ao estado inicial no instante t = 0, então, assumindo $N_2 = 0$, a integração da segunda equação (dN_2) presente na Equação 15 fornece o número de nuclídeos produzidos a partir do decaimento radioativo de um determinado "pai":

$$N_2 = \frac{\lambda_1 N_1^0}{\lambda_2 - \lambda_1} \cdot e^{-\lambda_1 t} - e^{-\lambda_2 t}$$

Equação 16

No caso em que $\lambda_2 >> \lambda_1$, é possível simplificar a expressão para:

$$N_2 = \frac{\lambda_1 N_1^0}{\lambda_2} \cdot (1 - e^{-\lambda_2 t})$$
Equação 17

Se o sistema existe há muito tempo ($t \rightarrow \infty$), pode-se escrever:

$$N_2 = \frac{\lambda_1 N_1^0}{\lambda_2}$$

Equação 18

Nessas condições $dN_2/dt = 0$ e o número de átomos do produto permanece inalterado (KAPLAN, 1978). O conjunto de equações presente na Equação 15 indica um estado estacionário, valendo as relações:

$$\frac{dN_1}{dt} = \lambda_1 N_1$$
$$\frac{dN_2}{dt} = 0$$
$$\frac{dN_3}{dt} = 0$$
$$\dots \dots$$
$$\frac{dN_i}{dt} = 0$$

Equação 19

Tal situação estudada por Bonotto (1982) e Torquato e Kawashita (1990) define a condição de "equilíbrio radioativo" ou "equilíbrio secular" estabelecido quando a derivada em função do tempo é igual a zero. Assim, nota-se que o número de átomos que decai por unidade de tempo é igual ao número de átomos formados no mesmo intervalo de tempo, situação que ocorre em sistema fechado para os membros de uma série radioativa natural. Com exceção da primeira equação, dentre aquelas representadas na Equação 15, em que $\lambda_1 N_1 \cong 0$, para as demais equações tem-se:

$$\lambda_1 N_1 = \lambda_2 N_2 = \dots = \lambda_{i-1} N_{i-1}$$

Equação 20

As atividades de todos os nuclídeos em filiação são iguais, isto é, o número de núcleos que se desintegram por unidade de tempo é o mesmo qualquer que seja o radioelemento. Portanto, se um sistema é constituído por uma série de decaimento em equilíbrio radioativo secular, as atividades dos produtos de decaimento são iguais entre si. Quando o λ dos "pais" das séries radioativas naturais são extremamente menores que de seus "filhos", é possível calcular-se, pela lei do decaimento, uma boa aproximação para determinar o tempo no qual os nuclídeos de cada série atingirão o equilíbrio radioativo com seus "pais".

Na série do urânio, iniciada no ²³⁸U e encerrada no nuclídeo estável ²⁰⁶Pb, tem-se que o equilíbrio radioativo entre os membros intermediários da cadeia é estabelecido em diferentes intervalos de tempo. Por exemplo, a *Figura 5* (a) ilustra isto para o ²²²Rn e seus "filhos", onde se nota que após cerca de 3,5 horas é atingido o equilíbrio radioativo.

Uma outra situação importante na determinação espectrométrica gama é a que envolve os nuclídeos ²²⁶Ra e ²²²Rn da série do urânio, notando-se na *Figura 5* (b) que o tempo para o

equilíbrio radioativo ser atingido corresponde a aproximadamente 26 dias, o qual é respeitado para o processamento das análises em laboratório.

Figura 5 – (a) Atividade do ²²²Rn e seus filhos em função do tempo segundo Lima (1993); (b) Equilíbrio radioativo entre o ²²⁶Ra e seu "filho" ²²²Rn.

2.2. Fontes naturais de radiação

Enquanto muitos elementos naturais têm isótopos radioativos, somente o potássio e as séries de decaimento do urânio, actínio e tório possuem radionuclídeos que produzem raios gama de suficiente energia e intensidade para serem medidos por espectrometria de raios gama. Isto se dá pelo fato de serem relativamente abundantes no ambiente natural. Abundâncias crustais médias desses elementos, citados na literatura, são no intervalo de 2 - 2,5% para o potássio (K), 2 - 3 ppm para o urânio (U) e 8 - 12 ppm para o tório (Th).

O 40 K é o isótopo radioativo de potássio e ocorre como 0,012% do potássio natural. Este isótopo decai para 40 Ar com a emissão de raios gama com energia de 1,46 MeV. Sabendo que o 40 K ocorre como uma proporção fixa de K no ambiente natural, esses raios gama podem ser usados para estimar a quantidade total de K presente. A meia-vida do 40 K é de 1,3×10⁹ anos.
Figura 6 - Esquema de decaimento do ⁴⁰K, por intermédio dos seguintes modos: (1) captura eletrônica com emissão de raios γ , (2) captura eletrônica sem emissão de raios γ , (3) emissão de pósitron, e (4) emissão beta. Também estão indicadas as energias.

Aproximadamente 89% dos átomos de ⁴⁰K decaem por emissão de uma partícula β^{-} para formar átomos de ⁴⁰Ca, enquanto que os 11% restantes desintegram-se por captura eletrônica para formar átomos de ⁴⁰Ar, com emissão de um fóton gama de energia 1,46 MeV (*Figura 6*). Desde que não ocorra separação de isótopos de potássio no ambiente natural, o fluxo de radiação gerado pelo ⁴⁰K no volume de rocha está na proporção direta da quantidade de potássio presente (HIODO, 1989).

O urânio natural compreende três isótopos: ²³⁸U, ²³⁵U e ²³⁴U. Quando em equilíbrio radioativo, esses isótopos correspondem, respectivamente: 99,28%; 0,72% e 0,0054% da abundância do elemento. A meia-vida do ²³⁸U e do ²³⁵U são de 4,46 × 10⁹ e 7,13 × 10⁸ anos, respectivamente.

Os isótopos ²³⁸U e ²³⁵U dão origem às séries de decaimento do urânio e do actínio, respectivamente, onde seus descendentes apresentam meias-vidas que variam de frações de segundo a milhares de anos. As duas séries de decaimento finalizam no elemento estável chumbo, sendo que o ²³⁵U, após 11 desintegrações (7 do tipo α e 4 do tipo β^{-}) origina o ²⁰⁷Pb, e o ²³⁸U, após 14 desintegrações (8 do tipo α e 6 do tipo β^{-}) origina o ²⁰⁶Pb. O ²³⁴U, citado como um dos três isótopos naturais de urânio, é um nuclídeo radiogênico pertencente à cadeia do ²³⁸U (**Tabela 1**) (BONOTTO, 1986).

O tório ocorre naturalmente como o radioisótopo ²³²Th que dá origem a uma série de decaimento que termina no isótopo estável de chumbo, ²⁰⁸Pb. A meia-vida do ²³²Th é de 1,39 $\times 10^{10}$ anos. Na mesma série ocorre outro isótopo natural de tório, o ²²⁸Th.

Nem o ²³⁸U, nem o ²³²Th emitem raios gama, sendo as emissões de raios gama dos seus produtos radioativos filhos utilizadas para estimar as suas concentrações.

2.2.1. Ocorrência nas rochas

2.2.1.1. Urânio

O urânio, elemento metálico radioativo pertencente ao grupo III-B da tabela periódica, mais especificamente à família dos actinídeos, possui número atômico 92 e massa atômica 238,03. Sua configuração eletrônica é dada por 5f³ 6d¹ 7s², densidade de 19,05 g.cm⁻³ (20°C), pontos de fusão a 1.132° C e de ebulição a 3.818° C.

Existem vários íons metálicos similares ao urânio, em termos de raio iônico, alta carga positiva e/ou características de coordenação. Entretanto, este elemento resiste à incorporação como um substituto de outros íons metálicos na maioria das rochas comumente formadas e depósitos minerais, tendendo, ao invés disto, formar seus próprios minerais (NASH, et al., 1981).

O urânio não ocorre naturalmente como um elemento nativo, pois, ao reagir com a água forma um óxido ou hidróxido (Nash et al., 1981). O principal composto primário de urânio é o dióxido de urânio, UO₂, que ocorre na variedade bem cristalizada uraninita e na forma microcristalina pechblenda. O UO₂ contém pequenas quantidades de rádio, tório, polônio, chumbo e hélio. Oxidação incipiente e perda de urânio por decomposição radioativa podem aumentar a relação oxigênio-urânio, de modo que raramente a uraninita e a pechblenda tem precisamente a composição UO₂, que se aproxima de U₃O₈ (KRAUSKOPF, 1972).

Em virtude da solubilidade dos minerais de urânio, esse elemento pode ser transportado por água superficial ou subterrânea até ambientes redutores, onde se precipita na forma de pechblenda ou coffinita (USiO₄.nH₂O) (KRAUSKOPF, 1972).

O comportamento do urânio e seu estado de oxidação mudam de um ambiente geológico para outro devido suas características químicas. O urânio possui muitos estados de oxidação (2+, 3+, 4+, 5+ e 6+), sendo que os estados de oxidação 2+ e 3+ só podem ser obtidos em condições laboratoriais (NASH, et al., 1981). Na natureza, o urânio ocorre sob os estados de oxidação 4+, 5+ e 6+. Embora Langmuir (1978) e Calas (1979) tenham enfatizado que o estado de oxidação 5+ possa ser o mais importante, a geoquímica do urânio tem sido descrita em termos dos estados de oxidação 4+ e 6+.

A transição de 4+ para 6+ tem um potencial de óxi-redução compreendido no intervalo normal de variação dos ambientes geológicos:

$$U^{4+} + 2H_2O \leftrightarrow UO2^{++} + 4H^+ + 2 e^-$$

Equação 21

de modo que se pode esperar a presença de compostos destes dois estados de oxidação na natureza (Krauskopf, 1972).

Apesar do conhecimento de que apenas fatores químicos não fornecem explicação da origem dos depósitos de urânio, eles são importantes, pois, o minério superficial pode ser derivado por oxidação de depósitos originais de sedimentos ricos em matéria orgânica, ou, então, o minério não-oxidado pode ser derivado pela lixiviação e redução de depósitos originais de material oxidado em arenito. O mecanismo da oxidação, dissolução, precipitação e redução pode ser explicado pelo comportamento químico do urânio, mas, a sequência dos eventos deve ser estabelecida a partir das relações geológicas.

2.2.1.2. Tório

O tório, elemento metálico radioativo, pertencente ao III-B da tabela periódica, mais especificamente à família dos actinídeos, possui número atômico 90, massa atômica 232,04 e número de coordenação 6. Sua configuração eletrônica é dada por $6d^2 7s^2$, densidade de 11,5 - 11,9 g.cm⁻³ (17°C), pontos de fusão a 1.740 - 1.760 °C e de ebulição a 4.780 – 4.800 °C.

O tório ocorre na natureza como cátion tetravalente. Este elemento usualmente ocorre como um constituinte traço em soluções sólidas em minerais fosfatados, óxidos e silicatos, e, ainda, em argilas e colóides do solo. Como elemento maior, ocorre em poucos e raros minerais como a torianita (ThO₂) e a torita (ThSiO₄); o primeiro é isomórfico com o urânio e o seguinte é isomórfico com o zircão. Por esta razão, uma grande parte das ocorrências naturais de tório são encontradas incorporadas à estrutura do zircão (Langmuir e Herman, 1980).

A principal fonte de tório é a monazita (Ce,La,Y,Th)PO₄ a qual contém de 3 - 9% até 20% de ThO₂. Minerais ígneos de UO₂ podem formar uma solução sólida completa com ThO₂ (ROGERS et al., 1969). Minerais hospedeiros de tório são altamente resistentes ao intemperismo e, portanto, o tório tem sido considerado como um elemento imóvel e insolúvel em águas naturais, como atestam dados da concentração de tório nestes ambientes, onde é encontrado em baixas concentrações, ou nem ocorre. A concentração de tório em condritos é da ordem de 0,04 ppm, enquanto que nos acondritos é superior a esta.

A areia monazítica ocorre no Brasil, Índia e Estados Unidos. Pode ser utilizada como combustível em reatores nucleares, pois, ²³²Th captura nêutrons lentos e alimenta ²³³U. A torianita ou dióxido de tório, ThO₂, é usada em refratários especiais.

2.2.1.3. Potássio

O potássio, elemento metálico prateado e mole pertencente ao grupo I-A, dos metais alcalinos, na tabela periódica, possui número atômico 19, massa atômica 39,1, raio iônico 1,33 Å, potencial iônico de 0,75, número de coordenação variando entre 8 e 12, configuração eletrônica 4s¹, densidade de 0,87 g.cm⁻³, pontos de fusão a 63,7 °C e de ebulição a 760 °C. O "clarke" (porcentagem média do elemento na crosta terrestre) do potássio é de 2,59, estando entre os oito elementos mais abundantes, que juntos perfazem 99% do total de elementos presentes em rochas (Mason, 1971). Existem três isótopos naturais de potássio, o ³⁹K, ⁴⁰K e ⁴¹K, cujas abundâncias são 93,1%, 0,01% e 6,9%, respectivamente.

O elemento ocorre na água do mar e em vários minerais como a silvita (KCl), carnalita (KCl.MgCl₂.6 H₂O) e carnita (MgSO₄.KCl.3H₂O).

Como exemplo de minerais que possuem o potássio em sua composição podem se citar a silvita, a carnalita, o salitre, a polialita, a alunita, a carnotita, a apofilita, a muscovita, a flogopita, a biotita, a lepidolita, o microclínio, o ortoclásio, a leucita, entre outros. Alguns desses são importantes como formadores de rochas.

Os feldspatos potássicos têm simetria monoclínica (sanidina e ortoclásio) e triclínica (microclínio). A sanidina representa a fase de alta temperatura e baixa pressão; já o ortoclásio e o microclínio são modificações de médias e baixas temperaturas, respectivamente. A altas temperaturas, pode ocorrer uma solução sólida completa entre o feldspato potássico monoclínico (sanidina e ortoclásio) e o feldspato sódico triclínico (albita). O feldspato intermediário é chamado anortoclásio. A baixas temperaturas, o anortoclásio se exsolve em lamelas subparalelas, de composição alternadamente sódica e potássica (pertitas e antipertitas). A similaridade dos raios iônicos do potássio e do bário gera um isomorfismo entre o ortoclásio e o celsiana, o feldspato de bário (COCCO et al., 1969).

No grupo das micas o potássio também é um elemento de grande importância na formação mineral, com a composição geral dada pela fórmula W(X,Y)₂₋₃Z₄O₁₀(OH,F)₂, onde W geralmente é representado pelo potássio, uma vez que as micas mais comumente encontradas nas rochas apresentam o potássio em sua composição química.

O potássio presente em rochas e sedimentos carbonáticos está exclusivamente contido na fração não-carbonática. Já em folhelhos, o potássio é principalmente dado pelo argilomineral contido, sendo também afetado pela presença de feldspato potássico. Em areias e arenitos, a presença do potássio é dada por três minerais: o feldspato potássico, a mica potássica (illita) e a glauconita. Entretanto, existe uma relação entre a área fonte, os eventos tectônicos, o relevo e clima associados à formação destas rochas.

Areias formadas nas fases inicial e final de ciclos tectônicos contém quantidades expressivas de feldspato potássico. O potássio também tem importância relevante nos evaporitos, onde os minerais potássicos são extremamente solúveis e, portanto, lixiviados dos sedimentos para as águas superficiais e subterrâneas.

O metal tem poucos usos, mas os sais de potássio são usados em muitas aplicações. O potássio é um elemento essencial nos organismos vivos. Quimicamente é muito reativo, lembrando o sódio no seu comportamento e em seus compostos. Também forma o superóxido KO_2 de coloração laranja que contém o íon O^{2-} .

2.2.1.4. Desequilíbrio radioativo

A maioria dos sistemas geológicos está em equilíbrio radioativo, ou seja, as atividades (número de desintegrações por unidade de tempo) são constantes para todos os radioisótopos de cada série envolvida. Isto se deve ao fato do elemento pai possuir meia-vida extremamente longa em relação a do elemento filho mais próximo (KAPLAN, 1978).

O período necessário para que um sistema fechado, contendo inicialmente os nuclídeos pais de cada série natural de decaimento, atinja 98,5% do equilíbrio é cerca de seis vezes a meia-vida do radionuclídeo filho de menor constante de decaimento (KETCHAM, 1996 *apud* SANTOS, 2001). Dessa forma, a série do ²³⁸U pode ser considerada em equilíbrio após um período de 1,5 milhões de anos (²³⁴U), a série do ²³⁵U em 190.000 anos (²³¹Pa) e a do ²³²Th em 40 anos (²²⁸Ra). Uma vez que a série de decaimento esteja em equilíbrio, a partir da medida da abundância de um filho pode-se inferir a abundância do pai. A medida da concentração de ²¹⁴Bi, por exemplo, pode fornecer a medida da abundância de urânio, e a medida da concentração de ²²⁸Ac ou ²⁰⁸Tl pode indicar a abundância de tório (IAEA, 1979).

Devido às diferenças nas propriedades químicas e nucleares (meia-vida, energia de recuo, etc.) dos elementos pertencentes às três séries naturais de decaimento, estes podem ser separados durante processos superficiais, tais como intemperismo, transporte e deposição, rompendo-se o estado de equilíbrio. Materiais geológicos podem apresentar-se em desequilíbrio devido à entrada ou saída destes elementos do sistema. Se o sistema retornar à condição de fechado, o equilíbrio tende a ser restabelecido pelo acúmulo dos produtos de decaimento da série, ou pelo decaimento de um nuclídeo que não tenha sido produzido pelo decaimento de um nuclídeo pertencente ao sistema (VASCONCELLOS et al., 1994).

Em condições geológicas de superfície (ou próximas a ela), este sistema químico fechado pode não existir, o que é o caso dos locais de estudo neste trabalho. Os processos causados pelas alterações climáticas podem provocar introdução e remoção de material e, considerando que os decaimentos ocorrem em diferentes fases, com diferentes propriedades físicas e químicas, é provável que, sob estas condições climáticas, ocorra a dispersão de alguns elementos da cadeia. Isto provoca o desequilíbrio das séries de decaimento, ou seja, os produtos intermediários e finais não estarão presentes em qualquer ponto na proporção esperada. Sob estas condições, a medida da abundância de um produto de decaimento não necessariamente fornece a abundância do pai (VASCONCELLOS et al., 1994). Entretanto, o grau de desequilíbrio vai variar segundo diversos fatores, como a mineralogia dos radioelementos e de suas vizinhanças ou a presença de sulfatos e carbonatos. O clima, superfície hidrológica e topografia também influem neste equilíbrio (IAEA, 1979).

Um exemplo da influência deste desequilíbrio na análise é quando se pretende estimar o ²³⁸U e ²³²Th e, para tanto, utilizam-se os radionuclídeos ²¹⁴Bi e ²⁰⁸Tl, respectivamente, sendo as leituras designadas como eU (equivalente urânio) e eTh (equivalente tório). Essa estimativa pode não ser correta em relação ao decaimento. Para que tenha significado, o valor de concentração de um elemento-pai, determinado pela emissão gama de um de seus filhos, é de suma importância que os membros da família radioativa envolvida estejam em equilíbrio radioativo. Na série do ²³²Th, esse desequilíbrio raramente acontece. Contudo, é comum acontecer com o urânio, devido a possibilidade de remoção do radônio (²²²Rn). O radônio é um gás, podendo escapar do solo ou das rochas e, como consequência, desestabilizar toda a série de decaimento, uma vez que o ²¹⁴Bi, principal emissor de radiação da série do urânio se forma após o decaimento do ²²²Rn (VASCONCELLOS et al., 1994).

Segundo Cuccia (2006) o equilíbrio está também relacionado ao volume da amostra estudada. Uma amostra pequena, portátil, tende a apresentar grau de desequilíbrio maior que uma grande amostra ou medida *in situ* de grande volume de material. O grau de desequilíbrio não é facilmente estabelecido com medidas de campo diretas, apesar de poder ser determinado em laboratório de várias maneiras, comparando os resultados das análises químicas com as estimativas fundamentadas no processo de desintegração ou medindo a radioatividade dos diferentes produtos de decaimento (VASCONCELLOS et al., 1994).

2.2.2. Rádio

O rádio ocorre naturalmente como quatro isótopos: ²²³Ra, ²²⁴Ra, ²²⁶Ra e ²²⁸Ra. O ²³²Th decai para ambas as formas, ²²⁸Ra e ²²⁴Ra, enquanto o ²³⁵U decai para ²²³Ra e o ²³⁸U decai para

o ²³⁰Th, o qual, por sua vez, decai para o ²²⁶Ra. Um dos isótopos, ²²⁶Ra, possui o maior tempo de meia-vida dentre os demais, 1599 anos. Devido aos seus curtos tempos de meia-vida, os radioisótopos de rádio são fortemente radioativos (FETTER, 1999).

O conhecimento da química da fase aquosa do rádio é rudimentar. Ele é reportado como tendo um comportamento químico similar ao do bário e do cálcio (FETTER, 1999). O rádio é mais solúvel do que o urânio e o tório e pode ser bioacumulado pelas plantas (castanhas do Pará brasileiras, possuem uma quantidade elevada de rádio). O rádio pode ser potencialmente substituído em séries de trocas catiônicas. A sequência de trocas catiônicas para solos são (FETTER, 1999):

$$Sr^{2+} < Ra^{2+} < Ca^{2+} < Mg^{2+} < Cs^{2+} < Rb^{2+} < K^+ < NH_4^+ < Na^+ < Li^+$$

O ²²⁸Ra possui uma meia-vida bem menor, 5,8 anos, do que o ²²⁶Ra. Entretanto, seu "pai", o ²³²Th, é muito mais abundante na natureza do que o ²³⁸U, "pai" do ²²⁶Ra. Como resultado, ambos os isótopos são encontrados em águas subterrâneas. A Agência de Proteção Ambiental americana (EPA) tem proposto um nível de concentração máxima (MCL) de 20 pCi/L para ambos, ²²⁶Ra e ²²⁸Ra (FETTER, 1999).

A composição de rádio em águas subterrâneas é uma função do tipo de rocha do aquífero. Rochas ígneas, tais como granitos, contém uma elevada proporção de urânio e tório, elementos que dão origem ao rádio. Aquíferos graníticos e areias e arenitos derivados do intemperismo de granitos tem um elevado potencial para conter bastante rádio. Rochas fosfáticas também apresentam altos teores de urânio. O rádio não é somente um problema por apresentar ocorrência natural, mas existem também áreas localizadas de contaminação de rádio proveniente de operações industriais. Estas estão associadas com resíduos da mineração de urânio além de fábricas onde tintas radioluminescentes foram elaboradas e utilizadas. O rádio em relógios foi utilizado e comercializado até 1968 e substituído pelo promécio (Pm-147) e trítio no início na década de 1960 (BUCHHOLZ, et al., 2008).

2.2.3. Radônio

Existem muitos isótopos de radônio, mas o ²²²Rn é o que possui maior relevância em estudos ambientais, pois, os demais isótopos possuem tempo de meia-vida inferiores a 1 minuto. O tempo de meia-vida do ²²²Rn é de 3,8 dias. ²²²Rn é produzido pelo decaimento do ²²⁶Ra, portanto, está associado com rochas com altos teores de urânio. O radônio pode estar associado a água que é pobre em ²²⁶Ra dissolvido, porque esse é proveniente primordialmente do decaimento do rádio na matriz mineral. O radônio é um gás nobre e não sofre qualquer reação

química, nem mesmo sorção na matriz mineral. O radônio é perdido pela água por difusão indo para a atmosfera e pelo decaimento radioativo através de uma série de decaimentos, dando origem a produtos de curta meia-vida até chegar ao ²¹⁰Pb, o qual possui uma meia-vida de 21,8 anos.

No Brasil, a Portaria MS n°. 2914/2011 (BRASIL, 2011) dispõe sobre a qualidade da água para consumo humano e estabelece como níveis de triagem os valores máximos de concentração de 0,5 Bq/L para atividade alfa total e de 1,0 Bq/L para atividade beta total. Caso os níveis de triagem sejam superados, deve ser realizada a análise específica para os radionuclídeos presentes. Segundo a portaria, o resultado deve ser comparado com os níveis de referência de 1 Bq/L para ²²⁶Ra (emissor alfa) e 0,1 Bq/L para ²²⁸Ra (emissor beta). Sob solicitação da Comissão Nacional de Energia Nuclear (CNEN), outros radionuclídeos devem ser investigados.

A EPA tem proposto um máximo nível de contaminação (MCL padrão) de 300 pCi/L para o radônio em água para consumo humano (FETTER, 1999), no entanto, há também uma preocupação com a saúde em relação ao excesso de radônio acumulado em residências. O radônio adentra as construções através da emanação proveniente do solo bem como pela difusão do gás através das torneiras por onde chega a água canalizada (quando esta contém uma elevada concentração de radônio).

Proprietários de redes privadas de distribuição de água são os que estão submetidos aos maiores riscos em relação ao radônio nas águas. Redes públicas de distribuição de água normalmente possuem instalações de armazenamento para suprir água durante incêndios. O tempo de residência para a água nessas instalações permite que o radônio sofra difusão e decaimento. Redes privadas de distribuição dependem de poços e usualmente possui apenas uma pequena instalação de armazenamento usada para manter a pressão.

2.2.4. Distribuição de K, U e Th em solos e rochas

As coberturas de solos geralmente têm forte efeito na atenuação da intensidade dos raios gama. Portanto, ainda que a concentração relativa dos radionuclídeos nos solos permaneça praticamente a mesma que nas rochas fontes, ocorrerá a atenuação e, como resultado disto, as rochas podem apresentar uma radioatividade menor, dando a impressão de serem mais máficas (VASCONCELLOS et al., 1994).

Dickson e Scott (1997) analisaram teores de K, U e Th em rochas e solos australianos por espectrometria gama e concluíram que os teores mais elevados estão relacionados com o aumento do teor de SiO_2 , especialmente no caso dos teores de Th. Este comportamento é mostrado graficamente na *Figura 7* (VASCONCELLOS et al., 1994).

Figura 7 - Variação do conteúdo médio de K, eTh e eU para rochas ígneas intrusivas e extrusivas com o aumento no conteúdo de sílica (modificado de DICKSON; SCOTT, 1997).

O ciclo sedimentar é de grande valia no entendimento da distribuição dos radionuclídeos naturais. Neste ciclo, a coerência entre as concentrações dos radionuclídeos é destruída devido à diferente solubilidade desses elementos. O urânio é facilmente oxidado para formar íon solúvel, enquanto o tório é carreado em suspensão melhor do que em solução, sendo facilmente fixado em argilas e resistatos (minerais pesados e resistententes ao intemperismo como quartzo e silicatos) secundários. Por isso, a razão Th/U varia muito nos sedimentos, dependendo em larga escala se a condição de deposição é um ambiente oxidante ou redutor (VASCONCELLOS et al., 1994).

2.3. Grandezas e unidades derivadas do SI e unidades aceitas não pertencentes ao SI

Grandezas físicas em Física Atômica e Nuclear são definidas e expressas em unidades que tenham sido adotadas pela Organização Internacional para Padronização (ISO) e são descritas em ISSO (1992a e 1992b). Mais referências para quantidades e unidades estão nas publicações recentes da Comissão Internacional de Proteção Radiológica (ICRP, 1991) e pelo Comitê Científico das Nações Unidas sobre os Efeitos da Radiação Atômica (UNSCEAR, 1993).

Além das unidades do sistema internacional (SI) de Física Nuclear, outras unidades de uso comum no campo da radioatividade ambiental podem ser encontradas em IAEA (1979, 1989). Os símbolos dos parâmetros básicos usados nas publicações das normas ISO e na literatura e adotados neste trabalho são os seguintes:

Z número atômico (número de prótons);

A número de massa (número de nucleons);

- **N** número de entidades (por exemplo, partículas, pulsos, contagens);
- *n* frequência de eventos (por exemplo, taxa de contagem), (1/s);
- λ constante de decaimento (s⁻¹);

 $T_{1/2}$ meia-vida (s);

- σ seção transversal efetiva (m²);
- σ desvio padrão (ou $\sigma(n)$ desvio padrão de uma taxa de contagem);

E energia (*eV*),
$$1 eV = 1,602x10^{-19} J$$
;

- μ coeficiente de atenuação linear (m^{-1});
- μ/ρ coeficiente de atenuação de massa (m^2/kg) ;

$$\rho$$
 densidade (kg/m^3)

As grandezas são resumidas na *Tabela 4* estão descritas abaixo na seguinte sequência: grandeza, símbolo recomendado, unidade, dimensão, definição, comentários e conversão em unidades mais antigas.

Atividade,*A*, becquerel, Bq, (s^{-1}) . O número médio de transições nucleares espontâneas por unidade de intervalo de tempo. 1 Bq = 1 desintegração por segundo. 1 Ci (curie)= $3.7x10^{10} Bq$, que equivale à atividade de 1g de ²²⁶Ra.

*Atividade espec*í*fica* (atividade por unidade de massa), a, becquerel por quilograma, Bq/kg, (kg⁻¹s⁻¹). O número de decaimentos atômicos por unidade de tempo por unidade de massa. Usado para descrever o conteúdo de radionuclídeos de rochas, materiais de construção, etc.

*Concentra*çã*o de atividade* (atividade por unidade de volume), c_A , becquerel por metro cúbico, Bq/m³, (m⁻³s⁻¹). O número de decaimentos atômicos por unidade de tempo e unidade de volume. Usado para descrever a concentração de radionuclídeos em gases e líquidos. 1 Bq/litro = 1 kBq/m³.

*Atividade de superf*í*cie* (atividade por unidade de área), a_s, becquerel por metro quadrado, Bq/m², (m⁻²s⁻¹). O número de decaimentos atômicos por unidade de tempo e unidade de área utilizada para descrever a distribuição de radionuclídeos numa superfície, por exemplo, a contaminação da superfície terrestre por precipitação nuclear (*nuclear fallout*).

*Exposi*ção, *X*, coulomb por quilograma, C/kg, (kg⁻¹ s A) (1 Coulomb = carga transportada em 1 segundo por uma corrente de 1 Ampère). É o poder ionizante da radiação eletromagnética no ar - definido pelo quociente da soma das cargas elétricas, dQ, de íons, de um sinal de carga, liberados indiretamente pelos fótons de raios gama ou X no ar, e a massa, dm, do ar, X = dQ/dm. $1R = 2,58 \times 10^{-4} C/kg$.

*Taxa de exposi*çã*o*, *X'*, coulomb por quilograma e segundo (ampère por quilograma) C /(kg. s) (A kg⁻¹). A relação da exposição incremental, *dX*, em um intervalo de tempo dt, X' = dX/dt. A taxa de exposição foi utilizada para a descrição da radiação gama terrestre em $\mu R/h$, $1\mu R/h = 7,17 \times 10^{-14} A/kg$. A radiação gama terrestre pode ser expressa como taxa de dose.

Dose, dose absorvida, **D**, gray, *Gy*, (m²s⁻²). Dose absorvida é definida como a energia cedida pela radiação para uma unidade de massa de matéria irradiada. 1 *Gy* = 1 *J/kg*. A matéria (ar, tecido) é especificado. 1*rad* = $10^{-2}Gy$. Conversão: 1 *R* = 8,69 × $10^{-3}Gy$ (no ar), 1 *R* = 9,57 × $10^{-3}Gy$ (no tecido).

Taxa de dose, taxa de dose absorvida, D', gray por segundo, Gy/s, (m² s⁻³). Taxa de dose é definida como a proporção de uma dose incremental, dD, em um intervalo de tempo dt, ao intervalo de tempo, D' = dD/dt. A taxa de dose gama no ar é usada para a descrição da radiação terrestre e é geralmente expressa em nGy/h. 1 pGy/s = 3,6 nGy/h. Para a conversão da taxa de exposição terrestre para taxa de dose terrestre no ar adota-se: 1 $\mu R/h = 8,69 nGy/h$.

Dose equivalente, **H**, sievert, Sv, (m² s⁻²). Expressa os efeitos biológicos da radiação no tecido e depende da dose absorvida, D, e do tipo de radiação, dada por um fator de qualidade (Q). H = DQ. 1 $rem = 10^{-2}Sv$. O fator de qualidade é uma função do tipo de radiação e de sua energia. Os valores básicos de Q, independente da energia das partículas, são: raios gama, raios-x e elétrons: Q = 1; prótons e nêutrons: Q = 10; partículas alfa: Q = 20.

*Taxa de dose equivalente de f*ótons, H'_x , sievert por segundo, Sv/s, (m² s⁻³). Isso às vezes é usado para relatar o efeito do campo de radiação gama em seres humanos (nSv/h). A relação com a taxa de dose gama no ar é $H'_x = 1,15$ D'_a.

Equivalente de Dose, H_T , sievert, Sv, (m² s⁻²). Expressa os efeitos biológicos da radiação em órgãos ou tecidos. $H_T = w_R D_{TR}$, onde w_R é o fator de peso da radiação, e D_{TR} é a dose média absorvida.

Dose efetiva, *E*, sievert, *Sv*, (m² s⁻²). Dose efetiva é uma soma da multiplicação das doses equivalentes em distintos órgãos humanos pelos fatores de peso particulares de cada órgão w_T . $E = \sum w_T H_T$. A dose efetiva é expressa em *mSv* e geralmente relatada por ano. Para radiação gama ambiental a estimativa é $E = D'_{Ar} \times t \times 0.7 \times 10^{-6}$, onde *E* é a dose efetiva (*mSv*), D'_a, é a taxa de dose no ar (*nGy/h*), *t* é o tempo de exposição (*h*) e 0,74 é o coeficiente de conversão (*Sv/Gy*) para órgãos humanos (UNSCEAR, 1988). Para D'_{Ar} = 100 *nGy/h*, *t* = 8760 *h* (1 ano), *E* = 0,613 *mSv*.

Grandeza	Símbolo	Unidade	Dimensão	Uso/Conversão para unidades antigas
Atividade	Α	Becquerel (Bq)	s ⁻¹	Radioatividade de objetos
Atividade Específica	а	Becquerel por quilograma (Bq/kg)	kg ⁻¹ s ⁻¹	Radioatividade de unidade de massa
Concentração de Atividade	c _A	Becquerel por metro cúbico (Bq/m ³)	m^3s^{-1}	Radioatividade de gases e líquidos
Atividade de Superfície	as	Becquerel por metro quadrado (Bq/m ²)	m^2s^{-1}	Radioatividade de unidade de área
Exposição	X	Coulumb por quilograma (C/kg)	Kg ⁻¹ sA	Efeito ionizante de raios-X e gama no ar
Taxa de Exposição	X'	Ampère por quilograma (A/kg)	A kg ⁻¹	Exposição por unidade de tempo, campo de radiação gama. $\frac{1\mu R}{h} = 7,17x10^{-14}A/kg$
Dose	D	Gray (Gy)	m ² s ⁻²	Dose absorvida $1rad = 10^{-2}Gy$ $1R = 8,69x10^{-3}Gy$ (no ar)
Taxa de Dose	D'	Gray por segundo (Gy/s)	Kg ⁻¹ sA	Campo de radiação gama $\frac{1\mu R}{h} = 8,69 \frac{nGy}{h}$ (no ar)
Dose Equivalente	H	Sievert (Sv)	A kg ⁻¹	Efeitos biológicos da radiação $1rem = 10^{-2}Sv$
Taxa de dose equivalente para fótons	H'_X	Sievert por segundo (Sv/s)	m^2s^{-3}	Dose equivalente por unidade de tempo
Equivalente de Dose	H_T	Sievert (Sv)	m ² s ⁻²	Efeitos biológicos da radiação
Dose Efetiva	E	Sievert (Sv)	m ² s ⁻²	Efeitos biológicos da radiação para homem

Tabela 4 - Grandezas e unidades de radioatividade derivadas do SI.

2.3.1. Unidades de concentração de radioelementos terrestres e constantes de conversão

Em Geologia e Geofísica Nuclear, as concentrações de radioelementos nas rochas, ar e água são expressas nas seguintes unidades (IAEA, 2003):

• Concentração em massa de K: %K (porcentagem de potássio);

- Concentração em massa de U: ppm de eU (partes por milhão de urânio equivalente);
- Concentração em massa de Th: ppm de eTh (partes por milhão de tório equivalente);
- Concentração de atividade do Rn em gás de solo e no ar: kBq/m³, Bq/m³;
- Concentração de atividade de radioelementos nas águas subterrâneas: Bq/l, Bq/m³;

A atividade específica de K, U e Th são dadas na Tabela 5, sendo que:

$$1 \, ppm = 10^{-6} g/g = 1g/ton$$

Tabela 5 - Conversão da concentração de radioelementos para atividade específica (IAEA, 1989, 2003).

1% K em rocha	= 313	Bq/kg	^{40}K
1ppm de U em rocha	= 12,35	Bq/kg	^{238}U , ou ^{226}Ra
1ppm de Th em rocha	= 4,06	Bq/kg	^{232}Th

A contaminação da superfície da terra por radionuclídeos artificiais é expressa em atividade de superfície (atividade por unidade de área, Bq/m²), ou por atividade específica (atividade por unidade de massa, Bq/kg). Um fator importante na relação entre essas duas quantidades é a distribuição vertical do radionuclídeo no solo, dada pela massa de repouso por unidade de área, β (g/m²) (ICRU, 1994).

2.3.1.1. Unidades terrestres convencionais reportadas

A estimativa da concentração de potássio em rochas e solos por espectrometria de raios gama é através da detecção da energia de 1,461 MeV emitida pelo ⁴⁰K. O ⁴⁰K ocorre na natureza a uma taxa fixa em relação a outros isótopos, não-radioativos, de potássio. Assim, a estimativa de K é direta, e os resultados são relatados em % K (porcentagem de potássio). A estimativa de urânio se dá através da detecção da energia de raios gama do ²¹⁴Bi de 1765 keV, um produto filho da série de desintegração do ²³⁸U. A estimativa de U por espectrometria de raios gama é, portanto, indireta, e os resultados são relatados em ppm de eU (partes por milhão de urânio equivalente). O 'equivalente' serve como um lembrete de que a estimativa se baseia no pressuposto de equilíbrio radioativo da série de decaimento do ²³⁸U. Da mesma forma, a estimativa de tório é através da detecção da energia de raios gama do ²⁰⁸Tl de 2615 keV, um produto filho da série de decaimento do ²³²Th e as estimativas são relatados em ppm de eTh (partes por milhão de tório equivalente).

A resposta dos instrumentos de raios gama de contagem total à radiação de fontes de K, U ou Th depende da concentração de origem, do volume do detector, da eficiência e do limiar de energia do instrumento. Em 1976, a IAEA introduziu a unidade de concentração do radioelemento, denotada como "ur" (IAEA, 1976), para permitir a emissão de relatórios de medições de contagem total que são independentes da fonte e da geometria fonte/detector. Esta

unidade de medida não elimina totalmente a resposta do instrumento e deve ser considerada como um consenso. Mais recentemente, as medidas de contagem total são convertidas em taxa de dose gama ou taxa de exposição. No entanto, essas conversões também são aproximações.

2.3.2. Doses absorvidas naturais e antrópicas

O ambiente radioativo é formado por um fluxo de partículas elementares e energia. A radiação pode ser produzida pelo homem ou pela desintegração dos elementos instáveis, de ocorrência natural, ou ainda pode ser de origem extraterrestre. Em Geociências, fontes naturais e artificiais de radiação são estudadas através de sua capacidade de causar ionização da matéria. Esta radiação ionizante é devido às radiações alfa, beta, gama e nêutrons. Fontes naturais de radiação constituem parte do ambiente de radiação natural que sempre tem acompanhado a vida na terra.

A radiação cósmica, composta principalmente de partículas de alta energia do sol e do espaço exterior, interage com a atmosfera da terra e dá origem a uma radiação secundária de partículas e raios gama, que prevalecem na superfície da terra. A intensidade dos raios cósmicos aumenta com a altitude, dobrando a cada 2000 m e mostrando pequenas variações com a latitude. A taxa de dose de radiação cósmica ao nível do mar é de cerca de 32 nGy/h (GRASTY et al., 1984). Radionuclidos cosmogênicos são produzidos através da interação dos raios cósmicos com os átomos na atmosfera e não contribuem significativamente para as doses de radiação absorvida.

A radiação terrestre resulta de radionuclídeos primordiais em rochas que foram sintetizadas durante a criação do planeta. As fontes mais importantes são o potássio, o urânio e o tório e seus produtos de decaimento (**Tabela 6**). Um intervalo típico de taxa de dose gama terrestre é de 20 - 100 nGy/h, com uma média global de cerca de 55 nGy/h (UNSCEAR, 1988). Isótopos de radônio, um gás radioativo das séries do ²³⁸U, ²³²Th e ²³⁵U, e seus produtos de decaimento, são as principais fontes de radioatividade no ar. O gás radônio origina-se nas rochas e solos e emana do solo para a atmosfera ou para as águas subterrâneas. Concentrações de radônio e de seus produtos de decaimento no ar variam. Sobre a terra, uma razoável estimativa global da concentração de radionuclídeos naturais em águas subterrâneas é várias ordens de magnitude menor do que em rochas. Mais descrições do ambiente natural de radiação podem ser encontradas em Grasty et al. (1984), UNSCEAR (1988), Adams e Gasparini (1970), Kogan et al. (1971) e Adams e Lowder (1964).

Concentração do radioelemento	Taxa de exposição (µ R/h)	Taxa de dose (<i>nGy/h</i>)	
1% K	1,505	13,078	
1 ppm U	0,653	5,675	
1 ppm Th	0,287	2,494	

Tabela 6 - Taxas de exposição teórica de raios gama e taxas de dose gama a 1 m acima de um solo homogêneo semi-infinito por unidade de concentração do radioelemento, supondo equilíbrio radioativo na série de decaimento do U e do Th (IAEA, 1989; IAEA, 1991; LΦVBORG, 1984)

Adubos de potássio e fosfato podem aumentar a radioatividade do solo (PFEISTER; PAULY, 1980). Equipamentos de diagnóstico médico que utilizam fontes radioativas contribuem significativamente para doses absorvidas anuais – normalmente aumentando a dose absorvida anual em relação à radiação natural com um adicional de 20 - 30% (IAEA, 2003).

Testes com ogivas nucleares realizados na atmosfera desde 1945 resultaram na introdução de radionuclídeos artificiais no ambiente. O radionuclídeo mais longevo da precipitação nuclear/radioativa (fallout) é o 137 Cs. A concentração de 137 Cs tem valores máximos no hemisfério norte entre as latitudes 40 – 50 *graus* e uma atividade média coletada de até 2,9 *kBq/m*² (UNSCEAR, 1982). Outras causas da precipitação radioativa são acidentes na indústria de energia nuclear, seguidos pela liberação de radionuclídeos para a atmosfera. Radionuclídeos de precipitação de curta duração deterioram rapidamente – geralmente a proporções insignificantes dentro de dias ou semanas (IAEA, 2003).

Porém, altas concentrações de ¹³⁷Cs, acumulados nos primeiros 10 *cm* do solo superior, podem permanecer no ambiente por muitas décadas, com uma taxa de atividade superficial (atividade de superfície) no intervalo de centenas a milhares de Bq/m^2 . Isto supera os efeitos da radiação devido ao ambiente natural (MUNDIGL et al., 1994; KORUN et al, 1993). Fontes nucleares perdidas e acidentes em usinas nucleares podem ter consequências para a radiação local (IAEA, 2003).

Fontes naturais e artificiais de radiação causam irradiação externa e interna em seres humanos. Radiação cósmica, radiação terrestre, materiais de construção, precipitação nuclear e radiação artificial são as fontes de radiação externa. Exposições internas resultam da ingestão e inalação de substâncias radioativas de ocorrência natural (alimentos, água e ar). A inalação de radônio contribui significativamente para doses anuais globais de radiação absorvida. Os efeitos biológicos da radiação absorvida são definidos em termos de dose efetiva e são expressos em sieverts (Sv) (IAEA, 2003).

Fabela 7 - Dose efetiva anu	al média global de fontes	naturais de radiação	(UNSCEAR, 1988)
-----------------------------	---------------------------	----------------------	-----------------

			, ,
Fonte de radiação	Externa (mSv)	Interna (mSv)	Total (mSv)
Raios cósmicos	0,410 (17)		0,410 (17)
Radionuclídeos cosmogênicos		0,015 (1)	0,015 (1)

Fontes Naturais:			
^{40}K	0, 150 (6)	0, 180 (7)	0,330 (13)
^{238}U – série	0, 100 (4)	1,239 (51)	1, 339 (55)
²³² Th - série	0, 160 (7)	0, 176 (7)	0, 336 (14)
Total	0,820 (34)	1,616 (66)	2,436 (100)

Nota: valores relativos são dados em parênteses (%).

As estimativas de dose efetivas anuais de radiação por fontes naturais (**Tabela** 7) (UNSCEAR, 1988) mostram o radônio (principalmente no ar de ambientes interiores - residências, escritórios, minerações subterrâneas, etc.) como sendo o maior contribuinte para a dose de radiação absorvida. Contribuições para dose efetiva anual de usinas nucleares, reatores de pesquisa, precipitação radioativa global e fertilizantes agrícolas são geralmente baixas, enquanto a dose efetiva anual média de irradiação médica é estimada entre 0.6 - 1.5 mSv (BfS, 1998; NOVOTNA, 1986) embora possa chegar a valores mais altos (IAEA, 2003).

2.3.3. Estimativas de exposição às radiações

Dois métodos para avaliação da exposição externa a um material radioativo de ocorrência natural (NORM) são recomendados pela UNSCEAR (2000). O primeiro consiste em medir diretamente a taxa de dose externa gama no ar *outdoor* e *indoor*, subtraindo da taxa de dose dos raios cósmicos. O segundo método baseia-se nas medidas da concentração dos radionuclídeos mais relevantes presentes no solo. Esses dois métodos são bem validados e bastante utilizados para estimar exposições, sejam elas *outdoor* ou *indoor* (VASCONCELOS, 2010).

Pesquisas realizadas com medidas diretas da taxa de dose absorvida no ar provenientes dos radionuclídeos naturais terrestres já foram realizadas em várias regiões do mundo (UNSCEAR, 1993). A taxa de dose média absorvida no ar variou de 24-160 nGy.h⁻¹, com uma média de 57 nGy.h⁻¹ (UNSCEAR, 2000). Entretanto, é mais comum determinar as concentrações de radionuclídeos no solo em laboratório para depois estimar as doses. Por muitos anos, essa estimativa foi baseada nos cálculos de BECK (1976), entretanto, com o passar do tempo, surgiram novas pesquisas com cálculos que estimaram a taxa de dose efetiva *outdoor* usando o método Monte Carlo (SAITO et al, 1990; PETOUSSI et al, 1989; ECKERMAN; RYMAN, 1993). Os resultados destes três cálculos estão apresentados na **Tabela 8** que mostra que os valores são bastante semelhantes ou iguais, segundo a UNSCEAR (2000) (VASCONCELOS, 2010).

Tabela 8 - Taxa de dose efetiva outdoor para um adulto por unidade de concentração de radionuclídeos naturais no solo (UNSCEAR, 2000).

	[DECK 1072] ⁸	[SAITO; JACOB, 1995;	[ECKERMAN;
	[BECK, 1972]	SAITO et al.,1998] ^b	RYMAN, 1993] ^b
40 K	0,029	0,030	0,033
²³⁸ U	0,30	0,31	0,51
²³² Th	0,46	0,42	0,35

^a Calculadas como $E = X.0,0087 Gy. R^{-1}.0,7. Sv. Gy^{-1}$

 b *H*_E + 0,01 *H*_{skin}

2.3.3.1. Exposição Externa *indoor* e outdoor

Segundo a UNSCEAR (2000), a taxa de dose absorvida no ar *indoor* devido à radiação gama terrestre é, em geral, 40% maior do que a *outdoor*. Pesquisas relacionando às doses *indoor* e *outdoor* apontaram razões inferiores a 1 em regiões onde a construção com madeira é comum (Tailândia, Estados Unidos e Islândia). Razões acima de 2 foram encontradas na Suécia e em Hong Kong onde a dose absorvida no ar *indoor* foi superior à *outdoor* ou porque os valores *outdoor* foram muito mais baixos do que o *indoor*, como encontrado na Holanda (VASCONCELOS, 2010).

As exposições externas *outdoor* são provenientes dos radionuclídeos presentes nos solos. As concentrações desses radionuclídeos são relativas ao tipo de rocha que esses solos se originaram. O maior nível de radiação está associado com rochas ígneas, tais como granitos, e os menores níveis com rochas sedimentares. Há exceções, porém, de alguns xistos e rochas ricas em fosfatos que possuem radioatividade relativamente alta por exibirem acúmulo de radionuclídeos. Segundo a UNSCEAR (2000) há muitos estudos para determinar o *background* devido aos níveis de radionuclídeos nos solos, que, por sua vez, pode estar relacionado com a taxa de dose absorvida no ar (VASCONCELOS, 2010).

Diversas pesquisas, em diferentes países, já foram realizadas em ambientes *outdoor* com o intuito de avaliar a radioatividade natural (SAGHATCHI, et al, 2008; LU; ZHANG, 2006; LU; ZHANG, 2008; LU, et al., 2008; MALANCA, et al., 1995; VEIGA, et al., 2006; MOHANTY, et al., 2006). Elas indicaram que os três principais componentes da radiação gama externa são o ²²⁶Ra da série do ²³⁸U, o ²³²Th e o ⁴⁰K. Esses radionuclídeos contribuem de maneira aproximadamente igual na dose da radiação gama externa incidente no indivíduo, seja por exposição *outdoor* ou *indoor* (UNSCEAR, 2000).

Os produtos de decaimento das cadeias do urânio e tório não estão em equilíbrio radioativo num sistema aberto. Os isótopos ²³⁸U e ²³⁴U podem encontrar-se num ambiente aberto em equilíbrio aproximado, entretanto, eles são separados por dois radionuclídeos de meias-vidas curtas, ²³⁴Th e ²³⁴Pa. Esses processos de decaimento podem, dessa forma, ocasionar dissociação dos seus produtos da fonte na qual se encontram, facilitando subseqüentemente sua

transferência para o ambiente. É devido a isso que o ²³⁴U pode estar deficiente em relação ao ²³⁸U nos solos e em maior concentração em rios e mares. O ²²⁶Ra, por sua vez, pode ter uma pequena diferença na concentração em relação ao ²³⁸U, porque poderá ocorrer separação entre seus pais ²³⁰Th e urânio e também devido à grande mobilidade do rádio no meio-ambiente. Dentre os produtos de decaimento do ²²⁶Ra está o ²²²Rn, um gás nobre que difunde dos solos, reduzindo a taxa de exposição da série do ²³⁸U. O ²²²Rn possui uma meia-vida curta de 3,82 dias, entretanto, seus filhos ²¹⁰Pb e ²¹⁰Po possuem meias-vidas longas, assumindo uma maior importância na avaliação da dose externa *outdoor* do que o radônio (UNSCEAR, 2000).

O radônio, por ser um gás inerte, é capaz de se deslocar, por grandes distâncias, dos locais onde é gerado durante sua curta existência. Seu escape ocorre na forma de um íon de recuo devido à energia recebida durante o decaimento do núcleo pai com consequente difusão do átomo neutro através dos poros internos dos grãos minerais e posterior difusão e transporte intergranular na matriz sólida permeável. Os átomos de radônio migram para a água subterrânea ou para as camadas superiores do solo. O radônio se concentra nas camadas superiores do solo, de onde eventualmente escapa (OLIVEIRA, 2006).

Os produtos de decaimento do ²²²Rn com maior meia-vida são o ²¹⁰Pb (T1/2 = 22 anos), ²¹⁰Bi (T_{1/2} = 5,02 dias) e ²¹⁰Po (T_{1/2} = 138,3 dias), onde o ²¹⁰Pb exibe maior relevância que os demais por sua meia-vida mais longa. Assumindo que toda a atividade dos filhos do ²²⁶Ra na atmosfera é proveniente do ²²²Rn, a sua produção e remoção deve obedecer o estado estacionário (WARNECK, 2000). Estes filhos radioativos do ²²²Rn são principalmente íons positivos, que podem associar-se com partículas de ar polarizado, água ou aerossóis. JUNGE (1963) mostrou que cerca de 90% da radioatividade natural na atmosfera é encontrado em aerossóis com raio entre 0,05 e 0,5 µm (tamanho médio de 0,1 µm) (VASCONCELOS, 2010).

Na série do ²³²Th, considerações similares à série do ²³⁸U podem ser observadas. O ²²⁸Ra tem uma meia-vida relativamente mais longa, o que pode ocasionar a separação de seu radionuclídeo pai, ²³²Th. Já o radônio desta série, ²²⁰Rn, possui uma meia-vida muito curta e seus produtos de decaimento não possuem meia-vida longa (VASCONCELOS, 2010).

Normalmente o ⁴⁰K possui uma atividade específica nos solos maior do que os radionuclídeos ²³⁸U e ²³²Th. A UNSCEAR (2000) sugere valores de 400, 35 e 30 Bq kg⁻¹ para o ⁴⁰K, ²³⁸U e ²³²Th, respectivamente, como as médias desses radionuclídeos no mundo a partir dos valores de referência de alguns países (VASCONCELOS, 2010).

Uma das grandezas mais estudadas para avaliar a radiação gama *outdoor* proveniente dos radionuclídeos ²³²Th, ²³⁸U e ⁴⁰K é a taxa dose absorvida no ar a 1 m da superfície do solo. Os fatores de conversão utilizados para conversão de 1 Bq kg⁻¹ para nGy h⁻¹ são correpondentes

a 0,621 para o ²³²Th, 0,462 para o ²³⁸U e 0,0417 para o ⁴⁰K, conforme recomendado pela UNSCEAR, 2000 e utilizados por diversos autores (SAGHATCHI et al., 2008; LU; ZHANG, 2006; LU; ZHANG, 2008; LU et al., 2008; MALANCA et al., 1995; VEIGA et al., 2006; MOHANTY et al., 2006; VASCONCELOS, 2010).

Segundo a UNSCEAR (2000), para estimar a dose efetiva anual ambiental, pode-se usar o coeficiente de conversão de dose absorvida no ar para dose efetiva e o fator de ocupação seja ele *indoor* ou *outdoor*. O valor médio desses parâmetros varia com a idade da população e o clima do local considerado. UNSCEAR (1993) sugere o uso de 0,74 Sv.Gy⁻¹ como o coeficiente de conversão de dose absorvida no ar para dose efetiva recebida por adultos e 0,2 como o fator de ocupação que significa a fração de tempo em que uma pessoa permanece no ambiente *outdoor* e no caso de exposições *indoor* esse fator de ocupação eleva-se a 0,8. Estudos em diversos locais no mundo apontam um valor médio de dose absorvida no ar de 84 nGy.h⁻¹ em ambientes *indoor* e de 59 nGy.h⁻¹ em ambientes *outdoor* (UNSCEAR, 2000). A dose efetiva anual é, portanto, calculada da seguinte forma:

Ambientes *indoor*: 84 nGy.h⁻¹ × 8760 h × 0,8 × 0,7 Sv.Gy⁻¹ = 0,41 mSv;

Ambientes *outdoor*: 59 nGy.h⁻¹ × 8760 h × 0,2 × 0,7 Sv.Gy⁻¹ = 0,07 mSv.

A média mundial da dose anual efetiva é de 0,48 mSv, com um intervalo de 0,3-0,6 mSv em diferentes países. Para crianças e bebês, esses valores elevam-se cerca de 10% e 30%, respectivamente (UNSCEAR, 2000).

2.4. Radioproteção e regulamentação

A UNSCEAR (1996) ressalta que a preocupação quanto à proteção radiológica vinha sendo focada no ser humano, passando então a estabelecer os efeitos da radiação no meioambiente. Segundo o relatório, os mamíferos são os organismos mais sensíveis à radiação ionizante, seguidos pelos pássaros, peixes, répteis e insetos. As plantas também são sensíveis, em diferentes intensidades. Aparentemente, a capacidade reprodutiva dos indivíduos é o atributo mais afetado (VASCONCELOS, 2010).

Lopez et al. (2004) realizaram uma pesquisa entre países da Europa, com a finalidade de conhecer o estado da arte de proteção radiológica quanto a exposição à radiação natural. Segundo os autores, a *ICRP* e o *Council of the European Union* recomendam que os países tomem ações para lidar com a questão do radônio e outras fontes de radiação natural em locais de trabalho. A maioria dos países pesquisados (ressalta-se que nem todos responderam aos questionários enviados) já possui níveis de referência estabelecidos, especialmente para minas

e trabalhos subterrâneos. Para escritórios e escolas, normalmente os níveis são os mesmos que para indivíduos do público. Os limites, entretanto, variam para cada país. Os autores ressaltam a necessidade de maior unificação dos padrões na Europa, para formar uma base mais sólida para investigação e monitoração. Na **Tabela 9** são apresentados os limites estabelecidos por alguns países pesquisados (VASCONCELOS, 2010).

	Nível de Referência (mSv/ano)			
Páis	Minor	Outros Locais	Indústrios	Escritórios e
	iviillas	Subterrâneos	muusutas	Escolas
Bélgica	1	1	1	1
Dinamarca			5	
Estônia			20	
Finlândia	1	1	1	1
Alemanha			6	
Grécia	1	1	1	1
Hungria	20	20	20	
Irlanda	1	1	1	1
Itália	1		1	
Lituânia	50	50	50	5
Noruega	20	20	20	20
Polônia	1	1	1	1
Portugal	50	20		
República Tcheca	6	6	6	20

Tabela 9 - Limites de dose devida a radiação natural em alguns países da Europa (LOPEZ et al., 2004).

A UNSCEAR (2000), com a finalidade de determinar as situações em que precauções de proteção radiológica devem ser tomadas ao lidar com material de radioatividade natural elevada, afetou algumas considerações. Assumindo concentrações de poeira de 5 mg.m⁻³, exposição ocupacional contínua e nenhuma proteção respiratória, afirma-se que materiais com atividade entre 1000 e 10.000 Bq kg⁻¹ do radionuclídeo pai podem resultar em doses anuais efetivas de 1 a 2 mSv por exposição interna e externa. A ICRP recomenda o limite de dose efetiva anual de 20 mSv.ano⁻¹, média de cinco anos, para indivíduos ocupacionalmente expostos. Para o público, o limite de dose efetiva é de 1 mSv.ano⁻¹. A CNEN – Comissão Nacional de Energia Nuclear, órgão orientador e fiscalizador de atividades nucleares no Brasil, estabelece os mesmos limites de dose efetiva no país, por meio da norma CNEN-NN-3.01 (CNEN, 2006).

No Brasil, a posição regulatória 3.01/001 (CNEN, 2005), refere-se aos requisitos da Norma da CNEN "Diretrizes Básicas de Proteção Radiológica" relacionados aos critérios de exclusão, isenção e dispensa da aplicação de requisitos de proteção radiológica. No item 3.1.2 consta que: "*Consideram-se desde já exposições excluídas, aquelas devido à presença de*⁴⁰*K no corpo, à radiação cósmica na superfície da terra, ou às concentrações não alteradas de radionuclídeos* naturais existentes em praticamente todos os materiais ou matérias primas" (VASCONCELOS, 2010).

Sendo assim, as areias monazíticas e outras fontes naturais de radiação estão excluídas do controle da CNEN e dessa forma não são aplicadas ações de proteção radiológica para redução da intensidade ou probabilidade de ocorrência da exposição. Na **Tabela 10** são dados alguns valores, em ordem de grandeza, dos riscos de danos à saúde produzidos pelas radiações ionizantes (VASCONCELOS, 2010).

05 a saude (111011111, 2013).					
Dano a saúde	Dose Efetiva (mSv)	Risco (%)			
Efeito clínico imediato	> 1000	~100			
Efeito pré-natal	1	0,05			
Câncer	1	0,005			
Efeito hereditário	1	0,0005			

Tabela 10 - Riscos de danos à saúde (TAUHATA, 2013).

CAPÍTULO 3

GAMA ESPECTROMETRIA E EMANOMETRIA

3.1. Alguns estudos pioneiros

Martin Klaproth, químico alemão, descobriu o elemento urânio em 1789. Henri Becquerel, físico francês, descobriu a radioatividade em 1896. Isto levou a uma pesquisa mais profunda sobre a natureza da matéria e deu à luz a Física Nuclear. O desenvolvimento de técnicas para a medição da radioatividade surgiu, como consequência, logo em seguida. Os primeiros detectores tubulares foram desenvolvidos na primeira década do século XX, e isto levou ao desenvolvimento de instrumentos portáteis para campo. A sensibilidade de medição aumentou significativamente quando os detectores de cintilação foram desenvolvidos durante a década de 1940 (IAEA, 2003).

A exploração intensiva de urânio levou às primeiras fontes radiométricas aerotransportáveis nos EUA, Canadá e na antiga URSS em 1947 e na Austrália, em 1951. Os gama-espectrômetros aerotransportáveis, terrestres e laboratoriais foram desenvolvidos e aplicados à exploração mineral e no monitoramento ambiental entre as décadas de 1960 e 1970. Isto permitiu a estimativa *in situ* das concentrações de radioelementos de potássio, urânio e tório. Desenvolvimentos posteriores incluíram o uso de analisadores multicanais, contadores digitais, o desenvolvimento de detectores semicondutores e melhorias no processamento de dados (IAEA, 2003).

3.2. Usos dos raios gama

O sensoriamento remoto da radioatividade ambiental é conseguido principalmente através da detecção da radiação gama. Os raios gama são a radiação mais penetrante proveniente de fontes naturais e antrópicas. Radionuclídeos individuais emitem raios gama de energias específicas que são características de um elemento e isótopo. Medições de raios gama podem ser conduzidas de dois modos. Medidores de contagem total registram raios gama de todas as energias. Estes são usados para monitorar o nível total de radiação gama no campo e detectar a presença de fontes anômalas. Espectrômetros, por outro lado, medem a intensidade e energia da radiação, permitindo que a origem da radiação seja diagnosticada. A espectrometria de raios gama, portanto, é uma ferramenta poderosa para monitorar a radiação do ambiente (IAEA, 2003).

Existem muitos tipos de pesquisa utilizando os raios gama. Há espectrômetros que podem ser montados em aeronaves ou veículos. Espectrômetros portáteis, de mão, para medições em campo, e espectrômetros de perfilagem para medições em poços de petróleo também estão disponíveis. Pesquisas no fundo oceânico são também possíveis, e espectrômetros de laboratório podem medir com precisão amostras de rochas e solos. Grandes áreas no mundo têm sido estudadas pela aquisição de dados gama aérea e em terra, e muitos mapas radiométricos nacionais e regionais foram compilados e publicados (IAEA, 1995; 1997; GREEN et al., 1993). Os resultados dos levantamentos são geralmente registrados em unidades de taxa de dose de raios gama (aquisição da contagem total) ou das concentrações de radioelementos (aquisição com espectrômetros) (IAEA, 2003).

Isto requer que os instrumentos sejam calibrados adequadamente. A Agência Internacional de Energia Atômica (IAEA) tem sido fundamental na introdução de normas para a calibração de instrumentos de campo para raios gama e o *design* e elaboração de materiais de referência geológica para espectrometria de raios gama de laboratório (IAEA, 1989; 1987). A vantagem dos procedimentos padronizados para calibração e processamento de dados é que os resultados podem ser combinados e comparados, permitindo a interpretação de tendências regionais na distribuição de radionuclídeos (IAEA, 2003).

Os levantamentos de raios gama são utilizados em vários campos da ciência, por exemplo, mapeamento geológico, geoquímico e ambiental, permitindo a interpretação das características regionais em grandes áreas. Pesquisas com raios gama são utilizadas no mapeamento de solos e para a exploração mineral. Eles podem ser usados para estimar e avaliar a dose de radiação terrestre para a população humana e para identificar áreas de risco potenciais de radiação natural. Por isso, podem ser utilizados para delimitar áreas de risco do radônio atmosférico. Levantamentos regionais fornecem uma base para avaliar a contaminação feita pelo homem. Por exemplo, pesquisas são regularmente realizadas ao redor de instalações nucleares, tais como centrais elétricas, para fornecer uma linha de base visando identificar qualquer liberação acidental de substâncias radioativas. Pesquisas semelhantes são usadas para avaliar a contaminação nas áreas de mineração antiga e de áreas industriais. Os raios gama tem sido aplicados com sucesso para mapear a precipitação radioativa proveniente de acidentes nucleares e localizar fontes radioativas perdidas (IAEA, 2003).

3.3. O detector cintilador de NaI(Tl)

Por volta de 1947, com o aparecimento das válvulas fotomultiplicadoras, que são capazes de converter os fótons de cintilação em elétrons que são acelerados e multiplicados pôr uma série de eletrodos denominados "dínodos", esta técnica de detecção tornou-se muito importante, sendo atualmente bastante utilizada. O processo de cintilação é um método disponível para a detecção e espectroscopia de várias radiações (LIMA, 2006).

O contador cintilador usa o processo de geração de luz para contar eventos da radiação, podendo medir a radiação gama. Tipicamente, o elemento sensor de radiação gama é um cristal de iodeto de sódio ativado com tálio [NaI(Tl)]. A energia da radiação gama incidente é depositada e convertida em um fóton de luz. O fóton gerado é na região violeta do espectro ótico, com sua intensidade sendo proporcional à energia depositada pelo raio gama incidente. Uma vantagem do cintilador é sua alta eficiência de contagem por raios gama incidentes no detector (LIMA, 2006).

É importante que o cristal fique bem protegido do ambiente porque é altamente higroscópio e absorve vapor de ar. Isto faz com que o cristal fique inutilizado. Entretanto, eles são fabricados hermeticamente selados, ficando o cristal dentro de uma capa de alumínio com janela de vidro. A capa ocasiona a absorção das partículas beta e alfa, impedindo que alcancem o cristal. Os cristais ficam amarelados com o tempo de uso, o que afeta sua eficiência e resolução. Um guia de luz é colocado entre o cintilador e a fotomultiplicadora, que serve de condutor ótico e acoplamento (LIMA, 2006).

O cristal de NaI(Tl) é sensível à radiação se submetido por longo tempo a altas exposições, ocorrendo uma degradação na performance da cintilação, pois, danos foram observados para níveis de radiação maiores do que 1 *Gray* (100 *rad*). O cristal não deve ser exposto à radiação ultravioleta de lâmpadas fluorescentes ou similares (LIMA, 2006).

O cristal de *Nal* é ativado com a adição de concentração muito baixa de tálio (Tl), em torno de 0,094 gramas, para um cristal de 2 polegadas de diâmetro por 0,25 polegadas de comprimento, sendo seu peso total de 47,24 gramas. O iodeto de tálio como material químico puro é tóxico, pois, uma quantidade maior que 1 grama pôr pessoa pode levar à morte. Se o compartimento é danificado, deve-se manusear com luvas de borracha e retornar o detector danificado para o "fabricante" ou guardar em local apropriado, de acordo com regulamentações federais.

Segundo Lima (2006), o cintilador é um cristal capaz de converter a energia depositada pela radiação em fótons de luz através de processos luminescentes, os quais podem ser classificados como:

- fluorescência: quando sua emissão de luz ocorre durante a excitação num tempo menor que 10⁻⁸ segundos;
- fosforescência: quando sua emissão de luz ocorre depois de cessado a excitação (depois de 10⁻⁸ segundos), geralmente tardio e com comprimento de onda maior;
- fluorescência atrasada: quando sua emissão se dá muito tempo após a excitação e no mesmo espectro da fluorescência;

O material cintilador ideal deve possuir as seguintes propriedades:

- deve converter a energia cinética das partículas carregadas em luz com alta eficiência;
- a conversão deve ser linear a luz produzida deve ser proporcional à energia depositada;
- o meio deve ser transparente à luz emitida, a fim de permitir uma boa coleta de luz;
- o tempo de decaimento da luminescência deve ser o menor possível;
- o material deve ser de boa qualidade ótica;
- o índice de refração deve ser próximo ao do vidro para permitir eficiente união do cintilador de luz com o tubo fotomultiplicador;
- pode ser obtido em diferentes tamanhos e formas.

3.4. Interação da radiação gama com a matéria

A radiação gama é parte do espectro eletromagnético. Raios gama viajam à velocidade da luz (c) e tem uma energia discreta (E), freqüência (f) e comprimento de onda (λ). Estas são relacionadas por:

$$E = hf = \frac{hc}{\lambda}$$

Equação 22

Onde $h = constante de Planck = 6,6261x10^{-34} Js;$

c = velocidade da luz

A radiação eletromagnética com $E < 40 \ keV$ corresponde aos raios-X, ao passo que os raios gama compõem a parte do espectro eletromagnético onde $E > 40 \ keV$. Os raios gama interagem com os átomos da matéria por três processos principais (ICRU, 1994): o efeito fotoelétrico, espalhamento Compton e produção de pares. O efeito fotoelétrico é o processo de

absorção predominante em baixas energias (poucas centenas de keV), onde toda a energia de um quantum gama é absorvida em uma colisão com um elétron de um átomo. O espalhamento Compton predomina em energias moderadas e corresponde a uma colisão de um fóton incidente com um elétron. O fóton incidente perde parte de sua energia para o elétron e é "espalhado" através de um ângulo em relação à sua direção original. A produção de pares ocorre em energias superiores a 1,02 *MeV*, predominando em altas energias (> 5 *MeV*). É o processo pelo qual um fóton incidente é completamente absorvido e resulta na criação de um par elétron-pósitron no campo eletrostático de um núcleo (KNOLL, 2010). O número atômico do material também possui uma grande influência nas probabilidades de interação. A maior variação ocorre com a absorção fotoelétrica que varia com Z. Como a absorção fotoelétrica é a mais desejada, a escolha de detectores com alto número atômico para a espectrometria é a melhor opção (KNOLL, 2010).

A probabilidade de que um fóton interaja com a matéria, expressa pela seção transversal σ (m²), depende da energia do fóton, *E*, e a composição da matéria. A *Figura 8* ilustra a relação entre os processos de espalhamento e absorção, a energia do fóton incidente e o número atômico do meio absorvente. Para os raios gama terrestres naturais (*E até* 2,615 *MeV*) e para matéria compreendendo rocha, água e ar, o espalhamento Compton é o processo de interação predominante (KNOLL, 2010).

Figura 8 - Regiões de predominância das 3 formas de interação da radiação γ. As curva indicam os valores de Z e hu para os quais as probabilidades dos processos vizinhos são iguais (EVANS, 1955).

Normalmente, os fótons de raios gama perdem energia através de sucessivos eventos de espalhamento Compton, até que os fótons de baixa energia resultantes são finalmente absorvidos através do efeito fotoelétrico. Como resultado da interação de raios gama com a matéria, a intensidade da radiação diminui com a distância da fonte. A absorção de raios gama

de uma energia específica em questão é descrita por um coeficiente de atenuação linear μ (m^{-1}) ou por um coeficiente de atenuação de massa μ/ρ (m^2/kg). Para um feixe estreito de raios gama, a sua atenuação dos raios gama pode ser modelada por uma função exponencial. A faixa de absorção de raios gama de radionuclídeos naturais é cerca de 700 m no ar, até 0,5 m nas rochas e alguns *cm* no chumbo. Os raios gama têm uma energia discreta que é específica para um determinado radionuclídeo. Uma vez que os raios gama constituem o componente mais penetrante da radiação natural e artificial, eles são amplamente utilizados nos estudos de radiação ambiental (KNOLL, 2010).

3.4.1. Absorção fotoelétrica

Nessa interação, o fóton incidente desaparece com a total transferência da energia da radiação incidente "X ou gama" a um único elétron orbital, que é expelido com uma energia cinética bem definida, como representado na *Figura 9*. A energia cinética do elétron é dada pela energia do fóton incidente menos a energia de ligação do elétron da camada eletrônica.

Na maioria dos casos, o fotoelétron emerge a partir da camada K, a qual possui energia de ligação de poucos keV para materiais de baixo número atômico (Z) até dezenas de keV para materiais de alto número atômico (Z) (KNOLL, 1989).

Figura 9 – Ilustração da absorção fotoelétrica, onde o raio gama incidente cede toda sua energia para o elétron e desaparece. O espectro à direita ilustra uma distribuição diferencial de uma série de absorções fotoelétricas (*KNOLL*, 1989).

O fóton cede toda energia a um elétron (camada K) e desaparece $E_{ke} = (hv - E_B)$, onde E_{ke} é a energia cinética do fotoelétron que é expelido, hv é a energia do raio gama incidente e E_B é a energia de ligação do elétron orbital. O efeito é predominante para raios–X e raios– γ de baixa energia (100 *keV*). A probabilidade de que o efeito fotoelétrico aconteça é diretamente proporcional ao número atômico do material elevado à quarta potência e inversamente proporcional à energia do fóton elevada à potência, isto é:

$$\sigma_{efeito\ fotoel{e}trico}\ lpha\ rac{Z^4}{E^3}$$

Equação 23

A vacância criada é rapidamente preenchida pelo rearranjo dos elétrons. Nesse processo, a energia é liberada na forma de raio-X característico ou, alternativamente, o raio-X

pode ser reabsorvido, transferindo sua energia a um elétron das camadas mais externas do átomo que é arrancado. O elétron arrancado é chamado de "elétron *Auger*". No iodo, o raio-X característico é emitido em 88% dos casos. Os elétrons *Auger* possuem um alcance muito pequeno por causa da sua pequena energia, porém, os raios–X característicos podem percorrer cerca de alguns milímetros antes de serem reabsorvidos, embora o seu escape pode, às vezes, ser significante (KNOLL, 1989).

Assim, o efeito da absorção fotoelétrica é a liberação de um fotoelétron que carrega a maior parte da energia do fóton gama, junto com um ou mais elétrons de baixa energia correspondentes da absorção da energia de ligação dos fotoelétrons. Se nada escapa do detector, a soma das energias cinéticas dos elétrons que são criados deve ser igual à energia do fóton do raio gama incidente (KNOLL, 1989).

A absorção fotoelétrica é, então, um processo ideal se o interesse é a medida da energia do raio gama incidente. Se o raio gama é monoenergético, a energia cinética total dos elétrons será sempre igual à energia do raio gama incidente (KNOLL, 1989).

Nessas condições, a distribuição diferencial de uma série de absorções fotoelétricas deveria ser uma função Delta, como mostra a *Figura 9*, onde dN/dE e E representam respectivamente o número de pulsos e a energia do raio– γ incidente.

3.4.2. Espalhamento Compton

O resultado do espalhamento Compton é a criação de um elétron de recuo e um fóton de raio gama espalhado. A divisão de energia entre eles depende do ângulo de espalhamento (KNOLL, 1989).

Figura 10 - Representação do espalhamento Compton. O espectro à direita ilustra a distribuição da energia do elétron Compton de recuo (*KNOLL*, 1989).

A energia do gama espalhado é dada por:

$$hv' = \frac{hv}{1 + \left[\left(\frac{hv}{m_0c^2}\right) \cdot (1 - \cos\theta)\right]}$$

Equação 24

onde θ é o ângulo de espalhamento do fóton e $m_0c^2 = 0,511 MeV$ é a energia de repouso do elétron. A *Figura 10* ilustra um espalhamento Compton, onde o raio gama incidente cede parte de sua energia para o elétron, consequentemente aparecendo um raio gama espalhado (KNOLL, 1989).

A energia cinética do elétron de recuo é dada por:

$$E_e = (hv - hv') = hv. \frac{\left[\frac{hv}{m_0c^2} \cdot (1 - \cos\theta)\right]}{\left[1 + \frac{hv}{m_0c^2} \cdot (1 - \cos\theta)\right]}$$

Equação 25

Dois extremos podem ser identificados:

- Quando θ ≅ 0, hv' ≅ hv e E_e ≅ 0. Nesse extremo, o elétron de recuo possui uma energia muito pequena e o fóton espalhado possui praticamente a mesma energia do fóton incidente.
- Quando $\theta \cong \pi$. Esse extremo representa a energia máxima que pode ser transferida ao elétron de recuo.

$$hv' \bigg|_{\theta=\pi} = \frac{hv}{\left(1 + \frac{2hv}{m_0 c^2}\right)}$$

Equação 26

$$E_e \bigg|_{\theta=\pi} = hv. \frac{\left(\frac{2hv}{m_0 c^2}\right)}{\left(1 + \frac{2.hv}{m_0 c^2}\right)}$$

Equação 27

Em circunstâncias normais, todos os ângulos podem ocorrer. Logo, um espectro contínuo de energias pode ser transferido ao elétron. Para qualquer raio gama de energia específica, a distribuição de energia do elétron possui a forma do espectro ilustrado na *Figura 10*.

O *gap* de energia *Ec* entre a energia do elétron de recuo Compton máximo e o fóton incidente é dado de acordo com a equação a seguir:

$$E_c = hv - E_e \bigg|_{\theta = \pi} = hv. \frac{(hv)}{\left(1 + \frac{2.hv}{m_0 c^2}\right)}$$

Equação 28

No limite em que a energia do fóton incidente é grande, ou $hv >> \left(\frac{m_0c^2}{2}\right)$, essa diferença de energia tende a um valor constante igual a :

$$E_c \cong \frac{m_0 c^2}{2} \qquad (= 0.256 Mev)$$

Equação 29

O espalhamento Compton assume que o efeito ocorre com elétrons livres. No material dos detectores atuais, a energia de ligação dos elétrons pode afetar a forma do contínuo Compton. Esse efeito será mais notável para raios gama incidentes de baixa energia. Eles envolvem o arredondamento da subida do contínuo perto do extremo e introduz um declive finito na descida abrupta do joelho Compton. Esses efeitos são sempre mascarados pela resolução de energia do detector mas podem ficar evidentes em espectros utilizando detectores com alta resolução (KNOLL, 1989).

A probabilidade de um espalhamento Compton acontecer é diretamente proporcional à energia do fóton e inversamente proporcional ao número atômico do material, ou seja:

$$\sigma_{esp.Compton} \alpha \frac{E}{Z}$$

Equação 30

3.4.3. Produção de pares

O processo ocorre no campo gerado pelo núcleo e corresponde à criação de um par (elétron e pósitron) em um ponto com o desaparecimento do fóton incidente. Como uma energia mínima de $2m_0c^2$ é necessária para a criação do par, o raio gama deve ter energia mínima de 1,022 MeV para tornar possível a ocorrência deste processo. Se a energia do raio gama incidente for maior que 1,022 MeV, então, o excesso de energia aparece como energia cinética repartida igualmente entre elétron e pósitron (KNOLL, 1989).

A *Figura 11* ilustra o processo de formação de pares que ocorre para altas energias e material com alto número atômico.

Figura 11 - Representação da formação de pares. À direita, está representada a posição do pico de escape duplo no espectro de raios gama (*KNOLL*, 1989).

Para energias típicas, o elétron ou o pósitron atravessam poucos milímetros antes de perder toda a sua energia no material absorvedor. Um gráfico da energia cinética total (*elétron* + *pósitron*) criada pelo fóton incidente também é uma função Delta, mas agora deslocada de $2m_0c^2$ da energia do fóton incidente, como representado na *Figura 11*.

A produção de pares é um processo complicado porque o pósitron não é uma partícula estável. Quando a sua energia cinética se torna muito baixa, comparável com a energia térmica dos elétrons do material, o pósitron irá se aniquilar com um elétron do material (KNOLL, 1989). Nesse ponto, ambos desaparecem e aparecem dois fótons de aniquilação com energia $m_0c^2 =$ 0,511 *MeV* cada um. O tempo necessário para o pósitron perder energia e se aniquilar é muito pequeno, então, a radiação de aniquilação aparece em "coincidência" com a produção de pares. A probabilidade da produção de pares acontecer é proporcional a:

$$\sigma_{F_{nares}} \alpha E_2 \quad (E-1,02 Mev)$$

Equação 31

3.5. Resposta de detectores comerciais

O espectro para baixas energias do raio gama incidente, onde a produção de pares não é significante, consiste em um contínuo Compton e um fotopico. A área relativa do fotopico aumenta com o decréscimo da energia do fóton incidente. Para energias menores que 100 *keV*, o contínuo Compton pode efetivamente desaparecer. Para energias médias, a possibilidade de múltiplo espalhamento seguido de um escape do último fóton espalhado permite que a energia total depositada seja maior que a energia depositada por apenas um único espalhamento com escape do fóton espalhado (KNOLL, 1989).

Esses eventos múltiplos podem ocupar o *gap* entre a borda Compton e o fotopico, assim como distorcer a forma do contínuo prevista para um único espalhamento. Se a energia do raio gama incidente é grande para a produção de pares, então, os fótons de aniquilação podem escapar ou sofrer alguma interação dentro do detector. Se ambos os fótons de aniquilação escaparem sem interagir, então será formado o pico de escape duplo, mas pode ocorrer que apenas um fóton de aniquilação escape e o outro seja totalmente absorvido, contribuindo, assim, para o pico de escape simples que aparece no espectro com energia de $hv - m_0c^2$. Muitas outras possibilidades existem, nas quais, um ou os dois fótons de aniquilação podem perder parte da sua energia por espalhamento Compton e depois escapar.

A função reposta para um detector real de raios gama irá depender do tamanho, da forma, da composição do detector, e também dos detalhes geométricos das condições de irradiação. Algumas propriedades da função resposta são geralmente interessantes em espectrometria. A fração de fótons é definida como a razão entre a área do fotopico (ou do pico da energia total) e a área abaixo de toda a função resposta. Essa é uma medida direta da probabilidade do raio gama depositar dentro do detector toda a sua energia por qualquer processo (KNOLL, 1989).

Os picos de escape duplo ou simples são parte da função resposta e podem, em algumas circunstâncias, se tornar maior que o fotopico. A razão entre a área do pico de escape simples ou duplo e a área do fotopico é uma propriedade da função resposta que pode ajudar a interpretar espectros complexos (KNOLL, 1989).

Para o caso dos detectores comerciais, a *Figura 12* ilustra as interações que podem afetar a função resposta do detector para baixas, médias e altas energias dos raios gama incidentes (LIMA, 2006).

A *Figura 13* ilustra o comportamento para detectores comerciais dos espectros diferenciais para diferentes níveis de energia do fóton incidente. Na **Figura 14** estão ilustrados espectros de linha para potássio, urânio e tório.

Figura 13 - Espectros diferenciais para detectores comerciais, (KNOLL, 1989).

3.6. Geometria fonte-detector

A espessura da fonte tem um efeito significativo sobre a forma de espectros observados. Com o aumento da espessura da fonte há acúmulo do espalhamento Compton contínuo devido a dispersão nas fontes. Os fotopicos são assim reduzidos em relação ao Compton de fundo. Como fótons de baixa energia são mais facilmente atenuados do que fótons de grande energia, este efeito é mais pronunciado em menores energias (KNOLL, 1989).

Figura 14 - Espectro de linha da emissão de raios gama do: a) potássio; b) urânio; c) tório.

A radiação terrestre é atenuada na fonte e pelo material entre a fonte e o detector. A forma do espectro observado depende da quantidade de material atenuante entre a fonte e o detector. Com o aumento da atenuação, são reduzidos os fotopicos em relação a energia contínua. Espectros medidos são, portanto, funções da concentração e da geometria da fonte, da altura do detector acima do solo/rocha, da espessura de qualquer sobrecarga não-radioativa e da função de resposta do detector (**Figura 15**) (KNOLL, 1989).

3.7. Eventos que interferem na função resposta do detector

3.7.1. Escape de elétrons secundários

Se o detector não é grande comparado com o alcance dos elétrons secundários, então, uma fração significante dos elétrons pode escapar do detector e essa energia não será coletada. A forma do contínuo Compton será alterada a favor das menores amplitudes (LIMA, 2006).

Como alguns eventos do fotopico serão perdidos, então, a *photofraction* será reduzida em comparação com o caso onde não há escape de elétrons.

3.7.2. Escape de Bremsstrahlung

Esse processo é mais significante para elétrons com energia a partir de poucos MeV. Existe a possibilidade da radiação de *Bremsstrahlung* escapar sem interagir com o detector. O efeito na função resposta é similar ao que acontece com o escape dos elétrons. Para ambos os processos, a forma da função resposta é alterada, mas picos não são introduzidos (LIMA, 2006).

3.7.3. Escape de raio-X característico

Na maioria dos casos, a energia do raio-X é reabsorvida. Mas se a absorção fotoelétrica ocorrer perto da superfície do detector, então, o raio-X pode escapar. Nesse caso, a energia depositada no detector diminui pela quantidade de energia do raio-X que escapou. Um novo pico irá aparecer na função resposta e será localizado a uma distância igual à energia de escape do raio-X característico. Esses picos são chamados picos de escape de raio-X e são mais evidentes para baixas energias de raios gama incidentes e para detectores cuja razão *superfície–volume* é grande (LIMA, 2006).

3.7.4. Interações secundárias criadas pelo decaimento radioativo

3.7.4.1. Radiação de aniquilação

Se a fonte de raios gama consistir em um radionuclídeo que decai pela emissão de pósitron, então, um pico adicional de 0,511 MeV no espectro é esperado devido aos fótons de aniquilação criados. A maioria dos processos monitorados possuem materiais com espessura suficiente para frear todos os pósitrons, que vão se aniquilando na região imediatamente envolvida no processo. Essa região, então, produz 0,511MeV de radiação de aniquilação, que será adicionada ao espectro gama esperado pelo decaimento dos radionuclídeos associados ao processo (LIMA, 2006).

3.7.4.2. Bremsstrahlung

As fontes mais comuns de raios gama decaem por β^- . Um material externo é utilizado para prevenir que as partículas betas depositem a sua energia no detector, complicando o espectro gama. Na absorção, entretanto, algumas radiações secundárias na forma de *Bremsstrahlung* serão geradas e poderão interagir com o detector, contribuindo para o espectro. O espectro de *Bremsstrahlung* pode ter energia máxima igual à energia da partícula beta, mas existe a possibilidade de energias menores. Como o espectro de *Bremsstrahlung* é contínuo, ele não cria novos picos, mas adiciona um contínuo em todo o espectro, superpondo valores. Essa contribuição não pode ser subtraída como o *background*, então, a sua inclusão pode causar erros quantitativos na medida das áreas dos picos. Para minimizar esse efeito, o uso de absorvedores de beta com baixo número atômico como o berílio é sempre recomendado (LIMA, 2006).

3.7.5. Efeitos dos materiais envoltórios

Em situações práticas, o detector usado para a espectrometria gama é envolvido por outro material que pode interagir na resposta. O detector é encapsulado para produzir uma barreira contra umidade e luz ou é montado com uma estrutura a vácuo. Para reduzir o *background* natural, a maioria dos detectores gama opera com blindagem. Todos esses materiais usados nas blindagens são fontes potenciais de radiação secundária. Se a radiação secundária interagir com o detector, ela pode influenciar na forma do espectro. Algumas possibilidades são mostradas na **Figura 16** (LIMA, 2006).

Figura 16 - Alguns tipos de interações secundárias que podem interferir na função resposta dos detectores comerciais (*KNOLL*, 1989).

A influência dos materiais circunvizinhos na resposta do detector é mostrada no espectro de energia apresentado na *Figura 17*.

Figura 17 - Influência da radiação secundária na resposta do detector (KNOLL, 1989).

3.8. Principais propriedades dos cintiladores

Existem diversas substâncias que cintilam quando nelas incide radiação ionizante, como por exemplo, o iodeto de sódio. Materiais como esse são utilizados em detectores que convertem a luz visível, emitida pelos cintiladores, em um sinal elétrico. O cristal de NaI(Tl) é um detector inorgânico que cintila devido à configuração dos estados de energia de seus elétrons, que são definidos pela sua rede cristalina (LIMA, 2006). Nessa estrutura, os elétrons podem ser encontrados apenas em algumas bandas discretas de energia, ilustradas na *Figura 18*: a banda de valência, onde os elétrons encontram-se ligados, e a banda de condução, onde os elétrons podem movimentar-se. Entre essas duas bandas há a banda proibida na qual os elétrons não podem ser encontrados.

Figura 18 - Estrutura da banda de energia de um cristal cintilador ativado (KNOLL, 2010).

Banda de valência

Na prática, quando um fóton de raio-X ou raio γ incide no material, pode haver a emissão de um elétron primário. Elétrons secundários, que são espalhados pelo elétron primário, vão populando a banda de condução, deixando um buraco na banda de valência. Em cristais puros, o retorno desses elétrons para a banda de valência é um processo ineficiente, pois, o fóton que ele emite quando retorna à banda de valência pode ser reabsorvido. Por isso, uma pequena quantidade de impureza (como o Tl), denominada ativador, é adicionada, cujo papel é o de criar níveis de energia ligeiramente acima da banda de valência e ligeiramente abaixo da banda de condução. Neste caso, o elétron sai da banda de condução para um nível abaixo, emitindo um fóton e, em seguida, ao sofrer uma nova desexcitação para uma banda acima da banda de valência, emitindo outro fóton (LIMA, 2006).

Esses fótons de cintilação não possuem energia suficiente para permitir a transição de um elétron da banda de valência para a banda de condução e, desse modo, esses fótons não são reabsorvidos no material e conseguem percorrer grandes distâncias dentro do cristal (KNOLL, 2010).

A quantidade de fótons de cintilação produzida pelo NaI(Tl) é pequena (aproximadamente 38.000 fótons/MeV) e por isso são utilizadas fotomultiplicadoras que irão produzir um pulso de corrente elétrica quando nelas incidir um pequeno sinal luminoso. Uma fotomultiplicadora, cujo esquema está representado na *Figura 19*, consiste basicamente de um fotocátodo e dinodos (LIMA, 2006).

Ao receber o sinal luminoso, o fotocátodo ejeta elétrons que são acelerados por uma diferença de potencial até o primeiro dinodo e, após essa colisão, mais elétrons são ejetados e direcionados ao segundo dinodo. Esse processo se repete ao longo da cadeia de dinodos até que os elétrons atinjam o ânodo da fotomultiplicadora, formando uma corrente elétrica com uma intensidade adequada para ser analisada (CHERRY, 2003).

Figura 19 - Esquema de uma fotomultiplicadora (adaptada de CHERRY et al., 2003).

3.8.1. Resolução em energia

A resolução de um detector é uma medida de sua capacidade de discriminar dois picos que são próximos em energia. Uma propriedade importante de um detector é a resolução a uma fonte monoenergética (Figura 20) (REILLY, et al., 1991).

Figura 20 - Diagrama ilustrando a resolução de energia do espectrômetro de raios gama. A energia de resolução do espectrômetro é definida como a largura total de um fotopico à meia altura da amplitude máxima (FWHM), expressa em porcentagem.

Equação 32

onde: FWHM é a largura a meia altura e

 H_0 é o canal central do pico

O parâmetro usado para especificar a resolução do detector é a largura total do fotopico na metade de sua máxima altura (FWHM). Se uma forma gaussiana padrão é assumida para o fotopico, a FWHM é dada por:

$$FWHM = 2\sigma\sqrt{ln2}$$

Equação 33

Onde σ é o parâmetro de amplitude para a Gaussiana. Alta resolução (FWHM pequena) não só facilita a definição individual dos picos muito justos (próximos), mas também realiza a subtração do Compton contínuo menos incerto, por se tratar de uma fração menor da

atividade total na região do pico. Quanto mais complexo é um espectro de raios gama, mais desejável é ter a melhor resolução de energia possível (REILLY, et al., 1991).

Existem limites naturais e tecnológicos sobre como precisamente a energia de um evento de detecção de raios gama pode ser registrado pelo sistema detector. O limite natural sobre a precisão de energia surge principalmente das flutuações estatísticas associadas aos processos de produção de carga no meio do detector.

A integridade da tensão dos pulsos de energia total também pode ser perturbada por efeitos eletrônicos, tais como ruído, pulsos "pileup" (acumulados), configurações impróprias de pólo-zero, etc. Estes efeitos eletrônicos tornaram-se menos importantes com a melhoria da tecnologia, mas seus efeitos potenciais sobre a resolução devem ser considerados na configuração de um sistema de contagem (REILLY, et al., 1991).

Os dois tipos de detectores mais amplamente utilizados em aplicações não destrutivas (NDA) de raios gama são o detector de cintilação de NaI(Tl) e o detector de estado sólido de germânio. O detector NaI(Tl) gera picos de energia total que são mais largos do que os observados para o germânio (REILLY, et al., 1991).

3.8.1.1. Produção de elétrons no fotocátodo da fotomultiplicadora

A flutuação estatística é a causa mais importante da largura do pico nos cintiladores. Essa flutuação será mais significativa depois da conversão das cintilações em elétrons no fotocátodo da fotomultiplicadora. Por exemplo, no cintilador de NaI(Tl) a Eficiência é aproximadamente 12% de maneira que se são produzidos 20.000 fótons de cintilação, apenas 15.000 interagem com o fotocátodo, criando cerca de 3.000 fotoelétrons. Esse número é o menor sinal na cadeia de formação do pulso porque nos estágios seguintes da fotomultiplicadora ele será amplificado.

Figura 21 - Ilustra a eficiência da conversão de luz de cintilação em elétrons no fotocatodo (LIMA, 2006).

A amplitude do sinal produzido na fotomultiplicadora é proporcional a esse número de fotoelétrons. Para eventos repetidos, a mesma energia é depositada no cristal e a amplitude do pulso irá flutuar devido a flutuação estatística do número de fotoelétrons coletados em cada evento.

Se assumida a estatística de *Poisson*, o desvio padrão do número de fotoelétrons será a raiz quadrada do número médio produzido. Se for assumida a distribuição de *Gauss*, a *FWHM* será 2,35 vezes o desvio padrão. Em casos práticos, considera-se que FWHM é proporcional à raiz quadrada da energia do raio gama. A média da altura do pulso produzida é diretamente proporcional à energia do raio gama, isto é:

$$R = \frac{FWHM}{H_0} = \frac{K \cdot (E)^{1/2}}{E} = \frac{K}{(E)^{1/2}}$$

Equação 34

3.8.1.2. Outros fatores que interferem na perda de resolução

De acordo com Lima (2006), a perda de resolução de energia pode ser também decorrente da:

- Resolução intrínseca do cristal: nos cintiladores modernos esse efeito é menor do que 2%, maiores flutuações aparecendo por causa da condição de reflexão que existe na superfície do cristal. A não uniformidade na eficiência de coleta de luz pode introduzir um alargamento do pulso, especialmente para grandes detectores.
- Variância introduzida pela fotomultiplicadora: pode ter uma contribuição significante a uniformidade de coleta dos fotoelétrons pelo fotocátodo, assim como a flutuação estatística da multiplicação dos elétrons. Existe uma considerável variação na *performance* de diferentes tipos de fotomultiplicadoras.

O componente mais sutil da resolução intrínseca do cristal origina-se da não linearidade da resposta do cintilador de NaI(Tl). Se todos os raios gama incidentes interagirem e se toda a sua energia for convertida para um único elétron, essa não linearidade não será uma fonte de perda de resolução. Entretanto, a radiação incidente pode interagir e gerar dois ou mais elétrons secundários através de um único ou múltiplos espalhamentos Compton seguidos pela absorção fotoelétrica. Além disso, mesmo se ocorrer uma simples absorção fotoelétrica, o átomo que fica excitado pode converter a sua energia de excitação na forma de elétron *Auger* (LIMA, 2006).

Consequentemente, um fluxo de fótons incidentes monoenergéticos irá permitir uma extensa distribuição de energia dos elétrons dentro do cristal. Se a resposta do cristal não é linear com a energia dos elétrons, o rendimento total de luz será diferente de evento para evento, dependendo dos detalhes de subdivisão de energia entre os vários elétrons que são produzidos (LIMA, 2006).

Esses efeitos são significativos para energias de raios gama de poucas centenas de keV, para os quais as múltiplas interações são predominantes. É convencional usar o ¹³⁷Cs (0,662

MeV) como padrão para relacionar o número de canais com a energia. A resolução para detectores cilíndricos de NaI(Tl) é cerca de 6 a 7 %. Se a forma do cristal não for cilíndrica, a maior dificuldade de coleta de luz torna pior a resolução.

3.8.1.3. Prevenção da perda de resolução

Algumas medições com cintiladores devem se estender por muitas horas, ou até dias, então, o deslocamento no ganho da fotomultiplicadora e outros componentes do circuíto podem causar perda de resolução. As técnicas para minimizar esses efeitos operam melhor quando existe um único pico isolado no espectro a partir do qual um erro no sinal pode ser derivado para ajustar a variação do ganho. Se um pico grande e isolado não existir no espectro ou se a taxa de contagem for baixa, esses métodos podem ser impraticáveis (LIMA, 2006).

Um método alternativo pode ser usado, baseando-se na produção de uma fonte de luz de referência dentro do pacote do cintilador para produzir um pico artificial no espectro. Se os pulsos de luz possuem intensidade constante, um sinal de retorno pode ser gerado para ajustar o ganho do sistema de maneira a manter os picos em uma posição constante no espectro. As fontes de luz usadas podem ser uma combinação de radionuclídeos com um fósforo adequado, ou um sinal eletrônico (LIMA, 2006).

3.8.2. Linearidade

A eficiência de cintilação ou a quantidade de luz gerada por unidade de energia depende do tipo da partícula e de sua energia cinética. Para espectrômetros ideais, a eficiência de cintilação deve ser constante, independente da energia da partícula. A resposta do cintilador deve ser perfeitamente linear (LIMA, 2006).

Para elétrons no cintilador NaI(Tl), a eficiência de detecção varia suavemente com a energia dos elétrons. Para espectrometria de elétrons, alguma não linearidade deve ser esperada. Já a média da altura dos pulsos observados para raios gama é quase linear com a energia dos fótons, mas medidas de não linearidade são necessárias (LIMA, 2006).

3.8.3. Detecção

3.8.3.1. Forma do cristal

Duas formas são muito usadas para aplicações com os raios gama. A primeira é a de um cilindro circular sólido é simples de ser manufaturado e encapsulado, podendo ser montado diretamente com a face circular da fotomultiplicadora. Se a razão altura – diâmetro do cilindro não for grande, as propriedades de coleta de luz são favoráveis nessa geometria (LIMA, 2006).

Se a razão *altura–diâmetro <<* 1, a resolução pode ser melhorada interpondo um tubo de luz entre o cristal e a fotomultiplicadora para espalhar a luz mais uniformemente para todo fotocatodo .

A outra forma de cristal é de um cilindro circular, normalmente bem acabado onde ao longo do seu eixo é construído um poço. A vantagem dessa geometria é a alta eficiência de contagem que pode ser alcançada colocando-se a amostra para ser contada no fundo do poço. Nessa posição, quase todos os raios gama, que são emitidos isotropicamente, são interceptados pelo cristal. Para baixa contagem, a eficiência nessa geometria pode se aproximar de 100%. Para altas energias, essa vantagem pode ser perdida porque o caminho médio através do cristal é algo menor do que aquele se o raio gama incidir externamente num cristal sólido.

3.8.3.2. Eficiência de detecção

Os dados de eficiência do detector são normalmente apresentados na forma de gráficos do valor da eficiência em função da energia dos raios gama (LIMA, 2006). Alguns aspectos adicionais merecem ser considerados.

 A eficiência de detecção é o quanto o detector consegue detectar de pulsos emitidos por uma fonte, sendo classificada em absoluta e intrínseca. Uma especificação adicional deve ser feita, pos, como os tipos de eventos são aceitos pelo sistema de contagem, as escolhas mais comuns são eficiência de fotopico ou eficiência total.

$$Eficiência \ Absoluta \ = \ \left(\frac{N^{\circ} \ partículas \ detectadas}{N^{\circ} \ de \ partículas \ emitidas}\right)$$

Equação 35

Eficiência Intrínseca =
$$\left(\frac{N^{\circ} partículas detectadas}{N^{\circ} de partículas incidentes no detector}\right)$$

- O tamanho e a forma do cristal têm uma grande influência na eficiência de contagem, mas a maior influência está na espessura do cristal na direção do raio gama incidente. Suaves variações com outras dimensões de detector são esperadas.
- O tamanho e a natureza física da fonte também influenciam na eficiência de contagem. A eficiência absoluta é sensível à distância entre a fonte e o detector. Essa dependência é muito suave para a eficiência intrínseca e some totalmente se a fonte está suficientemente longe do detector.
- Qualquer absorção que ocorrer entre o ponto de emissão do raio gama e o cristal irá influenciar na eficiência de detecção. Existem dois métodos pelos quais os dados sobre

eficiência podem ser gerados. O mais direto é medir a taxa de contagem de uma fonte de raios gama com uma atividade conhecida (precisão de 1%). Normalmente, o técnico deve utilizar várias fontes com diferentes energias para levantar a curva de eficiência de detecção. Um segundo método é o de calcular a eficiência baseando-se no conhecimento das probabilidades de interação dos raios gama. A eficiência total é o valor das probabilidades de interação integrado para todos os caminhos:

$$(1-e^{-\mu l})$$

Equação 37

onde, μ – coeficiente linear de absorção

l – caminhos

Para geometrias simples, a integração pode ser calculada analiticamente, porém, no geral, muitos casos devem ser simulados pelo método de Monte Carlo, por causa das múltiplas interações, ocorrendo com isso grande dificuldade do cálculo analítico. O método de Monte Carlo é um experimento computacional cujo resultado obtido está sujeito a incertezas estatísticas determinadas pelo número de ocorrências que foram calculadas. O resultado é específico para a geometria do detector e a energia do raio gama e não pode ser generalizado.

3.8.3.3. Tempo de resposta

O tempo de decaimento do pulso de cintilação do cristal NaI(Tl) é da ordem de 230 ns, considerado longo para aplicações que necessitam resposta rápida devido altas taxas de contagem. Na adição de produtos, uma fosforescência com tempo característico de decaimento da ordem de 0,15 *segundos* tem sido medido, contribuindo em 9% para o total de luz produzido (LIMA, 2006).

Outro componente de fosforescência de vida mais longa também tem sido medido devido a constante de tempo do ânodo do tubo fotomultiplicador ser usualmente mais curta que esses tempos de decaimento, de maneira que cada fotoelétron associado com a fosforescência é resolvido individualmente. Em baixas taxas de contagem, o resultado é, então, uma série de pulsos de elétrons únicos que seguem o pulso de cintilação principal e usualmente são inferiores às amplitudes de interesse na medição (LIMA, 2006).

Existem aplicações, entretanto, em que a sensibilidade de um único elétron é necessária e a influência desses pulsos fosforescentes pode ser significante. Em altas taxas de contagem, a fosforescência tenderá a ser construída devido a múltiplas sobreposições de muitos pulsos precedentes. Este "brilho retardado" é frequentemente uma indesejável característica do *NaI(Tl)* usado nas aplicações para altas taxas de contagem (LIMA, 2006).

3.9. Espectrômetros portáteis de raios gama

A espectrometria de raios gama portátil tem sido usada desde a década de 1960 para a exploração de urânio, mapeamento geológico e estudos ambientais. Existem procedimentos bem estabelecidos para medição, calibração de instrumento e processamento de dados.

3.9.1. Instrumentação

Os espectrômetros portáteis manuais são amplamente utilizados em estudos de campo. Espectrômetros gama portáteis têm até $100 \ cm^3$ de cristais de NaI(Tl) como detectores, e vários limiares de energia operados por interruptor. O limite pode ser ajustado para uma baixa energia, para medição de contagem total, e para energias ligeiramente abaixo de 1,46 *MeV*, 1,76 *MeV* e 2,62 *MeV* para medição de *K*, *U e Th*, respectivamente. Uma fonte de emissão de raios gama como referência é usada para ajuste de ganho do instrumento. Espectrômetros de limiar com volumes pequenos de cristal são adequados para medições brutas em locais de anomalias de contagem total.

Os espectrômetros gama mais modernos são os chamados espectrômetros diferenciais. Estes geralmente possuem no mínimo $350 \ cm^3$ de detectores de NaI(Tl) e registram entre $1024 - 2048 \ canais$ de dados na faixa de energia $0 - 3 \ MeV$. A estabilização automática de espectro se dá por um pico de baixa energia de um radionuclídeo de referência (geralmente $^{137}Cs \ com 0,662 \ MeV$), ou por um dos picos de radionuclídeos naturais ($^{40}K \ com 1,46 \ MeV$ ou $^{208}Tl \ com 2,62 \ MeV$). Os instrumentos podem gravar o espectro completo, bem como somar canais sobre janelas de energia ampla para a estimativa *in situ* das concentrações de *K*, *U e Th*. As constantes de calibração são armazenadas na memória do instrumento. Milhares de medições de campo ou centenas de espectros de energia total podem ser gravados na memória do instrumento. O uso de cristais de cintilação de grande volume e intervalos de amostragem de vários minutos fornecem precisão aceitável para análises quantitativas.

Espectrômetros multicanais de germânio utilizam-se da excelente resolução de energia gama dos detectores de germânio para a distinção entre emissores de raios gama. Um detector de germânio típico para uso em campo teria um volume de cerca de **50** *cm*³. Um tempo de amostragem típico seria da ordem de dezenas de minutos.

3.9.2. NaI(Tl) versus BGO

Há quase 45 anos, o NaI(Tl) tem sido o detector de raios gama escolhido para a aquisição de dados nucleares. É amplamente utilizado para determinar a densidade de

formações e composição química, salinidade do solo e mineralogia. O *NaI* sobressai na intensidade de flashes de luz e na estabilidade de temperatura. Embora novos cristais literalmente não ofusquem o *NaI*, eles têm trazido uma detecção de maior eficiência, maior robustez, reduzida sensibilidade à umidade e capacidade de lidar com taxas muito mais elevadas de contagem, sem empilhamento de pulsos.

Assim, nos últimos anos, uma nova geração de espectrômetros de raios gama vieram para o mercado. Alguns deles usam uma nova geração de cristais de cintilação que tem uma densidade mais elevada do que a do cristal de *NaI(Tl)* padrão (3,66 g/cm³). Cristais de cintilação de densidade mais elevadas, tais como Cs(I) (4,51 g/cm³), LaBr₃ (5,29 g/cm³) e Bi₄Ge₃O₁₂ (7,13 g/cm³) melhoram a eficiência da detecção para as energias mais elevadas.

Segundo Stoller et al. (1994), detectores menores permitem uma redução na massa dos espectrômetros gama portáteis modernos para cerca de 2 kg. Por exemplo, a sensibilidade de novos espectrômetros de raios gama portáteis com um volume de detector de óxido de germanato de bismuto (*BGO*) de 103 cm³ é aproximadamente 80% da sensibilidade de um detector com um volume de cristal de *NaI(Tl)* de 350 cm³ *Tabela 11*.

Cristal	Densidade (g/cm³)	Eficiência de Cintilação relativa ao NaI(Tl)	Índice de Refração	Resolução de Energia em 662 keV ¹ (%)	Tempo de decaimento por flashes de luz ² (ns)	Robusto	Afetado pela Umidade	Sistema de Resfriamento (Dewar) Necessário
NaI(Tl)	3,67	1	1,85 à 420 nm	6 – 7,5	230 à 25° <i>C</i>	Não	Não	Não
BGO	7,13	~ 0,08	2,15 à 480 <i>nm</i>	16	300	Sim	Sim	Sim

Tabela 11 - Propriedades comparativas entre o cristal de NaI(Tl) e o BGO (STOLLER, et al., 1994).

O *BGO* foi fabricado comercialmente na década de 1970, fornecendo maiores taxas de contagem que o *NaI* resultando numa melhor precisão. Seu uso oferece a opção de aquisição mais rápida e de melhor precisão estatística em estimativas de tório, urânio e potássio. A principal vantagem do *BGO* é sua alta densidade (7,3 g/cm³) e o elevado número atômico do bismuto, o que faz dele o detector com maior probabilidade de interação por volume entre os mais comumente utilizados (TAUHATA et al., 2014).

Outra característica do *BGO* é a de ser um cintilador inorgânico puro, isto é, não necessita de um ativador para promover o processo de cintilação. Isso ocorre porque a luminescência está associada à transição ótica do Bi^{3+} . Comparado ao iodeto de sódio, tem, além disso, boas propriedades mecânicas e de resistência à umidade. As principais desvantagens do cristal de *BGO* são: sua baixa produção de luz, aproximadamente 10 a 20% daquela

produzida em iguais condições pelo *NaI* e seu custo, que é duas a três vezes o deste último (TAUHATA et al., 2014).

Em geral, altas taxas de contagem e a qualidade melhorada de picos-Compton espectrais mais do que compensam a principal limitação do *BGO*, que é a sua baixa resolução intrínseca **Tabela** *12*. O *BGO* geralmente fornece uma precisão melhor do que cristais de *NaI* com o mesmo tamanho (volume) na estimativa de concentrações de elementos a partir da análise de espectros de raios gama induzidos pela captura de nêutrons. A baixa resposta do BGO devido a variações de temperatura, no entanto, requer o uso de um tubo Dewar. O *BGO* também pode sofrer problemas devido ao empilhamento de pulsos.

Figura 22 –Eficiência de fotopico para diferentes energias de emissão gama para o *NaI(Tl)* e *BGO* 1,5" x 1,5" (*SGC*, 2004).

Tabela 12 - Quantificação da vantagem estatística do *BGO*. Incertezas de tório (Th), urânio (U) e de potássio (K) os dados de saída acumulados durante 1 segundo em um padrão de xisto. O desvio padrão da concentração de U, Th e K estimado para o *BGO* apresenta um decréscimo de 30% em relação ao *Nal(Tl) (STOLLER, et al., 1994)*.

Elementos	Concentração	BGO	NaI(Tl)
Th	12 ppm	2,82 ppm	4,63 ppm
U	6 ppm	1,51 ppm	2,61 ppm
K	2 %	0,51 %	0,74%

Para aplicações com baixa contagem de *background*, detectores de *NaI(Tl)* podem ser completamente limpos, exceto para uma possível e única emissão gama de ⁴⁰K em 1.461 keV. A contaminação de potássio natural é pequena no *NaI(Tl)*, sendo inferior a 0,5 ppm em massa. O *BGO* pode ter quantidades variáveis de contaminação de ²⁰⁷Bi. Existem 4 energias de raios gama emitidas a partir do decaimento do ²⁰⁷Bi: 470, 1.060, 1.630 e 2.400 keV. Estes raios gama podem ser um grande incômodo no detector de germânio primário, especialmente porque eles são produzidos por blindagens anti-Compton (SGC, 2007).

3.10. Medidas no campo

Espectrômetros portáteis são usados para o mapeamento de radionuclídeos naturais, com suas janelas centradas sobre os fotopicos das energias de 1461 keV (⁴⁰K), 1765 keV (²¹⁴Bi) e 2615 keV (²⁰⁸Tl), visando a estimativa das concentrações de K, U e Th, respectivamente (IAEA, 1989). A precipitação nuclear (*nucelar fallout*) de ¹³⁷Cs e ¹³⁴Cs podem ser detectadas pelo monitoramento de duas janelas amplas de aproximadamente 100 keV, centradas nas energias de 662 keV e 796 keV, respectivamente. Vários métodos para estimar a concentração de radionuclídeos provenientes da precipitação nuclear foram desenvolvidos (GRASTY et al., 1997). A maioria dos métodos usa ambas as janelas de baixa e alta energia de cada radioisótopo. Métodos empregando analisadores multicanais também vem sendo desenvolvidos.

Os procedimentos de campo para a espectrometria portátil dependem da finalidade da pesquisa e do propósito geológico ou ambiental a ser investigado. O tipo de espectrômetro, volume do detector, tempo de medida e modo de medição dependem do ambiente de radiação e do tipo, tamanho e distribuição das fontes radioativas.

A resposta de um espectrômetro de raios gama portátil é dependente do tamanho, localização e geometria das fontes radioativas. Medições significativas ao longo de uma transecta só podem ser obtidas se a geometria fonte-detector é constante para todas as observações. O detector também deve ser colocado diretamente na superfície do terreno, ou ser mantido a uma altura baixa, mas constante. Isto minimiza os efeitos da variação local em relevos e de distribuição dos radioelementos. Para um detector colocado no chão, a amostragem de rocha efetiva tem uma espessura de aproximadamente 25 cm, num raio de 1 m e uma massa superior a 100 kg. Se a altura do detector é elevada, a fonte efetiva aumenta rapidamente no diâmetro de vários metros a dezenas de metros, dependendo da energia de raios gama (KOGAN et al., 1971; IAEA, 1979, 1989). A mesma geometria fonte-detector usada para calibrar o espectrômetro deve ser usada no campo.

O tempo de amostragem necessário para uma medição depende da radioatividade da fonte e da precisão de medida requerida. As equações 8-10 podem ser usadas para estimar o número de contagens necessário para um determinado erro relativo. No entanto, os espectros do $K, U \ e \ Th$ se sobrepõem, e o tempo de contagem requerido para uma precisão especificada nas estimativas destes radionuclídeos é mais complicada. L ϕ vborg e Mose (1987) derivaram equações fornecendo o tempo de contagem para ensaios de $K, U \ e \ Th$, com um erro de 10% para várias relações de $K, U \ e \ Th$ em rochas (*Figuras 23-25*). Mas há sempre um

comprometimento na busca por uma precisão das taxas de contagem medidas e na necessidade de minimizar o tempo para medições de campo. Para um detector de NaI(Tl) de 350 cm^3 , um tempo de amostragem de 2 *min* para rochas altamente radioativas e 6 *min* para rochas de baixa radioatividade é bastante razoável.

Figura 23 - Tempo de contagens (para um espectrômetro GR320 com um detector de *NaI(Tl)* de 3"x 3") necessário para estimar a concentração de urânio com precisão de 10% (*IAEA*, 2003).

Figura 24 - Tempo de contagens (para um espectrômetro GR320 com um detector de NaI(Tl) de 3"x 3") necessário para estimar a concentração de tório com precisão de 10% (*IAEA*, 2003).

Figura 25 – Tempo de contagens (para um espectrômetro GR320 com um detector de NaI(Tl) de 3"x 3") necessário para estimar a concentração de potássio com precisão de 10% (*IAEA*, 2003).

Medições de campo podem ser efetuadas em modo estático ou dinâmico. No modo estático, a radioatividade é medida em pontos discretos. No modo dinâmico, o aparelho é transportado em distâncias fixas durante a medição, e as contagens acumuladas refletem a radioatividade média do sector transversal. Os dados observados, juntamente com identificadores, são armazenados na memória interna do equipamento. É uma boa prática observar todas as características geológicas, topográficas, climáticas e ambientais que podem ajudar posteriormente na interpretação dos dados.

3.11. Métodos de detecção de radônio

Segundo Freyer et al. (1997) os métodos e técnicas mais importantes para determinar a atividade do ²²²Rn são:

- Espectroscopia gama fazendo-se uso também dos raios gama dos filhos do ²²²Rn, sendo eles o ²¹⁴Pb e ²¹⁴Bi.
- Câmaras de difusão do radônio equipadas com detectores passivos (track etch) ou detectores eletrônicos.
- Espectroscopia por cintilação em meio líquido usando uma mistura da amostra de água e do coquetel de cintilação.
- Extração do ²²²Rn por solventes orgânicos e contagem subseqüente em cintilador líquido.
- Aeração do ²²²Rn usando câmara de gás (ex.: nitrogênio) e medidas contínuas ou descontínuas em câmara de ionização ou célula de Lucas. Este é um dos métodos de contagem mais antigos, e ainda amplamente utilizado para detecção de radônio por cintilação de partículas alfa (HOMMA, et al., 1977).

Surbeck (1996) descreve o método de análise de radônio via difusão em membrana. Nesse método o ²²²Rn amostrado na água ou no ar é separado por difusão em membrana e então sua concentração é medida por um monitor acoplado a uma célula de Lucas. O radônio presente na fase aquosa pode ser detectado indiretamente.

A técnica de análise por cintilação em meio líquido baseia-se na interação da radiação produzida pelo decaimento de um radionuclídeo (emissor alfa), com moléculas do cintilador o qual gera emissão de fótons. Nessa técnica a amostra radioativa e o cintilador (compostos orgânicos líquidos) são homogeneamente misturados formando um gel. A energia das radiações excita os elétrons das camadas eletrônicas das moléculas do cintilador e estes posteriormente se desexcitam emitindo fótons em intensidade proporcional à energia da radiação. Esses fótons incidem em uma fotocélula extraindo elétrons que são multiplicados em um fotomultiplicador produzindo um pulso eletrônico; esse, por sua vez, alimenta um amplificador capaz de fornecer pulsos elétricos adequados a um sistema eletrônico de contagem, onde os pulsos são analisados e separados, em função de sua energia, por sistema multicanal (HOMMA, 1981; SHONHOFER, 1992; CHO et al., 2004).

Lucas, em 1957, descreveu o sistema de contagem em uma célula atualmente denominada "Célula de Lucas". Neste método as células são revestidas internamente com sulfeto de zinco ativado com prata, ZnS(Ag). O princípio de funcionamento baseia-se no efeito da fluorescência que as partículas alfa produzem ao interagirem com a superfície da célula; os pulsos luminosos emitidos são coletados pela fotomultiplicadora que os transformam em pulsos elétricos os quais são levados ao sistema eletrônico de análise e contagem. Estão comercialmente disponíveis vários modelos de células de Lucas, os quais possuem variações em volumes internos, formas, acoplamento com a fotomultiplicadora, dimensões e números de válvulas de conexão (PAULO, 2006).

Plastino et al. (2002) faz uso do método radiométrico de espectrometria gama para determinar a concentração de radônio em água. Esse método é baseado na detecção da radiação gama, pelos produtos do decaimento do ²²²Rn (com energias de 295 e 352 KeV para o ²¹⁴Pb e 609 e 1120 KeV para o ²¹⁴Bi) (PAULO, 2006).

CAPÍTULO 4

EFEITOS BIOLÓGICOS DA RADIAÇÃO

4.1. Radiobiologia celular

A radiação, ionizante ou não, é um componente natural do ambiente terrestre e tem decisivamente moldado a evolução da vida através da história. Em resposta a tal componente, os sistemas biológicos desenvolveram uma série de mecanismos de defesa, como a ativação do sistema imunológico e mecanismos de reparo do material genético (HORNECK, 1998).

Atualmente, um grande número de pessoas tem sido ocupacionalmente exposto a baixas doses de nêutrons, desde trabalhadores de centros de pesquisa que lidam com nêutrons, até a tripulação de aeronaves. Essas exposições, entretanto, podem induzir alterações nas células somáticas e nas células germinativas. Como consequência, há possibilidade de desenvolvimento de leucemia ou outros tipos de câncer, além de mutações hereditárias (GOODHEAD, 1993; RODRIGUES et al., 2005).

Ao incidirem sobre células vivas, as radiações X, γ e os nêutrons geram efeitos semelhantes. No entanto, por não possuírem carga elétrica, os nêutrons interagem com a matéria, basicamente por colisão, principalmente com átomos de hidrogênio para os quais sua energia é transferida parcial ou totalmente. Dessa forma, há a produção de prótons de recuo altamente ionizantes, responsáveis diretos pelo dano biológico gerado (YAMAGUCHI; WAKER, 2007).

A etapa física da interação da radiação com os tecidos biológicos é seguida por fenômenos físico-químicos e químicos. Os efeitos biológicos se devem em grande parte à ação indireta das radiações, ou seja, devido à interação da radiação sobre a molécula de água. Isto ocorre, por um lado, devido à presença da água no corpo humano (70 - 80%) e, por outro, à ação que a água exerce como solvente universal e onde ocorrem diversas reações químicas.

Mesmo sendo a ação da radiação sobre a molécula de água (radiólise da água) um evento complexo, é possível sintetizá-lo em dois pontos principais: a formação de radicais livres e a decomposição molecular da água (BRANDÃO, 2009).

A interação da radiação ionizante com a água pode levar as moléculas dessa substância a um estado excitado (H_2O^*) ou propiciar a formação de radicais do tipo H_3O^+ , H_2O^- e H_2O^+ , os quais, por serem instáveis, acabam levando à produção de radicais livres do tipo H^* e *OH . Estes radicais se caracterizam-se por serem muito reativos e não possuírem carga elétrica. Em virtude de sua grande reatividade, eles podem interferir no metabolismo das proteínas, lipídeos e carboidratos. Além disso, a liberação de prótons reduz o pH do meio, alterando a cinética das reações bioquímicas e, em grau mais avançado, levando à desnaturação de proteínas e à morte celular. Também, durante a interação da radiação ionizante com os tecidos biológicos, podem ser formados peróxidos (H_2O_2), hidroperóxidos (HO_2), radicais peróxidos livres (RO_2), e radicais orgânicos (BRANDÃO, 2009).

Ao interagir com um sistema biológico, particularmente com o material genético, a radiação pode agir sobre a molécula de DNA, de maneira direta e indireta, através da ação de subprodutos da radiólise da água, levando a quebras simples ou duplas da fita do DNA como mostra a **Figura 26** (BRANDÃO, 2009).

Foi demonstrado que cerca de 2000 quebras simples são induzidas por célula para cada 1 *Gy* de dose absorvida, no entanto, as quebras simples são reparadas aparentemente de maneira rápida e eficiente. A quebra dupla na fita de DNA é um dano complexo composto de, no mínimo, duas quebras simples opostas (BRANDÃO, 2009).

Figura 26 - Mecanismo direto e indireto de ação da radiação sobre o DNA (BRANDÃO, 2009).

Ainda, as quebras duplas podem ser induzidas no genoma de células eucarióticas por processos endógenos associados ao metabolismo oxidativo, erros durante a replicação do DNA e várias formas de recombinação sítio-específicas. Essas lesões no material genético, caso não reparadas, tendem a induzir instabilidade genômica, câncer, mutações e morte celular (BRANDÃO, 2009).

Em doses relativamente baixas, as radiações direta ou indiretamente ionizantes não induzem morte celular, mas contribuem significativamente para a formação das alterações cromossômicas. É consenso que a quebra dupla na fita de DNA é o evento radioinduzido crítico para a formação de alterações cromossômicas discêntricas, translocações recíprocas e anéis cromossômicos (*Figura 27*). Todavia, os cromossomos discêntricos têm sido extensivamente

validados como os mais sensíveis bioindicadores para exposições recentes à radiação (BRANDÃO, 2009).

A avaliação das alterações cromossômicas instáveis vem sendo recomendada como método alternativo ou complementar à dosimetria física, principalmente em acidentes radiológicos, nos quais os indivíduos geralmente não portam dosímetros (IAEA, 2001).

Figura 27 - Principais tipos de aberrações cromossômicas instáveis radioinduzidas: 1) cromossos dicêntricos; 2) anel cromossômico; 3) fragmentos cromossômicos (*IAEA*, 2001).

4.2. Interação da radiação com o tecido biológico

4.2.1. Formas e tipos de irradiação

A correlação entre a exposição à radiação ionizante e os efeitos biológicos induzidos no homem foi estabelecida, inicialmente, pela observação de efeitos danosos em pessoas nas primeiras exposições com raios X, e em exposições com radionuclídeos sofridas pelos pioneiros das descobertas sobre radioatividade (TAUHATA et al., 2014).

Entretanto, para o seu detalhamento, foi necessária a adoção de modelos de exposição e hipóteses baseadas em extrapolações, uma vez que dependia, da quantidade, forma e período de exposição, bem como de expectativas de concretização dos efeitos, em termos de sua observação, no tempo. Isto porque os dados experimentais disponíveis eram relacionados a exposições com doses elevadas, a acidentes radiológicos, às observações nas vítimas de Hiroshima e Nagasaki ou a experiências com cobaias.

As conclusões dos estudos iniciais poderiam ter comparações e confirmações diretas em pacientes submetidos a tratamento de radioterapia ou em experiências em cobaias, onde propositadamente as doses são elevadas. Entretanto, para o estabelecimento de recomendações de segurança para o trabalho rotineiro com a radiação ionizante em suas diversas aplicações, onde as doses são mantidas duas a quatro ordens de grandeza menores que as anteriormente citadas, a observação dos efeitos biológicos fica ofuscada pela ocorrência de muitos outros efeitos, provocados por outros agentes físicos ou químicos, inclusive ambientais (TAUHATA et al., 2014).

Um modelo conservativo em termos de proteção radiológica seria a correlação linear entre dose e efeito, mesmo para baixos valores de dose. Este modelo, utilizado até hoje, se baseia numa extrapolação para doses muito baixas, do ajuste da curva obtida entre dose e efeitos biológicos observados em valores elevados. Contudo, sobre sua validade científica, pois, poderia estar ignorando possíveis valores limiares para certos efeitos, ou minimizando a ocorrência de alguns outros efeitos, devido a influência e comportamento de outros fatores nesta região de baixas doses.

4.2.1.1. Exposição única, fracionada ou periódica

A exposição do homem ou parte de seus tecidos à radiação, pode ter resultados bastante diferenciados, isto é, se ela ocorreu de uma única vez, de maneira fracionada ou periodicamente. As exposições únicas podem ocorrer em exames radiológicos, como por exemplo, uma tomografia; de maneira fracionada, como no tratamento radioterápico; ou periodicamente, como em certas rotinas de trabalho com material radioativo em instalações nucleares (TAUHATA et al., 2014).

Figura 28 - Transformação de células expostas à radiação do ⁶⁰Co e nêutrons do espectro de fissão, com exposições únicas e fracionadas (*TAUHATA et al., 2014*).

Para uma mesma quantidade de radiação, os efeitos biológicos resultantes podem ser muito diferentes. Assim, se ao invés de fracionada, a dose aplicada num paciente em tratamento de câncer, fosse dada numa única vez, a probabilidade de morte seria muito grande. A exposição contínua ou periódica que o homem sofre da radiação cósmica, produz efeitos de difícil identificação. O mesmo não aconteceria, se a dose acumulada em 50 anos fosse concentrada numa única vez. A **Figura** *28* mostra o percentual de sobrevivência de células de mamíferos quando irradiadas com exposição única ou fracionada (TAUHATA et al., 2014).

4.2.1.2. Exposição de corpo inteiro, parcial ou colimada

Um trabalhador que opera com material ou gerador de radiação ionizante pode expor o corpo todo ou parte dele, durante sua rotina ou num acidente. Um operador de gamagrafia sofre irradiação de corpo inteiro, na sua rotina de expor, irradiar a peça, recolher e transportar a fonte (TAUHATA et al., 2014).

Alguns acidentes, como a perda e posterior resgate da fonte de irradiadores, podem expor mais as extremidades que outras partes do corpo. Uma pessoa que manipula radionuclídeos expõe bastante suas mãos. No tratamento radioterápico, a exposição do tumor a feixes colimados de radiação é feita com muita precisão e exatidão.

4.2.1.3. Exposição a feixes intensos, médios e fracos

Na esterilização e conservação de frutas, especiarias, peixes e carnes, com radiação gama, as doses aplicadas chegam a $10 \ kilograys (kGy)$ e em radioterapia, a $2 \ Gy$ por aplicação. São feixes intensos capazes de induzir à morte uma pessoa, se aplicados de uma única vez e no corpo todo. Os feixes utilizados em radiologia são de intensidade média, comparativamente, pois atingem alguns *miligrays (mGy)*, e não devem ser recebidos por uma pessoa com muita frequência, sob pena de sofrer algum dano biológico. A radioatividade natural induz ao homem doses de radiação da ordem de $1 \ mGy$ por ano. Poucos são os efeitos identificáveis e atribuídos exclusivamente a este tipo de radiação (TAUHATA et al., 2014).

4.2.1.4. Exposição a fótons, partículas carregadas ou nêutrons

A grande maioria das práticas com radiação ionizante envolve fótons provenientes de fontes de radiação gama ou geradores de raios X como as de radiodiagnóstico, radioterapia, radiografia industrial e medição de nível e densidade. Nas instalações nucleares, nos reatores, além dos fótons, existem fluxos de nêutrons gerados na fissão dentro dos elementos combustíveis e que atingem as áreas de manutenção e operação da máquina. Alguns medidores de nível, de densidade e instrumentos para prospecção de petróleo, utilizam fontes e geradores de nêutrons. Os feixes de partículas carregadas têm nos aceleradores lineares de elétrons, nos cíclotrons com feixes de prótons e nos radionuclídeos emissores beta e alfa, os principais representantes.

Os fótons e nêutrons constituem as radiações mais penetrantes e causam danos biológicos diferentes conforme a taxa de dose, energia e tipo de irradiação. Os feixes de elétrons têm um poder de penetração regulável, conforme a energia estabelecida na máquina aceleradora. A radiação beta proveniente de radionuclídeos em aplicadores oftalmológicos e dermatológicos tem alcance de fração de milímetro no tecido humano. A radiação alfa é pouco penetrante, mas doses absorvidas devido a radionuclídeos de meia-vida curta incorporados nos sistemas respiratório ou digestivo de uma pessoa podem causar danos 20 vezes maiores que iguais valores de doses de radiação X, gama ou beta (TAUHATA et al., 2014).

4.2.2. Danos celulares

O processo de ionização, ao alterar os átomos, pode modificar a estrutura das moléculas que os contêm. Se a energia de excitação ultrapassar a energia de ligação entre os átomos, pode ocorrer quebra das ligações químicas e consequentes mudanças moleculares. Da energia transferida pela radiação ao tecido, metade dela induz excitações, cujas consequências são menores que as de ionização (TAUHATA et al., 2014).

Se as moléculas alteradas compõem uma célula, esta pode sofrer as consequências de suas alterações, direta ou indiretamente, com a produção de radicais livres, íons e elétrons. Os efeitos da radiação dependem da dose, taxa de dose, do fracionamento, do tipo de radiação, do tipo de célula ou tecido e do indicador (*endpoint*) considerado. Tais alterações nem sempre são nocivas ao organismo humano. Se a substância alterada possui um papel crítico para o funcionamento da célula, pode resultar na alteração ou na morte da célula. Em muitos órgãos e tecidos o processo de perda e reposição celular faz parte de sua operação normal. Quando a mudança tem caráter deletério, ela significa um dano.

4.2.3. Mutações

Segundo Tauhata et al. (2014), as mutações, nas células somáticas (do corpo) ou germinativas (das gônadas) podem ser classificadas em 3 grupos:

- a) Mutações pontuais (alterações na sequência de bases do DNA);
- b) Aberrações cromossômicas estruturais (quebra nos cromossomos); e

c) Aberrações cromossômicas numéricas (aumento ou diminuição no número de cromossomos).

4.2.4. Modificação celular pela radiação

Observando-se o ciclo celular e as fases do ciclo mitótico, é compreensível que a célula não apresente a mesma resposta à radiação, devido à interferência dos diversos tipos de interação da radiação nos diferentes cenários de vida da célula. As situações de maior complexidade ou que exigem acoplamentos finos de parâmetros físico-químicos ou biológicos, devem ser mais vulneráveis às modificações induzidas pela radiação. Isto significa que, num tecido onde as células componentes vivem aleatoriamente diferentes fases, as consequências das interações de uma mesma radiação podem ser diferentes em locais distintos do mesmo tecido. Assim, quando se fala num determinado efeito biológico induzido por radiações, está embutida uma avaliação estatística da situação (TAUHATA, et al., 2013).

As mudanças na molécula de DNA podem resultar num processo conhecido como transformação neoplásica. A célula modificada, mantendo sua capacidade reprodutiva, potencialmente, pode dar origem a um câncer. O aparecimento de células modificadas pode induzir o sistema imunológico a eliminá-las ou bloqueá-las. Entretanto, as células sobreviventes, acabam por se adaptar devido a modificações estimuladas por substância promotora. A multiplicação deste tipo de célula dá origem a um tumor, num estágio denominado de progressão.

Após um período de latência, se as células persistirem na reprodução, superando as dificuldades de divisão celular, os possíveis desvios de percurso devido a diferenciações e mecanismos de defesa do organismo, originam o tumor cancerígeno.

4.2.5. Morte celular

Quando a dose de radiação é elevada (vários Gy), muitas células de tecido atingidas podem não suportar as transformações e morrem, após tentativas de se dividir. O aumento da taxa de perda pode às vezes ser compensado com o aumento da taxa de reposição. Neste caso, haverá um período de transição, onde a função do tecido ou órgão foi parcialmente comprometida e posteriormente reposta. A perda de células, em quantidade considerável, pode causar prejuízos detectáveis no funcionamento do tecido ou órgão. A severidade do dano caracteriza o denominado efeito determinístico, uma vez que foi ultrapassado o limiar de dose que as células do tecido suportam. As células mais radiosensíveis são as integrantes do ovário, dos testículos, da medula óssea e do cristalino (TAUHATA, et al., 2013).

4.2.6. Curva de sobrevivência

Utilizando radiações de alto e baixa transferência linear de energia (LET - *linear energy transferance*), com altas e baixas taxas de dose, pode-se obter o percentual de sobrevivência de células de um tecido ou órgão. Os pontos experimentais podem ser ajustados matematicamente e as diversas expressões obtidas são denominadas de curvas de sobrevivência. A **Figura 29** mostra que, para o mesmo valor da dose de radiação, as radiações de alto LET (alfa, nêutrons, íons pesados) resultam em menor percentual de sobrevivência que as de baixo LET (elétrons, beta, fótons).

4.3. Classificação dos efeitos biológicos

4.3.1. Denominação dos efeitos biológicos

Os efeitos radioinduzidos podem receber denominações em função do valor da dose e forma de resposta, em função do tempo de manifestação e do nível orgânico atingido. Assim, em função da dose e forma de resposta, são classificados em estocásticos e determinísticos; em termos do tempo de manifestação, em imediatos e tardios; em função do nível de dano, em somáticos e genéticos (hereditários) (TAUHATA et al., 2014).

4.3.2. Efeitos estocáticos

São efeitos em que a probabilidade de ocorrência é proporcional à dose de radiação recebida, sem a existência de limiar. Isto significa que doses pequenas, abaixo dos limites estabelecidos por normas e recomendações de proteção radiológica, podem induzir tais efeitos. Entre estes efeitos, destaca-se o câncer (TAUHATA et al., 2014).

A probabilidade de ocorrência de um câncer radioinduzido é função do número de clones de células modificadas no tecido ou órgão, uma vez que depende da sobrevivência de pelo menos um deles para garantir a progressão. O período de aparecimento (detecção) do câncer após a exposição pode chegar até 40 anos. No caso da leucemia, a frequência passa por um máximo entre 5 e 7 anos, com período de latência de 2 anos. Na **Figura 30** é apresentada uma estimativa do tempo de latência para o aparecimento de câncer após exposição.

Figura 30 - Tempo de latência para aparecimento de câncer após irradiação (TAUHATA et al., 2014).

4.3.3. Efeitos determinísticos

São efeitos causados por irradiação total ou localizada de um tecido, causando um grau de morte celular não compensado pela reposição ou reparo, com prejuízos detectáveis no funcionamento do tecido ou órgão. Existe um limiar de dose, abaixo do qual a perda de células é insuficiente para prejudicar o tecido ou órgão de um modo detectável. Isto significa que os efeitos determinísticos são produzidos por doses elevadas, acima do limiar, onde a severidade ou gravidade do dano aumenta com a dose aplicada. A probabilidade de efeito determinístico, assim definido, é considerada nula para valores de dose abaixo do limiar, e 100% para valores acima (TAUHATA, et al., 2013).

Além da severidade, os efeitos determinísticos variam com a frequência em que um dado efeito, definido como condição patológica reconhecível, aumenta em função da dose numa população de indivíduos com diferentes susceptibilidades. Exemplos de efeitos determinísticos na pele são: eritema e descamação seca para dose entre 3 e 5 Gy, com sintomas aparecendo após 3 semanas; descamação úmida acima de 20 Gy, com bolhas após 4 semanas; necrose para dose acima de 50 Gy, após 3 semanas.

4.3.4. Efeitos somáticos

Surgem do dano nas células do corpo e o efeito aparece na própria pessoa irradiada. Dependem da dose absorvida, da taxa de absorção da energia da radiação, da região e da área do corpo irradiada (TAUHATA et al., 2014).

4.3.5. Efeitos genéticos ou hereditários

São efeitos que surgem no descendente da pessoa irradiada, como resultado do dano produzido pela radiação em células dos órgãos reprodutores, as gônadas. Têm caráter cumulativo e independe da taxa de absorção da dose (TAUHATA et al., 2014).

4.3.6. Efeitos imediatos ou tardios

Os primeiros efeitos biológicos causados pela radiação, que ocorrem num período de poucas horas até algumas semanas após a exposição, são denominados de efeitos imediatos, como por exemplo, a radiodermite. Os que aparecem depois de anos ou mesmo décadas, são chamados de efeitos retardados ou tardios, como por exemplo, o câncer (TAUHATA et al., 2014).

Se as doses forem muito altas, predominam os efeitos imediatos, e as lesões serão severas ou até letais. Para doses intermediárias, predominam os efeitos imediatos com grau de severidade menor, e não necessariamente permanentes. Poderá haver, entretanto, uma probabilidade grande de lesões severas a longo prazo. Para doses baixas, não haverá efeitos imediatos, mas há possibilidade de lesões a longo prazo.

Os efeitos retardados, principalmente o câncer, complicam bastante a implantação de critérios de segurança no trabalho com radiações ionizantes. Não é possível, por enquanto, usar critérios clínicos porque, quando aparecem os sintomas, o grau de dano causado já pode ser severo, irreparável e até letal. Em princípio, é possível ter um critério biológico e espera-se algum dia ser possível identificar uma mudança biológica no ser humano que corresponda a uma mudança abaixo do grau de lesão. Por enquanto, utilizam-se hipóteses estabelecidas sobre critérios físicos, extrapolações matemáticas e comportamentos estatísticos.

4.4. Exposição de corpo inteiro de um adulto

Quando uma pessoa é exposta à radiação gama em corpo inteiro, ou no caso ignorado, considerado como tal, os valores limiares de dose absorvida para o caso de 1% de morbidez e mortalidade são apresentados na **Tabela** *13*, conforme a publicação 103 da ICRP de 2007.

A morbidez pode ser definida como o número de doenças produzidas em determinado órgão, tecido ou sistema de uma pessoa quando submetida a uma determinada causa. Pode significar também a taxa de portadores de determinada doença, em relação à população total estudada em determinado local e momento. O valor de 1% de morbidez e mortalidade significa uma em 100 pessoas expostas (TAUHATA et al., 2014).

FORMA	DOSE ABSORVIDA (Gy)	SINTOMAS		
Infra-clínica < 1		Ausência de sintomas, na maioria dos indivíduos		
Reações leves generalizadas	1 a 2	Astenia, náuseas e vômitos de 3 a 6 horas após a exposição. Efeitos desaparecendo em 24 horas.		
Síndrome Hematopoética Leve	2 a 4	Depressão da função medular (linfopenia, leucopenia, trombopenia, anemia). Máximo em 3 semanas após a exposição e voltando ao normal em 4 a 6 meses.		
Síndrome Hematopoética Grave	4 a 6	Depressão severa da função medular.		
Síndrome do Sistema Gastrointestinal	6 a 7	Diarreia, vômitos, hemorragias.		
Síndrome Pulmonar	7 a 10	Insuficiência respiratória aguda.		
Síndrome do Sistema Nervoso Central	> 10	Coma e morte. Horas após a exposição.		

 Tabela 13 - Síndrome de irradiação aguda (TAUHATA et al., 2014).

A dose letal média fica entre 4 e 4,5 Gy. Isto significa que, de 100 pessoas irradiadas com esta dose, metade morre (TAUHATA et al., 2014). Na **Tabela** *14* constam os sintomas resultantes da exposição aguda à radiação ionizante.

Tabela 14 - Sintomas de doença resultantes da exposição aguda à radiação ionizante, em função do tempo (*TAUHATA et al., 2014*).

TEMPO DE	SOBREVIVÊNCIA			
MANIFESTAÇÃO	PROVÁVEL	POSSÍVEL	IMPROVÁVEL	
(semanas)	1 – 3 <i>Gy</i>	4 - 7 Gy	> 8 <i>Gy</i>	
1	Fase latente, nenhum sintoma definido	Náusea, vômito	Náusea, vômito, diarreia, garganta inflamada, úlcera, febre, emagrecimento rápido, morte	
2		Depilação, perda de apetite, indisposição, garganta dolorida, diarreia, emagrecimento, morte.		
3	Depilação, perda de apetite, indisposição			
4	Garganta dolorida, diarreia, emagrecimento moderado			

CAPÍTULO 5

MATERIAL E MÉTODOS

5.1. Etapas prévias de calibração do detector de ²²²Rn

Para fins de calibração do detector Pylon AB6A, do tipo célula de Lucas, utilizado neste trabalho, foi empregado um padrão de ²²⁶Ra de 250 mL e atividade AS = 995,33 pCi (LIMA et al., 1996). A taxa de contagem (T_c) e o desvio padrão (σ_{Tc}) foram, respectivamente, obtidos pelas expressões:

$$T_c = \frac{N}{t_0}$$

Equação 38

$$\sigma_{Tc} = \frac{\sqrt{N}}{t_0}$$

Equação 39

Onde *N* é o número de contagens devido ao ²²²Rn e t_0 é o tempo de contagem da medida. O número de contagens devido ao ruído de fundo (N_{Bg}) da célula 600A foi determinado, sendo o seu desvio padrão (σ_{Bg}) expresso por:

$$\sigma_{Bg} = rac{\sqrt{N_{Bg}}}{t_0}$$

Equação 40

A atividade real normalizada (A_n) foi obtida efetuando-se a diferença entre a taxa de contagem (T_c) e a taxa de contagem do ruído de fundo $(T_{c_{Bg}})$; o desvio padrão (σ_{A_n}) foi obtido pela expressão:

$$\sigma_{A_n} = \left[\sigma_{T_c}^2 + \sigma_{Bg}^2\right]^{1/2}$$

Equação 41

A atividade corrigida (A_d) devido ao decaimento do ²²⁶Ra durante o tempo t, compreendido entre a data de preparação do padrão até o momento da realização deste estudo, foi calculada a partir da equação:

$$A_d = A_n \cdot e^{\lambda \cdot t}$$

Onde λ é a constante de decaimento do ²²⁶Ra e A_n é a atividade do padrão no tempo t_0 . Neste trabalho, foi considerado $A_n = SA$. O desvio padrão σ_{A_d} é calculado pela expressão:

$$\sigma_{A_d} = \sqrt{e^{2.\lambda.t}}. \sigma_{A_n}$$
Equação 43

Onde se assume que não há erro em λ e em t. Finalmente, o parâmetro que representa a calibração da célula de Lucas 600A é obtido pela Equação 44:

$$F_K = \frac{A_d}{SA}$$

Equação 44

Assumindo que não há erro na atividade do padrão SA (995,33 pCi = 36,83 Bq), o desvio padrão deste parâmetro é fornecido por:

$$\sigma_{F_K} = \frac{\sigma_{A_d}}{SA}$$

Equação 45

Para converter a concentração de equilíbrio de radônio detectado no ar (C_{air}) para a correspondente concentração de radônio em água (C_w) o coeficiente de partição do radônio entre água/ar ($K_{w/air}$) precisa ser conhecido. O $K_{w/air}$ depende da salinidade bem como da temperatura, com valores possíveis em águas naturais que abrangem uma gama de magnitude entre 0,5 (água fria) e 0,05 (água salina quente). Enquanto o efeito da temperatura sobre $K_{w/air}$ é geralmente aplicado, a dependência da salinidade com $K_{w/air}$ não tem sido muito estudada e relatada na literatura, sendo portanto, ignorada em muitos casos (SCHUBERT et al., 2012).

A dependência da temperatura na solubilidade de radônio na água ($K_{w/air} = f(T)$) é bem descrita na literatura. (CLEVER, 1979) agrupou um conjunto abrangente de dados experimentais, incluindo resultados originalmente relatados por Kofler (1913), aqui referenciados como "o conjunto de dados Kofler". Weigel (1978) introduziu uma equação empírica para quantificar a influência da temperatura sobre a partição do radônio entre água pura e ar. A "equação de Weigel" (Equação 46) é baseada em um conjunto de dados publicado pela Meyer e Schweidler em 1916, que reuniu todos os valores relacionados disponíveis naquela época.

$$K_{w/air} = \frac{C_w}{C_{air}} = f(T) = 0,105 + 0,405.\,e^{-0,502.T(^\circ C)}$$

Os resultados da equação de Weigel estão em boa concordância com o conjunto de dados Kofler.

A concentração na água C_w , em Bq/L, é obtida através do cálculo da Equação 47 que envolve o núcleo de contagens alfa do radônio detectadas por difusão no aparelho Pylon, a temperatura ambiente, o volume total do aparelho e o volume da amostra de água usada. O coeficiente $K_{w/air}$ é o coeficiente de partição relacionado à temperatura (°C).

$$C_{w} = \frac{C_{air} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} + K_{w/air} \right) - C_{bg} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} \right)}{1000}$$

Equação 47

Onde: C_w é a concentração de radônio na água, em Bq/L, da amostra; C_{air} é a concentração $[Bq/m^3]$ do ar do sistema depois de ser expelido da água; C_{bg} é a concentração de radônio antes do início das medidas (*background*); $V_{sistema}$ é o volume $[m^3]$ do interior do sistema analisado; $V_{amostra}$ é o volume $[m^3]$ de água da amostra.

Admitindo-se que: $C_w = \frac{SA}{V_{amostra}}$, onde $V_{amostra}$ é o volume da amostra (m^3) , e sabendo que o fator de calibração F_K para o sistema fechado necessita levar em consideração todos os parâmetros mencionados na Equação 47, os termos são recalculados para obter a equação que descreve o fator de calibração F_K :

$$\frac{SA}{V_{amostra}} = \frac{A_d}{F_K} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} + K_{w/air} \right) - \frac{A_{bg}}{F_K} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} \right)$$
Equação 48

$$F_{K} = \frac{A_{d} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} + K_{w/air} \right) - A_{bg} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} \right)}{\frac{SA}{V_{amostra}}}$$

Equação 49

onde o seu desvio padrão é dado por:

$$\sigma_{F_{K}} = \frac{\sigma_{A_{d}} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} + K_{w/air} \right) - \sigma_{A_{bg}} \left(\frac{V_{sistema} - V_{amostra}}{V_{amostra}} \right)}{\frac{SA}{V_{amostra}}}$$

5.2. O monitor Pylon AB6A

O Pylon AB6A é um modelo de detector para leituras de concentração de radônio que se utiliza do método de cintilação por meio de células de Lucas acopladas em um tubo de uma fotomultiplicadora. Células de Lucas são modelos de células de cintilação que exigem que o operador insira ativamente a amostra de gás em seu interior. Células ativas de cintilação desse tipo podem ser utilizadas para ambos os métodos, bombeamento contínuo ou intermitente do radônio para amostragem.

A célula de Lucas 600A utiliza como cintilador o ZnS(Ag) (sulfeto de zinco ativado com prata), material que é um dos cintiladores inorgânicos mais antigos disponível. Tem alta eficiência de cintilação, comparável à do NaI(Tl), mas só é disponível como pó policristalino, sendo seu uso limitado a telas finas, por ser opaco à luz, utilizadas principalmente para partículas α e íons pesados (TAUHATA et al., 2014).

Células de cintilação são sensíveis a três isótopos radioativos de Rn, o gás radônio (²²²Rn) da série do urânio, o gás torônio (²²⁰Rn) da série do tório e o gás actinônio (²¹⁹Rn) da série do actínio. A aplicação dessa célula para o detector Pylon modelo AB6A considera principalmente a determinação do radônio (²²²Rn) que é o mais comumente encontrado dentre os três gases. Como o torônio possui uma meia-vida bastante curta (55 s), sua presença tende a ser mais improvável que a do radônio.

Células de cintilação ativas, tais como a 600A e 610A são cilindros herméticos de metal que tem uma janela transparente em uma extremidade e dois conectores *Swagelok* para o fluxo de entrada e saída de amostra de gás no extremo oposto. Uma vez dentro da célula, o gás radônio decai em seus produtos filhos, como mostrado na **Tabela** *15* para os decaimentos a partir do rádio.

Isótopo	Meia-Vida	Constante de decaimento (λ)	Energia Alfa
Ra-226 (Rádio)	1622 anos	0,000427 anos -1	4,77 MeV
Rn-222 (gás Radônio)	2,825 dias	0,0001258 minutos ⁻¹	5,48 MeV
Po-218 (RaA)	3,05 minutos	0,227 minutos ⁻¹	6,00 MeV
Pb-214 (RaB)	26,8 minutos	0,0259 minutos ⁻¹	-
Bi-214 (RaC)	19,7 minutos	0,0352 minutos ⁻¹	-
Po-214 (RaC')	1,6x10 ⁻⁴ segundos	4332 segundos ⁻¹	7,69 MeV
Pb-210 (RaD)	22,3 anos	0,031 anos -1	-
Bi-210 (era)	5,0 dias	0,139 dia ⁻¹	-
Po-210 (RaF)	138,4 dias	0,005 dia ⁻¹	5,31 MeV

Tabela 15 - Elementos filhos da série de decaimento do ²²⁶Ra.

Alguns destes filhos são emissores de partícula alfa. O gás radônio (²²²Rn), RaA (²¹⁸Po) e RaC' (²¹⁴Po) emitem partículas alfa durante o período normal de medição.

Como todas as células de cintilação, as células 600A e 610A têm um revestimento cintilador de ZnS(Ag), em seu interior, sensível a partículas alfa. Este cintilador produz pulsos de luz quando é atingido por partículas alfa. Quando uma partícula alfa atinge o sulfeto ativado, a partícula alfa torna-se um átomo de hélio e o sulfeto retorna a um estado desexcitado através da emissão de fótons (ou seja, *flashes* de luz). A janela na célula permite que os fótons atinjam a face do tubo fotomultiplicador (PMT), permitindo que monitores, tais como o AB6A, efetuem a sua contagem.

Estas células só produzem *flashes* de luz na presença de partículas alfa que estão dentro da faixa de nível de energia apropriado. Elas devem ser usados com um monitor que converte e contabiliza os pulsos de luz. A 600A e 610A são projetadas para serem encaixadas (rosqueadas) diretamente sobre o bocal específico do PMT do monitor AB6A, de tal forma que a janela da célula 600A ou 610A é montada contra a extremidade do tubo fotomultiplicador (PMT) do AB6A. O PMT detecta os *flashes* de luz, converte-os em pulsos eléctricos e os amplifica.

A eletrônica do monitor AB6A promove a amplificação dos pulsos elétricos, discriminando pulsos de ruído e contabilizando os pulsos restantes. Para medir o gás radônio, a resposta do sistema de medição ao radônio deve ser conhecida. Há uma relação direta entre o número de *flashes* de luz contados pelo AB6A e a concentração (ou atividade) do gás radônio na célula. A relação entre as contagens registradas e a atividade da amostra é referida como a eficiência de contagem para uma amostra *grab* e como a sensibilidade para amostras contínuas. A eficiência de contagens e/ou a sensibilidade deve ser conhecida antes que as medições possam ser realizadas.

Figura 31 – Monitor Pylon AB6A com Célula de Lucas modelo 600A utilizada nas análises laboratoriais.

Medições do tipo *grab* podem ser realizadas colocando-se a célula sob vácuo e em seguida, liberando o vácuo para abrir caminho para o fluxo de gás de amostragem adentrar a célula ou, ainda, bombeando a amostra de gás através da célula. Quando a amostra de gás é bombeada para o interior da célula, é importante assegurar que a taxa de fluxo, bem como o tempo de bombeamento, são tais que permitam que o volume total de gás que flui seja ao menos 3 vezes o volume da célula. Medições contínuas são realizadas pelo bombeamento permanente (contínuo) de amostra de gás através da célula.

Para amostragens contínuas a máxima vazão recomendada pelos idealizadores do sistema de detecção é de 0,5 L/min, já para amostragens do tipo *grab*, até 10 L/min pode ser utilizado. A célula utilizada neste trabalho foi a 600A que possui um volume de 272 cm³ (**Tabela** *16*).

Especificações Célula 600A				
Atividade Mínima Detectável	27,4 Bq/m ³ (0,74 pCi/l)			
Eficiência	74,5%			
Sensibilidade	0,037 cpm/Bq/m ³ (1,36 cpm/pCi/l)			
Volume Ativo	272 ml (9,2 oz)			
Diâmetro	6,1 cm (2,4 in)			
Altura	19,7 cm (7,75 in)			
Peso	359 g (0,8 lb)			

Tabela 16 - Especificações da Célula 600A do monitor Pylon AB6A.

5.2.1. Análise pelo método standard continuous

O monitor Pylon AB6A disponibiliza o método de análise contínua como um dos métodos pré-configurados do próprio sistema. Para análise de padrões de água, um dos requisitos fundamentais é garantir que o monitoramento da atividade da amostra seja realizado em sistema fechado de forma que não haja perdas no fluxo do gás para a célula de Lucas.

Outro requisito é o de garantir que o gás que chega até a célula cintiladora esteja com uma umidade relativa significativamente baixa. Dessa forma, uma coluna dessecante é inserida no circuíto, consistindo em um agente químico granular conhecido como "drierite", composto por CaSO₄ e CuSO₄, que tem por finalidade absorver a umidade. Isto porque a eficiência de detecção do radônio diminui à medida que a umidade aumenta, o que se deve à neutralização dos íons de polônio por partículas de água.

Um filtro de ar também é posicionado na entrada da célula de Lucas 600A para evitar a contaminação da célula de análise por partículas de poeira e outros íons carregados. Além disso, um dispositivo de fluxo unidirecional também foi inserido entre a saída do sistema de bombeamento e do padrão analisado com a finalidade de bloquear um possível fluxo contrário da solução do padrão. Isto pode ocorrer caso algum bloqueio no circuíto, posterior ao padrão, condicione um aumento da pressão da coluna de ar no interior do recipiente, forçando a solução da amostra a fluir em sentido contrário, o que a levaria a adentrar o circuíto em direção ao detector. A configuração do monitor para este procedimento de análise, bem como para o procedimento pelo método *quasi* está ilustrada na **Figura 32**.

Figura 32 - Configuração do sistema de detecção com o detector Pylon para o método *standard contiuous* e para o método *quasi*.

O método contínuo neste estudo foi adotado através do bombeamento permanente do padrão de ²²⁶Ra (0,25 L e atividade de 995,33 pCi = 0,995 nCi) com uma vazão de 0,5 L/min durante um período de 10,875 dias. Os intervalos de análise, ou seja, o tempo entre cada ciclo de dados gerados pelo sistema foi de 5 minutos. Os dados foram processados em Excel e organizados em um gráfico de dispersão no qual cada ponto representou uma média horária de 12 intervalos de 5 minutos.

5.2.2. Análise pelo método quasi

O método *quasi* utilizou-se da mesma configuração ilustrada na *Figura 32*. Este método possibilita inúmeras configurações que levam em conta o acionamento (*turn on*) e a interrupção (*turn of f*) da bomba interna do aparelho, bem como o número de *loops* que podem ser realizados para cada ciclo programado.

A programação neste método para o padrão de Ra-226 (0,25 L, 995,33 pCi) foi realizada da seguinte forma:

- Vazão de 0,5 *L/min*;
- 4 *minutos* de bomba ligada (*turn on*);
- 4 *horas* de bomba desligada (*turn of f*);
- 204 loops (34,115 dias);
- Processamento de dados a cada 2 minutos.

Os dados foram processados em Excel e organizados em um gráfico de dispersão no qual cada ponto é uma média para um intervalo de 4 horas, ou seja, 120 intervalos de 2 minutos.

5.3. Monitores gama espectrométricos portáteis

Dois sistemas gamaespectrométricos portáteis foram usados neste trabalho, empregando um detector de óxido de germanato de bismuto de alta densidade (*BGO*), modelo RS - 230 da empresa RS - analyst e outro de NaI(Tl), modelo 2BY2 - DD da empresa ORTEC.

O espectrômetro RS-230 dispõe de um *design* integrado com um amplo detector, leitura de ensaio direta, armazenamento de dados, proteção de fatores meteorológicos, facilidade de uso e maior sensibilidade atualmente disponível no mercado. O uso de um *BGO* (*higher density bismuth germanate oxide*) fornece um aumento muito significativo no desempenho sobre o detector *NaI(Tl)* normal (tipicamente o de 3" x 3").

O desempenho de um BGO com 6,3 in³ (103 cm³ ou 2"x 2") é aproximadamente 80% de um detector de iodeto de sódio com 21 in³ (390 cm³ ou 3"x 3") que é comumente utilizado como uma unidade portátil com maior volume de cristal, e aproximadamente 50% do que o cristal de *NaI* de mesmo tamanho.

A contagem total de exibição no painel frontal em contagens/segundo (cps) possui uma taxa de atualização 1/seg (ou seja, segundo a segundo). O RS-230 é fornecido com o software utilitário para transferir os dados que são armazenados na memória. Todos os dados na memória podem ser transferidos via Bluetooth ou USB para o programa RS - analyst em um PC. Os dados são plotados em um gráfico de barras verticais (espectro) de 1024 canais. O programa também fornece a visualização gráfica e numérica dos dados. Por fim os dados armazenados também podem ser re-exportados como um arquivo de texto para processamento adicional em Excel. Os modos de utilização estão apresentados a seguir.

- O modo SURVEY disponibiliza a de pesquisa para taxas de dose equivalente com display numérico e áudio;
- O modo ASSAY fornece resultados diretos em % de K e ppm de eU e eTh. O modo *assay* é configurado para 10 diferentes tempos de análise, em segundos, isto é: 30, 60, 90, 120, 180, 240, 300, 600, 900, 1800. Neste trabalho, foi empregado este método para a aquisição de dados dos padrões certificados;
- O modo SCAN permite a caracterização com dados de varredura da memória e integração de dados de GPS.

O detector tem um peso aproximado de 4,4 lb (2 kg), incluindo as baterias (4 pilhas AA com duração de 8-12 horas). Além disso, está envolto em um *case* emborrachado para fácil aderência mesmo em condições úmidas e é preenchido com impermeabilizador IP67 para imersão em água de curto prazo, além de ser totalmente protegido de poeira.

O detector de NaI(Tl) utilizado neste trabalho é o modelo 2BY2 - DD que tem as seguintes características:

- Detector robusto integrado com carcaça de alumínio resistente e cristal de *Nal* 2"x 2" (103 cm³);
- Pré-amplificador e alta tensão (*HV*);
- Baixo consumo de energia (240 *mW*);
- Cabo único de conexão para a maioria das aplicações.

O detector 2BY2 - DD é acoplado ao digiDART - LF (um monitor LCD que permite a visualização e armazenamento dos dados de campo) e conta com um pré-amplificador interno e fonte de alimentação de alta tensão encapsulada dentro de uma robusta carcaça de alumínio.

Inclui um fornecimento de alta tensão ajustável, uma rede de polarização ativa e um pré-amplificador de detecção de cargas. A incorporação de uma rede ativa de polarização na base do PMT elimina conexões de cabo de alta tensão com volumosas fontes HV externas. A rede de polarização ativa permite alta taxa de operação com mudanças mínimas de pico. O modelo 2BY2 - DD conta com o fornecimento de energia através do digiDART - LF. O peso do detector é de aproximadamente 4,6 kg (10 lb).

5.3.1. Calibração em energia do detector gama de NaI(Tl)

A fim de tornar a leitura espectrométrica exequível, procedeu-se uma calibração do sistema utilizado. No presente trabalho, para tal finalidade, empregaram-se fontes monoenergéticas de energia conhecida, consistindo de ¹³⁷Cs, ⁶⁰Co e ¹³³Ba (**Figura 33**). **Figura 33** - Esquemas de decaimento do (a) ¹³⁷Cs, (b) ⁶⁰Co e (c) ¹³³Ba (*DUARTE et al., 2002*).

Uma característica peculiar que deve ser comentada é a existência de um "pico soma" nas leituras do ⁶⁰Co. A ocorrência do "pico soma" do ⁶⁰Co se dá quando existem transições nucleares coincidentes, isto é, quando a meia-vida de um nível intermediário de energia é curta se comparada com o tempo de resposta do detector. No caso de duas transições como verificadas para o ⁶⁰Co, poderá ser observado um pico para cada uma das transições envolvidas, e, além disso, um "pico soma" poderá ser observado na distribuição da altura de pulsos, na posição correspondente à soma das energias das duas transições nucleares.

Para a investigação dos nuclídeos de interesse ambiental, amostras de pechblenda, areia monazítica e *KCl* foram posicionadas frontalmente ao detector (**Tabela** *17*). A partir destes dados tornou-se possível construir a curva de calibração do sistema, relacionando a energia conhecida dos fótons incidentes dos radionuclídeos de interesse com as suas respectivas energias de decaimento. Uma segunda fase de calibração em concentração, bem como para exposição e dose efetiva, estará descrita nos resultados deste trabalho.

Para o urânio, empregaram-se padrões adquiridos junto ao "New Brunswick Laboratory" do "U.S. Departament of Energy Argonne", Illinois, Estados Unidos, consistindo de pechblenda (códigos NBL-101-A, NBL-102-A, NBL-103-A, NBL104-A, NBL-105-A, NBL-106-A e NBL-107-A), para os quais procedeu-se a determinação da taxa de contagem no fotopico do ²¹⁴Bi.

Para o tório, tomou-se a areia monazítica adquirida junto ao "New Brunswick Laboratory" do "U.S. Departament of Energy", Estados Unidos, (códigos NBL-106-A, NBL-107-A, NBL-108-A, NBL-109-A, NBL-110-A).

Para o potássio, tomaram-se padrões confeccionados no LABIDRO (DUARTE et al., 2002) com *KCl* (P.A.) à concentração de 52% de K (código LII-KCl-1) e procedeu-se a mistura e homogeneização com sílica pura, adicionando-se 54,16g de sílica a 28,9g de *KCl* (código LII-KCl-2), 80,12g de sílica a 5,80g de *KCl* (código LII-KCl-3), 82,11g de sílica a 2,90g de *KCl* (código LII-KCl-4) e 84,72g de sílica a 0,5g de *KCl* (código LII-KCl-5).

Tabela 17 - Descrição dos padrões utilizados na calibração e aplicação de outros procedimentos adotados neste trabalho (adaptado de DUARTE et al., 2002).

Padrão	Código	Composição	Massa	Concentração
K-1	LII-KCL-1	61,5 g de KCl		52%
K-2	LII-KCL-2	54,16 g de sílica 28,9 g KCl	83,06 g	25%
K-3	LII-KCL-3	80,12 g de sílica 5,80 g de KCl	85,92 g	5%
K-4	LII-KCL-4	82,11 g de sílica 2,90 g de KCl	85,01 g	2,5%
K-5	LII-KCL-5	84,72 g de sílica 0,5 g de KCl	85,22 g	0,5%
K-6	LII-KCL-6	50 g de sílica	50 g	0%
U-1	NBL-101-A	Pechblenda e SiO ₂	50 g	10.070 ppm
U-2	NBL-102-A	Pechblenda e SiO ₂	50 g	1.025 ppm
U-3	NBL-103-A	Pechblenda e SiO ₂	50 g	499 ppm
U-4	NBL-104-A	Pechblenda e SiO ₂	48,96 g	98,8 ppm
U-5	NBL-105-A	Pechblenda e SiO ₂	50 g	10,2 ppm
Th-1	NBL-106-A	Areia Monazítica e SiO ₂	50 g	1% Th (10.290 ppm) 0,04% U (400 ppm)
Th-2	NBL-107-A	Areia Monazítica e SiO ₂	50 g	0,1% Th (1.028 ppm) 0,004% U (40 ppm)
Th-3	NBL-108-A	Areia Monazítica e SiO ₂	50 g	0,05% Th (515 ppm) 0,002% U (20 ppm)
Th-4	NBL-109-A	Areia Monazítica e SiO ₂	48,96 g	0,01% Th (105,2 ppm) 0,0004% U (4 ppm)
Th-5	NBL-110-A	Areia Monazítica e SiO ₂	50 g	0,001% Th (10,4 ppm) 0,00004% U (0,4 ppm)
Th-6	LII-Th-1	Areia Monazítica e SiO ₂	50 g	0,0005% Th (5 ppm)
Th-7	LII-Th-2	Areia Monazítica e SiO ₂	50 g	0,00025% Th (2,5 ppm)
Th-8	LII-Th-3	Areia Monazítica e SiO ₂	50 g	0,000125% Th (1,25 ppm)

* Dimensão dos padrões (diâmetro = 6,3 cm; altura = 2,3 cm)

A calibração em energia permite determinar os intervalos de integração para os picos de interesse do U, Th e K. O primeiro procedimento adotado para a calibração do detector de NaI(Tl) foi o ajustamento da posição do centroide do fotopico do ¹³⁷Cs.

Esta calibração visou posicionar o espectro de energia dentro de limites que permitem a visualização de todos os fotopicos de interesse terrestre, no caso, de K, U e Th, de forma que os três estejam visíveis e se apresentem dentro de um limite aceitável de resolução para o
sistema de detecção, conforme já mencionado nas seções anteriores deste trabalho. Para tanto, inicialmente foram realizados:

- Ajustes de ganho do aparelho (*coarse* e *fine gain*)
- Ajuste da voltagem do aparelho (variação 760 1000 Volts)

Estes procedimentos podem ser visualizados na Tabela 18.

Tabela 18 - Determinação do centróide para a energia (0,661 MeV) do ¹³⁷Cs com base no ajuste do ganho do aparelho e da voltagem.

N° análise	Coarse Gain	Fine Gain	HV	Canal
1	1	0,45	820	284
2	1	0,45	760	152
3	1	0,45	850	354
4	1	0,45	860	422
5	1	0,45	865	412
6	1	0,45	866	411

A calibração em energia realizada para o monitor *ORTEC - ScintiPack Modelo 296*, aqui mencionado, foi realizada a partir da análise dos espectros ilustrados nas *Figuras 34-39*.

Figura 34 - Espectro do Cs-137.

Figura 35 - Espectro do Ba-133.

Figura 36 - Espectro do Co-60.

Figura 37 - Espectro do K-40.

Figura 38 – Espectro do Tl-208 (Th-232).

Figura 39 - Espectro do Bi-214 (U-238).

O gráfico mostrado na Figura 40 foi construído com base nos dados da Tabela 19.

 Tabela 19 - Dados da calibração em energia.

Nuclídeos	Canal	Energia (MeV)	Meia-Vida
¹³³ Ba	225	0,36	10,51 anos
²¹⁴ Bi	1060	1,76	19,9 minutos
⁴⁰ K	886	1,46	1,28.10 ⁹ anos
⁶⁰ Co	717	1,17	5,271 anos
⁶⁰ Co	812	1,33	5,271 anos
⁶⁰ Co	1562	2,51	5,271 anos
¹³⁷ Cs	411	0,66	30,07 anos
²⁰⁸ Tl	1571	2,61	183 segundos

5.3.1.1. Resolução do sistema utilizado

A resolução do detector foi determinada com base nos fotopicos do ¹³⁷Cs e ²⁰⁸Tl (*Figuras 41* e *42*). Verificou-se que para a energia de 0,661 MeV do ¹³⁷Cs a resolução de 6,34% está dentro do intervalo de 6 – 7,5% mencionado em diversos trabalhos sobre a resolução deste tipo de cintilador [*NaI(Tl)*].

Figura 42 - Resolução do cristal 2"x 2" NaI(Tl) para a energia de 2,61 MeV do ²⁰⁸Tl (²³²Th).

5.3.1.2. Fotopicos de interesse para o NaI(Tl)

Os fotopicos de interesse são os intervalos entre os canais (eixo X) do espectro gerado que determinam a integração do número de contagem para cada um dos três radioelementos de interesse, bem como o intervalo de contagem total que também pode ser utilizado com base nas janelas padrões de energia gama recomendadas para o mapeamento de radioelementos naturais (IAEA, 1991). A calibração em energia possibilitou a determinação dos intervalos citados na Tabela 20.

Tabela 20 - Intervalo em canais dos fotopicos de interesse com base nas janelas de energia indicadas pela IAEA, 1991.

Janela	Nuclídao	Faixa de Energia	Canais		
(Window)	Nuclideo	(MeV)	(Channel)		
Contagem Total	_	0,400-2,810	240 - 1594		
Potássio	40 K	1,370 - 1,570	796 - 886		
Urânio	²¹⁴ Bi	1,660 - 1,860	960 - 1070		
Tório	²⁰⁸ <i>Tl</i>	2,410-2,810	1464 - 1594		

5.3.2. Blindagem para calibração do detector de NaI(Tl) 2"x 2"

Para a calibração do detector ORTEC foram confeccionados 2 cilindros de chumbo com 6 cm de espessura por 4 cm de altura e diâmetro interno de 8,5 cm. Estes cilindros foram posicionados conforme a **Figura 43**, de forma a blindar a contribuição da radiação lateral incidente no detector.

Para a tomada das contagens de *background* foram confeccionadas amostras de sílica com 99,9% de pureza e com a mesma geometria dos padrões utilizados para a calibração do sistema.

Figura 43 - (a) Dimensões dos anéis de chumbo utilizados na blindagem da radiação lateral; (b, c) posicionamento do detector na blindagem para a tomada dos dados de calibração.

5.3.3. Cálculo das concentrações do espectrômetro NaI(Tl) 2"x 2"

Para a conversão das taxas de contagem obtidas nas janelas do K, U e Th em concentrações, foi adotado o procedimento denominado de correção de *stripping*, que é utilizado para determinar as taxas líquidas de contagem dos radioelementos em cada janela sem a influência das outras (DARNLEY et al., 1986). Neste procedimento, dois conjuntos básicos de constantes de calibração são determinados: a primeira são as razões de *stripping* (coeficientes de espalhamento Compton) e a segunda são as constantes de sensibilidade de cada uma das três janelas correspondentes a cada radioelemento (K, U e Th).

As razões de *stripping* são obtidas entre contagens detectadas numa dada janela relativa às detectadas em outra janela quando usada uma fonte pura de urânio, tório ou potássio (*Figura 44*). A concentração então é obtida através de uma relação entre as taxas de contagem nas janelas e as sensibilidades das janelas. As três sensibilidades das janelas são expressas como contagens por minuto em cada janela por unidade de concentração e são dependentes da eficiência do instrumento, do seu limiar de discriminação, do tamanho do detector e da geometria da medida.

Adotou-se uma notação na qual α , $\beta e \gamma$ são taxas de contagens em uma janela de energia mais baixa relativa às de uma janela de energia mais alta, enquanto que as razões de *stripping* reversas *a*, *b e g* são as taxas de contagens em uma janela de energia mais alta relativas às de uma janela de energia mais baixa. Tanto as razões de "*stripping*" quanto as

sensibilidades das janelas são geralmente determinadas através de medidas sobre blocos de concreto de calibração.

Figura 44 - Esquema representativo das interações entre as janelas de K, U e Th. A interferência entre janelas de energia denominado fator de *stripping* é usada para remover a interferência segundo as setas indicadas acima. Comumente são usados os fatores de *stripping* α , $\beta \in \gamma$. Os fatores a, b e g são geralmente pequenos ou iguais a zero e por isso normalmente ignorados (*GOMES*, 2003).

5.3.3.1. Rejeição de dados

Uma observação pode gerar uma situação desconfortável para o experimentador. Se ele retém a observação questionável, isso pode ter um grande efeito sobre a média e o desviopadrão. Se, por outro lado, ela é descartada, o experimentador corre o risco de desconsiderar informações susceptíveis que conduzem à descoberta de um fenômeno inesperado no experimento. Importantes descobertas resultaram de dados aparentemente anômalos. Em qualquer caso, não se pode negar que ao deixar de fora uma observação, isso constituirá uma adulteração dos dados, mais conhecido como "fundging" (YOUNG, 1962).

Esta é uma questão controversa, sem acordo quanto a uma resposta definitiva, pois, num extremo, há o ponto de vista que, a menos que haja uma razão definitiva para suspeitar que uma observação particular não é válida, nunca há qualquer justificativa para desperdiçar dados por motivos puramente estatísticos, e que fazê-lo é, portanto, desonesto. Em outro extremo está o ponto de vista que uma observação deve ser rejeitada se a sua ocorrência é tão improvável que não haja motivo razoável para que esteja a ocorrer num determinado conjunto de dados (YOUNG, 1962).

Se uma medida dentre N leituras de um parâmetro parece ter um desvio incomumente grande, então, a função de distribuição de Gauss pode ser usada para calcular a probabilidade de que ocorra um desvio tão grande ou maior. Se esta probabilidade é maior do que 1/N, podese concluir que é razoável obter tal desvio. Se, por outro lado, a probabilidade de se obter tal desvio é muito menor do que 1/N, isso significa que é muito improvável que este grande desvio deva ocorrer alguma vez em um conjunto de N medições. Neste caso, pode-se considerar a rejeição desta medida como sendo provavelmente atribuída a um erro ou alguma flutuação anômala das condições experimentais. Deve-se ocasionalmente obter desvios cuja probabilidade de ocorrência seja um pouco menor do que 1/N, mas não muito menor. Uma regra de rejeição de dados que é usada algumas vezes é a de rejeitar uma observação caso a sua probabilidade de ser obtida seja menor do que 1/2N. Este critério é conhecido como o critério de Chauvenet.

Para 10 leituras, de acordo com o critério de Chauvenet, uma observação deve ser desconsiderada se o desvio da média é tão grande que a probabilidade da ocorrência de um desvio dessa magnitude seja menor que 1/20. Referindo-se à Equação 51, deseja-se encontrar o valor de *T* tal que P(T) = 1 - (1/20) ou 0,95 (95%). Com base na tabela de integrais da função de Gauss, o valor adequado de *T* é igual a 1,96. σ . Portanto, depois de calcular o desvio padrão para o conjunto de observações, deve-se descartar qualquer observação cujo desvio da média seja maior do que 1,96. σ (YOUNG, 1962).

$$P(T) = \frac{1}{\sqrt{2\pi}} \int_{-T}^{T} e^{-t^2/2} dt$$

Equação 51

A Tabela 21 é uma breve compilação dos valores máximos de $T = d_i/1,96.\sigma$ (onde $d_i = x_i - \bar{x}$) que deve ser tolerada, de acordo com o critério de Chauvenet. Por exemplo, com 20 observações, o valor máximo de T é 2,24. Se o desvio padrão para um conjunto de 20 medições de tensão é de 0,01 *volt*, então, qualquer observação de desvio superior à 2,24.0,01 *volt* = 0,0224 volt deve ser descartada (YOUNG, 1962).

 Tabela 21 - Desvio máximo para o critério de Chauvenet (YOUNG, 1962).

Ν	d_i/σ	Ν	d_i/σ	Ν	d_i/σ	Ν	d_i/σ
5	1,65	12	2,04	30	2,39	150	2,93
6	1,73	14	2,10	40	2,49	200	3,02
7	1,81	16	2,15	50	2,57	300	3,14
8	1,86	18	2,20	60	2,64	400	3,23
9	1,91	20	2,24	80	2,74	500	3,29
10	1,96	25	2,33	100	2,81	1000	3,48

Se for eliminada uma observação pelo critério de Chauvenet, ela deve ser eliminada completamente. Isto significa que, após a observação anômala ser eliminada, deve-se recalcular a média e o desvio padrão usando as observações restantes. Caso decida-se usar o critério de Chauvenet, deve-se ter em mente que pode ser possível eliminar muitos ou todos os dados pela aplicação repetida do método. Assim, o critério de validade duvidosa, na melhor das hipóteses, certamente não deve ser usado mais de uma vez (YOUNG, 1962).

Neste trabalho foi adotado o valor correspondente de N = 10, visto que na determinação da média e dos desvios para as medidas de cada padrão e da radiação de fundo (*background*), foram realizadas 10 análises de tempos distintos (1800, 900, 600, 300, 240, 180, 120, 90, 60 e 30 segundos).

5.3.3.2. Equações de calibração

O procedimento de calibração foi iniciado com a definição de intervalos de energia, ou janelas espectrais, em torno dos picos de absorção total de energia do ⁴⁰K, ²¹⁴Bi e o ²⁰⁸Tl.

Essas janelas foram escolhidas de modo a conter uma fração significativa da área de cada pico de absorção total e de forma a minimizar, tanto quanto possível, a interferência de picos de absorção total vizinhos ao pico de interesse (L\u00e6vborg et al., 1976). Além das janelas espectrais definidas dos três principais picos, definiu-se uma janela de contagem total, abrangendo quase todo o intervalo de energia correspondente aos espectros dos radionuclídeos naturais.

Quando o espectrômetro gama é exposto a uma fonte de radiação, cada janela espectral acumula, ao longo do tempo de integração (t_i), as contagens pertencentes ao pico de absorção total do radionuclídeo correspondente contido na fonte, as contagens associadas ao espalhamento Compton de fótons gama de maior energia, e as contagens associadas à radiação de fundo. A janela de contagem total acumula as contagens de todo o espectro.

Define-se como taxa de contagem bruta em cada janela espectral ($n_{total bruta}$, nK_{bruta} , nU_{bruta} e nTh_{bruta}) como sendo o número de contagens acumuladas divididas pelo tempo de integração. A taxa de contagem associada à radiação de fundo em cada janela espectral (n_{total} f_{undo}, nK_{fundo} , nU_{fundo} e nTh_{fundo}) é estimada expondo-se o espectrômetro a uma fonte estéril. A diferença entre as taxas de contagem brutas e as taxas de contagem de fundo gera as taxas de contagem com fundo removido (n_{total} , nK, nU e nTh).

5.3.3.3. O método dos fatores de remoção de interferência

No método de remoção dos fatores de interferência, as equações para se determinar os coeficientes de calibração de um espectrômetro gama têm a forma:

$$(nTh)_{liq} = (nTh) - a(nU)_{liq} - b(nK)_{liq}$$

$$(nU)_{liq} = (nU) - \alpha(nTh)_{liq} - g(nK)_{liq}$$

$$(nK)_{liq} = (nK) - \gamma(nU)_{liq} - \beta(nTh)_{liq}$$
Equação 53
$$(nK)_{liq} = (nK) - \gamma(nU)_{liq} - \beta(nTh)_{liq}$$

onde $(nTh)_{liq}$, $(nU)_{liq}$, $(nK)_{liq}$ são as taxas de contagens liquidas, que correspondem as contagens que formam cada um dos picos de absorção total sem nenhuma outra interferência (STROBINO, 2005).

As equações 52-54 estabelecem que a interferência de um espectro sobre as outras duas janelas espectrais é proporcional à área do seu pico de absorção total. As constantes $\alpha \in \beta$ são os fatores de interferência do espectro do tório, respectivamente, sobre as janelas do urânio e do potássio, γ é a constante de correção da interferência do espectro do urânio sobre a janela do potássio, e *a* é a constante de interferência do espectro do urânio sobre a janela do tório.

Uma vez que o espectro natural do urânio apresenta um pico de absorção total de baixa intensidade no intervalo de energias correspondentes à janela espectral do tório, o fator de interferência a é, presumivelmente, pequeno. Os fatores g e b representam, respectivamente, as interferências do espectro do potássio sobre as janelas do urânio e do tório (STROBINO, 2005).

Como o potássio tem um espectro gama mono-energético, com um pico de energia total muito menor que as energias dos picos de absorção total do ²¹⁴Bi e do ²⁰⁸Tl, espera-se que esses fatores sejam iguais a zero. A conversão das taxas de contagens líquidas, em concentrações de potássio (C_K), urânio (C_U) e tório (C_{Th}) são dadas pelas constantes de sensibilidade das janelas espectrais (S_K), (S_U) e (S_{Th}) na forma:

$$C_{K} = \frac{(nK)_{liq}}{S_{K}}$$
$$C_{U} = \frac{(nU)_{liq}}{S_{U}}$$

Equação 55

Equação 56

Equação 58

5.3.3.4. O método do sistema linear

As equações que permitem calcular as constantes de calibração de um espectrômetro portátil pelo método do sistema linear podem ser obtidas diretamente das equações do método dos fatores de interferência. O método do sistema linear estabelece uma relação entre as taxas de contagem com o fundo removido e as concentrações de tório, urânio e potássio na forma:

 $C_{Th} = \frac{(nTh)_{liq}}{S_{Th}}$

$$\begin{bmatrix} n_{K} \\ n_{U} \\ n_{Th} \end{bmatrix} = \begin{bmatrix} \alpha_{K,K} & \alpha_{K,U} & \alpha_{K,Th} \\ \alpha_{U,K} & \alpha_{U,U} & \alpha_{U,Th} \\ \alpha_{Th,K} & \alpha_{Th,U} & \alpha_{Th,Th} \end{bmatrix} \begin{bmatrix} \mathcal{C}_{K} \\ \mathcal{C}_{U} \\ \mathcal{C}_{Th} \end{bmatrix}$$

onde a matriz do sistema representa os coeficientes de interferência entre as janelas espectrais. Comparando-se as equações 52 a 57 com a matriz do sistema da equação 58 tem-se que:

$$\alpha = \frac{\alpha_{U,Th}}{\alpha_{Th,Th}}$$
Equação 59
$$\beta = \frac{\alpha_{K,Th}}{\alpha_{Th,Th}}$$
Equação 60
$$\gamma = \frac{\alpha_{K,U}}{\alpha_{U,U}}$$
Equação 61
$$a = \frac{\alpha_{Th,U}}{\alpha_{U,U}}$$
Equação 62
$$b = \frac{\alpha_{Th,K}}{\alpha_{K,K}}$$
Equação 63

Equação 64 $S_K = \alpha_{K,K}$

$$S_U = \alpha_{U,U}$$
Equação 66

$$S_{Th} = \alpha_{Th,Th}$$
 Equação 67

Das equações 63 e 64, espera-se que os coeficientes $\alpha_{Th,K}$ e $\alpha_{U,K}$ sejam nulos. O sistema de equações 59 a 67 consiste em uma forma conveniente de se obter os fatores de interferência ($\alpha, \beta, \gamma \in a$) e as sensibilidades das janelas ($S_K, S_U \in S_{Th}$) quando se dispõem de padrões de calibração mistos. Uma alternativa para a calibração de um espectrômetro gama sem o cálculo dos fatores de interferência e das sensibilidades é escrever formalmente o inverso da

equação 58 na forma:

$$\begin{bmatrix} C_K \\ C_U \\ C_{Th} \end{bmatrix} = \begin{bmatrix} \beta_{K,K} & \beta_{K,U} & \beta_{K,Th} \\ \beta_{U,K} & \beta_{U,U} & \beta_{U,Th} \\ \beta_{Th,K} & \beta_{Th,U} & \beta_{Th,Th} \end{bmatrix} \begin{bmatrix} n_K \\ n_U \\ n_{Th} \end{bmatrix}$$

Equação 68

Equação 69

onde os coeficientes $\beta_{U,K}$ e $\beta_{Th,K}$ também devem ser nulos. Embora

$$\begin{bmatrix} \beta_{K,K} & \beta_{K,U} & \beta_{K,Th} \\ \beta_{U,K} & \beta_{U,U} & \beta_{U,Th} \\ \beta_{Th,K} & \beta_{Th,U} & \beta_{Th,Th} \end{bmatrix} = \begin{bmatrix} \alpha_{K,K} & \alpha_{K,U} & \alpha_{K,Th} \\ \alpha_{U,K} & \alpha_{U,U} & \alpha_{U,Th} \\ \alpha_{Th,K} & \alpha_{Th,U} & \alpha_{Th,Th} \end{bmatrix}^{-1}$$

é mais prático, quando não se deseja obter os fatores de interferência e as sensibilidades, podese calcular os coeficientes da matriz (equação 68) diretamente a partir dos dados experimentais de calibração. Um espectrômetro gama portátil pode também ser calibrado para fornecer a taxa de exposição (*E*) a partir das taxas de contagem com o fundo removido através da relação:

$$E = \Gamma_K n_K + \Gamma_U n_U + \Gamma_{Th} n_{Th}$$

Equação 70

onde Γ_K , Γ_U e Γ_{Th} representam as contribuições do potássio, do urânio e do tório para a composição de *E*. Além da Equação 70, uma relação linear entre a taxa de exposição e a taxa corrigida da contagem de fundo na janela espectral de contagem total pode ser escrita na forma:

Ε

$$= a_t n_{total}$$
Equação 71

5.3.4. Regressão linear múltipla em Excel

Para a realização da regressão linear dos dados analisados neste trabalho, de modo a obter a calibração do sistema de detecção, foi utilizado o software Excel que tem por base o método dos mínimos quadrados. Existem diversos testes estatísticos que condicionam a validade e confiabilidade dos dados obtidos pela regressão múltipla.

Segundo Stevenson (1986), "A *correlação* mede a força, ou grau, de relacionamento entre duas variáveis; a *regressão* fornece uma equação que descreve o relacionamento em termos matemáticos". Stevenson diz ainda que a regressão compreende a análise de dados amostrais para saber se e como duas ou mais variáveis estão relacionadas uma com a outra numa população e, tem como resultado uma equação matemática que descreve esta relação. A equação pode ser usada para estimar, ou predizer, valores futuros de uma variável quando se conhecem ou se supõem valores conhecidos da outra variável (SELL, 2005).

A regressão linear múltipla envolve três ou mais variáveis, com uma variável dependente e duas ou mais variáveis independentes, com a finalidade de melhorar a capacidade de predição em confronto com a regressão linear simples. Se a regressão múltipla tiver três variáveis, resultará num plano, mas se tiver "n" variáveis, resultará num hiperplano. No nosso caso, o número de variáveis envolvidas é igual a 4, portanto teremos um hiperplano.

Segundo Sell (2005), pode-se afirmar que a regressão é utilizada para:

- a) Estimar os valores de uma variável, com base nos valores de outra variável conhecida;
- b) Explicar os valores de uma variável com base nos valores da outra;
- c) Predizer futuros valores de uma variável.

A correlação que, literalmente significa co-relacionamento, evidencia até que ponto os valores de uma variável estão relacionados com os de outra (SELL, 2005).

A regressão, através de estimativas dos parâmetros, mostra o efeito da variável explicada (X) sobre a dependente (Y), enquanto a correlação mede o grau de associação entre Y e a variável independente X (SELL, 2005).

A multicolinearidade se refere à correlação entre duas variáveis explicativas ou entre uma delas e as demais, incluídas na equação de um modelo. Isso implica que a multicolinearidade ocorre quando, por exemplo, duas variáveis X1 e X2 medem aproximadamente a mesma coisa, ou seja, a correlação entre elas é quase perfeita (MATOS, 2000). Os primeiros aspectos relacionados com a regressão múltipla estão apresentados a seguir.

- O R^2 ajustado exibe o coeficiente de determinação múltipla, que é uma medida do grau de ajustamento da equação de regressão múltipla aos dados amostrais. Um ajuste perfeito resulta em $R^2 = 1$, um ajuste muito bom acarreta um valor próximo de 1 e um ajuste pouco adequado ocasiona um valor de R^2 próximo de zero. O coeficiente múltiplo de determinação de R^2 é uma medida de aderência da equação de regressão aos dados amostrais. O coeficiente de determinação ajustado é o coeficiente múltiplo de determinação de R^2 modificado, de modo a levar em conta o número de variáveis e o tamanho da amostra. O coeficiente de determinação ou de explicação de R^2 , mede a parcela da variação de Y explicada pela variação dos X.
- A variância residual, S^2 , mede o grau de dispersão entre os valores observados e os estimados de Y, sendo que a raiz quadrada de S^2 é denominada erro-padrão da estimativa.
- O *Erro padrão* mede a dispersão da estimativa do parâmetro, indicada pelos dados amostrais, podendo ser obtido pela raiz quadrada da variância residual. É uma espécie de desvio padrão que mede a dispersão em torno da reta de regressão.
- A Estatística F é utilizada para testar o efeito conjunto das variáveis independentes sobre a dependente, ou seja, serve para verificar se, pelo menos, um dos X explica a variação do Y. Desse modo, a hipótese nula (Ho) indicará que nenhum dos X afeta Y, enquanto a hipótese alternativa (H1) assegura que, pelo menos uma das variáveis independentes influenciará a variável dependente Y, dentro dos graus de liberdade exigidos e dado um grau de significância. Considerando um nível de significância igual a 0,05, se o F de significação for < 0,05, ou 5%, a regressão é significativa, mas se for ≥ 0,05, a regressão não é significativa.
- A *Estatística T* para os coeficientes das variáveis independentes, ou valor de prova, tem a finalidade de testar se o efeito de cada uma das variáveis independentes sobre a dependente é ou não estatisticamente significativo.

- Intervalo de confiança é o intervalo dentro dos quais o valor verdadeiro do parâmetro populacional cairá, respeitando um determinado nível de confiança. Se a hipótese nula for rejeitada e o valor estimado de "β_i" for positivo, zero não pertencerá ao intervalo.
- O *Valor P*, segundo Lapponi (2000), é o maior valor de nível de significância para o qual o teste é significativo ou é o maior valor de nível de significância que rejeita a hipótese nula, *Ho. Valor P* é o nível de significância observado. Para julgamento, compara-se o *Valor P* com o nível de significância ou erro tolerado que julgar mais adequado. O critério de decisão para o *Valor P* será: escolher o nível de significância global da equação de regressão múltipla e uma boa medida de aderência da equação aos dados amostrais. A equação da regressão linear múltipla é representada por:

$$Y = \beta_0 + \beta_1 \cdot X_1 + \beta_2 \cdot X_2 + \dots + \beta_i \cdot X_i$$

Equação 72

onde "Y" representa a variável dependente, " β_0 " o intercepto ou a interseção, " β_1 ; β_2 ; ...; β_i " os coeficientes angulares e " X_1 ; X_2 ; ...; X_i " representam as variáveis independentes.

- Teste de hipótese é um processo capaz de afirmar, com base em dados amostrais, se uma hipótese sob prova é correta ou não. É uma afirmação que admite se certo efeito está presente ou não. Por hipótese, entende-se certa afirmação condicionada acerca de uma população, e classificam-se em dois tipos:
 - a) Hipótese nula (Ho → β₀; β₁; β₂; ...; β_i = 0), quando se admite não haver diferença entre a informação fornecida pela realidade e a afirmação da hipótese;
 - b) Hipótese alternativa $(H1 \rightarrow \beta_0; \beta_1; \beta_2; ...; \beta_i \neq 0)$, quando se admite haver diferença entre a informação fornecida pela realidade e a afirmação da hipótese.

Portanto, o processo de teste consiste em aceitar ou rejeitar a hipótese nula (*Ho*), com base na diferença entre o valor hipotético e o valor estimado. Neste trabalho, foi adotado como critério um valor de $\alpha = 0,05 = 5\%$ como nível de significância para a aceitação ou rejeição de hipóteses. A *Figura 45* contém uma ilustração dos resultados fornecidos pela análise de regressão linear do software Excel com todos os testes estatísticos mencionados e uma breve explicação dos parâmetros fornecidos.

Estatística d	de regressão													
R múltiplo	0,931173872	= raiz quadrada de	R ²											
R-Quadrado	0,86708478	= coeficiente de det	terminação – R² =1-(S	QE/SQT)										
R-quadrado ajustado	0,861659669	$= 1 - (1 - R^2)^* ((T - 1))^{-1}$	1-(1- R²)*((T-1)/(T-K)), onde T=dimensão amostra, K=n. de regressores											
Erro padrão	6,069610535	= erro padrão da re	rro padrão da regressão = raiz quadrada da variância estimada											
Observações	52	= dimensão da amo	dimensão da amostra											
ANOVA (Análise de	e Variância)					_								
	gl	sQ	MQ	F	F de significação	-								
	(graus de liberdade)	(soma de quadrados)) (média de quadrados)		_								
	2													
	(graus de liberdade													
Regressao (fonte de	do numerador no	11776,18388	5888,091939	159,828025	3,36962E-22									
variação explicada)	teste F)	(SQR)	(MQR=SQR/2)	(MQR/MQE)	(Prob(Feritico >F))								
	49 (orava da liberdada		36 94017205											
Residuo (mariação	do denominador	1805 16843	0.05 = 505 (49)											
não explicada)	no teste E)	(SOE)	(MQL=3QL/49)											
Total	51	13591 35231	(Valiancia Csumada)											
TOTAL	51	(SOT)												
		(221)	-	-										
	Coeficientes	Erro padrão	Stat t	valor-P	95% inferiores	95% superiores								
		(dos coeficientes)	(teste t calculado)	Prob (t _{enitico} >t))	(limites intervalo (de confiança)								
Interseção ($\hat{\beta}_0$)	104,7855136	6,482718984	16,16382167	2,83516E-21	91,75800996	117,8130172								
Ρ (β̂ ₁)	-6,641930069	3,191192928	-2,081331407	0,042650528	-13,05486847	-0,228991673								
$A(\beta_2)$	2,984298953	0,166936136	17,87689007	4,11139E-23	2,648828431	3,319769475								

Figura 45 - Análise de regressão linear múltipla do software Excel com uma breve descrição de cada parâmetro fornecido (*BRANCHI*, 2010).

5.3.5. Cálculo da taxa de dose em função da geometria da fonte para a calibração do detector de NaI(Tl)

Sob condições de equilíbrio eletrônico, a exposição *X*, medida no ar, se relaciona com a dose absorvida *D* no ar, pela expressão:

$$D_{Ar} = X. (W/e)_{Ar} = 0.869. X$$

Equação 73

onde $[(W/e)_{Ar} = 0,869]$ é a energia média para formação de um par de íons no ar/carga do elétron (TAUHATA et al., 2013).

Uma vez determinada a dose no ar, D_{Ar} , pode-se obter a dose em um meio material qualquer, para a mesma exposição, por intermédio de um fator de conversão. Para a mesma condição de irradiação, a relação entre os valores da dose absorvida no material m e no ar, pode ser expressa por:

$$\frac{D_m}{D_{Ar}} = \frac{(\mu_{en}/\rho)_m}{(\mu_{en}/\rho)_{Ar}}$$

Equação 74

onde (μ_{en}/ρ) é o coeficiente de absorção de energia em massa do *ar* ou do material *m*.

Equação 75

Portanto,

$$D_m = D_{Ar} = \frac{(\mu_{en}/\rho)_m}{(\mu_{en}/\rho)_{Ar}} = 0,869. X. \frac{(\mu_{en}/\rho)_m}{(\mu_{en}/\rho)_{Ar}} = f_m. X$$

onde $f_m = 0,869. (\mu en/\rho)m/(\mu en/\rho)ar$ é o fator de conversão de exposição no ar em dose absorvida no meio *m*.

O fator f_m depende da energia do fóton e, por isso, na maioria dos casos, utiliza valores médios dos coeficientes de absorção de energia em massa ($\mu en/\rho$). Esses valores são tabelados para alguns materiais, sendo que para a água eles variam de 0,881 rad.R⁻¹ a 0,964 rad.R⁻¹, na faixa de energia de 20 *keV* a 150 *keV*, respectivamente (TAUHATA et al., 2013).

Na *Figura 46* são apresentados os valores de *fm* para água/ar e tecido muscular/ar em função da energia do fóton. Para efeito de proteção radiológica, onde se utiliza um procedimento conservativo, este fator pode ser arredondado para um, em muitos casos (TAUHATA et al., 2013).

A expressão utilizada para o cálculo utiliza a constante de taxa de exposição Γ , expressa em $(R.m^2)/(Ci.h)$. Os valores desta constante variam muito de tabela para tabela, pois sua obtenção depende dos modelos de cálculo, que são continuamente aperfeiçoados (TAUHATA et al., 2013).

Os valores mais atualizados da constante de taxa de exposição e do fator de conversão de dose absorvida no ar para dose absorvida no tecido são dados na Tabela 22 (SMITH et al., 2012).

Tabela 22 – Valores da taxa de exposição, fator de conversão de exposição para dose equivalente e atividade específica (IAEA, 2008 e TAUHATA et al., 2014).

Emissor Gama	$\Gamma\left(\frac{R.cm^2}{mCi.h}\right)$	$f\left(\frac{cGy}{R}\right)$	A (Atividade específica) (Bq/g)
⁴⁰ K	0,779	0,965	⁴⁰ K - 2,589.10 ⁵
²¹⁴ Bi (²³⁸ U)	7,48	0,965	²³⁸ U - 1,246.10 ⁴
²⁰⁸ Tl (²³² Th)	15,2	0,964	²³² Th - 4,066. 10 ³

Os valores de Γ_{δ} são obtidos pela expressão:

$$\Gamma_{\delta} = \frac{1}{4\pi} \sum_{i} \left(\frac{\mu_{en}}{\rho} \right) \cdot Y_{i} \cdot E_{i}$$

Equação 76

onde,

 Y_i = intensidade relativa da emissão gama pelo nuclídeo *i*.

 E_i = energia do fóton do nuclídeo *i*.

 $(\mu_{en}/\rho)i$ coeficiente de absorção de energia em massa do ar para a energia E_i .

 $\delta = energia de corte = menor valor de energia incluída no cálculo = 15 keV.$

Figura 46 - Valores do fator de conversão dose no ar para dose na água e no tecido muscular em função da energia do fóton (*TAUHATA*, *et al.*, 2014).

No emprego de radioisótopos, eles podem se apresentar sob dois aspectos diferentes, como substância ou composto marcado, ou como o próprio elemento radioativo. No primeiro caso, pode-se dizer que apenas um ou mais átomos (ou moléculas) da substância traçadora é que é radioativa, o restante é denominado carreador. No segundo caso, toda a amostra é radioativa, portanto, a substância é livre do carreador ("carrier-free"). Em qualquer dos dois casos, define-se a atividade específica da amostra como sendo a razão entre a atividade e sua massa total. Chamando de *A* a atividade e m a massa, tem-se:

$$\bar{A} = \frac{A}{m}$$

Equação 77

Como a atividade é dada por λN , se ela é igual a 1 *Ci* para uma espécie ${}^{A}_{Z}X$, uma vez que $\lambda N = 1$ *Ci*, então:

$$\lambda N = 3.7.10^{10} desintegrações/segundo = 3.7.10^{10} Bq$$

Para a medição da taxa de exposição de uma fonte gama, como fonte externa, precisase conhecer, além de sua atividade específica, o seguinte:

- Forma geométrica da fonte;
- Espectro de emissão da fonte;
- Distância e geometria da medida.

Além disso, é necessário separar as fontes gama segundo o aspecto da auto absorção, em três categorias:

- 1. Fontes sem auto absorção (caso ideal);
- 2. Fontes com auto absorção;
- 3. Fontes com múltipla dispersão.

A referência a uma fonte na condição sugerida é feita considerando o caso ideal de uma fonte puntiforme, pois, caso contrário, deve-se levar em conta uma auto absorção indetectável. Por hipótese, admite-se como puntiforme a fonte cujas dimensões possam ser consideradas desprezíveis em relação à distância entre ela e o detector (FISICANET, 1997).

A primeira dificuldade matemática surge na dedução de uma equação para a taxa de dose de uma fonte pontual. Ela constitui a lei fundamental da dosimetria denominada "lei do inverso do quadrado das distâncias". Seu enunciado é: "*a taxa de exposição de uma fonte gama puntiforme num dado ponto é diretamente proporcional à atividade da fonte e inversamente proporcional ao quadrado da distância entre a fonte e o ponto considerado"* (FISICANET, 1997). Matematicamente, pode-se escrever:

$$\dot{X} \propto \frac{A}{d^2}$$

Equação 78

Equação 79

A taxa de exposição pode ser associada à atividade gama de uma fonte pela expressão:

$$\dot{X} = \frac{\Gamma A^2}{d^2}$$

onde,

 \dot{X} = taxa de exposição (em *R*/*h*);

A =atividade da fonte (em *curie*);

 $d = \text{distância entre fonte e ponto de medição (em$ *m* $);}$

 Γ = constante de taxa de exposição em $(R.m^2)/(h.Ci)$.

Esta relação vale para as seguintes condições:

- a) A fonte é suficientemente pequena (puntiforme), de modo que a fluência varia com o inverso do quadrado da distância;
- b) A atenuação na camada de ar intermediária entre a fonte e o ponto de medição é desprezível ou corrigida pelo fator de atenuação;
- c) Somente fótons provenientes da fonte contribuem para o ponto de medição, ou seja, não há espalhamento nos materiais circunvizinhos.

Se a distância d for muito grande em relação à maior dimensão da fonte, a lei do quadrado das distâncias pode ser aplicada, isto é, a fonte, qualquer que seja a sua forma, pode ser considerada puntiforme (FISICANET, 1997).

5.3.6. Cálculo da taxa de exposição em função da forma geométrica da fonte

Seja uma fonte superficial, de densidade radioativa constante, na forma de disco de disco de espessura desprezível. Neste caso, $q_s = A/S = constante$ (para uma meia-vida relativamente grande) onde *S* é a área (FISICANET, 1997).

Figura 47 - Esquema dos parâmetros utilizados na modelagem do cálculo da taxa de exposição em função da geometria circular de espessura desprezível (*FISICANET, 1997*).

Portanto, pela Figura 47, temos que:

$$d\dot{X} = \frac{dA}{a^2}$$

Equação 80

Sendo:

$$a^2 = x^2 + h^2 e dA = q_s ds$$

Equação 81

Teremos:

$$\dot{X} = \Gamma \cdot q_s \iint \frac{x \cdot dx \cdot d\varphi}{x^2 + h^2} = \Gamma \cdot q_s \int_0^{r_0} \left[\int_0^{2x} d\varphi \right] \frac{x \cdot dx}{x^2 + h^2} = 2 \cdot \pi \cdot \Gamma \cdot q_s \int_0^{r_0} \frac{x \cdot dx}{x^2 + h^2}$$
Equação 82

Mas, $d(x^2 + h^2) = 2.x.dx$, então:

$$\dot{X} = \pi.\Gamma.q_s.\int_0^{r_0} \frac{d(x^2 + h^2)}{x^2 + h^2} = \pi.\Gamma.q_s.\ln(x^2 + h^2)]_0^{r_0}$$

Equação 83

Isso implica que:

$$\dot{X} = \pi . \Gamma . q_s . [ln(r_0^2 + h^2) - ln(h^2)]$$

Equação 84

Finalmente:

$$\dot{X} = \pi. \, \Gamma. \, q_s. \, ln\left(\frac{r_0^2 + h^2}{h^2}\right)$$

Equação 85

Sendo $S = \pi . r_0^2$, teremos:

$$\dot{X} = \Gamma \cdot \frac{A}{r_0^2} \cdot ln\left(\frac{r_0^2 + h^2}{h^2}\right)$$

Equação 86

Na Tabela 22 são apresentados alguns valores da constante de taxa de exposição Γ , apelidada de "*gamão*" pelos usuários, que são utilizados no cálculo da taxa de exposição (\dot{X}), além das atividades calculadas para as fontes (padrões) utilizadas neste trabalho, levando em consideração a abundância relativa dos emissores gama de cada radionuclídeo de interesse: ⁴⁰K (0,012%), ²³⁸U (99,28%) e ²³²Th (100%).

5.3.7. Determinação do tempo ótimo para os detectores [NaI(Tl) 2"x2"] e BGO

O procedimento adotado para a determinação do tempo ótimo de cada detector foi realizado com a tomada de medidas dos padrões certificados utilizados no LABIDRO para a calibração dos sistemas de detecção gama. O LABIDRO conta ao todo com 19 padrões de diferentes concentrações de cada um dos três radionuclídeos de importância em análises terrestres, sendo 5 padrões de ²³⁸U, 6 padrões de ⁴⁰K e 8 padrões de ²³²Th.

Para tanto, os padrões foram posicionados frontalmente à janela do cristal cintilador, de forma que todas as medidas tomadas foram feitas com os padrões diretamente encostados junto à janela, sem que houvesse espaçamento entre estes. Foram feitas ao todo 380 medidas para cada detector, sendo 160 para os padrões de Tório, 120 para os padrões de Potássio e 100 para os padrões de urânio. O procedimento foi o seguinte:

- Foram adotados 10 diferentes tempos de permanência para cada amostragem. Estes tempos em segundos foram respectivamente: 30, 60, 90, 120, 180, 240, 300, 600, 900 e 1800;
- Antes de cada padrão ser analisado foi realizada uma análise do *background* com o tempo correspondente ao mesmo tomado com o padrão.

Após a coleta de todos os dados, os espectros para o NaI(Tl) foram integrados a partir do software MAESTRO fornecido pela ORTEC, dentro dos intervalos de energia de interesse para o K, U e Th. Os dados para o detector *BGO RS* – 230 da Radiation Solutions Inc. foi processado no software RSanalyst que já fornece os dados integrados, disponibilizando não apenas as contagens mas também a concentração de K(%), eU e eTh (ppm), e a taxa de dose equivalente em nSv/h.

Depois, os dados foram plotados em Excel, transformados em taxas de contagem por minuto, e as medidas para cada padrão tiveram a subtração do respectivo *background* tomado anteriormente a cada análise. Cada parâmetro foi agrupado com base no padrão analisado para os dez diferentes tempos de medida e, então, foi calculada a média de distribuição das taxas de contagem para o padrão determinado.

Finalmente, foi realizado o cálculo do χ^2 para verificar o quanto a distribuição das taxas de contagem para cada tempo se aproximou de uma distribuição de Poisson, de forma que os dados foram processados para a verificação de um número decrescente de graus de liberdade (N-1), considerando-se desde a abrangência de todos os tempos analisados (N = 10 tempos; N - 1 = 9) até apenas os 2 últimos maiores tempos de análise para cada padrão e para cada amostra do branco (BKG) de mesma geometria dos padrões (900 *e* 1800 segundos; N - 1 = 1).

5.3.7.1. Cálculo de χ^2

Para o conjunto de valores de observação da radiação de fundo correspondente a cada padrão branco e para o conjunto de valores da intensidade do fluxo de radiação proveniente da superfície de cada padrão calculou-se o valor médio (CARLOS e RIBEIRO., 2006):

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i$$

Equação 87

E também a sua variância amostral

$$s^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (x_{i} - \bar{x})^{2}$$

Equação 88

Um terceiro parâmetro pode ser calculado na forma:

$$\chi^2_{calculado} = \frac{1}{\bar{x}} \sum_{i=1}^{N} (x_i - \bar{x})^2$$

Equação 89

Usando as equações 88 e 89, pode-se escrever:

$$\chi^2_{calculado} = (N-1)\frac{s^2}{\bar{x}}$$

Equação 90

Numa distribuição de Poisson, o valor esperado é igual à sua variância. Se a distribuição da qual os *N* valores *xi* são extraídos fosse uma distribuição de Poisson e se o seu valor esperado e a variância fossem conhecidos e substituídos na equação 90, o resultado seria:

$$\chi^2_{calculado} = (N-1)$$

Equação 91

Quando, no entanto, se utiliza as estimativas de \bar{x} e S^2 obtidas a partir de *N* valores, a Equação 90 fornece um valor de uma variável aleatória contínua, que tem como função de densidade de probabilidade a função χ^2 com (*N* – 1) graus de liberdade (KNOLL, 1988).

Quando o valor calculado pela Equação 90, a partir de um conjunto de N valores se aproxima de (N - 1), infere-se que os valores individuais de x_i possam ter sido extraídos de uma distribuição de Poisson. Por outro lado, à medida que o $\chi^2_{calculado}$ se afasta de (N - 1), essa hipótese parece menos provável (CARLOS, et al., 2006; KNOLL, 1988).

Formalmente, trata-se de uma aplicação do critério do χ^2 , descrito, por exemplo em Bevington (1969), Davis (1986) e Vuolo (1996), onde se rejeitam valores de χ^2 calculados com probabilidade igual ou inferior a um limite pré-estabelecido (nível de significância α) de pertencerem à distribuição χ^2 com (N - 1) graus de liberdade.

CAPÍTULO 6

RESULTADOS OBTIDOS

6.1. Curva do ²²²Rn pelo método contínuo com solução padrão de ²²⁶Ra

A progênie do Rn-222 através de seu antecessor, o Ra-226, nos fornece uma curva característica na qual o radônio atinge o equilíbrio secular com o rádio. Um procedimento adotado neste estudo foi o de aquisição de dados para traçar esta curva ao longo do tempo, sabendo que o tempo no qual o equilíbrio ocorre é da ordem de 7 meias-vidas do Rn-222, ou seja, aproximadamente 26,7 dias, conforme mostrado na *Figura 48* que ilustra a curva teórica do equilíbrio entre estes radionuclídeos.

Figura 48 - Curva teórica do tempo necessário para o Rn-222 entrar em equilíbrio secular com o Ra-226 (A = 1 nCi).

Para aquisição dos dados pelos métodos contínuo e método *quasi*, o padrão utilizado neste estudo foi inicialmente desgaseificado por cerca de 10 minutos com fluxo de 1 litro/min em circuíto aberto, aerando a solução de Ra-226, de modo a liberar o radônio dissolvido na amostra e armazenado na coluna de ar do interior do recipiente.

Após a realização deste procedimento, o circuíto foi fechado e as análises foram iniciadas. O gráfico da *Figura 49* foi elaborado com o os dados obtidos pelo método contínuo (Anexo 1) e com a subtração de uma taxa de *background* de 11 *cpm*. Segundo se nota, a taxa de contagem obtida inicia-se num patamar mais elevado nas primeiras horas, no entanto, ocorre uma deflexão ao longo do primeiro que continua até o fim do segundo dia, quando se estabiliza numa média de cerca de 50 *cpm* que persiste durante os 2,5 dias seguintes.

Quando se verificou que o equilíbrio não se modificava, percebeu-se que o agente de secagem (drierita), a partir do 2° dia, já apresentava uma saturação significativa, de forma que

foi possível visualizar a presença de uma quantidade expressiva de água condensada entre os grânulos. Porém, o sistema havia sido configurado de forma a garantir que uma segunda unidade de drierita (laboratorial) estivesse interligada ao sistema, possibilitando que o fluxo fosse desviado, mantendo o circuíto fechado. Foi realizado, então, o desvio do fluxo de gás para a unidade laboratorial por volta do dia 4,5 onde se observa uma linha vertical na **Figura 49**.

Este desvio proposital foi realizado para que a unidade saturada do dissecante pudesse ser substituída. O procedimento adotado visava verificar se a então permanência da curva na mesma faixa de dados tinha relação direta com o aumento contínuo da umidade no circuíto. Entretanto, após 2 dias da troca do tubo dissecante, a taxa de contagem reestabeleceu-se no patamar anterior à troca e, com o passar dos dias, a umidade voltou a condensar-se entre os grânulos do agente de secagem, dificultando o fluxo do gás.

O aumento significativo da umidade acaba por neutralizar os íons de polônio, fazendo com que haja diminuição dos valores medidos no interior da célula 600A. A partir do dia 8,5, a curva na **Figura 49** sofreu uma pequena deflexão que persistiu durante os dias posteriores até a finalização da análise.

Este método foi interrompido no 11° dia por questão de segurança e devido também ao fato de que as projeções de dados não indicavam um possível crescimento da atividade mensurada, conforme esperado.

Os gráficos nas *Figuras 50* a *52* foram plotados com a finalidade de verificar a correlação entre o número de contagens e outros 3 parâmetros: temperatura (°C), pressão (kPa) e umidade relativa do ar (RH%). Os dados são inconclusivos para explicar a razão pela qual a curva

permanece constante durante o passar do tempo, não seguindo o crescimento da curva teórica de emanação do radônio a partir do seu progenitor ²²⁶Ra.

Figura 50 - (a) Variação da umidade relativa (*RH*%) em função do tempo; (b) Gráfico da taxa de contagem (*cpm*) de 222 Rn vs. *RH*(%).

O coeficiente de correlação de Pearson para a relação entre o RH(%) e a taxa de contagem do ²²²Rn foi de 0,27, que é um valor baixo que não permite relacionar estes parâmetros.

Figura 51 - (a) Variação da temperatura (°C) em função do tempo; (b) Gráfico da taxa de contagem de 222 Rn (*cpm*) vc. Temperatura (°C).

A correlação de Pearson para a relação entre a taxa de contagem de ²²²Rn e a temperatura foi de 0,63, que é significativa, como esperado e demonstrado na equação 46. Apesar de existir uma relação direta entre a taxa de contagem e a variação de temperatura, isto não permite concluir que a temperatura tenha condicionado a taxa de contagem num valor constante, pois, a tendência esperada é que a atividade aumente progressivamente até atingir o equilíbrio secular no circuíto fechado.

A correlação de Pearson para a relação entre a taxa de contagem de ²²²Rn e a pressão que é de 0,38, baixa, não permitindo inferir que a pressão possa estar influindo na taxa de contagem mensurada para o radônio.

6.2. Curva do ²²²Rn pelo método quasi com solução padrão de ²²⁶Ra

Após a realização do método contínuo, foi realizada nova abordagem levando em conta o equilíbrio secular entre o Rn-222 e seus filhos (Po-218, Pb-214 e Bi-214) que é atingido em cerca de 3,5 horas. Estabeleceu-se o bombeamento equivalente a 2 litros do circuíto interno (0,5 L/min durante 4 minutos) a cada 4 horas, ou seja, o tempo para estabelecimento do equilíbrio entre o radônio e seus filhos. Com isto, seria possível verificar se o sistema atingiria valores crescentes no decorrer de cada ciclo, conduzido no sistema fechado, mantendo a umidade relativa estável durante todo o período de análise da curva de equilíbrio.

Dessa forma, procedeu-se a programação do método *quasi*, que possibilita a realização de ciclos intermitentes com o acionamento e desligamento da bomba dentro de

intervalos pré-estabelecidos. Os dados de calibração do sistema estão descritos na Tabela 23, o resultado da aplicação deste protocolo pode ser visto na *Figura 53*. No Anexo 2 constam os resultados obtidos.

DADOS CALIDICAÇA	IO I JION ADVA
Volume Solução Ra-226	250 ml
Volume Total Padrão Ra-226	500 ml
Volume Célula 600 A	272 ml
Volume Total Sistema	$8,38.10^{-4} m^3$
Temperatura Média (Dia 25 - 34)	23,8212 °C
Kw/air	0,1050
Background	11 CPM
Atividade Ra-226 (21/09/2004)	1000 pCi 37 Bq
Atividade Ra-226 (08/07/2015)	995,3354 pCi 36,8274 Bq
Concentração Ra-226	147,3096 Bq/I

Tabela 23 - Dados da configuração do sistema fechado para análise de Rn-222 no detector pylon AB6A.

Figura 53 – Dados obtidos pelo detector Pylon AB6A na análise do padrão (D) de Ra-226 para calibração dos detectores de radônio do LABIDRO. Os pontos foram plotados com base na média a cada 4 horas, tendo sido as análises realizadas pelo método *Quasi* com ciclos de 2 minutos para cada leitura, com bombeamento durante 4 minutos e bomba desligada por 4 horas.

A curva na **Figura** 53 demonstra que o objetivo foi atingido, pois, o equilíbrio é atingido a partir do 25° dia. No último dia de análise (dia 33) ocorreu pequena deflexão da curva. No entanto, é perceptível que a curva experimental se aproxima da teórica, indicando que a atividade mensurada corresponde à atividade do padrão analisado (250 mL), que neste caso é de 995,33 *pCi* (147,31 Bq/L).

A partir dos dados da curva de equilíbrio foi possível calcular o fator de sensibilidade F_K para a calibração do sistema de detecção:

$$F_K = 2,2381.10^{-3} \pm 1,35.10^{-8} (cpm.m^3.Bq^{-1})$$

Equação 92

A curva de concentração de atividade obtida a partir do fator de calibração está ilustrada na *Figura 54*.

Figura 54 - Dados ajustados ao fator de calibração segundo a equação 48.

6.3. Determinação do tempo de amostragem para diferentes concentrações

Os tempos ótimos de análise em campo devem ser garantidos para assegurar a precisão das medições radiométricas, podendo ser obtidos através do (a) aumento das contagens, N, (b) aumento da taxa de contagem, n e (c) aumento do tempo de contagem, t.

Neste estudo verificou-se quais foram os intervalos de tempo, para concentrações crescentes de cada um dos 3 radionuclídeos (K, U e Th), que mais se aproximaram de uma distribuição de Poisson, que é o modelo de distribuição desejável para a aquisição de dados radiométricos. Dessa forma, o critério de análise estabelecido foi o método do qui-quadrado (χ^2) descrito anteriormente.

Os resultados para ambos os detectores de radiação gama estão apresentados na **Tabela** 24 de acordo com as janelas de interesse, padrões analisados e tempos considerados (Anexo 3). Os valores tabelados de qui-quadrado de ambos detectores estão presentes no Anexo 4 (na medida em que se desce em cada coluna, ocorre diminuição do grau de liberdade devido a eliminação dos tempos menores nas linhas superiores), onde os valores destacados em cinza não pertencem ao intervalo de χ^2 desejável, enquanto os quadrantes em branco são os valores que pertencem ao intervalo de χ^2 desejável. Portanto, os valores em branco delimitam os dados que se enquadram na distribuição de Poisson e sugerem que, a partir da concentração do padrão analisado e dos tempos considerados no cálculo de χ^2 , há fortes indícios para que estes tempos sejam utilizados para uma melhor precisão e confiabilidade no número de contagens realizadas em tais janelas (*K*, *eU* e *eTh*). A **Tabela 24** indica os tempos recomendados (em segundos) tendo por base a modelagem dos dados pela distribuição de χ^2 .

Tabela 24 – Tempo em segundos (s), a partir do qual o intervalo de χ^2 foi atendido, sugerindo que os dados, para tempos iguais ou superiores, podem ser compreendidos numa distribuição de Poisson.

drões	Massa (g)	K-40	Bi-214

Pa

Tl-208

	KCl	⁴⁰ K		NaI(Tl)	BGO	NaI(Tl)	BGO	NaI(Tl)	BGO
K6	0	0		-	-	-	-	-	-
K5	0,26	1,02	2.10 ⁻⁴	-	-	-	-	-	-
K4	1,51	3,06	5.10^{-4}	≥ 600	-	-	-	-	-
K3	3,02	5,16	5.10^{-4}	\geq 300	-	-	-	-	-
K2	15,03	2,49	0.10-3	\geq 90	-	-	-	-	-
K1	31,98	3,84	.10 ⁻³	\geq 30	-	-	-	-	-
	Pechblenda	23	$^{8}\mathrm{U}$						
U5	50	5,06	5.10-4	-	-	-	≥ 600	-	-
U4	50	4,90).10 ⁻³	\geq 300	-	≥ 600	≥ 600	-	-
U3	50	2,48	8.10-2	\geq 30	\geq 900	≥ 600	≥ 600	≥ 600	\geq 300
U2	50	5,09	0.10-2	\geq 30	\geq 90	≥ 60	\geq 90	≥ 600	\geq 300
U1	50	5,00).10 ⁻¹	\geq 30	\geq 30	≥ 60	\geq 30	≥ 60	\geq 30
	Areia Monazítica	²³² Th							
Th8	50	6,25	5.10-5	-	-	-	-	-	-
Th7	50	1,25	5.10-4	-	-	-	-	-	-
Th6	50	2,50	0.10-4	-	-	-	-	-	-
	Areia Monazítica	²³² Th	²³² Th ²³⁸ U						
Th5	50	5,20.10 ⁻⁴ 1,99.10 ⁻⁵		-	-	-	-	-	-
Th4	50	5,26.10 ⁻³ 1,99.10 ⁻⁴		-	-	\geq 240	-	-	-
Th3	50	2,58.10 ⁻² 9,93.10 ⁻⁴		\geq 240	\geq 900	≥ 120	\geq 300	\geq 30	\geq 300
Th2	50	5,14.10-2	1,99.10-3	≥ 90	\geq 300	≥ 30	\geq 300	$\geq \overline{30}$	\geq 300
Th1	50	5,15.10-1	1,99-10-2	≥ 30	\geq 30	≥ 30	\geq 30	≥ 30	≥ 30

Os índices não satisfatórios aos intervalos de χ^2 que aparecem de forma irregular no Anexo 4 podem estar relacionados a variações no *background* devido à presença de materiais emissores gama no interior da sala onde as análises foram realizadas, além de flutuações na concentração de radônio no ambiente interno do laboratório.

O estudo foi dirigido a partir da tomada de medidas dos padrões presentes no laboratório, portanto as concentrações aqui expressas devem ser recalculadas para a realização de medidas em campo, visto que a contribuição de emissores gama está relacionada à massa dos radionuclídeos de interesse. O número de contagens para K, eU e eTh em rochas/solos é consideravelmente maior devido ao volume e densidade dos perfis contribuintes analisados em campo.

6.4. Calibração do gamaespectrômetro portátil de NaI(Tl) 2"x 2"

As equações de calibração provenientes dos dados disponíveis no Anexo 6 estão descritas a seguir e foram obtidas a partir dos dados descritos no Anexo 5, levando em consideração as diferentes etapas envolvidas com sua aquisição: cálculo da taxa de contagem, concentração dos radioelementos, taxa de exposição no ar, taxa de exposição no tecido, taxa de dose absorvida no ar e dose efetiva.

6.4.1. Cálculo da taxa de contagem:

As esquações 93 a 95 foram empregadas para a elaboração das curvas de calibração para os radioelementos K, U e Th, permitindo a sua estimativa a partir de dados experimentais da taxa de contagem.

$$n_K = (1,5320 \pm 1,15.10^{-1}).C_K + (0,1156 \pm 6,56.10^{-4}).C_U + (0,0223 \pm 6,42.10^{-4}).C_{Th}$$

Equação 93

Figura 55 - Gráfico da relação entre a taxa de contagem experimental vc. taxa de contagem estimada pelo modelo de calibração para o potássio (K-40).

 $n_U = (0,1021 \pm 0,0006).C_U + (0,0231 \pm 0,0006).C_{Th}$

Equação 94

Figura 56 - Gráfico da relação entre a taxa de contagem experimental vc. taxa de contagem estimada pelo modelo de calibração para o potássio (U-238).

 $n_{Th} = (0,0034 \pm 0,0001).C_U + (0,0261 \pm 0,0001).C_{Th}$

Equação 95

Figura 57 - Gráfico da relação entre a taxa de contagem experimental vc. taxa de contagem estimada pelo modelo de calibração para o potássio (Th-232).

6.4.2. Cálculo da concentração levando em conta fatores de remoção de interferência

Uma das formas de calcular a concentração a partir do número de contagens para as três janelas de interesse é através do uso das equações que levaram em conta os fatores de remoção de interferência. Estes fatores constam na **Tabela 25**.

Tabela 25 – Fatores de remoção de interferência calculados com base nos coeficientes matriciais fornecidos pela equação 58.

	Fatores de Remoção de Interferência													
$\alpha = \frac{\alpha_{U,Th}}{\alpha_{Th,Th}}$	= 0,8848 ± 0,0273	$a = \frac{\alpha_{Th,U}}{\alpha_{U,U}} = 0.0338 \pm 0.0084$	$S_K = \alpha_{K,K} = 1,5320 \pm 0,1146$											
$\beta = \frac{\alpha_{K,Th}}{\alpha_{Th,Th}}$	= 0,8558 ± 0,0291	$b=\frac{\alpha_{Th,K}}{\alpha_{K,K}}=-\pm$	$S_U = \alpha_{U,U} = 0,1021 \pm 0,0006$											
$\gamma = \frac{\alpha_{K,U}}{\alpha_{U,U}}$	= 1,1314 ± 0,0009	$g = \frac{\alpha_{U,K}}{\alpha_{K,K}} = - \pm$	$S_{Th} = \alpha_{ThTh} = 0,0261 \pm 0,0001$											

As equações a seguir determinam o número de contagens líquidas, subtraindo as contagens provenientes principalmente do efeito Compton de cada radionuclídeo sobre a janela de interesse. A partir das contagens líquidas, foram utilizadas as equações 55 a 57 para determinar a concentração de K, eU e eTh (equações 96 a 98):

$$(nTh)_{lig} = (nTh)$$

Equação 96

$$(nU)_{lig} = (nU) - (0.8848 \pm 0.0273)(nTh)_{lig}$$

Equação 97

$$(nK)_{liq} = (nK) - (1,1314 \pm 0,0009)(nU)_{liq} - (0,8558 \pm 0,0291)(nTh)_{liq}$$

Equação 98

Devido ao fator de interferência "*a*" ser relativamente pequeno (3,38%) (contribuição do urânio na janela do tório), e considerando a necessidade de se obter primeiramente o número

de contagens líquidas do tório para posterior cálculo das contagens líquidas dos demais radionuclídeos, foi descartada inicialmente a contribuição do urânio na janela do tório, porém, a seguir foi possível calcular as concentrações diretamente pela taxa de contagem.

6.4.3. Cálculo da concentração por meio da taxa de contagem

As equações 99 a 101 possibilitam determinar a concentração de K, U e Th a partir de dados da taxa de contagem.

$$C_{K} = (0,6527 \pm 9,65.10^{-16}).n_{K} - (0,7418 \pm 1,10.10^{-15}).n_{U} + (0,0977 \pm 3,68.10^{-16}).n_{Th}$$

Equação 99
$$C_{U} = (1,0092 \pm 2,28.10^{-16}).n_{U} - (8,9293 \pm 8,92.10^{-16}).n_{Th}$$

Equação 100
$$C_{Th} = -(1,3329 \pm 5,07.10^{-16}).n_{U} + (39,4867 \pm 1,99.10^{-15}).n_{Th}$$

Equação 101

6.4.4. Cálculo da taxa de exposição no ar por meio da taxa de contagem

As taxas de contagem para K, U, Th e total permitiram calcular a taxa de exposição no ar a partir das equações 102 e 103 (**Tabela 26**).

 $X'_{Ar} = (0,0248 \pm 7,22.10^{-3}).n_{K} + (0,0738 \pm 8,23.10^{-3}).n_{U} + (0,0097 \pm 2,77.10^{-3}).n_{Th}$ Equação 102

$$X'_{Ar_{C_{total}}} = (0,0459 \pm 8,87.10^{-4}).n_{Total}$$

Equação 103

6.4.5. Cálculo da taxa de exposição no tecido por meio da taxa de contagem

As taxas de contagem para K, U, Th e total permitiram calcular a taxa de exposição no tecido a partir das equações 104 e 105 (**Tabela 26**).

 $X'_{Tecido} = (0,0276 \pm 8,02.10^{-3}).n_{K} + (0,0819 \pm 9,14.10^{-3}).n_{U} + (0,0106 \pm 3,08.10^{-3}).n_{Th}$ Equação 104

$$X'_{Tecido_{C_{total}}} = (0,0509 \pm 9,87.10^{-4}).n_{Total}$$

Equação 105

6.4.6. Cálculo da taxa de dose absorvida no ar por meio da taxa de contagem

As taxas de contagem para K, U, Th e total permitiram calcular a taxa de dose absorvida no ar a partir das equações 106 e 107 (**Tabela 26**).

$$D'_{Ar} = (0,2395 \pm 6,97.10^{-2}).n_K + (0,7120 \pm 7,95.10^{-2}).n_U + (0,0925 \pm 2,68.10^{-2}).n_{Th}$$

Equação 106

Equação 107

6.4.7. Cálculo da dose efetiva por meio da taxa de contagem

As taxas de contagem para K, U, Th e total permitiram calcular a dose efetiva a partir das equações 108 e 109 (**Tabela 26**).

$$E = (0,0016 \pm 4,52.10^{-4}) \cdot n_K + (0,0046 \pm 5,15.10^{-4}) \cdot n_U + (0,0006 \pm 1,74.10^{-4}) \cdot n_{Th}$$
Equação 108

$$E_{Ctotal} = (0,0029 \pm 5,56.10^{-5}).n_{Total}$$
 Equação 109

A **Tabela 26** fornece os valores estimados para as taxas de dose no tecido e no ar, respectivamente, além da taxa de dose absorvida no ar e dose efetiva. Os valores estimados que estão disponibilizados na tabela foram calculados com base nas equações que consideram a taxa de contagem de cada janela individualmente, ou seja, não pertencem às equações que utilizam a taxa de contagem total.

A Tabela 27 fornece os dados obtidos da taxa de contagem que foram utilizados para a calibração do sistema de detecção, tendo sido descontados da média da radiação de fundo para cada padrão analisado nos 10 diferentes intervalos de tempo considerados neste estudo. A Tabela 27 também fornece os valores reais e estimados de concentração tendo por base as equações 99 a 101, bem como os resíduos obtidos pela subtração de ambos os valores.

Tabela 26 - Valores	de concentraç	ão dos padrões analis	sados com os respec	tivos valores estima	dos para a taxa de
exposição no tecido (X' _{tecido}), no a	(X'_{Ar}) , taxa de dos	e absorvida no ar (D	(A_{r}) e dose efetiva (<i>E</i>).

Padrão	Padrão K (%) eU (ppm) eTh (ppm) X' Tecido (µR/h)		X' Ar (μR/h)			D' Ar (nSv/h)			E (mSv/ano)						
К6	0,00	-	-	0,1054	±	0,2923	0,0950	±	0,2635	0,9157	±	2,5402	0,0080	±	0,0223
К5	1,00	-	-	0,2882	±	0,3085	0,2600	±	0,2781	2,5046	±	2,6812	0,0219	±	0,0235
К4	3,00	-	-	0,2431	±	0,2889	0,2192	±	0,2603	2,1129	±	2,5105	0,0185	±	0,0220
К3	5,00	-	-	0,1089	±	0,3394	0,0980	±	0,3059	0,9467	±	2,9495	0,0083	±	0,0258
К2	25,00	-	-	0,7575	±	0,2929	0,6817	±	0,2640	6,5830	±	2,5454	0,0577	±	0,0223
К1	52,00	-	-	2,3505	±	0,3360	2,1169	±	0,3028	20,4259	±	2,9200	0,1789	±	0,0256
U5	-	10,20	-	0,0958	±	0,2729	0,0862	±	0,2459	0,8323	±	2,3712	0,0073	±	0,0208
U4	-	98,80	-	0,9625	±	0,3555	0,8666	±	0,3204	8,3645	±	3,0889	0,0733	±	0,0271
U3	-	499,00	-	6,7221	±	0,3794	6,0528	±	0,3419	58,4149	±	3,2967	0,5117	±	0,0289
U2	-	1025,00	-	14,1434	±	0,5113	12,7360	±	0,4607	122,9061	±	4,4428	1,0767	±	0,0389
U1	-	10070,00	-	116,4435	±	1,1380	104,8596	±	1,0252	1011,8939	±	9,8893	8,8642	±	0,0866
Th8	-	-	1,25	0,2661	±	0,2938	0,2398	±	0,2647	2,3126	±	2,5530	0,0203	±	0,0224
Th7	-	-	2,50	0,2572	±	0,3108	0,2318	±	0,2801	2,2347	±	2,7012	0,0196	±	0,0237
Th6	-	-	5,00	0,0948	±	0,2873	0,0855	±	0,2589	0,8235	±	2,4966	0,0072	±	0,0219
Th5	-	0,40	10,40	0,1787	±	0,3149	0,1610	±	0,2838	1,5531	±	2,7361	0,0136	±	0,0240
Th4	-	4,00	105,20	1,1621	±	0,3019	1,0476	±	0,2720	10,0987	±	2,6232	0,0885	±	0,0230
Th3	-	20,00	515,00	4,3552	±	0,3985	3,9258	±	0,3591	37,8471	±	3,4629	0,3315	±	0,0303
Th2	-	40,00	1028,00	9,1812	±	0,4466	8,2762	±	0,4025	79,7842	±	3,8811	0,6989	±	0,0340
Th1	-	400,00	10290,00	84,2582	±	1,1417	75,9504	±	1,0291	732,2042	±	9,9212	6,4141	±	0,0869

	-	К		U						Th						Contagem Total			
Padrão	nK (CPM)	K (%)	K (%) estimado	Resíduo	nU (CPM)	U (ppm)	eU (ppm) estimado		do F	Resíduo	nTh (CPM)		Th (ppm)	eTh (ppm) estimado		Resíduo	ntotal (CPM)		M)
К6	0,9371 ± 1,5741	0,00	1,2922 ± 0,3456	1,2922	-0,2517 ± 1,0290	0	-6,8653	± -6,3	,8653 ·	-6,8653	0,4844	± 0,8331	0	19,4623	± 31,5241	19,4623	1,1698	±	2,0569
K5	0,3672 ± 1,6545	1,00	0,8352 ± 0,2906	-0,1648	-0,2294 ± 1,1756	0	-15,1309	± -15,	5,1309 -	-15,1309	1,4352	± 0,8470	0	56,9774	± 31,8772	56,9774	1,5730	±	2,1992
К4	1,1816 ± 2,0438	3,00	0,7297 ± 0,5576	-2,2703	0,5071 ± 1,1409	0	-2,3735	± -2,	,3735 ·	-2,3735	0,8389	± 0,7149	0	32,4501	± 26,7065	32,4501	2,5275	±	2,4474
К3	7,7089 ± 2,1867	5,00	8,2579 ± 0,7446	3,2579	-0,5193 ± 1,0488	0	-2,8738	± -2,	,8738 -	-2,8738	-0,2651	± 0,9756	0	-9,7754	± 37,1270	-9,7754	6,9245	±	2,6141
К2	36,7834 ± 2,0023	25,00	35,5733 ± 0,7061	10,5733	0,8943 ± 0,9184	0	21,2216	± 21,	,2216	21,2216	-1,3658	± 0,8223	0	-55,1227	± 31,2475	-55,1227	36,3119	±	2,3514
К1	80,6069 ± 2,6660	52,00	81,2906 ± 1,0191	29,2906	-0,4444 ± 1,0885	0	-15,6184	± -15,	5,6184 -	-15,6184	1,2469	± 0,8831	0	49,8270	± 33,4214	49,8270	81,4094	±	3,0121
U5	-0,0727 ± 1,7374	0	-2,0032 ± 0,3639	-2,0032	1,6867 ± 1,1279	10,20	18,3911	± 18,	,3911	8,1911	-0,1532	± 0,6812	0	-8,2988	± 25,3948	-8,2988	1,4607	±	2,1805
U4	14,1559 ± 1,8138	0	3,9979 ± 0,3004	3,9979	8,9195 ± 1,3227	98,80	94,1238	± 94,	,1238 ·	-4,6762	-0,4597	± 0,9993	0	-30,0387	± 37,6970	-30,0387	22,6158	±	2,4573
U3	73,3601 ± 2,5186	0	3,5824 ± 0,5313	3,5824	61,7096 ± 1,6204	499,00	620,4086	± 620,	0,4086 1	121,4086	0,2677	± 0,9145	0	-71,6812	± 33,9496	-71,6812	135,3374	±	3,1314
U2	138,9254 ± 3,2160	0	-6,0207 ± 0,0670	-6,0207	128,5043 ± 2,8712	1025,00	1269,8436	± 1269	9,8436 2	244,8436	3,0320	± 0,9998	0	-51,5535	± 35,6501	-51,5535	270,4617	±	4,4256
U1	1160,7233 ± 8,0024	0	5,5029 ± -0,1362	5,5029	1025,5498 ± 7,4522	10070,00	10039,0994	± 1003	39,0994 -	-30,9006	34,8476	± 1,7231	0	9,1031	± 58,1079	9,1031	2221,1207	±	11,0699
Th8	0,1240 ± 2,1192	0	-1,8190 ± 0,5027	-1,8190	1,7953 ± 1,2765	0	12,6991	± 12,	,6991	12,6991	0,6069	± 0,6786	1,25	21,5723	± 25,0927	20,3223	2,5261	±	2,5653
Th7	0,4156 ± 1,8945	0	-0,8935 ± 0,4487	-0,8935	1,2506 ± 1,1714	0	6,1158	± 6,1	1158	6,1158	0,7286	± 0,8290	2,50	27,1018	± 31,1729	24,6018	2,3947	±	2,3767
Th6	2,5310 ± 1,8473	0	3,3367 ± 0,4781	3,3367	-0,6631 ± 1,0804	0	-10,1026	± -10,),1026 -	-10,1026	0,3819	± 0,7547	5,00	15,9656	± 28,3611	10,9656	2,2499	±	2,2692
Th5	-0,1059 ± 1,7812	0	-1,5934 ± 0,4045	-1,5934	1,3627 ± 1,1374	0,40	10,4180	± 10,	,4180	10,0180	0,3735	± 0,8756	10,40	12,9304	± 33,0579	2,5304	1,6302	±	2,2876
Th4	2,7312 ± 2,0482	0	-0,9387 ± 0,4672	-0,9387	3,7431 ± 1,2686	4,00	3,0212	± 3,0	0212	-0,9788	3,8924	± 0,7297	105,20	148,7072	± 27,1233	43,5072	10,3666	±	2,5174
Th3	13,6939 ± 2,0148	0	-0,5541 ± 0,2473	-0,5541	14,3912 ± 1,5825	20,00	20,1411	± 20,	,1411	0,1411	14,0102	± 1,0857	515,00	534,0347	± 40,7620	19,0347	42,0953	±	2,7825
Th2	27,2897 ± 1,9172	0	-1,1007 ± 0,1189	-1,1007	28,9742 ± 1,6965	40,00	22,3727	± 22,	,3727 -	-17,6273	30,2429	± 1,2891	1028,00	1155,5733	± 48,6397	127,5733	86,5068	±	2,8662
Th1	276,1431 ± 4,1547	0	0,3504 ± 0,4781	0,3504	278,3644 ± 3,4990	400,00	401,7557	± 401,	1,7557	1,7557	269,6317	± 3,7020	10290,00	10275,8413	± 141,5149	-14,1587	824,1392	±	6,5734

Tabela 27 – Valores da taxa de contagem descontada da média da radiação de fundo, para cada janela (K,eU, eTh e Cont. total). Valores reais e estimados pelas equações de calibração das concentrações de cada uma das janelas com seus respectivos resíduos.

6.4.8. Limites críticos e limites de detecção para cada tempo analisado

As *Figuras 58* e *59* ilustram os diferentes valores para os limites críticos e de detecção calculados com base nas equações 110 e 111. É importante salientar que todos os valores utilizados neste cálculo estão disponíveis nas contagens de *background* do Anexo 7.

$$L_c = \frac{N_B + \left(2,33.\sqrt{N_B}\right)}{t}$$

Equação 110

$$L_{\rm D} = \frac{N_{\rm B} + \left(2,71 + 4,61.\sqrt{N_{\rm B}}\right)}{t}$$

Equação 111

 L_c é o limite crítico, L_D é o limite de detecção, N_B é o número de contagens da radiação de fundo para cada janela de interesse e t é o tempo em minutos de cada aquisição de dados (DUARTE et al., 2002). Os valores dos limites de detecção calculados foram utilizados para verificar quais números de contagem para os padrões utilizados na calibração do NaI(Tl) foram maiores, pertencendo portanto, às emissões gama provenientes dos padrões analisados.

Figura 58 - Limite crítico para diferentes tempos (min) de análise do background.

6.5. Comparação das curvas obtidas para os detectores de NaI(Tl) e BGO

Após a aquisição das equações de calibração em energia do detector de NaI(Tl), foram obtidas as curvas de calibração do sistema com base na taxa de contagem em *cpm* para o K, U e Th. De forma análoga, foram obtidas as mesmas curvas para o detector *BGO* (Anexo 3), subtraindo a dose da radiação de fundo e dividindo pelo fator de conversão de nSv.h⁻¹ para nGy.h⁻¹ (0,74). As *Figuras 60* a *62* ilustram os resultados obtidos.

Figura 60 - Calibração da taxa de dose absorvida no ar a partir da taxa de contagem de K no (a) NaI(Tl) e (b) *BGO*.

Figura 61 - Calibração da taxa de dose absorvida no ar a partir da taxa de contagem de eU no (a) NaI(Tl) e (b) BGO.

Foi possível constatar que, em ambos os detectores, o R entre as taxas de dose e de contagem de K e eU foram significativos, enquanto que para as contagens de eTh percebemos que R² foi inferior a 0,5. Nota-se que, com exceção do eTh, o modelo de calibração usado para o NaI(Tl) se aproxima significativamente da taxa de dose fornecida pela pré-calibração do detector *BGO* da *RS* – *analyst*.

6.6. Dose efetiva para alguns locais do IGCE - UNESP

Ao final da calibração dos sistemas de detecção, foram realizadas medidas gamaespectrométricas do ar ambiente em alguns locais dos Departamentos envolvidos com o Curso de Geologia da UNESP de Rio Claro (SP). Os locais analisados neste estudo foram:

- Litoteca do DPM (Departamento de Petrologia e Metalogenia);
- Museu de Minerais e Rochas Heinz Ebert;
- Sala de docente do DPM (docente responsável pela disciplina de Mineralogia);
- Litoteca do UNESPetro;
- Pátio do UNESPetro.

Os dados foram integrados e convertidos em dose efetiva (mSv/ano) através da Equação 108. Os valores foram, então, modelados no software Surfer (Golden Software) através do método de krigagem pelo modelo esférico de semivariograma.

As *Figuras 63* a *67* ilustram os modelos geoestatísticos de isolinhas gerados para os valores de dose efetiva calculados nos pontos indicados, conforme tabelados no Anexo 8.

Figura 62 – Gráfico de isolinhas para a dose efetiva na sala do docente do DPM responsável pela disciplina de Mineralogia.

Figura 63 - Gráfico de isolinhas para a dose efetiva na Litoteca do DPM.

Figura 64 - Gráfico de isolinhas para a dose efetiva no Museu de Minerais e Rochas Heinz Ebert - DPM.

Figura 65 - Gráfico de isolinhas para a dose efetiva na Litoteca do UNESPetro.

Figura 66 - Gráfico de isolinhas para a dose efetiva no pátio do UNESPetro.

É possível observar que os valores de dose efetiva encontram-se todos abaixo do limite máximo recomendado de 20 mSv.ano⁻¹, pela ICRP, para a média de cinco anos para indivíduos ocupacionalmente expostos. Entretanto, existem valores superiores ao limite recomendado para o público, 1 mSv.ano⁻¹, que são os mesmos valores adotados pela norma CNEN-NN-3.01.

Os pontos no qual as doses efetivas superam os valores recomendados (Litoteca e Museu do DPM), não são preocupantes, pois, se tratam de locais pontuais e que não são utilizados por docentes e estudantes de forma permanente. Esses locais são utilizados apenas para o armazenamento/retirada de amostras e/ou visitação, respectivamente.

O maior valor de dose efetiva encontrado foi no ponto P1 da Litoteca do DPM que é um local restrito e raramente utilizado pelos docentes e estudantes de graduação e pósgraduação. O ponto P1 da Litoteca acondiciona uma amostra radioativa que está no interior de uma blindagem de chumbo que foi projetada para minimizar os efeitos da radiação emitida pela rocha armazenada. Ainda não foi realizada análise da composição mineralógica do material, mas infere-se que possa tratar-se de uma estrutura cujo(s) mineral(is) radioativo(s) pode(m) ser a torianita (ThO_2), torita ($ThSiO_2$), uranotorita [(Th, U) SiO_4] ou a uranotorianita [(Th, U) O_2] (BONOTTO, 1996). Isto deve-se ao fato de que as contagens na janela do tório (²⁰⁸Tl) foram bastante expressivas, sugerindo a presença significativa de emissores gama descendentes do ²³²Th. É importante frisar que a análise neste ponto, diferentemente dos demais pontos, foi tomada com o detector encostado frontalmente à caixa de blindagem com a amostra acondicionada em seu interior, ou seja, a radiação gama mais expressiva deste estudo foi determinada numa amostra blindada que anteriormente já esteve exposta ao público.

O outro ponto que superou o valor recomendado de 1 mSv.ano⁻¹ para o público em geral, encontra-se no Museu Heinz Ebert. Este ponto também não condiciona maiores riscos, pois, o Museu é um local de visitação que permanece fechado na maior parte do tempo.

CAPÍTULO 7

CONCLUSÃO

Dois métodos foram empregados neste trabalho para a verificação da curva teórica do equilíbrio radioativo secular entre o ²²²Rn e seu progenitor ²²⁶Ra na série de decaimento do ²³⁸U. A aquisição de dados de taxa de contagem do ²²²Rn pelo método contínuo não permitiu atingir esse objetivo proposto. Além disso, os testes estatísticos de correlação entre os parâmetros avaliados (temperatura, umidade relativa do ar, pressão e taxa de contagem) não possibilitaram encontrar valores significativos entre eles. Assim, esta primeira etapa do trabalho sugeriu que o método contínuo não deve ser adotado para análises quantitativas, visando obter a curva teórica de equilíbrio radioativo do radônio para a calibração do sistema de sua detecção.

Por outro lado, a quantificação e plotagem da curva de concentração de atividade pelo método *quasi* foi satisfatória para este estudo. Foi possível obter a curva teórica de equilíbrio entre o ²²²Rn e o ²²⁶Ra, pois no 25° dia à partir do início das medições, a curva atingiu o valor esperado, permanecendo dessa maneira nos dias posteriores. Este valor forneceu a máxima atividade do ²²²Rn no interior do circuito fechado, que é necessário para o cálculo do fator de calibração para a conversão da taxa de contagem por unidade volume ($cpm/m^3, cps/m^3, cpm/L, cps/L$), em atividade de radônio por unidade de volume ($Bq/L, Bq/m^3, pCi/L, pCi/m^3$). O fator de calibração (F_K), denominado de eficiência de contagem (análise pelo método *quasi*, é utilizado no cálculo dos parâmetros C_w e C_{bg} (ambos em Bq/m^3), para análises atmosféricas, que podem ser obtidos de forma direta no detector Pylon AB6A a partir da inserção de F_K na programação. Porém, para calcular a atividade em amostras de água, torna-se imprescindível que os valores de C_w e de C_{bg} sejam introduzidos em equação específica relacionando estes parâmetros.

O teste do χ^2 para os dados de taxa de contagem dos detectores gamaespectrométricos de *NaI(Tl)* e *BGO* 2"*x* 2", para diferentes tempos (1800, 900, 600, 300, 240, 180, 120, 90, 60 e 30 segundos), permitiu determinar qual deles corresponde ao de maior precisão. Para estes detectores, as massas dos radionuclídeos determinantes para se atingir os intervalos de tempos satisfatórios para o teste de χ^2 foram:

a) NaI(Tl): ⁴⁰K = 3,06. 10⁻⁴g; ²³⁸U = 4,9. 10⁻³g; ²³²Th = 2,58. 10⁻²g.
b) BGO: ⁴⁰K − dados inconclusivos; ²³⁸U = 5,06. 10⁻⁴g; ²³²Th = 2,58. 10⁻²g.

Para a determinação dos tempos ideais para a aquisição de dados gama espectrométricos *in situ*, torna-se necessário um estudo complementar para avaliar a massa média de contribuição dos radionuclídeos de interesse, tendo por base o volume de contribuição da fonte (solo ou rocha), a densidade média e os teores médios para cada radionuclídeo de interesse nestes materiais.

Para os dados de calibração do detector de NaI(Tl) da ORTEC, constatou-se que apenas os padrões K2, K1, U3, U2, U1, Th3, Th2 e Th1 forneceram valores acima do limite de detecção para cada tempo calculado. Dessa forma, pode-se inferir que as contagens provenientes dos demais padrões não ultrapassaram os valores da radiação de fundo e, portanto, não é possível prever se os dados utilizados na calibração, com base nessas contagens, são realmente provenientes dos radionuclídeos de interesse. Isto pode estar relacionado à ausência de uma parede de blindagem na janela frontal do detector, que foi posicionada em direção ao chão sobre um banco, com cerca de 1 metro de coluna de ar abaixo do material de suporte do detector e da blindagem lateral de chumbo. Apesar disto, as equações de calibração do sistema ORTEC foram satisfatórias e com significativa precisão conforme descrito no decorrer deste trabalho.

Os modelos geoestatísticos gerados a partir da integração dos dados e do cálculo de dose efetiva para os locais analisados nos departamentos responsáveis pelo Curso de Geologia da UNESP de Rio Claro (SP), demonstraram que apesar de existirem alguns valores situados acima daqueles recomendados pela ICRP e norma CNEN-NN-3.01 de 1 mSv.ano⁻¹, não há necessidade de intervenção nos locais onde ocorreram (Museu Heinz Ebert; Litoteca do DPM) pois, não são de uso frequente, portanto, não oferecendo risco ao público.

O Museu Heinz Ebert apresentou uma zona cujo valor se situou um pouco acima do limite de 1 mSv.ano⁻¹, talvez sendo necessária a aquisição de novos dados com outro dosímetro para confirmar a dose efetiva, de maneira a garantir a segurança dos seus visitantes. Já a litoteca do DPM apresentou um único ponto, relacionado com a presença de uma fonte radioativa que está acondicionada lá, no interior de uma blindagem de chumbo destinada ao seu armazenamento. Como o local corresponde a um depósito de amostras, o recinto não propicia maiores riscos aos profissionais e estudantes que eventualmente utilizam-no e, além disso, o valor obtido situa-se abaixo do limite recomendado de 20 mSv.ano⁻¹ para indivíduos ocupacionalmente expostos.

REFERÊNCIAS BIBLIOGRÁFICAS

ADAMS, J. A. e GASPARINI, P. 1970. Gamma ray Spectrometry of Rocks. Amsterdam : Elsevier, 1970.

ADAMS, J. A. S. e FREYER, G. E. 1964. Portable ray spectrometer for field determination of thorium, uranium and potassium. *The Natural Radiation Environment. Adams, J. A. S. & Lowder. W. M Editors.* Chicago : University of Chicago Press, 1964, pp. 577 - 596.

ADAMS, J. A. S. e LOWDER, W. M. (editors). 1964. *The Natural Radiation Environment*. Illinois : University of Chocago, 1964.

ALMEIDA, R. M. R., et al. 2004. *Groundwater radon, radium and uranium concentrations in região dos lagos, Rio de Janeiro, Brazil.* s.l. : Journal of Environmental Radioactivity. v. 73, n.3, p. 323-334, 2004.

ATSDR. 1990. *Agency for Toxic Substances and Disease registry.* Atlanta : Public Health Statement Radium, 1990.

BARBOSA, L. 2011. Análise da Concentração de Radônio-222 nas Águas Subterrâneas e Solo. Curitiba - PR : Dissertação de Mestrado - UTFPR, 2011.

BARTLETT, D. T. 2004. *Radiation Protection Aspects of the Cosmic Radiation Exposure of Aircraft Crew.* s.l. : Radiation protection Dosimetry, 2004. Vol. 109, No 4, pp. 349-355.

BECK, H. L. 1972. *The physics of environmental gamma radiation fields.* s.l. : p. 101-133 in: The Natural Radiation Environment II (J.A.S. Adams, W.M. Lowder and T.F. Gesell, eds.).CONF-720805, 1972.

BEVINGTON, P. R. 1969. *Data reduction and error analysis for the physical sciences.* New York : McGraw-Hill Book Company, 1969.

—. 1969. *Data reduction and error analysis for the physical sciences.* New York : McGraw Hill Book Company, 1969.

Bfs, (BUNDESAMT FÜR STRAHLESCHUTZ). 1998. Strahlung und Strahlenschutz. Salzgitter : s.n., 1998.

BONOTTO, D. M. 1982. Aplicações dos dados de fracionamento isotópico 234U/238U nos problemas geoquímicos dos aquíferos de Águas da Prata (SP). (Mestrado em Geofísica). São Paulo (SP) : Instituto Astronômico e Geofísico, Universidade de São Paulo, 1982. 161f.

-. 1986. Aplicações hidrogeoquímicas naturais das séries do U (4n+2) e Th (4n) no Morro do Ferro, Poços de Caldas (MG). (Tese de Doutorado). São Paulo (SP) : Instituto Astronômico e Geofísico, Universidade de São Paulo, 1986. 378p.

-. 1996. Comportamento hidrogeoquímico do 222Rn e isótopos de urânio 238U e 234U sob condições controladas de laboratório e em sistemas naturais. Rio Claro (SP), Brasil : Tese de Livre Docência, IGCE – UNESP, 1996.

BRANCHI, B. A. 2010. EXCEL NA ANÁLISE DE REGRESSÃO. *Pontificea Universidade católica*. [Online] PUC - Campinas, 2010. [Citado em: 15 de Novembro de 2015.] http://ftp-acd.puccampinas.edu.br/pub/professores/cea/nelly/%202012_LABORATORIO%20ECONOMETRIA/02_Exercic io_Regress%C3%A3o-USANDO%20EXCEL.pdf. **BRANDÃO, J. O. de C. 2009.** Curva de calibração para dosimetria biológica de campo misto nêutrongama pelo método citogenético convencional. Recife (PE) - Brasil : Departamento de Energia Nuclear - UFPE. Dissertação de Mestrado., 2009.

BRASIL. 2011. Portaria MS n.º 2914, de 12 de Dezembro de 2011. Dispõe sobre os procedimentos tos de controle e vigilância da qualidade da água para consumo humano e seu padrão de potabilidade." Diário Oficial da União. Brasília (DF), Brasil : Diário Oficial da União, 2011. 14 Dez. 2011. Seção 1, p...

CALAS, G. 1979. *Etude experimentale du comportament de l'uraniun dans les magmas: Etads d'oxydation et coordinance.* s.l. : Geoch. Cosm. Acta, Elsevier Science, 1979. v.43, p.1521-32.

CARLOS, D. U. e RIBEIRO, F. B. 2006. *Contrução de Blocos Transportáveis para calibração de detectores Aerotransportados e terrestres.* São Paulo : Dissertação de Mestrado. Departamento de Geofísica, 2006. IAG/USP. 92 p.

CHARBONNEAU, B. W. e DARNLEY, A. G. 1970. *Radioactive precipitation and its significance to high sensitivity gamma ray spectrometer surveys.* s.l. : Geological Survey of Canada, 1970. Paper 70-1, part B, 32-36.

CHAU, N. D., CHRUSCIEL, E. e PROKOLSKI, L. 2005. Factors controlling measurements of radon mass exhalation rate. s.l. : Jornal of environmental radioactivity. v. 82, p. 363-369, 2005.

CHERRY, S. R., SRRENSON, J. A. e PHELPS, M. E. 2003. *Physics in Nuclear medicine*. Philadelphia : Pennsylvania, P. A., 2003. 3a Ed..

CHO, J. S. e al., et. 2004. *Radon concentrations in groundwater in Busan measured with a liquid scintillation counter method.* s.l. : Jornal of environmental radioactivity. v. 75, n.1, p. 105-112, 2004.

CLARK, R. B., DUVAL, J. S. e ADAMS, J. A. S. 1972. *Computer Simulation of an Airborne Gamma ray Spectrometer.* s.l. : Journal od Geophysical Research, 1972. v.77, n.17, 3021-3031.

CLEVER, H. L. 1979. *Krypton, Xenon and Radon Gas Solubilities.* Oxford/UK : Ed. Solubility Data Series:, 1979. Pergamon Press: Vol. 2 ..

CNEN. 1988. NE-3.01. Diretrizes Básicas de Radioproteção. 1988.

-. 2011. NN-3.01. Diretrizes Básicas de Proteção Radiológica. 2011.

CNEN, Comissão Nacional de Energia Nuclear. 2006. *Diretrizes básicas de proteção: Norma CNEN-NN-3.01.* s.l. : Comissão Nacional de Energia Nuclear, 2006.

-. 2005. Posição Regulatória 3.01/001. 2005.

COCCO, G., FANFANI, L. e ZANAZZI, P. E. 1969. *Potassium.* New York: Springer-Verlag : In: WEDEPOHL, K.H. (Ed.). Handbook of Geochemistry, 1969. v. 2, cap. 19.

COTHERN, C. R. e SMITH, J. E. Jr. 1987. *Environmental Radon. Environmental Science Research.* New York : Plenum Press, 1987. vol. 35.

CUCCIA, V. 2006. *Estudo Da Distribuição De Radionuclídeos Naturais Na Bauxita, Processo Bayer e Seus Produtos e Resíduos.* s.l. : Dissertação de Mestrado, Universidade Federal de Minas Gerais, 2006. 73p.

DARNLEY, A. G., et al. 1986. *Radiativity Map of Canada.* s.l. : Geological Survey of Canada, 1986. Map 1600A (1:5M scale), 1st Edition.

DAVIS, J. C. 1986. Statistics and Data Analysis in Geology. s.l. : Ed. John Wiley & Sons, 1986.

DEAN, J. C. J. e KOLKOWSKI, P. 2004. *The development of a 222Rn standard solution dispenser at NAPL.* s.l. : Applied Radiation and Isotopes. v. 61, p. 95-100, 2004.

DICKSON, B. L. e SCOTT,, K. M. 1997. *Interpretation of aerial gamma ray surveys adding the geochemical factors.* s.l. : AGSO J. Austr. Geol. Geophys, 1997.

DOIG, R. 1968. The natural gamma-ray flux: in siyu analysis. s.l. : Geophysics, 1968. 33, 311-328..

DUARTE, C. R. e BONOTTO, D. M. 2002. *Radioelementos Naturais na Área do projeto Rio Preto (GO).* Rio Claro : UNESP - Intstituto de Geoci6encias e Ciências Exatas, 2002.

ECKERMAN, K. F. e RYMAN, J. C. 1993. *External exposure to radionuclides in air, water, and soil.* s.l. : Federal Guidance Report No. 12. EPA 402-R-93-081, 1993.

EISENBUD, M. e GESELL, T. 1997. *Environmental Radioactivity From Natural, Industrial and Military Sources.* Califórnia : Academic Press, 1997. 4a ed.

ERDI-KRAUSZ, G., et al. 2003. *Guidelines for radioelement mapping using gamma-ray spectrometry data.* Vienna, Austria : International Atomic Energy Agency Publication, 2003. IAEA-TECDOC-1363.

EVANS, R. D. e NOYAU, A. 1955. The atomic nucleus. New York : Mcgraw-Hill, 1955.

EVANS, R. D. 1955. The Atomic Nucleus. New York : McGraw-Hill, 1955.

FETTER, C. W. 1999. Contaminant Hydrogeology. Upper Saddle River, NJ : Prentice hall, 1999.

FISICANET. 1997. Dosimetria das radiações ionizantes. *FISICANET.* [Online] Alberto Ricardo Präss, 1 de Maio de 1997. [Citado em: 12 de Fevereiro de 2016.] http://www.fisica.net/nuclear/dosimetria_das_radiacoes_ionizantes.pdf.

FREYER, K. et al. 1997. *Sampling and measurement of radon-222 in water.* s.l. : Journal of Environmental Radioactivity, v. 37, n. 3, p. 327-337, 1997.

GALBAITH, J. H. e SAUDERS, D. F. 1983. *Rock classification by charecteristics of aerial gamma ray measurements.* s.l. : J. Geochem., 1983. 18, 49-73.

GARCIA-VINDAS, J. R. e MONIN, M. M. 2005. *Radon concentration measurements in the presence of water and its consequences for earth sciences studies.* s.l. : Radiation Measurements. v. 39, p. 319-322, 2005.

GOMES, M. J. da S. 2003. UTILIZAÇÃO DE MÉTODOS GEOFÍSICOS EM SAMBAQUIS FLUVIAIS, REGIÃO DO VALE DO RIBEIRA DE IGUAPE–SP/PR. São Paulo (SP) - Brasil : Tese de Doutorado. Universidade de São Paulo, 2003.

GOODHEAD, D. T. 1993. *Biological effects of hight energy radiations.* s.l. : Radiation Protection Dosimetry, v.48, n°1, pp.111-114, 1993.

GRASTY, R. L. e COX, J. R. 1997. A car-borne gamma ray spectrometer system for natural radioactivity mapping and environmental monitoring. In RESUME 95, Rapid Environmental Surveying Using Mobile Equipment : Resport, nordic Nuclear Safety Research Secretariat, 1997. 71-90.

GRASTY, R. L. 1987. *The design, construction and application of airborne gamma ray spectrometer calibration pads.* Thailand : geological Survey of Canada, 1987.

GRASTY, R. L., et al. 1984. *Natural Background Radiation in Canada.* s.l. : Geol. Surv. Can. Bull, 1984. 360.

GRASTY, R. L., HOLMAN, P. B. e BLANCHARD, Y. B. 1991. *Transportable pads for ground and airbone gamma ray spectrometers.* Ottawa - Canada : Paper 90/23, 1991.

GREEN, B. M. R., HUGHES, J. S. e LOMAS, P. R. 1993. *Radiation Atlas.* Luxemburg : Natural Sources of Ionizing Radiation in Europe, CEC, 1993.

HIODO, F. Y. 1989. *Desenvolvimento de instrumentação em geofísica nuclear e sua aplicação no Morro do Ferro (São Paulo). (Tese de Doutorado).* São Paulo (SP) : Instituto Astronômico e Geofísico, 1989. Universidade de São Paulo, São Paulo (SP). 177f.

HOMMA, Y. e MURAKAMI, Y. 1981. A New procedure for the determination of radiun in water by extraction of radon and application of integral conunting with a liquid scintillation counter. s.l. : Journal of applied radiation and isotopes. v.32, p.291-294, 1981.

HORNECK, G. 1998. *Biological monitoring of radiation exposure.* s.l. : Advanced Space Ressearch, v.22, n° 12, pp. 1631-1641, 1998.

IAEA, INTERNATIONAL ATOMIC ENERGY AGENCY. 2008. *Advisory Material for the IAEA Regulations for the.* s.l. : International Atomic Energy Agency, 2008. No. TS-G-1.1 (Rev. 1).

—. 1991. *Airborne gamma-ray spectrometer surveying.* Vienna : technical Report Series, no 323, 1991. IAEA, 97p.

—. 1995. Application of Uranium Exploration Data and Techniques in Environmental Studies. Vienna : TECDOC-827, 1995.

—. 1989. *Construction and Use of Calibration Facilities for radiometric Field Equipment.* Vienna : Technical Report Series, no 309, 1989. IAEA, 84p.

-. 2001. Cytogenetic Analisys for Radiation Dose Assessment. s.l. : INTERNATIONAL ATOMIC ENERGY AGENCY, 2001. Technical Report Series nº 405.

-. **1979.** *Gamma Ray Surveys in Uranium Exploration, technical reports Series No. 186.* Vienna : IAEA, 1979.

-. 2003. *Guidelines for radioelement mapping using gamma ray spectrometry data*. Vienna, Austria : IAEA-TECDOC-1363. 172 p., 2003. ISSN 1011–4289.

-. 1987. Preparation and Certification of IAEA Gamma ray Spectrometry Reference Materials RGU-1, RGTh-1 and RGK-1. Vienna : Techn.Report - IAEA/RL/148, 1987.

—. 1976. *Radiometric reporting Methods and Calibration in uranium Exploration, Technical reports Series No. 174.* Vienna : IAEA, 1976.

—. 1997. Uranium Exploration Data and Techniques Applied to the Preparation of Radioelement *Maps.* Vienna : TECDOC-980, 1997.

ICRP. 1977. *International Comission on Radiation Protection. ICRP 26.* Oxford : Pergamon Press, 1977. Annals of ICRP, vol. 1, No. 3.

-. 1979. International Comission on Radiation protection. ICRP 60. Oxford : Pergamon press, 1979. Annals of ICRP, vol. 21, No. 1-3.

-. 1991. International Comission on radiological Protection. ICRP 60. Oxford : Pergamon Press, v.2, 1991. n. 1-3.

-. 2005. International Comission on Radiological Protection. ICRP 99 - Low Dose Extrapolation od Radiation Related Cancer Risk. Oxford : Pergamon press, 2005. v. 35, No. 4.

—. 1982. International Council on Radiation Protection, Protection against radiation from external sources used in medicine. s.l.: ICRP Publication n 33, 1982.

ICRP, International Commission on Radiological Protection. 2005. *ICRP 99 - Low Dose Extrapolation of Radiation Related Cancer Risk.* Oxford : Pergamon Press, v. 35, n. 4, 2005.

ICRU. 1994. *Gamma ray Spectrometry in the Environment*. Bethesda, USA : International Commission On Radiation Units and Measurements, 1994. ICRU Report 53.

ISO, International Organization for Standarization. 1992a. *Atomic and Nuclear physics.* 1992a. ISO 31-9.

-. 1992b. Nuclear Reactions and Ionizing Radiation. 1992b. ISO 31-10.

IVANOVICH, M. e HARMON, R. S. 1982. Uranium Series Disequilibrium: Applications to Environmental Problems. Oxford : Clarendon Press, 1982.

JUNGE, C. E. 1963. Air Chemistry and Radioactivity. New York : Academic Press, 1963.

KAPLAN, Irving. 1978. Física Nuclear. Rio de Janeiro (RJ), Brasil : Guanabara Dois, 1978. 2 ed.

KAPPKE, J. 2013. *Medidas das concentrações de rádio em águas minerais disponíveis à venda no Brasil.* Curitiba - PR : Tese de Doutorado, 2013. UTFPR. 98 p..

KETCHAM, R.A. 1996. *Animproved method fordetermination of heat production with gamma-ray scintillation spectrometry.* s.l. : Chemical Geology,130, p. 175-194, 1996.

KILLEEN, P. G. 1979. *Gamma-ray spectrometric methods in uranium exploration - application and interpretation.* s.l. : In: HOOD, P. J. (Ed.) Geophysics and Geochemistry in the Search for Metalic ores., 1979. Geological Survey of canada. p. 163-229 (Economic Geology Report, 31).

KNOLL, G. F. 2010. Radiation Detection and Measurements. New York : John Wiley, 2010. ed 4.

KNOLL, G. F. 1988. Radiation Detection and Measurement. New York : Ed. John Wiley & Sons, 1988.

-. 1989. Radiation Detection and Measurements. New York : John Wiley & Sons, 1989. Ed. 2.

KOFLER, L. 1913. Die Myxobakterien der Umgebung von Wien. Hölder : s.n., 1913.

KOGAN, R. M., NAZAROV, I. M. e FRIDMAN, S. D. 1971. *Gamma Spectrometry of Natural Environments and Formations.* s.l. : Israel Programme for Scietific Translations, 1971.

KORUM, M., et al. 1993. *In situ Measurement of Cs-distribution in the Soil*. s.l. : Umweltradioaktivitat, radiookologie, Strahlenwirkungen, Band I., Verlag TUV Rheiland, Koln, 1993. 417-421.

KRAUSKOPF, K. B. 1972. Instrodução à Geoquímica. São Paulo (SP) : Polígono, 1972. v.2.

LANGMUIR, D. e HERMANS, J. S. 1980. *The mobility of thorium in natural waters at low temperatures.* s.l. : Geochimica et Cosmochimica Acta, 1980. v. 44, 1753-1766.

LANGMUIR, D. 1978. *Uranium solution-mineral equilibria at low temperatures with application to sedimentary ore deposits.* Geoch. Cosm. Acta, New York : Elsevier Science, 1978. v. 42, p. 547-69.

LEÃO, M. R. C. 2003. *Aspectos da circulação da água no aquífero São Sebastião.* s.l. : Dissertação de Mestrado. Universidade Federal da Bahia. 72 p., 2003.

LIMA, C. A. 2006. Avaliação da performance dos detetores lodeto de Sódio Nal (Tl) em centrais nucleares. (Tese de Doutorado). Rio de Janeiro (RJ) : Universidade federal do Rio de Janeiro, 2006. 109p.

LIMA, J. L. N. e BONOTTO, D. M. 1996. Etapas analiticas para mensuracao de radonio-222 e uso na avaliacao da radioatividade das aguas de Aguas da Prata (SP). Rio Claro (SP), Brasil : Geochimica Brasiliensis, v. 10, n. 2, p. 283-295, 1996.

LOPEZ, M. A., et al. 2004. *Workplace monitoring for exposures to radon and to other natural sources in Europe: integration of monitoring for internal and external exposures.* s.l. : Radiation Protection Dosimetry, 112, (1), p. 121–139, 2004.

LU, X. e ZHANG, X. 2006. *Measurement of Natural Radiactivity in Sand Samples Collected From the Baoji Weihe Sands Park, China.* s.l. : Environmental Geology. 50, 977-982, 2006.

-. 2008. *Measurement of Natural Radioactivity in Beach Sands From Rizhao Bathing Beach, China.* s.l. : Radiation. Protection. Dosimetry. 130, 385-388, 2008.

LU, X., ZHANG, X. e WANG, F. 2008. *Natural Radioactivity in Sediment of Wei River, China.* s.l. : Environmental Geology. 53, 1475-1481, 2008.

L**ΦVBORG, L. e MOSE, E. 1987.** *Counting statistics in radioelement assaying with a portable spectrometer.* s.l. : Geophysics, 1987. 52, 4, 555-563.

LOVBORG, L. 1984. *The calibration of portable and airborne gamma ray spectrometers - theory, problems and facilities.* s.l. : Report Riso-M-2456, Roskilde, 1984.

LOVBORG, L., et al. 1971. *Field determination of uranium and thorium by gama ray spectrometry.* exemplifier by measurements in the Ilimaussaq Alkaline Intrusion : Economical Geology, 1971. 66, 368-384.

LOVBORG, L., KIRKEGAARD, P. e CHRISTIANSEN, E. M. 1976. *Design of Nal(TI) scintillation detectors for the use in gamma-ray surveys of geological sources.* Vienna - Austria : Exploration for Uranium Ore Deposits, 1976. IAEA.

MAFRA, O. Y. 1973. Técnicas e medidas nucleares. São Paulo : Edgar Blücher, 1973.

MALANCA, A., et al. 1995. *Natural Radioactivity in Building Materials from the Brazilian State of Espírito Santo.* s.l. : Applied Radiation and Isotopes. 12, 1387-1392, 1995.

MARES, S. 1984. *Introduction to Applied Geophysics.* Dordrecht, Holland : Springer Science & Business media. D. Reidel Publ. Comp., 1984.

MARTIN SANCHEZ, A., et al. 1999. *Radioactivity in bottled mineral waters*. s.l. : Applied Radiation Isotopes, 1999. p. 1049-1055.

MASON, B. H. 1971. Princípios de Geoquímica. São Paulo (SP) : Polígono, 1971. 403p.

MATOS, O. C. 2000. Econometria Básica. São Paulo (SP), Brasil : Atlas, p. 124., 2000.

Meyer, S. e Schweidler, E. V. 1916. Radioaktivität; Teubner. Leipzig, Germany : s.n., 1916. p 326.

MOHANTY, A. K., et al. 2004. *Natural radioactivity in the newly discovered high background radiation area on the eastern coast of Orissa, India.* s.l. : Radiation Measurement. 38, 153–165, 2004.

MUNDIGL, S. e BRUMMER, Ch., WINKELMANN, I. 1994. *Vergleichsmessungen der Bodenkontamination mit Hilfe der In-situ-Gamma-spektrometrie.* Bfs Jahresbericht 1993 : Salzgitter, 1994. 153-156.

NASH, J. T., GRANGER, H. C. e ADAMS, S. S. 1981. Geology and concepts of genesis of important type of uranium deposits. s.l.: Econ. Geol., v. 75, p.63-116, 1981.

NCRP. 2009. *Ionizing radiation exposure of the population of the United States. NCRP Report N° 160.* Besthesda, MD : National Council on Radiation Protection and Measurements, 2009.

NELSON, P., RACHIELLE, R. e SMITH, A. 1983. *Transport of radon in flowing boreholes at stripa Sweden.* s.l. : Geophysics Research.v.88, n.B3 p. 2395-2405, 1983.

NOVOTNA, J. 1986. *Review of Irradiation Sources to Population.* s.l. : Protection at work with sources of ionizing radiation in national economy, Centr. Inf. Centre for Nucl. Progr., Zbraslav, 1986. 62-68 (in Czech).

OLIVEIRA, D. S. 2006. *Um estudo sobre o desequilíbrio radioativo da série do urânio em amostras de solo.* s.l. : Tese de doutorado, Universidade de São Paulo, 140 p., 2006.

PAULO, Jaqueline Martins de. 2006. *Desenvolvimento de metodologia analítica do 222Rn como traçador de partição na recuperação secundária de petróleo.* Belo Horizonte (MG), Brasil : Dissertação de Mestrado - Centro de Desenvolvimento da Tecnologia Nuclear. CNEN - COmissão Nacional de Energia Nuclear, 2006. 97 p..

PETOUSSI, N., ZANKL, M. e SAITO, K. 1989. *Organ doses to adults and children from environmental gamma rays.* s.l. : p. 372-377 in: The Radioecology of Natural and Artificial Radionuclides (W. Feldt, ed.). Verlag TüV Rheinland GmbH, Köln, 1989.

PFEISTER, H. e PAULY, H. 1980. *External Radiation Exposure due to Natural Radionuclides in Phosphate Fertilisers in the Federal Republic of Germany.* Seminar on the Radiological Burden of Man from Natural Radiactivity in the Countries os European Communities : CEC Report V/2408/80, 1980. 447-467.

PLASTINO, W., DE FELICE, P. e NOTARISTEFANI, F. 2002. *Radon gamma-ray spectrometry with YAP:Ce scintillator.* s.l. : Nuclear Instruments and Methods in Physics Research. v. 486, p. 149-149, 2002.

POSCHL, M. e NOLLET, M. L. 2006. *Radionuclide concentration in food and the environment*. Flórida : CRC Press, 2006.

REILLY, D., et al. 1991. *Passive Nondestructive Assay of Nuclear Materials.* Washington : United States Regulatory Nuclear Comission, 1991. NUREG/CR-5550; LA-UR-90-732.

RITTERSDORF, I. 2007. *Gamma ray spectroscopy*. s.l. : Nuclear Engineering & Radiological Sciences, 2007. p. 18-20.

RODRIGUES, A. S., et al. 2005. Use of cytogenetic indicators in radiobiology. Radiation Protection Dosimetry. s.l.: v. 115, n°1-4, pp. 455-460, 2005.

ROGERS, J. J. W. e ADAMS, J. A. S. 1969. *Thorium.* In: WEDEPOHL, K. H. (Ed.) Handbook of Geochemistry. New York : Springer-Verlag, 1969. v.4, cap. 90.

SAGHATCHI, F., SALOUTI, M. e ESLAMI, A. 2008. *Assessment of Annual Effective Dose Due to Natural Gamma Radiation in Zanjan (IRAN).* s.l. : Radiation Protection Dosimetry.132 (3), 346-349, 2008.

SAMPA, M. H. O. 1978. *Estudo e desenvolvimento de métodos analíticos para determinação da radioatividade natural em águas.* São Paulo : Dissertação de Mestrado - Instituto de Energia Atômica. 151 p., 1978.

SANTOS, R. N. dos. 2001. Implantação da metodologia de espectrometria alfa para a determinação de isótopos de U e Th em rochas ígneas: Aplicação ao estudo do desequilíbrio radioativo na Ilha da Trindade. São Paulo (SP), Brasil. : Instituto Antronômico e Geofísico - Universidade de São Paulo, 2001. Tese de Doutorado.

SCHONHOFER, F. 1992. *Measurement of 226Ra on water and 222Rn in water and air by scintillation countig.* s.l. : Radiation Protection Dosimety. v. 45, n. 1/4, p. 123-125, 1992.

—. 1992. *Measurement of 226Ra on water and 222Rn in water and air by scintillation countig.* s.l. : Radiation Protection Dosimety. v. 45, n. 1/4, p. 123-125, 1992.

SCHUBERT, M., et al. 2012. *Air–water partitioning of 222Rn and its dependence on water temperature and salinity.* s.l. : Environmental science & technology, v. 46, n. 7, p. 3905-3911, 2012.

SELL, I. 2005. *Utilização da regressão linear como ferramenta de decisão na gestão de custos. IX Congresso Internacional de Custos.* Florianópolis (SC), Brasil. 28 a 30 de novembro : s.n., 2005.

SEMPRINI, L., S., HOPKINS O. e TASKER, B. R. 2000. *Laboratory, field and modeling studies of radon-*222 as a natural tracer for monitoring NAPL contamination. s.l. : Transport in Porous Media. v.38, p. 223-240, 2000.

SGC. 2004. BGO Bismuth Germanate Scintillation Material. *SGC.* [Online] Saint-Gobain Ceramics & Plastics, 2004. [Citado em: 23 de Junho de 2015.] http://www.crystals.saint-gobain.com/uploadedFiles/SG-Crystals/Documents/BGO%20data%20sheet.pdf.

SGC, Saint Gobain Ceramics & Plastics. 2007. Compton Suppressor Shields. *SGC*. [Online] Saint Gobain Ceramics & Plastics, 2007. [Citado em: 23 de Junho de 2015.] http://www.crystals.saint-gobain.com/uploadedFiles/SG-

Crystals/Documents/Technical/SGC%20Compton%20Suppressor%20Shields%20-%20Nal(TI)%20vs%20BGO.pdf.

SHIVES, R. B. K., CHARBONNEAU, B. W. e FORD, K. L. 1997. The detection of potassic alternation by gamma ray spectrometry recognition of alternation related to mineralization. Toronto - Canada : Proceedings of the Fourth Decennial International Conference on Mineral Exploration (Exploration 97), 1997. 14-18 September..

SHYTI, M. 2013. *Calibration and performances of in-situ gamma ray spectrometer.* Università degli Studi di Ferrara : Tese de Doutorado, 2013.

SMITH, D. S. e STABIN, M. G. 2012. *Exposure rate constants and lead shielding values for over 1,100 radionuclides.* s.l. : Health Physics 102(3), p.271-291, 2012.

STEVENSON, W. J. 1986. *Estatística aplicada à administração*. São Paulo (SP), Brasil : Harbra, p. 341., 1986.

STOLLER, B. A. C., et al. 1994. *Saturation Monitoring with the RST Reservoir Saturation Tool.* 1994. p. 11..

STROBINO, E. de F. 2005. *Levantamento de perfis radiométricos nos sedimentos permianos da bacia do paraná no leste do estado de São paulo.* São Paulo : Dissertação de Mestrado. Departamento de Geofísica, 2005. IAG/USP. 85p.

SURBECK, H. 1996. *A radon-in-water monitor bases on fast gas transfer membranes.* s.l. : Environmental Radioactivity Survey. October , p. 16-19, 1996.

SURBECK, H. A. 1996. *Radon-in-water monitor bases on fast gas transfer membranes.* s.l. : Environmental Radioactivity Survey. October , p. 16-19, 1996.

TAUHATA, L, SALATI, I P, DI PRINZIO, R e DI PRINZIO, A. 2014. Radioproteção e Dosimetria, *Fundamentos.* s.l. : IRD/CNEN, 2014. 10ª revisão.

TAUHATA, L., et al. 2013. GRANDEZAS RADIOLÓGICAS E UNIDADES. CAPÍTULO 5. *INIS.* [Online] Tauhata, Luiz; Salati, Ivan; Di Prinzio, Renato; Di Prinzio, Antonieta R., Novembro de 2013. [Citado em: 13 de Novembro de 2015.]

http://www.iaea.org/inis/collection/NCLCollectionStore/_Public/45/073/45073470.pdf. INIS-BR--14043.

UNSCEAR, United Nations Scientific Commitee on the Effects od Atomic radiation. 1982. *Ionizing Tadiation: Sources and Biological Effects.* s.l. : Anexo B, 1982.

-. 2008. Report to the United Nations General Assembly. Sources and Effects of Ionizing radiation. "Exposures of Public and Workers from Various Sources of Radiation" : Anexo B, 2008.

-. 2000. *Report to the United Nations General Assembly. Sources and Effects of Ionizing Radiation.* s.l. : Anexo I, 2000.

-. **1993.** *Reported to the United Nations General Assembly. Sources and Effects of ionizing Radiation.* s.l. : Anexo A, 1993.

USPHS & USEPA, United States Public Health Service e United States Environmental Protection Agency. 1990. *Toxicological Profile for radium*. Atlanta : Agency for Toxic Substances and Disease Registry, 1990.

VASCONCELLOS, R. M., et al. 1994. *Geofísica em Levantamentos Geológicos no Brasil*. Rio de Janeiro (RJ), Brasil : CPRM - Serviço Geológico do Brasil, 1994. 165 p.

VASCONCELOS, D. C. 2010. *Estudo da radioatividade natural em areias de praias do extremo sul da Bahia utilizando métodos de análises nucleares.* Belo Horizonte (MG), Brasil : Universidade Federal de Minas Gerais - Tese de Doutorado. 124 p., 2010.

VDOVENKO, V. M. e DUBASOV, YU. V. 1973. *Química Analítica do Rádio*. São Petersburgo, Rússia : NAUKA, 1973.

VEIGA, R., et al. 2006. *Measurement of natural radioactivity in Brazilian beach sands.* s.l. : Radiation Measurements, 41- 189-196, 2006.

VUOLO, J. H. 1998. Fundamentos da teoria dos Erros. São Paulo : Edgard Blucher Ltda, 1998. 2a ed..

-. 1996. Fundamentos da Teoria dos Erros. São Paulo (SP) : Editora Edgard, 1996. 2a Ed..

WARNECK, P. 2000. *Chemistry of the natural atmosphere.* San Diego. California : Academic Press, 2000.

Weigel, F. 1978. Radon. s.l. : Chemiker-Zeitung, 102 (9), 287-299., 1978.

WHO, World Health Organization. 2009. *Handbook on Indoor Radon. A Public Health Perspective.* Switzerland : WHO Press, 2009.

WILFORD, J. R., BIERWIRTH, P. N. e GRAIG, M. A. 1997. *Application of airborne gamma ray spectrometry in soil regolith mapping and applied geomorphology.* s.l. : AGSO Austr. Geol. Geophys, 1997. 17 (2), 201-216.

YAMAGUCHI, H. e WAKER, J. A. 2007. *A model for the induction of DNA damages by fast neutrons and their evolution into cell clonogenic inativation.* s.l. : Journal of Radiation Resouces, v. 48 n°4, pp. 289-303, 2007.

YOUNG, Hugh D. 1962. *Statistical Treatment of Experimental Data.* s.l. : McGraw-Hill Book Company, Inc. p 76 - 80, 1962.

ANEXOS

Anexo 1

Dados de calibração do detector Pylon pelo método Contínuo.

Data e Tempo	Intervalos (5 min)	$\bar{x} CT \pm \sigma_{CT}$	$\bar{x} CPM \pm \sigma_{CPM}$	$C_w(Bq/l) \pm \sigma_w$	Tempo (Dia)	$P(kPa) \pm \sigma_P$	$T(^{\circ}C) \pm \sigma_T$	$RH(\%) \pm \sigma_{RH}$
5/27/2015 5:16:00 PM	12	367,00 ± 19,16	65,50 ± 3,62	60,48 ± 5,41	0,04	92,28 ± 0,23	26,75 ± 0,45	53,67 ± 1,67
5/27/2015 6:16:00 PM	24	338,00 ± 18,38	66,42 ± 3,64	61,49 ± 5,47	0,08	92,38 ± 0,28	27,00 ± 0,00	55,83 ± 0,39
5/27/2015 7:16:00 PM	36	335,00 ± 18,30	65,13 ± 3,61	60,08 ± 5,39	0,13	92,43 ± 0,21	27,00 ± 0,00	57,00 ± 0,00
5/27/2015 8:16:00 PM	48	323,00 ± 17,97	66,73 ± 3,65	61,84 ± 5,49	0,17	92,58 ± 0,22	$27,00 \pm 0,00$	57,67 ± 0,49
5/27/2015 10:16:00 PM	72	$325,00 \pm 18,03$ $328,00 \pm 18,11$	66,68 ± 3,65	61,78 ± 5,49	0,21	92,58 ± 0,28 92,48 ± 0,19	27,00 ± 0,00 27,00 ± 0,00	58,00 ± 0,00 57,33 ± 0,49
5/27/2015 11:16:00 PM	84	307,00 ± 17,52	64,23 ± 3,58	59,09 ± 5,32	0,29	92,44 ± 0,18	27,00 ± 0,00	57,00 ± 0,00
5/28/2015 12:16:00 AM	96	$341,00 \pm 18,47$ $308,00 \pm 17,55$	$61,23 \pm 3,50$ $61,58 \pm 3,51$	$55,79 \pm 5,12$ 56,17 ± 5,14	0,33	$92,42 \pm 0,23$ $92,38 \pm 0,21$	$26,67 \pm 0,49$ 26,00 ± 0,00	56,92 ± 0,29 56,00 ± 0,00
5/28/2015 2:16:00 AM	120	332,00 ± 18,22	62,45 ± 3,53	57,12 ± 5,20	0,42	92,30 ± 0,19	26,00 ± 0,00	55,08 ± 0,29
5/28/2015 3:16:00 AM 5/28/2015 4:16:00 AM	132	$303,00 \pm 17,41$ 289.00 ± 17.00	59,38 ± 3,45 58.87 ± 3,43	53,75 ± 4,99 53.18 ± 4.95	0,46	$92,22 \pm 0,24$ 92.38 ± 0.25	$26,00 \pm 0,00$ 26.00 ± 0.00	55,00 ± 0,00 55.00 ± 0.00
5/28/2015 5:16:00 AM	156	311,00 ± 17,64	58,67 ± 3,43	52,96 ± 4,93	0,54	92,48 ± 0,24	26,00 ± 0,00	55,00 ± 0,00
5/28/2015 6:16:00 AM 5/28/2015 7:16:00 AM	168 180	$317,00 \pm 17,80$ 305.00 ± 17.46	<u>59,42 ± 3,45</u> 58.20 + 3.41	$53,79 \pm 4,99$ 52.45 ± 4.90	0,58	$92,49 \pm 0,26$ $92,65 \pm 0.17$	$\frac{26,00}{26,00} \pm 0,00$	55,00 ± 0,00 55.00 ± 0.00
5/28/2015 8:16:00 AM	192	296,00 ± 17,20	56,15 ± 3,35	50,19 ± 4,75	0,67	92,70 ± 0,00	26,00 ± 0,00	55,00 ± 0,00
5/28/2015 9:16:00 AM	204	$268,00 \pm 16,37$	56,90 ± 3,37	$51,02 \pm 4,81$	0,71	$92,70 \pm 0,00$ $92,70 \pm 0,00$	$26,00 \pm 0,00$ $26,00 \pm 0,00$	55,00 ± 0,00
5/28/2015 11:16:00 AM	228	324,00 ± 18,00	58,48 ± 3,42	52,76 ± 4,92	0,79	92,70 ± 0,00	26,00 ± 0,00	55,00 ± 0,00
5/28/2015 12:16:00 PM	240	$294,00 \pm 17,15$	57,02 ± 3,38	51,15 ± 4,81	0,83	$92,70 \pm 0,00$	$26,00 \pm 0,00$	55,00 ± 0,00
5/28/2015 2:16:00 PM	252	$300,00 \pm 17,32$	54,88 ± 3,31	48,80 ± 4,66	0,88	92,65 ± 0,14	25,83 ± 0,39	56,00 ± 2,34
5/28/2015 5:40:00 PM	276	307,00 ± 17,52	57,07 ± 3,38	51,20 ± 4,82	0,96	92,54 ± 0,25	25,75 ± 0,45	59,25 ± 0,75
5/28/2015 6:40:00 PM 5/28/2015 7:40:00 PM	288	$274,00 \pm 16,55$ 257.00 ± 16.03	54,48 ± 3,30 54,43 ± 3,30	$48,36 \pm 4,63$ 48.30 ± 4.62	1,00	$92,44 \pm 0,25$ 92.53 ± 0.18	$\frac{26,00 \pm 0,00}{25.83 \pm 0.39}$	$58,67 \pm 0,49$ 58.00 ± 0.00
5/28/2015 8:40:00 PM	312	289,00 ± 17,00	55,37 ± 3,33	49,33 ± 4,69	1,08	92,56 ± 0,22	25,00 ± 0,00	58,00 ± 0,00
5/28/2015 9:40:00 PM	324	$282,00 \pm 16,79$	53,87 ± 3,28	47,68 ± 4,58	1,13	$92,54 \pm 0,20$ $92,48 \pm 0.24$	25,00 ± 0,00	57,50 ± 0,52
5/28/2015 11:40:00 PM	348	249,00 ± 15,78	52,23 ± 3,23	45,88 ± 4,46	1,21	92,37 ± 0,27	25,00 ± 0,00	58,00 ± 0,00
5/29/2015 12:40:00 AM	360	249,00 ± 15,78	52,57 ± 3,24	46,25 ± 4,48	1,25	92,35 ± 0,26	25,00 ± 0,00	58,00 ± 0,00
5/29/2015 1:40:00 AM	372	$280,00 \pm 16,73$ 269.00 ± 16.40	$50,00 \pm 3,10$ 54.38 ± 3.30	$43,43 \pm 4,29$ 48.25 ± 4.62	1,29	$92,40 \pm 0,27$ 92.23 ± 0.26	$25,00 \pm 0,00$ 25.00 ± 0.00	58,00 ± 0,00 58.92 ± 0.29
5/29/2015 3:40:00 AM	396	283,00 ± 16,82	53,85 ± 3,28	47,66 ± 4,58	1,38	92,34 ± 0,19	25,00 ± 0,00	59,00 ± 0,00
5/29/2015 4:40:00 AM	408	$297,00 \pm 17,23$	52,65 ± 3,24	46,34 ± 4,49	1,42	$92,25 \pm 0,22$	$25,00 \pm 0,00$	58,83 ± 0,39
5/29/2015 6:40:00 AM	432	268,00 ± 16,37	54,77 ± 3,31	48,67 ± 4,65	1,50	92,34 ± 0,24	25,00 ± 0,00	58,00 ± 0,00
5/29/2015 7:40:00 AM	444	258,00 ± 16,06	51,63 ± 3,21	45,22 ± 4,41	1,54	92,50 ± 0,13	25,00 ± 0,00	58,00 ± 0,00
5/29/2015 8:40:00 AM	456	$273,00 \pm 10,52$ 232.00 ± 15.23	$52,83 \pm 3,25$ 51.28 ± 3.20	46,54 ± 4,50 44.84 ± 4.39	1,58	$92,48 \pm 0,28$ 92.44 ± 0.22	$25,00 \pm 0,00$ 25.00 ± 0.00	$58,58 \pm 0,51$ 59.00 ± 0.00
5/29/2015 10:40:00 AM	480	289,00 ± 17,00	53,00 ± 3,26	46,73 ± 4,52	1,67	92,43 ± 0,26	25,00 ± 0,00	58,58 ± 0,51
5/29/2015 11:40:00 AM 5/29/2015 12:40:00 PM	492	$269,00 \pm 16,40$ 247 00 + 15 72	$51,23 \pm 3,20$ 49.47 + 3.15	$44,78 \pm 4,38$ 42.84 ± 4.24	1,/1	$92,33 \pm 0,26$ 92.25 ± 0.29	$25,00 \pm 0,00$ $25,00 \pm 0,00$	58,00 ± 0,00 56,50 ± 0,67
5/29/2015 1:40:00 PM	516	269,00 ± 16,40	52,30 ± 3,23	45,96 ± 4,46	1,79	92,23 ± 0,25	25,00 ± 0,00	55,17 ± 0,58
5/29/2015 2:40:00 PM	528	$214,00 \pm 14,63$	51,10 ± 3,20	44,64 ± 4,37	1,83	$92,13 \pm 0,29$	$25,00 \pm 0,00$	53,50 ± 0,52
5/29/2015 4:40:00 PM	552	267,00 ± 16,34	51,08 ± 3,20	44,62 ± 4,37	1,88	92,26 ± 0,22	25,58 ± 0,51	50,67 ± 1,37
5/29/2015 5:48:00 PM	564	268,00 ± 16,37	50,47 ± 3,18	43,94 ± 4,32	1,96	92,18 ± 0,24	26,00 ± 0,00	50,75 ± 0,45
5/29/2015 6:48:00 PM 5/29/2015 7:48:00 PM	576	$254,00 \pm 15,94$ 287.00 ± 16.94	$50,18 \pm 3,17$ 51.35 ± 3.20	$43,63 \pm 4,30$ 44.91 ± 4.39	2,00	$92,47 \pm 0,23$ 92.37 ± 0.27	$\frac{25,17}{25.00} \pm 0.00$	$50,92 \pm 0,29$ 51.08 ± 0.29
5/29/2015 8:48:00 PM	600	213,00 ± 14,59	51,12 ± 3,20	44,66 ± 4,37	2,08	92,45 ± 0,25	25,00 ± 0,00	52,00 ± 0,00
5/29/2015 9:48:00 PM	612	$242,00 \pm 15,56$ 254 00 + 15 94	$51,10 \pm 3,20$ $51,40 \pm 3,21$	$44,64 \pm 4,37$ $44,97 \pm 4,39$	2,13	$92,46 \pm 0,29$ 92.54 ± 0.26	$25,00 \pm 0,00$ $25,00 \pm 0,00$	52,00 ± 0,00
5/29/2015 11:48:00 PM	636	255,00 ± 15,97	50,35 ± 3,17	43,81 ± 4,31	2,21	92,62 ± 0,27	25,00 ± 0,00	51,75 ± 0,45
5/30/2015 12:48:00 AM	648	$245,00 \pm 15,65$	51,15 ± 3,20	44,69 ± 4,38	2,25	$92,53 \pm 0,26$	$25,00 \pm 0,00$	51,00 ± 0,00
5/30/2015 2:48:00 AM	672	273,00 ± 16,52	50,32 ± 3,17	43,77 ± 4,31	2,23	92,46 ± 0,26	24,00 ± 0,00	50,00 ± 0,00
5/30/2015 3:48:00 AM	684	273,00 ± 16,52	50,27 ± 3,17	43,72 ± 4,31	2,38	92,33 ± 0,21	24,00 ± 0,00	49,92 ± 0,29
5/30/2015 4:48:00 AM	708	$256,00 \pm 16,00$ 222,00 ± 14,90	$\frac{49,60 \pm 3,15}{50,43 \pm 3,18}$	42,99 ± 4,26 43,90 ± 4,32	2,42	$92,43 \pm 0,27$ 92,54 $\pm 0,24$	24,00 ± 0,00 24,00 ± 0,00	49,00 ± 0,00
5/30/2015 6:48:00 AM	720	224,00 ± 14,97	49,28 ± 3,14	42,64 ± 4,23	2,50	92,56 ± 0,25	24,00 ± 0,00	48,17 ± 0,39
5/30/2015 7:48:00 AM	732	282,00 ± 16,79	51,77 ± 3,22	45,37 ± 4,42 46,71 ± 4,52	2,54	$92,73 \pm 0,30$ 92.82 ± 0.17	23,67 ± 0,49 24.00 ± 0.00	<u>48,25 ± 0,45</u> 50,75 ± 0,97
5/30/2015 9:48:00 AM	756	270,00 ± 16,43	49,80 ± 3,16	43,21 ± 4,27	2,63	92,63 ± 0,25	24,00 ± 0,00	54,17 ± 0,83
5/30/2015 10:48:00 AM	768	$253,00 \pm 15,91$	49,67 ± 3,15	43,06 ± 4,26	2,67	$92,63 \pm 0,23$	$24,00 \pm 0,00$	55,00 ± 0,00
5/30/2015 12:48:00 PM	792	<u>235,00 ± 15,82</u> 235,00 ± 15,33	<u>50,27 ± 3,17</u>	43,72 ± 4,31	2,71	92,36 ± 0,23	24,00 ± 0,00	54,7 <u>5</u> ± 0,45
5/30/2015 1:48:00 PM	804	240,00 ± 15,49	48,05 ± 3,10	41,28 ± 4,13	2,79	92,33 ± 0,25	24,00 ± 0,00	53,50 ± 0,52
5/30/2015 2:48:00 PM 5/30/2015 3:48:00 PM	828	$248,00 \pm 15,75$ 220,00 ± 14.83	$51,18 \pm 3,20$ 50,83 ± 3.19	44,73 ± 4,38 44,34 ± 4,35	2,83	92,39 ± 0,29 92,36 ± 0.28	$24,58 \pm 0.51$ 25,00 ± 0.00	$53,17 \pm 0,39$ 54,33 ± 0.49
5/30/2015 4:48:00 PM	840	278,00 ± 16,67	50,83 ± 3,19	44,34 ± 4,35	2,92	92,53 ± 0,30	25,00 ± 0,00	54,50 ± 0,52
5/30/2015 5:48:00 PM 5/30/2015 6:48:00 PM	852 864	$2/8,00 \pm 16,67$ 248.00 + 15.75	<u>49,02 ± 3,13</u> 50,12 + 3,17	42,34 ± 4,21 43.55 + 4.30	2,96	92,48 ± 0,25 92.68 + 0.22	$25,00 \pm 0,00$ 24.33 + 0.49	53,58 ± 0,51 53,67 + 0.49
5/30/2015 7:48:00 PM	876	254,00 ± 15,94	51,37 ± 3,21	44,93 ± 4,39	3,04	92,58 ± 0,32	24,00 ± 0,00	53,92 ± 0,29
5/30/2015 8:48:00 PM	888	261,00 ± 16,16	51,12 ± 3,20 51,22 + 3,20	44,66 ± 4,37 44,77 + 4,39	3,08	92,80 ± 0,27 92,87 ± 0,27	$24,00 \pm 0,00$ 24.00 + 0.00	53,00 ± 0,00
5/30/2015 10:48:00 PM	912	<u>198,00 ± 14,</u> 07	49,92 ± 3,16	43,33 ± 4,28	3,17	92,76 ± 0,27	24,00 ± 0,00	53,00 ± 0,00
5/30/2015 11:48:00 PM	924	237,00 ± 15,39	49,68 ± 3,15	43,08 ± 4,26	3,21	92,85 ± 0,21	24,00 ± 0,00	53,00 ± 0,00
5/31/2015 12:48:00 AM	936	$248,00 \pm 15,43$	49,87 ± 3,16 48,15 ± 3.10	$43,28 \pm 4,28$ 41,39 ± 4.14	3,25	92,50 ± 0,21 92,72 ± 0.26	$24,00 \pm 0,00$ 24,00 ± 0.00	53,00 ± 0,00
5/31/2015 2:48:00 AM	960	271,00 ± 16,46	49,28 ± 3,14	42,64 ± 4,23	3,33	92,66 ± 0,27	24,00 ± 0,00	53,00 ± 0,00
5/31/2015 3:48:00 AM 5/31/2015 4:48:00 AM	972	$267,00 \pm 16,34$ 239,00 ± 15.46	52,22 ± 3,23 49.97 ± 3.16	45,87 ± 4,46 43,39 ± 4,28	3,38	92,64 ± 0,27 92.54 + 0.24	$24,00 \pm 0,00$ 24,00 ± 0.00	54,25 ± 0,45 55.17 ± 0.39
5/31/2015 5:48:00 AM	996	230,00 ± 15,17	48,28 ± 3,11	41,54 ± 4,15	3,46	92,67 ± 0,29	24,00 ± 0,00	56,25 ± 0,45
5/31/2015 6:48:00 AM	1008	$227,00 \pm 15,07$	49,22 ± 3,14	42,56 ± 4,23	3,50	92,62 ± 0,29	$24,00 \pm 0,00$	57,33 ± 0,49
5/31/2015 8:48:00 AM	1020	242,00 ± 15,59	+5,65 ± 3,10 50,82 ± 3,19	44,33 ± 4,35	3,54	92,79 ± 0,27	23,17 ± 0,39	58,83 ± 0,39
5/31/2015 9:48:00 AM	1044	231,00 ± 15,20	49,50 ± 3,15	42,88 ± 4,25	3,63	92,89 ± 0,24	23,25 ± 0,45	59,58 ± 0,51
5/31/2015 10:48:00 AM 5/31/2015 11:48:00 AM	1056	$252,00 \pm 15,87$ 278.00 ± 16.67	<u>49,95 ± 3,16</u> 52,28 ± 3,23	43,37 ± 4,28 45,94 ± 4,46	3,67	92,71 ± 0,31 92,77 ± 0.29	$23,50 \pm 0,52$ 24,00 ± 0.00	61.17 ± 0.39
5/31/2015 12:48:00 PM	1080	240,00 ± 15,49	49,73 ± 3,15	43,13 ± 4,27	3,75	92,58 ± 0,22	24,00 ± 0,00	62,08 ± 0,29
5/31/2015 1:48:00 PM	1092	$226,00 \pm 15,03$	50,28 ± 3,17	43,74 ± 4,31 42,23 ± 4,20	3,79	92,58 ± 0,35	$24,00 \pm 0,00$ $24,00 \pm 0.00$	62,92 ± 0,29
5/31/2015 3:48:00 PM	1116	217,00 ± 14,73	48,85 ± 3,13	42,16 ± 4,20	3,88	92,53 ± 0,25	24,00 ± 0,00	65,00 ± 0,00
5/31/2015 4:48:00 PM	1128	245,00 ± 15,65	52,83 ± 3,25	46,54 ± 4,50	3,92	92,67 ± 0,23	24,00 ± 0,00	65,00 ± 0,00
5/31/2015 5:48:00 PM	1140	<u>298,00 ± 10,52</u> 298,00 ± 17,26	<u>52,40 ± 3,24</u>	<u>45,77 ± 4,45</u> <u>46,07 ± 4,47</u>	4,00	<u>92,75 ± 0,27</u> <u>92,71 ± 0,23</u>	<u>24,00 ± 0,00</u> 24,00 ± 0,00	<u>65,00 ± 0,00</u>

Data e Tempo	Intervalos (5 min)	$\bar{x} CT \pm \sigma_{CT}$	$\bar{x} CPM \pm \sigma_{CPM}$	$C_w(Bq/l) \pm \sigma_w$	Tempo (Dia)	$P(kPa) \pm \sigma_P$	$T(^{\circ}C) \pm \sigma_T$	$RH(\%) \pm \sigma_{RH}$
5/31/2015 7:48:00 PM	1164	270,00 ± 16,43	51,07 ± 3,20	44,60 ± 4,37	4,04	92,96 ± 0,22	24,00 ± 0,00	65,00 ± 0,00
5/31/2015 8:48:00 PM	1176	254,00 ± 15,94	50,03 ± 3,16	43,46 ± 4,29	4,08	92,75 ± 0,22	24,00 ± 0,00	65,00 ± 0,00
5/31/2015 9:48:00 PM	1188	233,00 ± 15,26	49,87 ± 3,16	43,28 ± 4,28	4,13	92,92 ± 0,26	24,00 ± 0,00	65,00 ± 0,00
5/31/2015 10:48:00 PM 5/31/2015 11:48:00 PM	1200	249,00 ± 15,78 244,00 ± 15,62	49,13 ± 3,13 49,62 ± 3,15	42,47 ± 4,22 43,00 ± 4,26	4,17	92,87 ± 0,31 92,87 ± 0,23	24,00 ± 0,00 24,00 ± 0,00	65,00 ± 0,00
6/1/2015 12:48:00 AM	1224 1236	291,00 ± 17,06 243,00 ± 15,59	50,28 ± 3,17 48.18 + 3.10	43,74 ± 4,31 41.43 + 4.14	4,25	92,88 ± 0,26 92.68 ± 0.28	$24,00 \pm 0,00$ $24,00 \pm 0.00$	65,00 ± 0,00
6/1/2015 2:48:00 AM	1248	247,00 ± 15,72	50,08 ± 3,16	43,52 ± 4,29	4,33	92,64 ± 0,29	$24,00 \pm 0,00$	65,00 ± 0,00
6/1/2015 3:48:00 AM 6/1/2015 4:48:00 AM	1260	$249,00 \pm 15,78$ 230,00 ± 15,17	49,12 ± 3,13 50,58 ± 3,18	42,45 ± 4,22 44,07 ± 4,33	4,38	92,74 ± 0,29 92,88 ± 0,22	$24,00 \pm 0,00$ 24,00 \pm 0,00	65,00 ± 0,00 65,00 ± 0,00
6/1/2015 5:48:00 AM	1284	$240,00 \pm 15,49$ 267.00 + 16.34	48,47 ± 3,11	<u>41,74 ± 4,17</u> <u>43,11 ± 4,26</u>	4,46	92,88 ± 0,29	$24,00 \pm 0,00$ $24,00 \pm 0,00$	65,00 ± 0,00
6/1/2015 7:48:00 AM	1308	249,00 ± 15,78	48,73 ± 3,12	42,03 ± 4,19	4,54	92,99 ± 0,24	24,00 ± 0,00	64,58 ± 0,51
6/1/2015 8:48:00 AM 6/1/2015 9:48:00 AM	1320	$191,00 \pm 13,82$	43,68 ± 2,96 40,58 ± 2,85	36,48 ± 3,78 33,07 ± 3,52	4,58 4,63	93,07 ± 0,23 93,04 ± 0,29	$24,00 \pm 0,00$ 24,00 \pm 0,00	65,00 ± 0,00 64,58 ± 0,51
6/1/2015 10:48:00 AM	1344	$211,00 \pm 14,53$ 189,00 + 13,75	42,02 ± 2,90	34,64 ± 3,64	4,67	93,00 ± 0,28 93,01 ± 0,28	$24,17 \pm 0,39$ 25.00 + 0.00	64,75 ± 0,45
6/1/2015 12:48:00 PM	1368	231,00 ± 15,20	41,38 ± 2,88	33,95 ± 3,58	4,75	92,91 ± 0,24	25,00 ± 0,00	65,00 ± 0,00
6/1/2015 1:48:00 PM 6/1/2015 2:48:00 PM	1380 1392	$207,00 \pm 14,39$ 221,00 ± 14,87	42,68 ± 2,92 45,60 ± 3,02	35,38 ± 3,69 38,59 ± 3,94	4,79 4,83	92,85 ± 0,24 92,83 ± 0,32	25,00 ± 0,00 25,00 ± 0,00	64,08 ± 0,29 64,58 ± 0,51
6/1/2015 3:48:00 PM	1404	$225,00 \pm 15,00$ 215,00 + 14,66	46,12 ± 3,04	<u>39,15 ± 3,98</u> 40,27 ± 4,06	4,88	92,89 ± 0,24	25,00 ± 0,00	65,00 ± 0,00
6/1/2015 5:48:00 PM	1428	240,00 ± 15,49	46,63 ± 3,05	39,72 ± 4,02	4,96	92,78 ± 0,25	25,00 ± 0,00	64,08 ± 0,29
6/1/2015 6:51:00 PM 6/1/2015 7:51:00 PM	1440 1452	213,00 ± 14,59 231,00 ± 15,20	44,32 ± 2,98 47,68 ± 3,09	37,17 ± 3,83 40,88 ± 4,10	5,00	92,89 ± 0,29 92,91 ± 0,31	25,00 ± 0,00 25,00 ± 0,00	63,08 ± 0,29 62,50 ± 0,52
6/1/2015 8:51:00 PM	1464	$204,00 \pm 14,28$	45,10 ± 3,00	38,04 ± 3,90	5,08	93,00 ± 0,23	24,33 ± 0,49	61,75 ± 0,45
6/1/2015 10:51:00 PM	1470	226,00 ± 15,03	48,03 ± 3,10	40,79 ± 4,10 41,26 ± 4,13	5,13	93,09 ± 0,18	24,00 ± 0,00	61,00 ± 0,00
6/1/2015 11:51:00 PM 6/2/2015 12:51:00 AM	1500 1512	242,00 ± 15,56 192,00 ± 13,86	47,65 ± 3,09 45,93 ± 3,03	40,84 ± 4,10 38,95 ± 3,96	5,21 5,25	92,93 ± 0,20 93,00 ± 0,22	$24,00 \pm 0,00$ 24,00 \pm 0,00	60,67 ± 0,49 60,00 ± 0,00
6/2/2015 1:51:00 AM	1524	269,00 ± 16,40	48,35 ± 3,11	41,61 ± 4,16	5,29	$92,80 \pm 0,24$	$24,00 \pm 0,00$ $24,00 \pm 0,00$	59,83 ± 0,39
6/2/2015 3:51:00 AM	1548	253,00 ± 15,91	47,97 ± 3,10	41,19 ± 4,13	5,38	92,78 ± 0,29	24,00 ± 0,00	59,00 ± 0,00
6/2/2015 4:51:00 AM 6/2/2015 5:51:00 AM	1560 1572	$209,00 \pm 14,46$ $232.00 \pm 15,23$	46,87 ± 3,06 46,40 ± 3,05	<u>39,98 ± 4,04</u> 39,47 ± 4,00	5,42	92,84 ± 0,26 92.68 ± 0.27	$24,00 \pm 0,00$ 24.00 ± 0.00	59,00 ± 0,00 59.00 ± 0.00
6/2/2015 6:51:00 AM	1584	$242,00 \pm 15,56$	47,20 ± 3,07	40,35 ± 4,07	5,50	92,93 ± 0,22	$24,00 \pm 0,00$	59,00 ± 0,00
6/2/2015 7:51:00 AM	1608	233,00 ± 15,26	46,65 ± 3,05	<u>39,74 ± 4,03</u>	5,58	92,98 ± 0,30 92,99 ± 0,29	24,00 ± 0,00 24,00 ± 0,00	$59,25 \pm 0,45$ 59,25 ± 0,45
6/2/2015 9:51:00 AM 6/2/2015 10:51:00 AM	1620 1632	246,00 ± 15,68 237.00 ± 15.39	49,88 ± 3,16 47.90 ± 3.10	43,30 ± 4,28 41.12 ± 4.12	5,63 5.67	93,14 ± 0,21 93.06 ± 0.22	$24,00 \pm 0,00$ 24.00 ± 0.00	59,83 ± 0,39 60.00 ± 0.00
6/2/2015 11:51:00 AM	1644	244,00 ± 15,62	48,97 ± 3,13	42,29 ± 4,21	5,71	92,94 ± 0,33	$24,00 \pm 0,00$	60,00 ± 0,00
6/2/2015 12:51:00 PM	1656	235,00 ± 15,81 235,00 ± 15,33	49,43 ± 3,14	40,93 ± 4,11 42,80 ± 4,24	5,75	92,84 ± 0,21 92,82 ± 0,29	24,00 ± 0,00 24,00 ± 0,00	60,33 ± 0,49
6/2/2015 2:51:00 PM 6/2/2015 3:51:00 PM	1680 1692	264,00 ± 16,25 252.00 ± 15.87	<u>49,82 ± 3,16</u> 49,60 ± 3,15	<u>43,22 ± 4,27</u> 42,99 ± 4,26	5,83 5.88	92,88 ± 0,21 92.72 ± 0.24	24,17 ± 0,39 25.00 ± 0.00	60,92 ± 0,29 61.00 ± 0.00
6/2/2015 4:51:00 PM	1704	$232,00 \pm 15,23$	48,87 ± 3,13	$42,18 \pm 4,20$	5,92	92,81 ± 0,22	$24,33 \pm 0,49$	61,00 ± 0,00
6/2/2015 5:51:00 PM	1716	234,00 ± 15,30	49,53 ± 3,15 48,87 ± 3,13	42,91 ± 4,25 42,18 ± 4,20	6,00	92,87 ± 0,20 92,77 ± 0,33	24,00 ± 0,00 24,00 ± 0,00	61,00 ± 0,00 61,00 ± 0,00
6/2/2015 7:51:00 PM 6/2/2015 8:51:00 PM	1740 1752	250,00 ± 15,81 250,00 ± 15,81	48,55 ± 3,12 49,95 ± 3,16	41,83 ± 4,17 43.37 ± 4.28	6,04 6.08	92,96 ± 0,26 92.66 ± 0.25	$24,00 \pm 0,00$ 24.00 ± 0.00	$61,00 \pm 0,00$ 61.00 ± 0.00
6/2/2015 9:51:00 PM	1764	263,00 ± 16,22	49,38 ± 3,14	42,75 ± 4,24	6,13	92,87 ± 0,26	24,00 ± 0,00	61,00 ± 0,00
6/2/2015 10:51:00 PM	1776	240,00 ± 15,49 257,00 ± 16,03	49,92 ± 3,16 49,27 ± 3,14	43,33 ± 4,28 42,62 ± 4,23	6,21	92,90 ± 0,28	24,00 ± 0,00 24,00 ± 0,00	60,67 ± 0,49
6/3/2015 12:51:00 AM 6/3/2015 1:51:00 AM	1800 1812	247,00 ± 15,72 250.00 ± 15.81	47,15 ± 3,07 47.85 ± 3.09	$40,29 \pm 4,06$ 41.06 ± 4.12	6,25 6.29	92,91 ± 0,28 92.83 ± 0.30	$24,00 \pm 0,00$ 24.00 \pm 0.00	60,00 ± 0,00 60.00 ± 0.00
6/3/2015 2:51:00 AM	1824	$237,00 \pm 15,39$	50,77 ± 3,19	44,27 ± 4,35	6,33	92,73 ± 0,31	$24,00 \pm 0,00$	60,00 ± 0,00
6/3/2015 4:51:00 AM	1848	238,00 ± 15,43	40,02 ± 5,12 50,50 ± 3,18	43,98 ± 4,33	6,42	92,76 ± 0,24	24,00 ± 0,00 24,00 ± 0,00	60,00 ± 0,00
6/3/2015 5:51:00 AM 6/3/2015 6:51:00 AM	1860 1872	253,00 ± 15,91 290.00 ± 17.03	50,33 ± 3,17 49.47 ± 3,15	43,79 ± 4,31 42.84 ± 4.24	6,46	92,86 ± 0,28 92.92 ± 0.23	$24,00 \pm 0,00$ 24.00 ± 0.00	60,00 ± 0,00 60.00 ± 0.00
6/3/2015 7:51:00 AM	1884	$240,00 \pm 15,49$	50,32 ± 3,17	43,77 ± 4,31	6,54	92,96 ± 0,32	24,00 ± 0,00	60,00 ± 0,00
6/3/2015 9:51:00 AM	1896	244,00 ± 15,62	40,55 ± 5,11 51,93 ± 3,22	45,55 ± 4,44	6,63	93,13 ± 0,22	24,00 ± 0,00 24,00 ± 0,00	61,00 ± 0,00
6/3/2015 10:51:00 AM 6/3/2015 11:51:00 AM	<u>1920</u> 1932	258,00 ± 16,06 242.00 ± 15.56	50,13 ± 3,17 49.97 ± 3.16	43,57 ± 4,30 43.39 ± 4.28	6,67 6,71	93,00 ± 0,34 92.98 ± 0.25	$24,00 \pm 0,00$ 24.00 ± 0.00	$61,00 \pm 0,00$ 61.08 ± 0.29
6/3/2015 12:51:00 PM	1944	$228,00 \pm 15,10$	50,13 ± 3,17	43,57 ± 4,30	6,75	92,86 ± 0,27	$24,00 \pm 0,00$	61,25 ± 0,45
6/3/2015 2:51:00 PM	1956	235,00 ± 15,33	49,00 ± 3,13	44,55 ± 4,56 42,33 ± 4,21	6,83	92,85 ± 0,26	$24,25 \pm 0,43$ 25,00 ± 0,00	60,92 ± 0,00
6/3/2015 3:51:00 PM 6/3/2015 4:51:00 PM	<u>1980</u> 1992	$269,00 \pm 16,40$ 244.00 ± 15.62	<u>49,52 ± 3,15</u> 50.57 ± 3.18	42,89 ± 4,25 44.05 ± 4.33	6,88 6.92	92,76 ± 0,24 92.86 ± 0.25	25,00 ± 0,00 25.00 ± 0.00	59,33 ± 0,78 60.58 ± 0.51
6/3/2015 5:51:00 PM	2004	$258,00 \pm 16,06$	49,82 ± 3,16	43,22 ± 4,27	6,96	92,83 ± 0,26	$25,00 \pm 0,00$	$62,08 \pm 0,51$
6/3/2015 7:51:00 PM	2018	273,00 ± 16,52	48,90 ± 3,13 50,05 ± 3,16	42,22 ± 4,20 43,48 ± 4,29	7,00	92,88 ± 0,25 92,97 ± 0,29	25,00 ± 0,00 25,00 ± 0,00	63,00 ± 0,00
6/3/2015 8:51:00 PM 6/3/2015 9:51:00 PM	2040 2052	255,00 ± 15,97 226,00 ± 15,03	52,00 ± 3,22 50,13 ± 3,17	45,63 ± 4,44 43,57 ± 4,30	7,08 7,13	92,93 ± 0,26 92,95 ± 0,27	25,00 ± 0,00 25,00 ± 0,00	62,17 ± 0,39 61,83 ± 0,39
6/3/2015 10:51:00 PM	2064	264,00 ± 16,25	51,52 ± 3,21	45,10 ± 4,40	7,17	93,08 ± 0,29	24,67 ± 0,49	$61,00 \pm 0,00$
6/4/2015 12:51:00 AM	2070	232,00 ± 15,23	49,48 ± 3,15	42,86 ± 4,25	7,25	92,98 ± 0,34	24,00 ± 0,00	59,58 ± 0,51
6/4/2015 1:51:00 AM 6/4/2015 2:51:00 AM	2100 2112	255,00 ± 15,97 239,00 ± 15,46	50,23 ± 3,17 50,03 ± 3,16	<u>43,68 ± 4,30</u> 43,46 ± 4,29	7,29	93,02 ± 0,23 92,95 ± 0,25	$24,00 \pm 0,00$ 24,00 \pm 0,00	58,92 ± 0,29 58,00 ± 0,00
6/4/2015 3:51:00 AM	2124	256,00 ± 16,00 235,00 ± 15,22	53,92 ± 3,28	47,74 ± 4,59	7,38	92,90 ± 0,30	24,00 ± 0,00 24,00 ± 0,00	57,17 ± 0,39
6/4/2015 5:51:00 AM	2130	268,00 ± 16,37	50,02 ± 5,18 50,28 ± 3,17	43,74 ± 4,31	7,42	93,04 ± 0,27	24,00 ± 0,00	56,00 ± 0,00
6/4/2015 6:51:00 AM 6/4/2015 7:51:00 AM	2160 2172	252,00 ± 15,87 261,00 ± 16.16	51,50 ± 3,21 49,62 ± 3.15	45,08 ± 4,40 43,00 ± 4.26	7,50 7,54	93,17 ± 0,27 93,29 ± 0.21	24,00 ± 0,00 24,00 ± 0.00	56,00 ± 0,00 57,17 ± 0.58
6/4/2015 8:51:00 AM	2184	241,00 ± 15,52	$51,98 \pm 3,22$	45,61 ± 4,44	7,58	93,31 ± 0,27	24,00 ± 0,00	59,42 ± 0,51
6/4/2015 10:51:00 AM	2208	250,00 ± 14,70 250,00 ± 15,81	+5,50 ± 3,10 51,22 ± 3,20	43,32 <u>±</u> 4,28 44,77 <u>±</u> 4,38	7,63	<u>93,21</u> ± 0,27	24,00 ± 0,00 24,33 ± 0,49	62,17 ± 0,58
6/4/2015 11:51:00 AM 6/4/2015 12:51:00 PM	2220 2232	274,00 ± 16,55 247,00 ± 15.72	50,30 ± 3,17 51,15 ± 3.20	43,76 ± 4,31 44,69 ± 4.38	7,71 7,75	93,01 ± 0,18 93,03 ± 0.28	25,00 ± 0,00 25,00 ± 0.00	62,83 ± 0,39 62,75 ± 0.45
6/4/2015 1:51:00 PM	2244	237,00 ± 15,39	49,63 ± 3,15	43,02 ± 4,26	7,79	93,01 ± 0,27	25,00 ± 0,00	63,00 ± 0,00
6/4/2015 3:51:00 PM	2268	249,00 ± 15,78	50,57 ± 3,18	44,05 ± 4,33	7,88	93,16 ± 0,21	25,00 ± 0,00	62,58 ± 0,51
6/4/2015 4:51:00 PM 6/4/2015 5:51:00 PM	2280 2292	254,00 ± 15,94 262,00 ± 16.19	50,10 ± 3,17 49,10 ± 3.13	43,54 ± 4,29 42,44 ± 4.22	7,92	92,97 ± 0,23 93,04 ± 0.26	25,00 ± 0,00 25,00 ± 0.00	63,00 ± 0,00 62,08 ± 0.51
6/4/2015 7:00:00 PM	2304	270,00 ± 16,43	49,55 ± 3,15	42,93 ± 4,25	8,00	93,13 ± 0,29	25,00 ± 0,00	61,08 ± 0,29
6/4/2015 9:00:00 PM	2328	248,00 ± 15,75	49,95 ± 3,16	43,37 ± 4,28	8,08	93,23 ± 0,25	25,00 ± 0,00	61,00 ± 0,00
6/4/2015 10:00:00 PM	2340	232,00 ± 15,23	53,47 ± 3,27	47,24 ± 4,55	8,13	93,08 ± 0,26	25,00 ± 0,00	60,58 ± 0,51

Data e Tempo	Intervalos (5 min)	$\bar{x} CT \pm \sigma_{CT}$	$\bar{x} CPM \pm \sigma_{CPM}$	$C_w(Bq/l) \pm \sigma_w$	Tempo (Dia)	$P(kPa) \pm \sigma_P$	$T(^{\circ}C) \pm \sigma_T$	$RH(\%) \pm \sigma_{RH}$
6/4/2015 11:00:00 PM	2352	211,00 ± 14,53	52,08 ± 3,23	45,72 ± 4,45	8,17	93,33 ± 0,27	25,00 ± 0,00	60,00 ± 0,00
6/5/2015 12:00:00 AM	2364	262,00 ± 16,19	51,05 ± 3,20	44,58 ± 4,37	8,21	93,13 ± 0,23	25,00 ± 0,00	59,33 ± 0,49
6/5/2015 1:00:00 AM	2376	260,00 ± 16,12	52,32 ± 3,23	45,98 ± 4,46	8,25	93,21 ± 0,29	24,75 ± 0,45	59,00 ± 0,00
6/5/2015 2:00:00 AM	2388	284,00 ± 16,85	52,25 ± 3,23	45,90 ± 4,46	8,29	93,17 ± 0,29	24,00 ± 0,00	58,08 ± 0,29
6/5/2015 3:00:00 AM	2400	$294,00 \pm 17,15$	50,50 ± 3,18	43,98 ± 4,33	8,33	92,92 ± 0,25	$24,00 \pm 0,00$	57,58 ± 0,51
6/5/2015 4:00:00 AM	2412	$228,00 \pm 15,10$ 268 00 + 16 37	$49,83 \pm 3,10$ 51 97 + 3 22	43,24 ± 4,27 45.59 + 4.44	8,38	93,04 ± 0,27 93.16 ± 0.21	$24,00 \pm 0,00$ 24.00 + 0.00	$56,67 \pm 0,49$ 55.50 + 0.52
6/5/2015 6:00:00 AM	2436	270,00 ± 16,43	52,60 ± 3,24	46,29 ± 4,49	8,46	93,14 ± 0,28	24,00 ± 0,00	54,83 ± 0,39
6/5/2015 7:00:00 AM	2448	260,00 ± 16,12	51,57 ± 3,21	45,15 ± 4,41	8,50	93,22 ± 0,26	24,00 ± 0,00	55,00 ± 0,00
6/5/2015 8:00:00 AM	2460	$227,00 \pm 15,07$	52,48 ± 3,24	46,16 ± 4,48	8,54	93,30 ± 0,26	$24,00 \pm 0,00$	<u>55,50 ± 0,52</u>
6/5/2015 9:00:00 AM	2472	273.00 ± 17.00	$52,92 \pm 5,25$ 51.50 ± 3.21	40,04 ± 4,51 45.08 ± 4.40	8.63	$93,28 \pm 0,21$ 93.27 ± 0.23	$24,00 \pm 0,00$ 24.00 + 0.00	$57,25 \pm 0,62$ 58.50 ± 0.52
6/5/2015 11:00:00 AM	2496	298,00 ± 17,26	52,72 ± 3,25	46,42 ± 4,50	8,67	93,20 ± 0,30	24,92 ± 0,29	58,75 ± 0,45
6/5/2015 12:00:00 PM	2508	248,00 ± 15,75	51,45 ± 3,21	45,02 ± 4,40	8,71	93,17 ± 0,17	25,00 ± 0,00	57,67 ± 0,49
6/5/2015 1:00:00 PM	2520	$230,00 \pm 15,17$	$50,77 \pm 3,19$	44,27 ± 4,35	8,75	$92,96 \pm 0,24$	$25,00 \pm 0,00$	54,25 ± 1,36
6/5/2015 2:00:00 PM	2544	$252,00 \pm 15,23$ 262.00 + 16.19	49.82 ± 3,20	44,00 ± 4,50 43.22 ± 4.27	8.83	$92,99 \pm 0,20$ 92.80 ± 0.23	$25,00 \pm 0,00$ 25.00 ± 0.00	$51,00 \pm 0,85$ 50.00 ± 0.00
6/5/2015 4:00:00 PM	2556	244,00 ± 15,62	50,15 ± 3,17	43,59 ± 4,30	8,88	92,86 ± 0,22	25,00 ± 0,00	50,33 ± 0,49
6/5/2015 5:00:00 PM	2568	238,00 ± 15,43	51,10 ± 3,20	44,64 ± 4,37	8,92	92,79 ± 0,30	25,00 ± 0,00	52,33 ± 0,78
6/5/2015 6:00:00 PM	2580	274,00 ± 16,55	52,18 ± 3,23	45,83 ± 4,45	8,96	<u>92,96 ± 0,22</u>	25,00 ± 0,00	53,00 ± 0,00
6/5/2015 7:00:00 PM	2592	$264,00 \pm 16,25$ 268,00 + 16,37	51,88 ± 3,22 52,95 + 3,25	45,50 ± 4,43 46.67 ± 4.51	9,00	92,85 ± 0,24 92,93 ± 0,26	$25,00 \pm 0,00$ $25,00 \pm 0,00$	$53,25 \pm 0,45$ 54.67 + 0.49
6/5/2015 9:00:00 PM	2616	265,00 ± 16,28	51,08 ± 3,20	44,62 ± 4,37	9,08	92,97 ± 0,28	25,00 ± 0,00	55,00 ± 0,00
6/5/2015 10:00:00 PM	2628	264,00 ± 16,25	53,38 ± 3,27	47,15 ± 4,55	9,13	92,93 ± 0,36	25,00 ± 0,00	54,83 ± 0,39
6/5/2015 11:00:00 PM	2640	$232,00 \pm 15,23$	49,02 ± 3,13	42,34 ± 4,21	9,17	92,93 ± 0,29	$25,00 \pm 0,00$	54,00 ± 0,00
6/6/2015 12:00:00 AM	2652	$232,00 \pm 15,23$ 266.00 + 16.31	50,43 ± 3,18 49.90 + 3.16	$43,90 \pm 4,32$ 43.32 ± 4.38	9,21	92,98 ± 0,26 92.78 ± 0.28	$24,17 \pm 0,39$ $24,00 \pm 0.00$	54,00 ± 0,00
6/6/2015 2:00:00 AM	2676	249,00 ± 15,78	50,45 ± 3,18	43,92 ± 4,32	9,29	92,69 ± 0,28	24,00 ± 0,00	53,00 ± 0,00
6/6/2015 3:00:00 AM	2688	232,00 ± 15,23	48,32 ± 3,11	41,57 ± 4,15	9,33	92,78 ± 0,26	24,00 ± 0,00	53,00 ± 0,00
6/6/2015 4:00:00 AM	2700	248,00 ± 15,75	50,20 ± 3,17	43,65 ± 4,30	9,38	92,81 ± 0,25	24,00 ± 0,00	53,00 ± 0,00
6/6/2015 5:00:00 AM	2712	$259,00 \pm 16,09$ 250,00 + 15,81	48,97 ± 3,13 48,85 + 3,13	$42,29 \pm 4,21$ 42.16 + 4.20	9,42	92,89 ± 0,25 92,81 ± 0,24	$24,00 \pm 0,00$ 24.00 + 0.00	$52,08 \pm 0,29$ 52.00 + 0.00
6/6/2015 7:00:00 AM	2736	264,00 ± 16,25	51,22 ± 3,20	44,77 ± 4,38	9,50	92,92 ± 0,24	24,00 ± 0,00	52,17 ± 0,39
6/6/2015 8:00:00 AM	2748	222,00 ± 14,90	49,95 ± 3,16	43,37 ± 4,28	9,54	92,77 ± 0,24	24,00 ± 0,00	53,58 ± 0,51
6/6/2015 9:00:00 AM	2760	250,00 ± 15,81	48,98 ± 3,13	42,31 ± 4,21	9,58	93,05 ± 0,23	24,00 ± 0,00	55,25 ± 0,62
6/6/2015 10:00:00 AM	27784	$233,00 \pm 15,26$ 222 00 + 14 90	$50,30 \pm 3,17$ 50.05 + 3.16	$\frac{43,76}{43,48} \pm 4,31$	9,63	93,07 ± 0,26 92.97 ± 0.30	$24,00 \pm 0,00$ 24.83 ± 0.39	$56,92 \pm 0,29$ 57.75 + 0.45
6/6/2015 12:00:00 PM	2796	247,00 ± 15,72	48,77 ± 3,12	42,07 ± 4,19	9,71	92,86 ± 0,26	25,00 ± 0,00	58,00 ± 0,00
6/6/2015 1:00:00 PM	2808	263,00 ± 16,22	48,53 ± 3,12	41,81 ± 4,17	9,75	92,88 ± 0,26	25,00 ± 0,00	57,25 ± 0,45
6/6/2015 2:00:00 PM	2820	251,00 ± 15,84	48,55 ± 3,12	41,83 ± 4,17	9,79	92,78 ± 0,22	25,00 ± 0,00	55,83 ± 0,58
6/6/2015 3:00:00 PM	2832	$239,00 \pm 15,40$ 283.00 + 16.82	48,07 ± 3,12 49,13 + 3,13	$41,96 \pm 4,18$ 42.47 ± 4.22	9,83	92,62 ± 0,32 92,66 ± 0,20	$25,00 \pm 0,00$ $25,00 \pm 0,00$	54,33 ± 0,49
6/6/2015 5:00:00 PM	2856	242,00 ± 15,56	49,37 ± 3,14	42,73 ± 4,24	9,92	92,76 ± 0,26	25,00 ± 0,00	54,67 ± 0,65
6/6/2015 6:00:00 PM	2868	205,00 ± 14,32	48,15 ± 3,10	41,39 ± 4,14	9,96	92,76 ± 0,22	25,00 ± 0,00	56,50 ± 0,52
6/6/2015 7:00:00 PM	2880	227,00 ± 15,07	48,00 ± 3,10	41,23 ± 4,13	10,00	<u>92,59 ± 0,28</u>	25,00 ± 0,00	57,67 ± 0,49
6/6/2015 8:00:00 PM	2892	$226,00 \pm 15,03$ 226,00 + 15,03	47,75 ± 3,09 48.12 + 3.10	$40,95 \pm 4,11$ 41.35 + 4.14	10,04	$92,83 \pm 0,31$ 92,77 + 0.25	$25,00 \pm 0,00$ 25,00 + 0,00	58,00 ± 0,00
6/6/2015 10:00:00 PM	2916	248,00 ± 15,75	49,40 ± 3,14	42,77 ± 4,24	10,13	92,76 ± 0,29	25,00 ± 0,00	58,00 ± 0,00
6/6/2015 11:00:00 PM	2928	244,00 ± 15,62	49,18 ± 3,14	42,53 ± 4,22	10,17	92,74 ± 0,24	25,00 ± 0,00	57,50 ± 0,52
6/7/2015 12:00:00 AM	2940	237,00 ± 15,39	48,90 ± 3,13	42,22 ± 4,20	10,21	92,69 ± 0,28	$25,00 \pm 0,00$	57,00 ± 0,00
6/7/2015 1:00:00 AM	2952	$228,00 \pm 15,10$ 236.00 + 15.36	48,22 ± 3,11 47.98 + 3.10	$41,40 \pm 4,15$ 41,21 + 4,13	10,25	$92,72 \pm 0,24$ 92.73 + 0.28	$25,00 \pm 0,00$ $25,00 \pm 0,00$	$56,75 \pm 0,45$ $56,00 \pm 0,00$
6/7/2015 3:00:00 AM	2976	230,00 ± 15,17	48,38 ± 3,11	41,65 ± 4,16	10,33	92,72 ± 0,26	25,00 ± 0,00	55,92 ± 0,29
6/7/2015 4:00:00 AM	2988	222,00 ± 14,90	48,53 ± 3,12	41,81 ± 4,17	10,38	92,53 ± 0,24	24,25 ± 0,45	55,00 ± 0,00
6/7/2015 5:00:00 AM	3000	239,00 ± 15,46	47,95 ± 3,10	41,17 ± 4,13	10,42	92,74 ± 0,29	24,00 ± 0,00	55,58 ± 0,51
6/7/2015 0:00:00 AM	3024	262.00 ± 15.33	46.07 ± 3.07	40,27 ± 4,06 39,10 ± 3,97	10,46	$92,00 \pm 0,27$ 92.95 ± 0.28	$24,00 \pm 0,00$ 24.00 + 0.00	$55,30 \pm 0,51$ $55,33 \pm 0.49$
6/7/2015 8:00:00 AM	3036	231,00 ± 15,20	46,28 ± 3,04	<u>39,34</u> ± 3,99	10,54	93,07 ± 0,25	24,33 ± 0,49	56,42 ± 0,51
6/7/2015 9:00:00 AM	3048	250,00 ± 15,81	45,32 ± 3,01	38,27 ± 3,91	10,58	93,12 ± 0,20	25,00 ± 0,00	57,00 ± 0,00
6/7/2015 10:00:00 AM	3060	$2/3,00 \pm 16,52$	48,85 ± 3,13	$42,16 \pm 4,20$	10,63	$93,07 \pm 0,32$	$25,00 \pm 0,00$	$5/,75 \pm 0,45$
6/7/2015 11:00:00 AM	3084	236.00 ± 14.87	45.58 ± 3.04	38.57 ± 3.99	10,67	92.94 ± 0.18	$25,00 \pm 0,00$ 25.00 + 0.00	$50,00 \pm 0.00$
6/7/2015 1:00:00 PM	3096	215,00 ± 14,66	46,20 ± 3,04	<u>39,25 ± 3,</u> 99	10,75	<u>92,73</u> ± 0,26	<u>25,00 ± 0,00</u>	<u>58,08</u> ± 0,29
6/7/2015 2:00:00 PM	3108	265,00 ± 16,28	47,83 ± 3,09	41,04 ± 4,12	10,79	92,85 ± 0,18	25,00 ± 0,00	56,75 ± 0,62
6/7/2015 3:00:00 PM	3120	211,00 ± 14,53	47,08 ± 3,07	40,22 ± 4,06	10,83	92,70 ± 0,32	25,42 ± 0,51	55,67 ± 0,49

Anexo 2

Dados de calibração do detector Pylon pelo método Quasi

Data e Tempo	N° Intervalos	\bar{x} Ctotal $\pm \sigma_{Ctotal}$	Loop	$\bar{x} CPM \pm \sigma_{CPM}$	Tempo	$C_w(Bq/l) \pm \sigma_w$	$T(^{\circ}C) \pm \sigma_{T}$	$RH(\%) \pm \sigma_{RH}$
6/13/2015 4:47:00 PM	(2 min)	19.00 + 4.36	1	13/13 + 2.59	(Dia) 0.17	3.19 + 0.54	25.35 + 0.48	54.63 + 1.34
6/13/2015 8:49:00 PM	244	43.00 ± 6.56	2	36.16 ± 4.25	0,17	28.20 ± 3.12	25.00 ± 0.00	54.79 ± 0.96
6/14/2015 12:51:00 AM	366	75,00 ± 8,66	3	46,43 ± 4,82	0,50	39,49 ± 4,00	24,17 ± 0,38	52,96 ± 0,20
6/14/2015 4:53:00 AM	488	87,00 ± 9,33	4	52,91 ± 5,14	0,67	46,63 ± 4,51	24,00 ± 0,00	52,76 ± 0,58
6/14/2015 8:55:00 AM	610	116,00 ± 10,77	5	58,62 ± 5,41	0,84	52,91 ± 4,93	24,50 ± 0,50	53,93 ± 0,86
6/14/2015 12:57:00 PM	732 854	$110,00 \pm 10,49$ 120,00 + 10,95	5	64,93 ± 5,70	1,01	59,85 ± 5,37	25,00 ± 0,00	54,21 ± 0,59
6/14/2015 9:01:00 PM	976	123,00 ± 11,09	8	72,06 ± 6,00	1,10	67,70 ± 5,85	25,00 ± 0,00	56,80 ± 0,40
6/15/2015 1:03:00 AM	1098	163,00 ± 12,77	9	76,96 ± 6,20	1,51	73,09 ± 6,16	25,00 ± 0,00	57,00 ± 0,00
6/15/2015 5:05:00 AM	1220	156,00 ± 12,49	10	79,87 ± 6,32	1,68	76,29 ± 6,34	25,00 ± 0,00	58,84 ± 1,02
6/15/2015 9:07:00 AM	1342	130,00 ± 11,40	11	83,47 ± 6,46	1,85	80,25 ± 6,56	25,00 ± 0,00	59,00 ± 2,17
6/15/2015 1:09:00 PM	1464	$172,00 \pm 13,11$ $178,00 \pm 13,34$	12	87,45 ± 6,61	2,02	84,63 ± 6,80	$24,47 \pm 0,50$ $24,00 \pm 0.00$	54,71 ± 0,69
6/15/2015 9:13:00 PM	1708	186.00 + 13.64	14	93.67 ± 6.84	2,10	91.48 ± 7.16	24,00 ± 0,00	56.36 + 0.72
6/16/2015 1:15:00 AM	1830	197,00 ± 14,04	15	94,87 ± 6,89	2,52	92,80 ± 7,22	23,18 ± 0,39	55,00 ± 0,00
6/16/2015 5:17:00 AM	1952	202,00 ± 14,21	16	98,11 ± 7,00	2,69	96,36 ± 7,40	23,00 ± 0,00	55,39 ± 0,49
6/16/2015 9:19:00 AM	2074	190,00 ± 13,78	17	99,61 ± 7,06	2,86	98,01 ± 7,49	23,00 ± 0,00	56,62 ± 0,49
6/16/2015 1:21:00 PM	2196	178,00 ± 13,34	18	102,14 ± 7,15	3,03	100,79 ± 7,63	23,66 ± 0,48	56,98 ± 0,16
6/16/2015 5:23:00 PM	2318	$181,00 \pm 13,45$ 200.00 + 14.14	20	$106,77 \pm 7,31$ 107.37 ± 7.33	3,19	105,89 ± 7,88 106.55 ± 7.91	$23,45 \pm 0,50$ $23,00 \pm 0,00$	58,07 ± 0,68 58,90 ± 0,30
6/17/2015 1:27:00 AM	2562	208,00 ± 14,42	20	107,61 ± 7,34	3,53	106,81 ± 7,92	23,00 ± 0,00	58,98 ± 0,16
6/17/2015 5:29:00 AM	2684	204,00 ± 14,28	22	111,72 ± 7,47	3,70	111,33 ± 8,14	23,00 ± 0,00	58,32 ± 0,47
6/17/2015 9:31:00 AM	2806	210,00 ± 14,49	23	111,64 ± 7,47	3,87	111,25 ± 8,13	23,15 ± 0,36	61,85 ± 1,82
6/17/2015 1:33:00 PM	2928	235,00 ± 15,33	24	114,97 ± 7,58	4,03	114,91 ± 8,30	24,02 ± 0,16	66,19 ± 2,20
6/17/2015 5:44:46 PM	3050	234,00 ± 15,30	25	114,25 ± 7,56	4,20	114,12 ± 8,27	24,17 ± 0,37	67,77 ± 0,48
6/18/2015 1:48:46 AM	3294	237,00 ± 13,39 219.00 + 14.80	20	116,95 ± 7,71	4,57	119,30 ± 8,31 116.92 + 8.40	23,74 ± 0,44 23,00 + 0,00	64,40 ± 1,50 62.03 + 0.48
6/18/2015 5:50:46 AM	3416	242,00 ± 15,56	28	119,16 ± 7,72	4,71	119,52 ± 8,52	23,17 ± 0,37	64,73 ± 1,62
6/18/2015 9:52:46 AM	3538	224,00 ± 14,97	29	119,55 ± 7,73	4,87	119,95 ± 8,54	24,02 ± 0,13	66,70 ± 0,91
6/18/2015 1:54:46 PM	3660	231,00 ± 15,20	30	122,21 ± 7,82	5,04	122,87 ± 8,67	25,00 ± 0,00	62,12 ± 0,80
6/18/2015 5:56:46 PM	3782	233,00 ± 15,26	31	123,69 ± 7,86	5,21	124,51 ± 8,74	25,00 ± 0,00	61,60 ± 0,73
6/18/2015 9:58:46 PM	3904	$237,00 \pm 15,39$	32	$124,51 \pm 7,89$ $126,10 \pm 7,04$	5,38	$125,41 \pm 8,78$ 127.26 ± 9.97	24,19 ± 0,39	62,26 ± 0,44
6/19/2015 6:02:46 AM	4020	233,00 ± 15,40 233.00 ± 15.26	34	126,52 ± 7,94	5,55	127,20 ± 8,87	24,00 ± 0,00	54.60 ± 0.60
6/19/2015 10:04:46 AM	4270	241,00 ± 15,52	35	124,77 ± 7,90	5,88	125,70 ± 8,80	24,00 ± 0,00	52,22 ± 0,42
6/19/2015 2:06:46 PM	4392	237,00 ± 15,39	36	126,71 ± 7,96	6,05	127,83 ± 8,89	23,98 ± 0,13	52,12 ± 0,32
6/19/2015 6:08:46 PM	4514	264,00 ± 16,25	37	127,95 ± 8,00	6,22	129,19 ± 8,95	23,36 ± 0,48	51,79 ± 0,41
6/19/2015 10:10:46 PM	4636	217,00 ± 14,73	38	126,32 ± 7,95	6,39	127,40 ± 8,87	$22,37 \pm 0,49$	$52,00 \pm 0,00$
6/20/2015 2:12:46 AM	4758	244,00 ± 15,62 248,00 + 15,75	40	120,98 ± 7,97	6 72	128,15 ± 8,91	21,74 ± 0,44 21.36 ± 0.48	53,50 ± 0,15
6/20/2015 10:16:46 AM	5002	263,00 ± 16,22	41	129,73 ± 8,05	6,89	131,15 ± 9,04	22,73 ± 0,45	55,07 ± 0,26
6/20/2015 2:18:46 PM	5124	238,00 ± 15,43	42	129,17 ± 8,04	7,06	130,53 ± 9,01	23,00 ± 0,00	55,16 ± 1,62
6/20/2015 6:20:46 PM	5246	267,00 ± 16,34	43	131,92 ± 8,12	7,23	133,56 ± 9,14	23,00 ± 0,00	57,55 ± 0,88
6/20/2015 10:22:46 PM	5368	256,00 ± 16,00	44	132,35 ± 8,13	7,39	134,03 ± 9,16	22,29 ± 0,46	55,82 ± 0,39
6/21/2015 2:24:46 AM	5490	257,00 ± 16,03 249.00 + 15.78	45	131,44 ± 8,11 131,31 + 8,10	7,50	133,03 ± 9,12 132,89 + 9,11	$21,73 \pm 0,45$ 21.45 ± 0.50	54,77 ± 0,42 55.93 + 1.88
6/21/2015 10:28:46 AM	5734	257,00 ± 16,03	47	130,96 ± 8,09	7,90	132,50 ± 9,10	22,86 ± 0,35	56,75 ± 0,64
6/21/2015 2:30:46 PM	5856	285,00 ± 16,88	48	134,58 ± 8,20	8,07	136,49 ± 9,27	23,00 ± 0,00	56,88 ± 1,83
6/21/2015 6:32:46 PM	5978	278,00 ± 16,67	49	133,76 ± 8,18	8,23	135,59 ± 9,23	23,00 ± 0,00	59,53 ± 0,89
6/21/2015 10:34:46 PM	6100	273,00 ± 16,52	50	135,89 ± 8,24	8,40	137,93 ± 9,33	22,81 ± 0,39	59,06 ± 0,23
6/22/2015 2:36:46 AM	6222	$246,00 \pm 15,68$ 261.00 ± 16.16	51	$135,08 \pm 8,22$ $135,67 \pm 8,23$	8,57	$137,04 \pm 9,29$ 137.63 ± 9.32	$22,00 \pm 0,00$	$58,10 \pm 0,75$ 59.55 + 1.77
6/22/2015 10:40:46 AM	6466	270.00 + 16.43	53	133.83 + 8.18	8,91	135.66 + 9.23	23.80 + 0.40	58.75 + 1.68
6/22/2015 2:42:46 PM	6588	262,00 ± 16,19	54	136,78 ± 8,27	9,08	138,90 ± 9,37	24,26 ± 0,44	55,21 ± 1,14
6/22/2015 6:44:46 PM	6710	265,00 ± 16,28	55	138,55 ± 8,32	9,24	140,86 ± 9,46	24,40 ± 0,49	56,12 ± 0,33
6/22/2015 10:46:46 PM	6832	311,00 ± 17,64	56	136,90 ± 8,27	9,41	139,05 ± 9,38	23,86 ± 0,35	54,96 ± 0,72
6/23/2015 2:48:46 AM	6954	$230,00 \pm 15,17$ 260.00 + 16.13	57	135,69 ± 8,24	9,58 0 75	$137,71 \pm 9,32$ 138.10 ± 0.24	$23,00 \pm 0,00$	52,68 ± 0,58
6/23/2015 10:52:46 AM	7198	290,00 ± 17.03	59	136,73 ± 8.27	9,92	138,85 ± 9.37	24,00 ± 0.00	54,00 ± 1.99
6/23/2015 2:54:46 PM	7320	254,00 ± 15,94	60	136,89 ± 8,27	10,08	139,03 ± 9,38	24,69 ± 0,47	54,99 ± 3,30
6/23/2015 6:56:46 PM	7442	283,00 ± 16,82	61	137,80 ± 8,30	10,25	140,03 ± 9,42	24,00 ± 0,00	54,77 ± 1,10
6/23/2015 10:58:46 PM	7564	266,00 ± 16,31	62	137,34 ± 8,29	10,42	139,52 ± 9,40	23,63 ± 0,49	57,58 ± 0,50
6/24/2015 3:00:46 AM	7686	239,00 ± 15,46	63	138,00 ± 8,31	10,59	$140,25 \pm 9,43$	$23,00 \pm 0,00$	57,10 ± 0,30
6/24/2015 11:04:46 AM	7930	210,00 ± 10,67 290,00 ± 17.03	65	135.72 ± 8,31	10,76	137.75 + 9.32	23,00 ± 0,00 23.00 ± 0.00	55.50 ± 0,95
6/24/2015 3:06:46 PM	8052	233,00 ± 15,26	66	137,13 ± 8,28	11,09	139,30 ± 9,39	23,00 ± 0,00	52,64 ± 0,79
6/24/2015 7:08:46 PM	8174	276,00 ± 16,61	67	136,79 ± 8,27	11,26	138,91 ± 9,37	22,93 ± 0,26	51,37 ± 0,49
6/24/2015 11:10:46 PM	8296	284,00 ± 16,85	68	138,33 ± 8,32	11,43	140,61 ± 9,45	22,12 ± 0,32	51,26 ± 0,49
6/25/2015 3:12:46 AM	8418	240,00 ± 15,49	69	137,44 ± 8,29	11,60	139,64 ± 9,41	22,00 ± 0,00	52,79 ± 0,45
6/25/2015 /:14:46 AM	8540	$2/7,00 \pm 16,64$ 252.00 + 15.97	70	138,40 ± 8,32	11,76	140,69 ± 9,45	$22,31 \pm 0,46$	53,60 ± 0,49
6/25/2015 3:18:46 PM	8784	263,00 ± 16.22	72	140,03 ± 8.37	12,10	142,48 ± 9.53	24,00 ± 0.00	51,46 ± 0.62
6/25/2015 7:20:46 PM	8906	250,00 ± 15,81	73	138,29 ± 8,32	12,27	140,57 ± 9,45	23,26 ± 0,44	50,96 ± 1,11
6/25/2015 11:22:46 PM	9028	269,00 ± 16,40	74	136,40 ± 8,26	12,44	138,49 ± 9,36	22,33 ± 0,47	52,39 ± 0,49
6/26/2015 3:24:46 AM	9150	274,00 ± 16,55	75	138,29 ± 8,32	12,60	140,57 ± 9,45	21,31 ± 0,46	50,80 ± 1,14
6/26/2015 7:26:46 AM	9272	269,00 ± 16,40	76	139,01 ± 8,34	12,77	141,36 ± 9,48	21,62 ± 0,49	53,13 ± 1,49
6/26/2015 3:30:46 PM	9594	259,00 ± 16,97	78	137,00 ± 8.28	13.11	139,15 ± 9,38	23,58 ± 0.50	49,88 ± 0.96

Data e Tempo	N° Intervalos	\bar{x} Ctotal ±	σ_{Ctotal}	Loop	<i>x</i> CPM	_± σ _{CPM}	Tempo	$C_{w}(Ba/l) \pm \sigma_{w}$	$T(^{\circ}C) \pm \sigma_T$	$RH(\%) \pm \sigma_{RH}$
6/26/2015 7:22:46 DM	(2 min)	257.00 ±	16.02	70	129.04	⊥ 0.21	(Dia)	140.20 + 9.42	22.00 + 0.00	50.14 ± 0.25
6/26/2015 11:34:46 PM	9760	264.00 +	16.25	80	139.81	+ 8.36	13,28	140,29 <u>1</u> 9,43	22.17 + 0.37	50.31 ± 0.46
6/27/2015 3:36:46 AM	9882	266,00 ±	16,31	81	138,88	± 8,33	13,61	141,21 ± 9,47	21,18 ± 0,39	48,53 ± 0,87
6/27/2015 7:38:46 AM	10004	273,00 ±	16,52	82	139,32 :	± 8,35	13,78	141,70 ± 9,49	21,55 ± 0,50	49,30 ± 0,61
6/27/2015 11:40:46 AM	10126	290,00 ±	17,03	83	141,54 :	± 8,41	13,95	144,15 ± 9,60	22,51 ± 0,50	44,90 ± 2,30
6/27/2015 3:42:46 PM	10248	256,00 ±	16,00	84	140,31 :	± 8,38	14,12	142,79 ± 9,54	$22,79 \pm 0,41$	44,15 ± 2,45
6/27/2015 11:46:46 PM	10370	200,00 ± 297.00 +	17.23	86	141,71	+ 8.44	14,28	144,33 ± 9,60 145.30 ± 9.64	21.19 ± 0.39	47,83 ± 0,37 47.03 ± 0.18
6/28/2015 3:48:46 AM	10614	296,00 ±	17,20	87	143,71	± 8,48	14,62	146,54 ± 9,70	20,56 ± 0,50	47,04 ± 0,20
6/28/2015 7:50:46 AM	10736	274,00 ±	16,55	88	141,14 :	± 8,40	14,79	143,71 ± 9,58	21,16 ± 0,59	49,31 ± 0,79
6/28/2015 11:52:46 AM	10858	266,00 ±	16,31	89	142,44	± 8,44	14,96	145,13 ± 9,64	22,00 ± 0,00	47,58 ± 1,31
6/28/2015 3:54:46 PM	10980	277,00 ±	16,64	90	143,24	± 8,46	15,13	146,02 ± 9,67	$22,00 \pm 0,00$	48,72 ± 2,46
6/28/2015 11:58:46 PM	11102	301.00 ±	17 35	91	141,25	+ 8.47	15,29	145,65 ± 9,58 146.30 ± 9.69	21,88 ± 0,32 21.00 ± 0.00	$\frac{50,51}{48,28} \pm 0.45$
6/29/2015 4:00:46 AM	11346	278,00 ±	16,67	93	142,21	± 8,43	15,63	144,89 ± 9,63	20,30 ± 0,46	48,12 ± 0,42
6/29/2015 8:02:46 AM	11468	278,00 ±	16,67	94	142,62	± 8,44	15,80	145,33 ± 9,65	21,37 ± 0,65	52,31 ± 1,56
6/29/2015 12:08:00 PM	11590	281,00 ±	16,76	95	141,52 :	± 8,41	15,97	144,12 ± 9,60	22,79 ± 0,41	49,07 ± 1,41
6/29/2015 4:10:00 PM	11712	276,00 ±	16,61	96	141,65	± 8,42	16,13	144,27 ± 9,60	$23,00 \pm 0,00$	50,64 ± 2,05
6/30/2015 12:14:00 AM	11054	305.00 ±	17,46	97	142,01	+ 8.48	16,30	145,52 ± 9,65 146.69 ± 9.70	22,38 ± 0,49 22.00 ± 0.00	52,82 ± 0,59
6/30/2015 4:16:00 AM	12078	290,00 ±	17,03	99	143,64	± 8,47	16,64	146,45 ± 9,69	22,00 ± 0,00	55,48 ± 0,68
6/30/2015 8:18:00 AM	12200	312,00 ±	17,66	100	143,31	± 8,46	16,81	146,09 ± 9,68	22,28 ± 0,45	57,23 ± 0,42
6/30/2015 12:20:00 PM	12322	278,00 ±	16,67	101	143,40 :	± 8,47	16,97	146,20 ± 9,68	23,00 ± 0,00	56,82 ± 0,66
6/30/2015 4:22:00 PM	12444	275,00 ±	16,58	102	143,04 :	± 8,46	17,14	145,80 ± 9,67	23,59 ± 0,49	55,40 ± 1,36
7/1/2015 12:26:00 AM	12566	247,00 ± 250.00 +	15,72	103	142,81	± 8,45 + 8,47	17,31	145,55 ± 9,66	$23,00 \pm 0,00$ 22.21 + 0.41	55,81 ± 0,43
7/1/2015 4:28:00 AM	12810	260,00 ±	16,12	105	141,58	± 8,41	17,65	144,19 ± 9,60	22,17 ± 0,37	60,42 ± 1,79
7/1/2015 8:30:00 AM	12932	267,00 ±	16,34	106	143,14 :	± 8,46	17,81	145,91 ± 9,67	22,00 ± 0,00	64,02 ± 1,18
7/1/2015 12:32:00 PM	13054	299,00 ±	17,29	107	142,51	± 8,44	17,98	145,21 ± 9,64	22,99 ± 0,09	64,56 ± 1,25
7/1/2015 4:34:00 PM	13176	262,00 ±	16,19	108	141,72 :	± 8,42	18,15	144,34 ± 9,60	23,00 ± 0,00	64,64 ± 1,50
7/2/2015 8:36:00 PM	13298	282,00 ±	16,79	109	142,81	± 8,45 + 8.44	18,32	145,54 ± 9,65 145,09 ± 9,64	$23,00 \pm 0,00$ 22.49 ± 0.50	65,83 ± 0,39
7/2/2015 4:40:00 AM	13542	299,00 ±	17,29	111	142,69	± 8,45	18,65	145,41 ± 9,65	22,00 ± 0,00	65,74 ± 0,44
7/2/2015 8:42:00 AM	13664	284,00 ±	16,85	112	142,39 :	± 8,44	18,82	145,08 ± 9,64	22,48 ± 0,50	65,65 ± 0,48
7/2/2015 12:44:00 PM	13786	284,00 ±	16,85	113	144,29	± 8,49	18,99	147,17 ± 9,72	23,00 ± 0,00	66,15 ± 0,57
7/2/2015 4:46:00 PM	13908	265,00 ±	16,28	114	142,66 :	± 8,45	19,16	145,38 ± 9,65	23,00 ± 0,00	66,97 ± 0,18
7/2/2015 8:48:00 PM	14030	264,00 ±	16,25	115	144,39	± 8,50	19,33	$147,28 \pm 9,73$	$22,82 \pm 0,39$	$66,56 \pm 0,50$
7/3/2015 4:52:00 AM	14132	288,00 ±	16,97	117	143,38	± 8,30	19,66	146,17 ± 9,68	22,00 ± 0,00	66,92 ± 0,64
7/3/2015 8:54:00 AM	14396	276,00 ±	16,61	118	144,41 :	± 8,50	19,83	147,30 ± 9,73	22,00 ± 0,00	67,57 ± 0,50
7/3/2015 12:56:00 PM	14518	245,00 ±	15,65	119	140,23	± 8,37	20,00	142,71 ± 9,54	23,00 ± 0,00	67,07 ± 0,26
7/3/2015 4:58:00 PM	14640	247,00 ±	15,72	120	144,07 :	± 8,49	20,17	146,93 ± 9,71	22,82 ± 0,39	67,88 ± 0,33
7/3/2015 9:00:00 PM	14762	297,00 ±	17,23	121	144,81 :	± 8,51 + 8.46	20,33	$147,74 \pm 9,75$ 146.01 ± 9.67	$22,09 \pm 0,29$ 22.00 ± 0.00	67,34 ± 0,48
7/4/2015 5:04:00 AM	15006	280,00 ±	16,73	123	143,79	± 8,48	20,67	146,62 ± 9,70	22,00 ± 0,00	67,27 ± 0,45
7/4/2015 9:06:00 AM	15128	269,00 ±	16,40	124	141,76	± 8,42	20,84	144,39 ± 9,61	22,58 ± 0,50	68,26 ± 0,44
7/4/2015 1:08:00 PM	15250	287,00 ±	16,94	125	143,56 :	± 8,47	21,01	146,37 ± 9,69	23,00 ± 0,00	70,00 ± 2,28
7/4/2015 5:10:00 PM	15372	256,00 ±	16,00	126	143,93 :	± 8,48	21,18	146,78 ± 9,71	$23,00 \pm 0,00$	73,36 ± 0,77
7/4/2013 9.12.00 PM	15494	288,00 ±	10,97	127	145,21	± 0,52 + 8.44	21,54	146,16 ± 9,77 145,19 ± 9,64	22,54 ± 0,50	54.08 + 1.85
7/5/2015 5:16:00 AM	15738	297,00 ±	17,23	129	144,50	± 8,50	21,68	147,40 ± 9,73	21,10 ± 0,30	51,05 ± 0,83
7/5/2015 9:18:00 AM	15860	318,00 ±	17,83	130	144,08	± 8,49	21,85	146,94 ± 9,71	21,00 ± 0,00	52,26 ± 0,69
7/5/2015 1:20:00 PM	15982	269,00 ±	16,40	131	144,43	± 8,50	22,02	147,33 ± 9,73	21,00 ± 0,00	53,63 ± 0,49
7/5/2015 5:22:00 PM	16104	276,00 ±	16,61	132	144,88 :	± 8,51	22,18	147,82 ± 9,75	21,00 ± 0,00	55,19 ± 0,64
7/6/2015 9:24:00 PM	16348	273.00 ±	16.52	133	145,80	<u>+ 0,48</u> + 8.49	22,35	140,05 ± 9,70 147,19 ± 9,72	20,59 ± 0,00	56,55 ± 0,00
7/6/2015 5:28:00 AM	16470	263,00 ±	16,22	135	144,79	± 8,51	22,69	147,72 ± 9,75	<u>20,09 ±</u> 0,29	57,30 ± 0,65
7/6/2015 9:30:00 AM	16592	275,00 ±	16,58	136	143,52	± 8,47	22,86	146,32 ± 9,69	21,02 ± 0,16	61,15 ± 1,48
7/6/2015 1:32:00 PM	16714	254,00 ±	15,94	137	143,19	± 8,46	23,02	145,96 ± 9,67	22,13 ± 0,34	64,73 ± 0,95
7/6/2015 5:34:00 PM	16958	202,00 ±	16.64	130	141,12	± 8,40	23,19	143,08 ± 9,58 149.50 + 0.82	22,00 ± 0,00 22.00 + 0.00	65.84 + 0.37
7/7/2015 1:38:00 AM	17080	281,00 ±	16,76	140	146,55	± 8,56	23,53	149,66 ± 9,83	22,00 ± 0,00	65,00 ± 0,00
7/7/2015 5:40:00 AM	17202	268,00 ±	16,37	141	145,45	± 8,53	23,70	148,44 ± 9,78	22,00 ± 0,00	66,30 ± 1,31
7/7/2015 9:42:00 AM	17324	292,00 ±	17,09	142	145,09 :	± 8,52	23,86	148,05 ± 9,76	22,00 ± 0,00	69,83 ± 0,82
7/7/2015 1:46:00 PM	17446	326,00 ±	18,06	143	145,93 :	± 8,54	24,03	148,97 ± 9,80	22,32 ± 0,47	71,39 ± 0,98
7/7/2015 5:48:00 PM	17568	275,00 ±	17.46	144	145,62	± 8,53 + 8,53	24,20	148,63 ± 9,78	22,54 ± 0,50	67.50 ± 0.57
7/8/2015 1:52:00 AM	17812	274,00 ±	16,55	146	145,44	± 8,53	24,54	148,44 ± 9,78	22,00 ± 0,00	67,00 ± 0,00
7/8/2015 5:54:00 AM	17934	312,00 ±	17,66	147	145,24	± 8,52	24,70	148,21 ± 9,77	22,00 ± 0,00	67,31 ± 0,47
7/8/2015 9:56:00 AM	18056	277,00 ±	16,64	148	146,31	± 8,55	24,87	149,39 ± 9,81	22,18 ± 0,39	68,14 ± 0,35
7/8/2015 1:58:00 PM	18178	269,00 ±	16,40	149	147,31	± 8,58	25,04	150,49 ± 9,86	22,41 ± 0,49	67,98 ± 0,22
7/8/2015 0.00:00 PM	18422	259,00 ± 250.00 +	15 81	150	145.33	- 0,53 + 852	25 38	148.32 + 9.78	22,05 ± 0,29 22.00 + 0.00	62.75 ± 0.60
7/9/2015 2:04:00 AM	18544	288,00 ±	16,97	152	146,40	± 8,56	25,54	149,49 ± 9,82	22,00 ± 0,00	62,00 ± 0,00
7/9/2015 6:06:00 AM	18666	295,00 ±	17,18	153	143,60 :	± 8,47	25,71	146,41 ± 9,69	22,00 ± 0,00	62,14 ± 0,55
7/9/2015 10:08:00 AM	18788	288,00 ±	16,97	154	146,19	± 8,55	25,88	149,27 ± 9,81	22,00 ± 0,00	63,88 ± 0,36
7/9/2015 2:10:00 PM	18910	313,00 ±	17,69	155	147,87	± 8,60	26,05	151,11 ± 9,89	22,00 ± 0,00	64,11 ± 0,31
7/9/2015 0:12:00 PM	19032	270,00 ± 288.00 +	16 97	150	140,51	± 8,50	26 38	149,01 ± 9,82 147.83 + 9.75	22,21 ± 0,41 22.00 + 0.00	$04,95 \pm 0,25$ 63.30 + 0.75
7/10/2015 2:16:00 AM	19276	262,00 ±	16,19	158	144,38	± 8,50	26,55	147,27 ± 9,73	22,00 ± 0,00	60,73 ± 0,65
7/10/2015 6:18:00 AM	19398	285,00 ±	16,88	159	144,40	± 8,50	26,72	147,29 ± 9,73	22,00 ± 0,00	60,95 ± 1,79

Data e Tempo	N° Intervalos (2 min)	\bar{x} Ctotal	$\pm \sigma_{Ctotal}$	Loop	$\bar{x} CPM \pm \sigma_{CPM}$	Tempo (Dia)	$C_w(Bq/l) \pm \sigma_w$	$T(^{\circ}C) \pm \sigma_T$	RH(%) ±	σ_{RH}
7/10/2015 10:20:00 AM	19520	286,00	± 16,91	160	145,06 ± 8,52	26,89	148,02 ± 9,76	22,51 ± 0,50	65,11 ±	0,50
7/10/2015 2:22:00 PM	19642	285,00	± 16,88	161	146,33 ± 8,55	27,06	149,42 ± 9,82	23,00 ± 0,00	63,10 ±	0,83
7/10/2015 6:24:00 PM	19764	305,00	± 17,46	162	144,81 ± 8,51	27,23	147,75 ± 9,75	23,00 ± 0,00	64,88 ±	0,33
7/10/2015 10:26:00 PM	19886	310,00	± 17,61	163	145,09 ± 8,52	27,39	148,05 ± 9,76	23,00 ± 0,00	63,57 ±	0,56
7/11/2015 2:28:00 AM	20008	287,00	± 16,94	164	143,24 ± 8,46	27,56	146,01 ± 9,67	23,00 ± 0,00	62,01 ±	0,09
7/11/2015 6:30:00 AM	20130	311,00	± 17,64	165	146,11 ± 8,55	27,73	149,17 ± 9,81	23,00 ± 0,00	61,96 ±	0,68
7/11/2015 10:32:00 AM	20252	270,00	± 16,43	166	145,31 ± 8,52	27,90	148,29 ± 9,77	23,00 ± 0,00	61,00 ±	0,00
7/11/2015 2:34:00 PM	20374	293,00	± 17,12	167	143,67 ± 8,48	28,07	146,49 ± 9,69	23,00 ± 0,00	62,26 ±	0,74
7/11/2015 6:36:00 PM	20496	263,00	± 16,22	168	145,36 ± 8,53	28,23	148,35 ± 9,77	23,00 ± 0,00	61,76 ±	0,43
7/11/2015 10:38:00 PM	20618	290,00	± 17,03	169	145,08 ± 8,52	28,40	148,04 ± 9,76	23,00 ± 0,00	60,79 ±	0,41
7/12/2015 2:40:00 AM	20740	274,00	± 16,55	170	143,55 ± 8,47	28,57	146,36 ± 9,69	23,00 ± 0,00	59,65 ±	0,48
7/12/2015 6:42:00 AM	20862	272,00	± 16,49	171	143,85 ± 8,48	28,74	146,69 ± 9,70	22,79 ± 0,41	59,91 ±	1,35
7/12/2015 10:44:00 AM	20984	282,00	± 16,79	172	145,82 ± 8,54	28,91	148,85 ± 9,79	23,07 ± 0,26	62,29 ±	0,75
7/12/2015 2:46:00 PM	21106	280,00	± 16,73	173	143,51 ± 8,47	29,07	146,31 ± 9,69	24,00 ± 0,00	58,21 ±	1,46
7/12/2015 6:48:00 PM	21228	284,00	± 16,85	174	144,48 ± 8,50	29,24	147,38 ± 9,73	24,00 ± 0,00	60,24 ±	0,99
7/12/2015 10:50:00 PM	21350	281,00	± 16,76	175	145,86 ± 8,54	29,41	148,90 ± 9,79	24,00 ± 0,00	57,73 ±	0,45
7/13/2015 2:52:00 AM	21472	274,00	± 16,55	176	145,11 ± 8,52	29,58	148,07 ± 9,76	23,74 ± 0,44	56,60 ±	0,66
7/13/2015 6:54:00 AM	21594	319,00	± 17,86	177	145,74 ± 8,54	29,75	148,77 ± 9,79	23,65 ± 0,48	56,51 ±	0,50
7/13/2015 10:56:00 AM	21716	324,00	± 18,00	178	145,31 ± 8,52	29,91	148,29 ± 9,77	24,00 ± 0,00	56,95 ±	1,29
7/13/2015 2:58:00 PM	21838	288,00	± 16,97	179	145,08 ± 8,52	30,08	148,04 ± 9,76	25,00 ± 0,00	54,42 ±	0,69
7/13/2015 7:00:00 PM	21960	299,00	± 17,29	180	144,70 ± 8,51	30,25	147,62 ± 9,74	25,00 ± 0,00	54,93 ±	0,83
7/13/2015 11:02:00 PM	22082	286,00	± 16,91	181	145,74 ± 8,54	30,42	148,76 ± 9,79	24,55 ± 0,50	53,52 ±	0,50
7/14/2015 3:04:00 AM	22204	306,00	± 17,49	182	144,24 ± 8,49	30,59	147,12 ± 9,72	24,00 ± 0,00	54,08 ±	0,28
7/14/2015 7:06:00 AM	22326	274,00	± 16,55	183	144,85 ± 8,51	30,75	147,78 ± 9,75	24,00 ± 0,00	54,77 ±	0,42
7/14/2015 11:08:00 AM	22448	240,00	± 15,49	184	143,22 ± 8,46	30,92	145,99 ± 9,67	24,98 ± 0,16	53,55 ±	0,52
7/14/2015 3:10:00 PM	22570	267,00	± 16,34	185	146,07 ± 8,55	31,09	149,13 ± 9,80	25,00 ± 0,00	54,69 ±	1,65
7/14/2015 7:12:00 PM	22692	293,00	± 17,12	186	145,13 ± 8,52	31,26	148,09 ± 9,76	25,00 ± 0,00	58,26 ±	0,44
7/14/2015 11:14:00 PM	22814	279,00	± 16,70	187	141,88 ± 8,42	31,43	144,51 ± 9,61	25,00 ± 0,00	57,41 ±	0,49
7/15/2015 3:16:00 AM	22936	289,00	± 17,00	188	144,05 ± 8,49	31,59	146,90 ± 9,71	25,00 ± 0,00	57,00 ±	0,00
7/15/2015 7:18:00 AM	23058	290,00	± 17,03	189	143,78 ± 8,48	31,76	146,61 ± 9,70	25,00 ± 0,00	57,47 ±	0,70
7/15/2015 11:20:00 AM	23180	264,00	± 16,25	190	142,89 ± 8,45	31,93	145,63 ± 9,66	25,64 ± 0,48	57,00 ±	1,07
7/15/2015 3:22:00 PM	23302	271,00	± 16,46	191	142,98 ± 8,46	32,10	145,73 ± 9,66	26,00 ± 0,00	57,45 ±	0,93
7/15/2015 7:24:00 PM	23424	279,00	± 16,70	192	142,52 ± 8,44	32,27	145,22 ± 9,64	26,00 ± 0,00	58,74 ±	0,44
7/15/2015 11:26:00 PM	23546	265,00	± 16,28	193	143,23 ± 8,46	32,43	146,00 ± 9,67	25,69 ± 0,47	58,51 ±	0,50
7/16/2015 3:28:00 AM	23668	282,00	± 16,79	194	143,83 ± 8,48	32,60	146,67 ± 9,70	25,00 ± 0,00	57,32 ±	0,47
7/16/2015 7:30:00 AM	23790	261,00	± 16,16	195	144,13 ± 8,49	32,77	146,99 ± 9,72	25,00 ± 0,00	58,26 ±	0,79
7/16/2015 11:32:00 AM	23912	299,00	± 17,29	196	144,70 ± 8,51	32,94	147,62 ± 9,74	25,26 ± 0,44	55,78 ±	0,63
7/16/2015 3:34:00 PM	24034	288,00	± 16,97	197	142,78 ± 8,45	33,11	145,51 ± 9,65	26,00 ± 0,00	57,56 ±	1,56
7/16/2015 7:36:00 PM	24156	284,00	± 16,85	198	142,17 ± 8,43	33,28	144,84 ± 9,63	25,32 ± 0,47	58,43 ±	0,86
7/16/2015 11:38:00 PM	24278	256,00	± 16,00	199	142,85 ± 8,45	33,44	145,59 ± 9,66	25,00 ± 0,00	56,15 ±	0,79
7/17/2015 3:40:00 AM	24400	281,00	± 16,76	200	142,05 ± 8,43	33,61	144,71 ± 9,62	24,27 ± 0,45	54,19 ±	0,39
7/17/2015 7:42:00 AM	24522	278,00	± 16,67	201	140,69 ± 8,39	33,78	143,21 ± 9,56	24,00 ± 0,00	55,98 ±	0,61
7/17/2015 11:44:00 AM	24644	266,00	± 16,31	202	139,97 ± 8,37	33,95	142,42 ± 9,52	24,99 ± 0,09	55,01 ±	1,08
7/17/2015 3:46:00 PM	24766	299,00	± 17,29	203	143,56 ± 8,47	34,12	146,37 ± 9,69	25,00 ± 0,00	52,38 ±	0,52

Anexo 3

Dados dos detectores de *NaI(Tl)* e *BGO* (2"x 2") para a definição do tempo mínimo de análise que atende à distribuição de Poisson baseando-se no cálculo de χ^2 para diferentes concentrações de ⁴⁰K, ²³⁸U e ²³²Th.

Pad	rão/		· · ·			Nal(1	ГІ)								BGO RS-	230	•		
Bra	nco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose
(Bk	(G)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	t (s)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	nSv/h t (s)
	BKG	41	79,41 ± 12,40	18	34,86 ± 8,22	9	17,43 ± 5,81	780	1510,65 ± 54,09	30,98	151,75	303,5 ± 24,64	42,45	84,9 ± 13,03	41,05	82,1 ± 12,81	1444,1	2888,2 ± 76,00	72,9 30
	К6	40	79,37 ± 12,55	14	27,78 ± 7,42	7	13,89 ± 5,25	770	1527,78 ± 55,00	5 30,24	155,45	310,9 ± 24,94	43,35	86,7 ± 13,17	57,95	115,9 ± 15,22	1424	2848 ± 75,47	82,8 30
	BKG	92	89,41 ± 9,32	28	27,21 ± 5,14	25	24,30 ± 4,86	1553	1509,23 ± 38,30	61,74	315,3	315,3 ± 17,76	86,7	86,7 ± 9,31	96,6	96,6 ± 9,83	3036,2	3036,2 ± 55,10	78,2 60
	К6	98	97,54 ± 9,85	35	34,84 ± 5,89	27	26,87 ± 5,17	1423	1416,39 ± 37,5	60,28	314,7	314,7 ± 17,74	77,7	77,7 ± 8,81	92,9	92,9 ± 9,64	2954,2	2954,2 ± 54,35	74,4 60
	BKG	145	96,18 ± 7,99	36	23,88 ± 3,98	37	24,54 ± 4,03	2271	1506,30 ± 31,63	90,46	451,95	301,3 ± 14,17	125,55	83,7 ± 7,47	136,95	91,3 ± 7,80	4475,1	2983,4 ± 44,60	74,7 90
	К6	149	98,09 ± 8,04	43	28,31 ± 4,32	27	17,77 ± 3,42	2248	1479,92 ± 31,22	91,14	468,6	312,4 ± 14,43	122,85	81,9 ± 7,39	142,5	95 ± 7,96	4458,75	2972,5 ± 44,52	76 90
	BKG	198	98,28 ± 6,98	61	30,28 ± 3,88	35	17,37 ± 2,94	3084	1530,77 ± 27,50	5 120,9	642,8	321,4 ± 12,68	159	79,5 ± 6,30	195,8	97,9 ± 7,00	5961,6	2980,8 ± 38,61	76,8 120
	К6	179	88,95 ± 6,65	48	23,85 ± 3,44	27	13,42 ± 2,58	2949	1465,46 ± 26,99	120,7	632,2	316,1 ± 12,57	169,4	84,7 ± 6,51	194,4	97,2 ± 6,97	5862	2931 ± 38,28	77,8 120
	BKG	278	91,75 ± 5,50	85	28,05 ± 3,04	45	14,85 ± 2,21	4415	1457,10 ± 21,93	8 181,8	948	316,0 ± 10,26	246,3	82,1 ± 5,23	294	98 ± 5,72	8918,4	2972,8 ± 31,48	77,2 180
VC	К6	267	88,48 ± 5,41	82	27,17 ± 3,00	53	17,56 ± 2,41	4438	1470,67 ± 22,08	3 181,1	943,8	314,6 ± 10,24	230,4	76,8 ± 5,06	294,3	98,1 ± 5,72	8750,1	2916,7 ± 31,18	75,4 180
KO	BKG	389	96,89 ± 4,91	113	28,15 ± 2,65	75	18,68 ± 2,16	6010	1497,01 ± 19,33	240,9	1269,2	317,3 ± 8,91	310	77,5 ± 4,40	360,4	90,1 ± 4,75	12048,4	3012,1 ± 27,44	73,8 240
	К6	347	86,29 ± 4,63	122	30,34 ± 2,75	65	16,16 ± 2,00	5807	1444,05 ± 18,9	5 241,3	1246	311,5 ± 8,82	305,2	76,3 ± 4,37	376,8	94,2 ± 4,85	11856,8	2964,2 ± 27,22	74 240
	BKG	449	89,60 ± 4,23	130	25,94 ± 2,28	70	13,97 ± 1,67	7521	1500,80 ± 17,33	300,7	1675,5	335,1 ± 8,19	399	79,8 ± 3,99	513,5	102,7 ± 4,53	15371,5	3074,3 ± 24,80	79,3 300
	К6	433	85,95 ± 4,13	155	30,77 ± 2,47	70	13,90 ± 1,66	7234	1435,98 ± 16,88	302,3	1608	321,6 ± 8,02	357,5	71,5 ± 3,78	437	87,4 ± 4,18	15156	3031,2 ± 24,62	71,6 300
	BKG	942	93,70 ± 3,05	300	29,84 ± 1,72	178	17,71 ± 1,33	14857	1477,82 ± 12,12	603,2	3039	303,9 ± 5,51	1000	100 ± 3,16	922	92,2 ± 3,04	29417	2941,7 ± 17,15	80,2 600
	K6	885	88,34 ± 2,97	272	27,15 ± 1,65	176	17,57 ± 1,32	14734	1470,70 ± 12,12	2 601,1	3139	313,9 ± 5,60	744	74,4 ± 2,73	1081	108,1 ± 3,29	30272	3027,2 ± 17,40	77,2 600
	BKG	1406	93,02 ± 2,48	430	28,45 ± 1,37	251	16,61 ± 1,05	22718	1503,08 ± 9,97	906,9	4962	330,8 ± 4,70	1114,5	74,3 ± 2,23	1474,5	98,3 ± 2,56	46891,5	3126,1 ± 14,44	76,1 900
	К6	1377	91,74 ± 2,47	447	29,78 ± 1,41	256	17,05 ± 1,07	21864	1456,60 ± 9,85	900,6	4462,5	297,5 ± 4,45	1354,5	90,3 ± 2,45	1314	87,6 ± 2,42	43846,5	2923,1 ± 13,96	75,5 900
	BKG	2874	95,66 ± 1,78	853	28,39 ± 0,97	499	16,61 ± 0,74	44959	1496,47 ± 7,06	1803	10566	352,2 ± 3,43	2925	97,5 ± 1,80	2268	75,6 ± 1,59	92727	3090,9 ± 10,15	79,3 1800
	К6	2689	89,03 ± 1,72	853	28,24 ± 0,97	465	15,40 ± 0,71	44071	1459,11 ± 6,95	1812	8751	291,7 ± 3,12	2748	91,6 ± 1,75	2472	82,4 ± 1,66	88104	2936,8 ± 9,89	74,1 1800
	BKG	38	76,05 ± 12,34	23	46,03 ± 9,60	6	12,01 ± 4,90	750	1501,00 ± 54,83	29,98	154,6	309,2 ± 24,87	42,35	84,7 ± 13,02	62,3	124,6 ± 15,79	1435,6	2871,2 ± 75,78	84,3 30
	К5	44	86,22 ± 13,00	11	21,55 ± 6,50	12	23,51 ± 6,79	727	1424,56 ± 52,83	30,62	147,35	294,7 ± 24,28	29,55	59,1 ± 10,87	27,1	54,2 ± 10,41	1354,2	2708,4 ± 73,60	57 30
	BKG	91	88,69 ± 9,30	25	24,37 ± 4,87	24	23,39 ± 4,77	1512	1473,68 ± 37,90	61,56	317,1	317,1 ± 17,8	84,8	84,8 ± 9,21	97	97 ± 9,85	3008,7	3008,7 ± 54,9	77,9 60
	К5	109	99,03 ± 9,49	23	20,90 ± 4,36	16	14,54 ± 3,63	1610	1462,75 ± 36,40	66,04	303,9	303,9 ± 17,4	80,2	80,2 ± 8,96	94,1	94,1 ± 9,7	2942,2	2942,2 ± 54,2	74,6 60
	BKG	135	89,01 ± 7,66	42	27,69 ± 4,27	28	18,46 ± 3,49	2301	1517,14 ± 31,63	91	476,55	317,7 ± 14,6	119,7	79,8 ± 7,29	139,65	93,1 ± 7,88	4516,5	3011 ± 44,8	75,4 90
	К5	127	83,87 ± 7,44	43	28,40 ± 4,33	18	11,89 ± 2,80	2213	1461,37 ± 31,00	90,86	444,3	296,2 ± 14,1	108	72 ± 6,93	130,8	87,2 ± 7,62	4236,9	2824,6 ± 43,4	69,6 90
	BKG	188	90,60 ± 6,61	66	31,81 ± 3,92	46	22,17 ± 3,27	3069	1479,04 ± 26,70	124,5	664,6	332,3 ± 12,9	176,2	88,1 ± 6,64	197,2	98,6 ± 7,02	6033,8	3016,9 ± 38,8	80,6 120
	К5	188	90,60 ± 6,61	66	31,81 ± 3,92	46	22,17 ± 3,27	3069	1479,04 ± 26,70	124,5	621	310,5 ± 12,5	179,4	89,7 ± 6,7	175,2	87,6 ± 6,62	5888,8	2944,4 ± 38,4	76,4 120
	BKG	279	92,76 ± 5,55	82	27,26 ± 3,01	49	16,29 ± 2,33	4623	1537,07 ± 22,63	180,5	927	309 ± 10,1	270,6	90,2 ± 5,48	281,4	93,8 ± 5,59	9043,2	3014,4 ± 31,7	78 180
K5	К5	259	86,10 ± 5,35	76	25,27 ± 2,90	34	<u>11,30 ± 1,94</u>	4416	1468,09 ± 22,09	180,5	934,8	<u>311</u> ,6 ± 10,2	272,7	90,9 ± 5,5	254,1	84,7 ± 5,31	8974,5	2991,5 ± 31,6	76,1 180
103	BKG	335	83,51 ± 4,56	100	24,93 ± 2,49	49	12,22 ± 1,75	5928	1477,81 ± 19,19	240,7	1234	308,5 ± 8,78	296,8	74,2 ± 4,31	417,2	104,3 ± 5,11	12140,4	3035,1 ± 27,5	75,7 240
	К5	402	100,36 ± 5,01	101	25,21 ± 2,51	68	16,98 ± 2,06	5884	1468,92 ± 19,1	5 240,3	1258,8	314,7 ± 8,87	302,8	75,7 ± 4,35	357,2	89,3 ± 4,72	11982,4	2995,6 ± 27,4	72,9 240
	BKG	448	89,40 ± 4,22	120	23,95 ± 2,19	80	15,96 ± 1,78	7525	1501,60 ± 17,33	300,7	1496	299,2 ± 7,74	421,5	84,3 ± 4,11	523	104,6 ± 4,57	14971,5	2994,3 ± 24,5	78,1 300
	К5	417	<u>82,29 ± 4,03</u>	166	32,76 ± 2,54	89	17,56 ± 1,86	7193	1419,48 ± 16,74	304	1603	320,6 ± 8,01	440,5	88,1 ± 4,2	461	92,2 ± 4,29	14880	2976 ± 24,4	77,9 300
	BKG	918	91,64 ± 3,02	293	<u>29,2</u> 5 ± 1,71	173	17,27 ± 1,31	14973	1494,76 ± 12,22	601	3237	323,7 ± 5,69	745	74,5 ± 2,73	1018	101,8 ± 3,19	29369	2936,9 ± 17,1	76,5 600
	K5	874	86,95 ± 2,94	272	27,06 ± 1,64	150	14,92 ± 1,22	14609	1453,44 ± 12,03	603,1	3409	340,9 ± 5,84	842	84,2 ± 2,9	950	95 ± 3,08	30416	3041,6 ± 17,4	79,2 600
	BKG	1422	94,28 ± 2,50	456	30,23 ± 1,42	267	17,70 ± 1,08	22818	1512,93 ± 10,02	904,9	3973,5	264,9 ± 4,2	1032	68,8 ± 2,14	1519,5	101,3 ± 2,6	45178,5	3011,9 ± 14,2	69,6 900
	K5	1326	88,36 ± 2,43	417	27,79 ± 1,36	239	15,93 ± 1,03	21919	1460,68 ± 9,87	900,4	5037	335,8 ± 4,73	972	64,8 ± 2,08	1509	100,6 ± 2,59	44092,5	2939,5 ± 14	74,1 900
	BKG	2841	93,96 ± 1,76	931	30,79 ± 1,01	527	17,43 ± 0,76	46136	1525,90 ± 7,10	1814	10461	348,7 ± 3,41	2757	91,9 ± 1,75	2736	91,2 ± 1,74	90150	3005 ± 10	81,2 1800
	K5	2761	90,86 ± 1,73	834	27,45 ± 0,95	468	15,40 ± 0,71	44938	1478,84 ± 6,98	1823	9270	309 ± 3,21	3006	100,2 ± 1,83	3309	110,3 ± 1,92	87483	2916,1 ± 9,86	85,4 1800

Pad	rão/					Nal(1	ri)								BGO RS-2	230			
Bra	nco		K-40		U-238	Ì	Th-232		Total			K-40		U-238		Th-232		Total	Dose
(Bł	(G)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	- t (s)	Ctotal	cpm	Ctotal	срт	Ctotal	cpm	Ctotal	срт	nSv/h
	BKG	48	87,06 ± 12,57	21	38,09 ± 8,31	11	19,95 ± 6,02	809	1467,35 ± 51,59	33,08	167,95	335,9 ± 25,9	30,7	61,4 ± 11,1	48,55	97,1 ± 13,9	1504,1	3008,2 ± 77,6	72,2 30
	К4	42	83,72 ± 12,92	14	27,91 ± 7,46	4	7,97 ± 3,99	758	1510,96 ± 54,88	30,1	157,75	315,5 ± 25,1	45,8	91,6 ± 13,5	43,35	86,7 ± 13,2	1458,3	2916,6 ± 76,4	77,2 30
	BKG	96	94,89 ± 9,68	39	38,55 ± 6,17	16	15,82 ± 3,95	1471	1454,04 ± 37,91	60,7	309,1	309,1 ± 17,6	78,4	78,4 ± 8,85	92,3	92,3 ± 9,61	2996,1	2996,1 ± 54,7	74 60
	К4	99	97,09 ± 9,76	27	26,48 ± 5,10	20	19,61 ± 4,39	1515	1485,78 ± 38,17	61,18	325	325 ± 18	85,8	85,8 ± 9,26	92,4	92,4 ± 9,61	2996,6	2996,6 ± 54,7	77,7 60
	BKG	114	74,95 ± 7,02	41	26,96 ± 4,21	23	15,12 ± 3,15	2330	1531,89 ± 31,74	91,26	448,95	299,3 ± 14,1	108,6	72,4 ± 6,95	139,8	93,2 ± 7,88	4196,55	2797,7 ± 43,2	71,5 90
	К4	147	96,92 ± 7,99	42	27,69 ± 4,27	34	22,42 ± 3,84	2200	1450,55 ± 30,93	91	472,35	314,9 ± 14,5	125,1	83,4 ± 7,46	136,05	90,7 ± 7,78	4446	2964 ± 44,5	75,6 90
	BKG	190	94,26 ± 6,84	49	24,31 ± 3,47	39	19,35 ± 3,10	3030	1503,22 ± 27,31	. 120,9	639,8	319,9 ± 12,6	171	85,5 ± 6,54	183,2	91,6 ± 6,77	5970,6	2985,3 ± 38,6	76,9 120
	К4	203	100,83 ± 7,08	63	31,29 ± 3,94	35	17,38 ± 2,94	2971	1475,66 ± 27,07	120,8	633,2	316,6 ± 12,6	185,8	92,9 ± 6,82	187,6	93,8 ± 6,85	5958,8	2979,4 ± 38,6	79,5 120
	BKG	257	85,54 ± 5,34	90	29,96 ± 3,16	51	16,98 ± 2,38	4470	1487,85 ± 22,25	, 180,3	927,3	309,1 ± 10,2	244,2	81,4 ± 5,21	249,3	83,1 ± 5,26	8890,8	2963,6 ± 31,4	72,6 180
KA	К4	292	96,32 ± 5,64	98	32,33 ± 3,27	42	13,85 ± 2,14	4366	1440,13 ± 21,80) 181,9	939	313 ± 10,2	256,2	85,4 ± 5,34	293,7	97,9 ± 5,71	8995,2	2998,4 ± 31,6	77,9 180
K4	BKG	402	98,48 ± 4,91	121	29,64 ± 2,69	44	10,78 ± 1,62	6162	1509,55 ± 19,23	244,9	1212,4	303,1 ± 8,7	344	86 ± 4,64	384,4	96,1 ± 4,9	11975,6	2993,9 ± 27,4	76,8 240
	К4	376	93,69 ± 4,83	113	28,16 ± 2,65	61	15,20 ± 1,95	5896	1469,10 ± 19,13	240,8	1251,6	312,9 ± 8,84	291,2	72,8 ± 4,27	366	91,5 ± 4,78	11844,8	2961,2 ± 27,2	72,4 240
	BKG	463	92,49 ± 4,30	144	28,77 ± 2,40	84	16,78 ± 1,83	7354	1469,04 ± 17,13	300,4	1669	333,8 ± 8,17	394	78,8 ± 3,97	487	97,4 ± 4,41	15388,5	3077,7 ± 24,8	77,5 300
	К4	415	85,44 ± 4,19	129	26,56 ± 2,34	79	16,26 ± 1,83	7002	1441,53 ± 17,23	291,4	1545,5	309,1 ± 7,86	414,5	82,9 ± 4,07	478,5	95,7 ± 4,37	15267,5	3053,5 ± 24,7	76,3 300
	BKG	907	90,71 ± 3,01	284	28,40 ± 1,69	182	18,20 ± 1,35	14891	1489,20 ± 12,20	600	3053	305,3 ± 5,53	866	86,6 ± 2,94	874	87,4 ± 2,96	29736	2973,6 ± 17,2	74,9 600
	К4	945	93,84 ± 3,05	287	28,50 ± 1,68	178	17,68 ± 1,32	14760	1465,64 ± 12,06	604,2	3094	309,4 ± 5,56	808	80,8 ± 2,84	866	86,6 ± 2,94	29498	2949,8 ± 17,2	73,3 600
	BKG	1391	92,65 ± 2,48	440	29,31 ± 1,40	265	17,65 ± 1,08	22822	1520,15 ± 10,06	900,8	5122,5	341,5 ± 4,77	1210,5	80,7 ± 2,32	1602	106,8 ± 2,67	45199,5	3013,3 ± 14,2	81,2 900
	К4	1412	93,07 ± 2,48	442	29,13 ± 1,39	274	18,06 ± 1,09	22802	1502,90 ± 9,95	910,3	4684,5	312,3 ± 4,56	1182	78,8 ± 2,29	1398	93,2 ± 2,49	43761	2917,4 ± 13,9	74,6 900
	BKG	2916	91,65 ± 1,70	878	27,60 ± 0,93	499	15,68 ± 0,70	47513	1493,42 ± 6,85	1909	9609	320,3 ± 3,27	1710	57 ± 1,38	3552	118,4 ± 1,99	86748	2891,6 ± 9,82	75 1800
	К4	2831	94,30 ± 1,77	829	27,61 ± 0,96	471	15,69 ± 0,72	44150	1470,57 ± 7,00	1801	8922	297,4 ± 3,15	2292	76,4 ± 1,6	3495	116,5 ± 1,97	87447	2914,9 ± 9,86	78,6 1800
	BKG	58	111,47 ± 14,64	15	28,83 ± 7,44	9	17,30 ± 5,77	796	1529,79 ± 54,22	31,22	128,95	257,9 ± 22,7	38,05	76,1 ± 12,3	44,15	88,3 ± 13,3	1445,9	2891,8 ± 76	68 30
	К3	46	89,96 ± 13,26	11	21,51 ± 6,49	9	17,60 ± 5,87	760	1486,31 ± 53,91	30,68	172,95	345,9 ± 26,3	35,95	71,9 ± 12	39,95	79,9 ± 12,6	1488,55	2977,1 ± 77,2	71,9 30
	BKG	91	89,80 ± 9,41	26	25,66 ± 5,03	19	18,75 ± 4,30	1572	1551,32 ± 39,13	60,8	318,5	318,5 ± 17,8	79,4	79,4 ± 8,91	94	94 ± 9,7	3030,7	3030,7 ± 55,1	75,5 60
	К3	111	109,54 ± 10,40	28	27,63 ± 5,22	16	15,79 ± 3,95	1526	1505,92 ± 38,55	60,8	328,4	328,4 ± 18,1	80,3	80,3 ± 8,96	96,7	96,7 ± 9,83	3018,4	3018,4 ± 54,9	77,3 60
	BKG	141	93,11 ± 7,84	36	23,77 ± 3,96	24	15,85 ± 3,24	2220	1465,99 ± 31,11	90,86	463,8	309,2 ± 14,4	125,25	83,5 ± 7,46	143,85	95,9 ± 8	4492,35	2994,9 ± 44,7	76,5 90
	К3	161	102,77 ± 8,10	46	29,36 ± 4,33	22	14,04 ± 2,99	2272	1450,21 ± 30,42	94	495,15	330,1 ± 14,8	120,3	80,2 ± 7,31	142,35	94,9 ± 7,95	4424,4	2949,6 ± 44,3	77 90
	BKG	162	80,68 ± 6,34	55	27,39 ± 3,69	27	13,45 ± 2,59	2862	1425,30 ± 26,64	120,5	623,4	311,7 ± 12,5	160	80 ± 6,32	199,8	99,9 ± 7,07	5885	2942,5 ± 38,4	76,7 120
	К3	179	88,91 ± 6,65	73	36,26 ± 4,24	23	11,42 ± 2,38	2998	1489,07 ± 27,20	120,8	637,2	318,6 ± 12,6	165,4	82,7 ± 6,43	207,4	103,7 ± 7,2	6012,6	3006,3 ± 38,8	79 120
	BKG	268	89,20 ± 5,45	92	30,62 ± 3,19	51	16,98 ± 2,38	4524	1505,82 ± 22,39	180,3	976,8	325,6 ± 10,4	247,5	82,5 ± 5,24	290,1	96,7 ± 5,68	9196,5	3065,5 ± 32	77,8 180
1/2	К3	275	91,21 ± 5,50	82	27,20 ± 3,00	55	18,24 ± 2,46	4536	1504,48 ± 22,34	180,9	980,1	326,7 ± 10,4	231,3	77,1 ± 5,07	251,1	83,7 ± 5,28	8858,7	2952,9 ± 31,4	72,8 180
K3	BKG	359	89,51 ± 4,72	103	25,68 ± 2,53	77	19,20 ± 2,19	5957	1485,29 ± 19,24	240,6	1171,2	292,8 ± 8,56	316,8	79,2 ± 4,45	392,4	98,1 ± 4,95	12085,2	3021,3 ± 27,5	74,4 240
	К3	365	90,32 ± 4,73	96	23,75 ± 2,42	62	15,34 ± 1,95	5886	1456,45 ± 18,98	242,5	1282,4	320,6 ± 8,95	351,2	87,8 ± 4,69	342,8	85,7 ± 4,63	11897,6	2974,4 ± 27,3	76,2 240
	BKG	448	89,45 ± 4,23	147	29,35 ± 2,42	72	14,38 ± 1,69	7583	1514,08 ± 17,39	300,5	1463,5	292,7 ± 7,65	432	86,4 ± 4,16	544	108,8 ± 4,66	14908	2981,6 ± 24,4	79,3 300
	К3	487	94,72 ± 4,29	124	24,12 ± 2,17	76	14,78 ± 1,70	7420	1443,21 ± 16,75	308,5	1781	356,2 ± 8,44	387	77,4 ± 3,93	534	106,8 ± 4,62	14659,5	2931,9 ± 24,2	81,4 300
	BKG	878	87,55 ± 2,95	271	27,02 ± 1,64	161	16,05 ± 1,27	14785	1474,22 ± 12,12	601,7	3066	306,6 ± 5,54	944	94,4 ± 3,07	1110	111 ± 3,33	29688	2968,8 ± 17,2	83,5 600
	К3	1016	100,03 ± 3,14	271	26,68 ± 1,62	152	14,97 ± 1,21	15094	1486,07 ± 12,10	609,4	3261	326,1 ± 5,71	837	83,7 ± 2,89	981	98,1 ± 3,13	30221	3022,1 ± 17,4	78,6 600
	BKG	1345	88,30 ± 2,41	423	27,77 ± 1,35	264	17,33 ± 1,07	23012	1510,70 ± 9,96	914	4252,5	283,5 ± 4,35	1270,5	84,7 ± 2,38	1437	95,8 ± 2,53	45619,5	3041,3 ± 14,2	74,7 900
	К3	1475	96,65 ± 2,52	425	27,85 ± 1,35	237	15,53 ± 1,01	22558	1478,18 ± 9,84	915,6	4497	299,8 ± 4,47	1102,5	73,5 ± 2,21	1447,5	96,5 ± 2,54	43663,5	2910,9 ± 13,9	72,8 900
	BKG	2740	90,59 ± 1,73	858	28,37 ± 0,97	515	17,03 ± 0,75	45192	1494,20 ± 7,03	1815	11115	370,5 ± 3,51	2613	87,1 ± 1,7	2595	86,5 ± 1,7	87111	2903,7 ± 9,84	80,4 1800
	К3	2879	95,09 ± 1,77	832	27,48 ± 0,95	459	15,16 ± 0,71	44950	1484,61 ± 7,00	1817	9465	315,5 ± 3,24	2169	72,3 ± 1,55	3504	116,8 ± 1,97	86403	2880,1 ± 9,8	78,9 1800

Pad	rão/					Nal(1	TI)								BGO RS-2	230			
Bra	nco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose
(Bł	(G)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	t (s)	Ctotal	cpm	Ctotal	срт	Ctotal	cpm	Ctotal	срт	nSv/h t (s)
	BKG	52	101,83 ± 14,12	17	33,29 ± 8,07	13	25,46 ± 7,06	739	1447,13 ± 53,23	30,64	153,95	307,9 ± 24,8	41,4	82,8 ± 12,9	40	80 ± 12,6	1495	2990 ± 77,3	72,1 30
	K2	62	120,23 ± 15,27	12	23,27 ± 6,72	7	13,57 ± 5,13	807	1564,96 ± 55,09	30,94	198,85	397,7 ± 28,2	33,85	67,7 ± 11,6	57,1	114,2 ± 15,1	1548,95	3097,9 ± 78,7	83,8 30
	BKG	80	79,58 ± 8,90	22	21,88 ± 4,67	25	24,87 ± 4,97	1516	1507,96 ± 38,73	60,32	302,3	302,3 ± 17,4	79,9	79,9 ± 8,94	95,8	95,8 ± 9,79	2968,5	2968,5 ± 54,5	74,8 60
	К2	141	139,37 ± 11,74	21	20,76 ± 4,53	16	15,82 ± 3,95	1662	1642,83 ± 40,30	60,7	380	380 ± 19,5	76,4	76,4 ± 8,74	97,1	97,1 ± 9,85	3074,2	3074,2 ± 55,4	80,6 60
	BKG	155	102,36 ± 8,22	36	23,77 ± 3,96	24	15,85 ± 3,24	2319	1531,37 ± 31,80	90,86	461,4	307,6 ± 14,3	127,2	84,8 ± 7,52	139,2	92,8 ± 7,87	4426,2	2950,8 ± 44,4	76 90
	К2	188	122,93 ± 8,97	53	34,66 ± 4,76	20	13,08 ± 2,92	2426	1586,31 ± 32,21	91,76	554,85	369,9 ± 15,7	116,7	77,8 ± 7,2	127,8	85,2 ± 7,54	4578,75	3052,5 ± 45,1	77,1 90
	BKG	189	92,36 ± 6,72	65	31,76 ± 3,94	38	18,57 ± 3,01	3146	1537,38 ± 27,41	122,8	631,2	315,6 ± 12,6	157,6	78,8 ± 6,28	177,4	88,7 ± 6,66	5917,2	2958,6 ± 38,5	73,7 120
	К2	246	122,61 ± 7,82	59	29,41 ± 3,83	43	21,43 ± 3,27	3190	1589,97 ± 28,15	120,4	762,8	381,4 ± 13,8	151,8	75,9 ± 6,16	184,4	92,2 ± 6,79	6178,4	3089,2 ± 39,3	79,3 120
	BKG	278	92,09 ± 5,52	92	30,48 ± 3,18	53	17,56 ± 2,41	4527	1499,67 ± 22,29	181,1	960,3	320,1 ± 10,3	240,9	80,3 ± 5,17	290,4	96,8 ± 5,68	9100,5	3033,5 ± 31,8	76,7 180
1/2	К2	405	134,42 ± 6,68	86	28,54 ± 3,08	61	20,25 ± 2,59	4791	1590,11 ± 22,97	180,8	1168,2	389,4 ± 11,4	246,9	82,3 ± 5,24	268,5	89,5 ± 5,46	9336,6	3112,2 ± 32,2	81,2 180
ΚZ	BKG	348	85,34 ± 4,57	115	28,20 ± 2,63	66	16,19 ± 1,99	6041	1481,48 ± 19,06	244,7	1208,4	302,1 ± 8,69	345,6	86,4 ± 4,65	391,6	97,9 ± 4,95	11942,8	2985,7 ± 27,3	77,3 240
	К2	477	118,76 ± 5,44	113	28,13 ± 2,65	60	14,94 ± 1,93	6370	1585,89 ± 19,87	241	1483,2	370,8 ± 9,63	311,2	77,8 ± 4,41	352,8	88,2 ± 4,7	12362,4	3090,6 ± 27,8	77,9 240
	BKG	451	87,98 ± 4,14	110	21,46 ± 2,05	90	17,56 ± 1,85	7552	1473,18 ± 16,95	307,6	1607,5	321,5 ± 8,02	427,5	85,5 ± 4,14	486	97,2 ± 4,41	14926,5	2985,3 ± 24,4	78,5 300
	К2	585	114,59 ± 4,74	169	33,10 ± 2,55	72	14,10 ± 1,66	8044	1575,61 ± 17,57	306,3	2000,5	400,1 ± 8,95	363	72,6 ± 3,81	459	91,8 ± 4,28	15491,5	3098,3 ± 24,9	79,7 300
	BKG	943	94,19 ± 3,07	297	29,67 ± 1,72	159	15,88 ± 1,26	15078	1506,04 ± 12,26	600,7	3375	337,5 ± 5,81	991	99,1 ± 3,15	1084	108,4 ± 3,29	30617	3061,7 ± 17,5	86,9 600
	К2	1526	132,63 ± 3,40	332	28,86 ± 1,58	198	17,21 ± 1,22	18449	1603,52 ± 11,81	690,3	3371	337,1 ± 5,81	863	86,3 ± 2,94	978	97,8 ± 3,13	30786	3078,6 ± 17,5	80,2 600
	BKG	1399	91,69 ± 2,45	420	27,53 ± 1,34	305	19,99 ± 1,14	22771	1492,40 ± 9,89	915,5	5341,5	356,1 ± 4,87	1353	90,2 ± 2,45	1600,5	106,7 ± 2,67	46099,5	3073,3 ± 14,3	85,3 900
	К2	1840	121,25 ± 2,83	398	26,23 ± 1,31	220	14,50 ± 0,98	24141	1590,81 ± 10,24	910,5	6018	401,2 ± 5,17	1350	90 ± 2,45	1549,5	103,3 ± 2,62	46848	3123,2 ± 14,4	88,2 900
	BKG	4120	93,03 ± 1,45	1277	28,83 ± 0,81	716	16,17 ± 0,60	65926	1488,55 ± 5,80	2657	8460	282 ± 3,07	2241	74,7 ± 1,58	2091	69,7 ± 1,52	90876	3029,2 ± 10	64,8 1800
	К2	3796	126,38 ± 2,05	845	28,13 ± 0,97	484	16,11 ± 0,73	47736	1589,33 ± 7,27	1802	11922	397,4 ± 3,64	2298	76,6 ± 1,6	2217	73,9 ± 1,57	92523	3084,1 ± 10,1	76,1 1800
	BKG	42	81,87 ± 12,63	8	15,59 ± 5,51	10	19,49 ± 6,16	767	1495,13 ± 53,99	30,78	160,1	320,2 ± 25,3	34,9	69,8 ± 11,8	52,75	105,5 ± 14,5	1503,2	3006,4 ± 77,5	75,6 30
	K1	83	162,43 ± 17,83	13	25,44 ± 7,06	7	13,70 ± 5,18	893	1747,55 ± 58,48	30,66	233,35	466,7 ± 30,6	41,4	82,8 ± 12,9	36,8	73,6 ± 12,1	1599	3198 ± 80	83,8 30
	BKG	106	103,35 ± 10,04	29	28,27 ± 5,25	22	21,45 ± 4,57	1546	1507,31 ± 38,34	61,54	314	314 ± 17,7	83,7	83,7 ± 9,15	94,2	94,2 ± 9,71	3000,7	3000,7 ± 54,8	76,5 60
	K1	177	172,01 ± 12,93	39	37,90 ± 6,07	22	21,38 ± 4,56	1795	1744,41 ± 41,17	61,74	481,3	481,3 ± 21,9	78,9	78,9 ± 8,88	91	91 ± 9,54	3266	3266 ± 57,1	88,3 60
	BKG	148	97,01 ± 7,97	33	21,63 ± 3,77	26	17,04 ± 3,34	2294	1503,60 ± 31,39	91,54	478,05	318,7 ± 14,6	119,25	79,5 ± 7,28	136,35	90,9 ± 7,78	4471,05	2980,7 ± 44,6	74,8 90
	К1	292	191,06 ± 11,18	37	24,21 ± 3,98	24	15,70 ± 3,21	2672	1748,31 ± 33,82	91,7	695,7	463,8 ± 17,6	116,85	77,9 ± 7,21	148,95	99,3 ± 8,14	4875,45	3250,3 ± 46,5	88,7 90
	BKG	178	88,76 ± 6,65	55	27,43 ± 3,70	30	14,96 ± 2,73	2924	1458,11 ± 26,97	120,3	643,6	321,8 ± 12,7	147,4	73,7 ± 6,07	180,8	90,4 ± 6,72	5996	2998 ± 38,7	73,1 120
	К1	370	183,02 ± 9,51	50	24,73 ± 3,50	31	15,33 ± 2,75	3554	1757,96 ± 29,49	121,3	979,8	489,9 ± 15,7	145,2	72,6 ± 6,02	185,8	92,9 ± 6,82	6511,6	3255,8 ± 40,3	87,5 120
	BKG	276	91,57 ± 5,51	76	25,22 ± 2,89	50	16,59 ± 2,35	4598	1525,55 ± 22,50	180,8	907,8	302,6 ± 10	231,9	77,3 ± 5,08	303	101 ± 5,8	8962,8	2987,6 ± 31,6	75,4 180
V 1	К1	534	177,74 ± 7,69	89	29,62 ± 3,14	41	13,65 ± 2,13	5235	1742,48 ± 24,08	180,3	1477,5	492,5 ± 12,8	230,1	76,7 ± 5,06	286,8	95,6 ± 5,65	9812,7	3270,9 ± 33	89,7 180
KT.	BKG	396	98,73 ± 4,96	118	29,42 ± 2,71	79	19,70 ± 2,22	5901	1471,20 ± 19,15	240,7	1246,8	311,7 ± 8,83	331,6	82,9 ± 4,55	373,2	93,3 ± 4,83	12084	3021 ± 27,5	75,9 240
	К1	712	175,07 ± 6,56	99	24,34 ± 2,45	63	15,49 ± 1,95	7146	1757,07 ± 20,79	244	1931,2	482,8 ± 11	318,4	79,6 ± 4,46	416	104 ± 5,1	13369,2	3342,3 ± 28,9	92 240
	BKG	439	87,24 ± 4,16	124	24,64 ± 2,21	79	15,70 ± 1,77	7476	1485,59 ± 17,18	301,9	1614,5	322,9 ± 8,04	358	71,6 ± 3,78	483,5	96,7 ± 4,4	15061	3012,2 ± 24,5	74,2 300
	К1	868	172,74 ± 5,86	123	24,48 ± 2,21	92	18,31 ± 1,91	8785	1748,26 ± 18,65	301,5	2307	461,4 ± 9,61	363	72,6 ± 3,81	523,5	104,7 ± 4,58	16170	3234 ± 25,4	88,2 300
	BKG	917	91,56 ± 3,02	294	29,36 ± 1,71	164	16,38 ± 1,28	14896	1487,37 ± 12,19	600,9	3071	307,1 ± 5,54	886	88,6 ± 2,98	1001	100,1 ± 3,16	30875	3087,5 ± 17,6	79 600
	K1	1764	173,72 ± 4,14	300	29,54 ± 1,71	164	16,15 ± 1,26	17984	1771,07 ± 13,21	609,3	4728	472,8 ± 6,88	835	83,5 ± 2,89	907	90,7 ± 3,01	32548	3254,8 ± 18	88,9 600
	BKG	1445	94,87 ± 2,50	431	28,30 ± 1,36	242	15,89 ± 1,02	22664	1487,92 ± 9,88	913,9	5086,5	339,1 ± 4,75	1467	97,8 ± 2,55	1506	100,4 ± 2,59	46038	3069,2 ± 14,3	84,6 900
	K1	2706	179,86 ± 3,46	437	29,05 ± 1,39	240	15,95 ± 1,03	26398	1754,64 ± 10,80	902,7	6835,5	455,7 ± 5,51	1209	80,6 ± 2,32	1521	101,4 ± 2,6	48741	3249,4 ± 14,7	89,3 900
	BKG	2781	90,79 ± 1,72	905	29,55 ± 0,98	463	15,12 ± 0,70	45902	1498,58 ± 6,99	1838	7971	265,7 ± 2,98	2103	70,1 ± 1,53	2790	93 ± 1,76	86799	2893,3 ± 9,82	67,9 1800
	К1	5233	172,19 ± 2,38	840	27,64 ± 0,95	484	15,93 ± 0,72	53009	1744,20 ± 7,58	1824	15309	510,3 ± 4,12	3054	101,8 ± 1,84	3291	109,7 ± 1,91	101319	3377,3 ± 10,6	102,7 1800

Pad	rão/					Nal(1	гі)								BGO RS-2	230			
Bra	nco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose
(Bl	(G)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	τ (s)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	nSv/h t (s)
	BKG	39	74,43 ± 11,92	19	36,26 ± 8,32	10	19,08 ± 6,03	936	1786,26 ± 58,39	31,44	188,6	377,2 ± 27,5	108,95	217,9 ± 20,9	54,5	109 ± 14,8	2409,5	4819 ± 98,	2 127,3 30
	U5	63	121,15 ± 15,26	16	30,77 ± 7,69	10	19,23 ± 6,08	945	1817,31 ± 59,12	31,2	173,8	347,6 ± 26,4	116	232 ± 21,5	58,05	116,1 ± 15,2	2451,5	4903 ± 99	131 30
	BKG	117	115,04 ± 10,64	37	36,38 ± 5,98	23	22,62 ± 4,72	1553	1527,04 ± 38,75	61,02	424,1	424,1 ± 20,6	212,6	212,6 ± 14,6	131,4	131,4 ± 11,5	5018	5018 ± 70,	3 135,3 60
	U5	114	112,43 ± 10,53	42	41,42 ± 6,39	21	20,71 ± 4,52	1858	1832,35 ± 42,51	60,84	409,8	409,8 ± 20,2	224,6	224,6 ± 15	115,6	115,6 ± 10,8	5093	5093 ± 71,4	133,8 60
	BKG	166	110,69 ± 8,59	61	40,68 ± 5,21	28	18,67 ± 3,53	2720	1813,74 ± 34,78	89,98	611,4	407,6 ± 16,5	283,65	189,1 ± 11,2	199,95	133,3 ± 9,43	7545	5030 ± 57,	9 127,1 90
	U5	145	97,47 ± 8,09	69	46,38 ± 5,58	28	18,82 ± 3,56	2640	1774,59 ± 34,54	89,26	582,15	388,1 ± 16,1	315,9	210,6 ± 11,8	188,4	125,6 ± 9,15	7425	4950 ± 57,4	130,2 90
	BKG	208	98,14 ± 6,81	53	25,01 ± 3,44	30	14,16 ± 2,58	3152	1487,26 ± 26,49	127,2	856,2	428,1 ± 14,6	394,2	197,1 ± 9,93	251,4	125,7 ± 7,93	9952	4976 ± 49,	9 129,4 120
	U5	198	94,60 ± 6,72	52	24,84 ± 3,45	37	17,68 ± 2,91	3156	1507,88 ± 26,84	125,6	872,2	436,1 ± 14,8	417,6	208,8 ± 10,2	237	118,5 ± 7,7	10228	5114 ± 50,	5 131,9 120
	BKG	323	107,00 ± 5,95	101	33,46 ± 3,33	60	19,88 ± 2,57	5494	1820,01 ± 24,55	181,1	1176,9	392,3 ± 11,4	668,7	222,9 ± 8,62	370,8	123,6 ± 6,42	14922	4974 ± 40,	7 133,9 180
	U5	329	109,15 ± 6,02	112	37,16 ± 3,51	59	19,57 ± 2,55	5348	1774,19 ± 24,26	180,9	1246,8	415,6 ± 11,8	649,2	216,4 ± 8,49	320,1	106,7 ± 5,96	14916	4972 ± 40,	7 129,4 180
05	BKG	466	116,11 ± 5,38	175	43,60 ± 3,30	86	21,43 ± 2,31	7290	1816,45 ± 21,27	240,8	1572	393 ± 9,91	772,8	193,2 ± 6,95	485,6	121,4 ± 5,51	19672	4918 ± 35,	L 124,4 240
	U5	416	102,15 ± 5,01	165	40,52 ± 3,15	94	23,08 ± 2,38	7492	1839,73 ± 21,25	244,3	1700,4	425,1 ± 10,3	861,6	215,4 ± 7,34	482,8	120,7 ± 5,49	20156	5039 ± 35,	5 133,5 240
	BKG	454	90,71 ± 4,26	136	27,17 ± 2,33	90	17,98 ± 1,90	7594	1517,28 ± 17,41	300,3	2044	408,8 ± 9,04	1029,5	205,9 ± 6,42	560	112 ± 4,73	25170	5034 ± 31,	7 127 300
	U5	476	93,02 ± 4,26	172	33,61 ± 2,56	85	16,61 ± 1,80	7566	1478,50 ± 17,00	307	2048	409,6 ± 9,05	1140	228 ± 6,75	568	113,6 ± 4,77	25285	5057 ± 31,	3 134,3 300
	BKG	926	92,46 ± 3,04	268	26,76 ± 1,63	160	15,98 ± 1,26	15298	1527,51 ± 12,35	600,9	3964	396,4 ± 6,3	1966	196,6 ± 4,43	1120	112 ± 3,35	48540	4854 ± 22	123,1 600
	U5	948	93,80 ± 3,05	305	30,18 ± 1,73	170	16,82 ± 1,29	15615	1545,02 ± 12,36	606,4	3837	383,7 ± 6,19	2074	207,4 ± 4,55	1143	114,3 ± 3,38	48260	4826 ± 22	125,9 600
	BKG	1391	92,12 ± 2,47	451	29,87 ± 1,41	257	17,02 ± 1,06	22670	1501,29 ± 9,97	906	5835	389 ± 5,09	2893,5	192,9 ± 3,59	1711,5	114,1 ± 2,76	71925	4795 ± 17,	900 121,8
	U5	1455	94,23 ± 2,47	430	27,85 ± 1,34	254	16,45 ± 1,03	23338	1511,50 ± 9,89	926,4	4413	294,2 ± 4,43	3073,5	204,9 ± 3,7	1759,5	117,3 ± 2,8	72645	4843 ± 18	126,8 900
	BKG	2813	93,11 ± 1,76	873	28,90 ± 0,98	469	15,52 ± 0,72	44873	1485,35 ± 7,01	1813	11778	392,6 ± 3,62	5970	199 ± 2,58	3525	117,5 ± 1,98	145080	4836 ± 12,	7 124,9 1800
	U5	2685	89,00 ± 1,72	921	30,53 ± 1,01	462	15,31 ± 0,71	44698	1481,65 ± 7,01	1810	12027	400,9 ± 3,66	6138	204,6 ± 2,61	3654	121,8 ± 2,01	147870	4929 ± 12,	3 128,4 1800
	BKG	46	82,29 ± 12,13	22	39,36 ± 8,39	15	26,83 ± 6,93	1059	1894,45 ± 58,22	33,54	196	392 ± 28	101,5	203 ± 20,1	56,6	113,2 ± 15	2488,5	4977 ± 99,	3 125 30
	U4	64	1111,37 ± 13,92	19	33,06 ± 7,59	23	40,02 ± 8,35	1198	2084,69 ± 60,23	34,48	196,2	392,4 ± 28	114,35	228,7 ± 21,4	53,5	107 ± 14,6	2566,5	5133 ± 101	131,4 30
	BKG	106	99,91 ± 9,70	40	37,70 ± 5,96	21	19,79 ± 4,32	1857	1750,24 ± 40,62	63,66	413,6	413,6 ± 20,3	199,4	199,4 ± 14,1	115,7	115,7 ± 10,8	4926	4926 ± 70,	2 126,3 60
	U4	121	120,28 ± 10,93	49	48,71 ± 6,96	15	14,91 ± 3,85	2055	2042,74 ± 45,06	60,36	441,8	441,8 ± 21	204,5	204,5 ± 14,3	133,7	133,7 ± 11,6	5050	5050 ± 71,	L 134,9 60
	BKG	153	97,70 ± 7,90	53	33,84 ± 4,65	29	18,52 ± 3,44	2744	1752,23 ± 33,45	93,96	588,9	392,6 ± 16,2	310,2	206,8 ± 11,7	206,25	137,5 ± 9,57	7560	5040 ± 58	132,5 90
	U4	166	109,69 ± 8,51	75	49,56 ± 5,72	27	17,84 ± 3,43	3088	2040,53 ± 36,72	90,8	639,6	426,4 ± 16,9	346,2	230,8 ± 12,4	180,6	120,4 ± 8,96	7798,5	5199 ± 58,	9 138,3 90
	BKG	193	89,68 ± 6,46	68	31,60 ± 3,83	43	19,98 ± 3,05	3240	1505,58 ± 26,45	129,1	765	382,5 ± 13,8	431,4	215,7 ± 10,4	261,6	130,8 ± 8,09	9948	4974 ± 49,	9 132,6 120
	U4	239	112,28 ± 7,26	91	42,75 ± 4,48	34	15,97 ± 2,74	3585	1684,15 ± 28,13	127,7	855	427,5 ± 14,6	506,6	253,3 ± 11,3	256,2	128,1 ± 8	10498	5249 ± 51,	2 147,4 120
	BKG	310	102,81 ± 5,84	118	39,13 ± 3,60	57	18,90 ± 2,50	5451	1807,76 ± 24,49	180,9	1144,5	381,5 ± 11,3	616,5	205,5 ± 8,28	358,8	119,6 ± 6,31	14436	4812 ± 40	126,5 180
	U4	348	115,44 ± 6,19	115	38,15 ± 3,56	70	23,22 ± 2,78	6114	2028,08 ± 25,94	180,9	1246,8	415,6 ± 11,8	672,9	224,3 ± 8,65	382,5	127,5 ± 6,52	15594	5198 ± 41,	5 137,2 180
04	BKG	386	96,27 ± 4,90	108	26,93 ± 2,59	80	19,95 ± 2,23	6050	1508,85 ± 19,40	240,6	1590,4	397,6 ± 9,97	832,8	208,2 ± 7,21	490	122,5 ± 5,53	20172	5043 ± 35,	5 129,4 240
	U4	386	96,04 ± 4,89	137	34,09 ± 2,91	76	18,91 ± 2,17	6975	1735,36 ± 20,78	241,2	1699,6	424,9 ± 10,3	943,2	235,8 ± 7,68	498,4	124,6 ± 5,58	21440	5360 ± 36,	5 140,8 240
	BKG	439	87,66 ± 4,18	155	30,95 ± 2,49	83	16,57 ± 1,82	7581	1513,78 ± 17,39	300,5	2043,5	408,7 ± 9,04	1000,5	200,1 ± 6,33	582	116,4 ± 4,82	24960	4992 ± 31,	5 126,3 300
	U4	519	103,57 ± 4,55	195	38,91 ± 2,79	84	16,76 ± 1,83	8535	1703,14 ± 18,44	300,7	2074	414,8 ± 9,11	1195,5	239,1 ± 6,92	594,5	118,9 ± 4,88	26110	5222 ± 32,	3 139,6 300
	BKG	939	93,74 ± 3,06	276	27,55 ± 1,66	179	17,87 ± 1,34	15179	1515,27 ± 12,30	601	3957	395,7 ± 6,29	2007	200,7 ± 4,48	1254	125,4 ± 3,54	48530	4853 ± 22	127,7 600
	U4	995	99,45 ± 3,15	367	36,68 ± 1,91	178	17,79 ± 1,33	17218	1720,94 ± 13,12	600,3	4100	410 ± 6,4	2157	215,7 ± 4,64	1142	114,2 ± 3,38	50500	5050 ± 22,	5 130,7 600
	BKG	1388	91,72 ± 2,46	422	27,89 ± 1,36	247	16,32 ± 1,04	22707	1500,50 ± 9,96	908	5821,5	388,1 ± 5,09	2811	187,4 ± 3,53	1812	120,8 ± 2,84	71970	4798 ± 17,	9 121,8 900
	U4	1505	99,54 ± 2,57	612	40,48 ± 1,64	232	15,34 ± 1,01	25583	1692,03 ± 10,58	907,2	6024	401,6 ± 5,17	3261	217,4 ± 3,81	1786,5	119,1 ± 2,82	76050	5070 ± 18,4	131,8 900
	BKG	2744	91,08 ± 1,74	880	29,21 ± 0,98	480	15,93 ± 0,73	45174	1499,44 ± 7,05	1808	11520	384 ± 3,58	5799	193,3 ± 2,54	3516	117,2 ± 1,98	53340	1778 ± 7,7	122,3 1800
	U4	3106	103,27 ± 1,85	1186	39,43 ± 1,15	462	15,36 ± 0,71	51534	1713,48 ± 7,55	1805	11508	383,6 ± 3,58	6405	213,5 ± 2,67	3375	112,5 ± 1,94	149100	4970 ± 12,	9 127,3 1800

Pad	rão/					Nal(1	ГІ)								BGO RS-2	230				
Bra	inco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose .	
(Bl	KG)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	t (s)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	nSv/h	(S)
	BKG	54	102,34 ± 13,93	22	41,69 ± 8,89	13	24,64 ± 6,83	979	1855,34 ± 59,30	31,66	178,05	356,1 ± 26,7	99,4	198,8 ± 19,9	72,55	145,1 ± 17	2487	4974 ± 99	,7 128,8 3	0
	U3	95	181,99 ± 18,67	51	97,70 ± 13,68	17	32,57 ± 7,90	1631	3124,52 ± 77,37	31,32	241,15	482,3 ± 31,1	149,6	299,2 ± 24,5	54,6	109,2 ± 14,8	3129,5	6259 ± 11	2 161,4 3	0
	BKG	106	101,89 ± 9,90	37	35,57 ± 5,85	15	14,42 ± 3,72	1888	1814,80 ± 41,77	62,42	454,5	454,5 ± 21,3	311,1	311,1 ± 17,6	117,5	117,5 ± 10,8	6287	6287 ± 79	,3 164,9 6	0
	U3	155	153,52 ± 12,33	83	82,21 ± 9,02	17	16,84 ± 4,08	2963	2934,63 ± 53,91	60,58	407,6	407,6 ± 20,2	218,8	218,8 ± 14,8	111	111 ± 10,5	4938	4938 ± 70	,3 130,6 6	0
	BKG	150	99,10 ± 8,09	54	35,67 ± 4,85	37	24,44 ± 4,02	2702	1785,07 ± 34,34	90,82	679,95	453,3 ± 17,4	349,5	233 ± 12,5	180,6	120,4 ± 8,96	7617	5078 ± 58	,2 138,2 9	0
	U3	263	173,60 ± 10,70	159	104,95 ± 8,32	27	17,82 ± 3,43	4504	2972,94 ± 44,30	90,9	709,5	473 ± 17,8	495,75	330,5 ± 14,8	168,9	112,6 ± 8,66	9384	6256 ± 64	,6 171,2 9	0
	BKG	203	95,89 ± 6,73	48	22,67 ± 3,27	29	13,70 ± 2,54	3163	1494,10 ± 26,57	127	823	411,5 ± 14,3	402,6	201,3 ± 10	254,6	127,3 ± 7,98	9946	4973 ± 49	,9 129,7 17	20
	U3	330	163,53 ± 9,00	186	92,17 ± 6,76	32	15,86 ± 2,80	5461	2706,14 ± 36,62	121,1	985	492,5 ± 15,7	630,6	315,3 ± 12,6	241,2	120,6 ± 7,77	12398	6199 ± 55	,7 170,1 17	20
	BKG	334	110,77 ± 6,06	94	31,17 ± 3,22	76	25,20 ± 2,89	5448	1806,77 ± 24,48	180,9	1164	388 ± 11,4	607,8	202,6 ± 8,22	378,9	126,3 ± 6,49	14805	4935 ± 40	,6 127,9 18	80
	U3	517	170,91 ± 7,52	302	99,83 ± 5,74	62	20,50 ± 2,60	8972	2965,95 ± 31,31	181,5	1391,1	463,7 ± 12,4	925,5	308,5 ± 10,1	358,8	119,6 ± 6,31	18474	6158 ± 45	,3 165,4 18	80
05	BKG	372	90,31 ± 4,68	109	26,46 ± 2,53	86	20,88 ± 2,25	6129	1487,98 ± 19,01	247,1	1654	413,5 ± 10,2	892,4	223,1 ± 7,47	491,6	122,9 ± 5,54	20336	5084 ± 35	,7 135,5 24	40
	U3	609	151,32 ± 6,13	401	99,64 ± 4,98	74	18,39 ± 2,14	11086	2754,51 ± 26,16	241,5	1874	468,5 ± 10,8	1332,8	333,2 ± 9,13	480,8	120,2 ± 5,48	25440	6360 ± 39	,9 173,6 24	40
	BKG	555	94,33 ± 4,00	160	27,20 ± 2,15	102	17,34 ± 1,72	8811	1497,62 ± 15,95	353	2007,5	401,5 ± 8,96	1021	204,2 ± 6,39	580	116 ± 4,82	24600	4920 ± 31	,4 126,9 30	00
	U3	739	147,73 ± 5,43	1013	202,51 ± 6,36	80	15,99 ± 1,79	13258	2650,36 ± 23,02	300,1	2183	436,6 ± 9,34	1571,5	314,3 ± 7,93	633,5	126,7 ± 5,03	30395	6079 ± 34	,9 166,7 30	00
	BKG	955	94,37 ± 3,05	284	28,06 ± 1,67	173	17,09 ± 1,30	15390	1520,75 ± 12,26	607,2	2981	298,1 ± 5,46	1960	196 ± 4,43	1220	122 ± 3,49	49000	4900 ± 22	,1 125,6 60	00
	U3	1538	153,08 ± 3,90	863	85,90 ± 2,92	170	16,92 ± 1,30	27289	2716,13 ± 16,44	602,8	4811	481,1 ± 6,94	3100	310 ± 5,57	1260	126 ± 3,55	61360	6136 ± 24	,8 168,9 60	00
	BKG	1514	100,68 ± 2,59	440	29,26 ± 1,39	262	17,42 ± 1,08	22449	1492,82 ± 9,96	902,3	5887,5	392,5 ± 5,12	3007,5	200,5 ± 3,66	1819,5	121,3 ± 2,84	72345	4823 ± 17	,9 126,3 90	00
	U3	2261	149,97 ± 3,15	1370	90,87 ± 2,46	278	18,44 ± 1,11	40379	2678,30 ± 13,33	904,6	7054,5	470,3 ± 5,6	4696,5	313,1 ± 4,57	1855,5	123,7 ± 2,87	91590	6106 ± 20	,2 168,4 90	00
	BKG	2909	96,60 ± 1,79	837	27,79 ± 0,96	436	14,48 ± 0,69	44985	1493,86 ± 7,04	1807	11733	391,1 ± 3,61	6021	200,7 ± 2,59	3555	118,5 ± 1,99	143730	4791 ± 12	,6 125,6 18	00
	U3	4534	150,76 ± 2,24	2572	85,52 ± 1,69	526	17,49 ± 0,76	80952	2691,70 ± 9,46	1804	13791	459,7 ± 3,91	9315	310,5 ± 3,22	3678	122,6 ± 2,02	183540	6118 ± 14	,3 166,4 18	:00
	BKG	51	97,64 ± 13,67	19	36,38 ± 8,35	17	32,55 ± 7,89	965	1847,48 ± 59,47	31,34	179,85	359,7 ± 26,8	108,35	216,7 ± 20,8	46,2	92,4 ± 13,6	2473	4946 ± 99	,5 121,2 3	0
	U2	121	211,05 ± 19,19	82	143,02 ± 15,79	18	31,40 ± 7,40	2396	4179,07 ± 85,38	34,4	256,55	513,1 ± 32	206,6	413,2 ± 28,7	70,45	140,9 ± 16,8	3547	7094 ± 11	9 207,4 3	0
	BKG	110	109,13 ± 10,40	29	28,77 ± 5,34	27	26,79 ± 5,15	1860	1845,24 ± 42,79	60,48	531,6	531,6 ± 23,1	431,6	431,6 ± 20,8	126,1	126,1 ± 11,2	7441	7441 ± 86	,3 210,9 6	0
	U2	257	250,98 ± 15,66	133	129,88 ± 11,26	24	23,44 ± 4,78	4377	4274,41 ± 64,61	61,44	372,4	372,4 ± 19,3	219,2	219,2 ± 14,8	137,8	137,8 ± 11,7	5154	5154 ± 71	,8 134,7 6	0
	BKG	157	103,56 ± 8,27	55	36,28 ± 4,89	35	23,09 ± 3,90	2658	1753,30 ± 34,01	90,96	616,35	410,9 ± 16,6	309	206 ± 11,7	191,25	127,5 ± 9,22	7504,5	5003 ± 57	,8 131,2 9	0
	U2	325	216,19 ± 11,99	253	168,29 ± 10,58	35	23,28 ± 3,94	6357	4228,60 ± 53,04	90,2	813,15	542,1 ± 19	633,9	422,6 ± 16,8	185,55	123,7 ± 9,08	11236,5	7491 ± 70	,7 208,4 9	0
	BKG	190	89,98 ± 6,53	60	28,41 ± 3,67	32	15,15 ± 2,68	3170	1501,18 ± 26,66	126,7	795,8	397,9 ± 14,1	419,8	209,9 ± 10,2	265,8	132,9 ± 8,15	9724	4862 ± 49	,3 132,7 17	20
	U2	419	205,49 ± 10,04	287	140,76 ± 8,31	32	15,69 ± 2,77	7954	3900,93 ± 43,74	122,3	1082,8	541,4 ± 16,5	847,2	423,6 ± 14,6	262,4	131,2 ± 8,1	15182	7591 ± 61	,6 210,6 17	20
	BKG	324	107,62 ± 5,98	120	39,86 ± 3,64	69	22,92 ± 2,76	5426	1802,26 ± 24,47	180,6	1272,6	424,2 ± 11,9	636	212 ± 8,41	346,2	115,4 ± 6,2	14952	4984 ± 40	,8 131 18	80
112	U2	657	218,10 ± 8,51	432	143,41 ± 6,90	78	25,89 ± 2,93	12486	4144,96 ± 37,09	180,7	1646,4	548,8 ± 13,5	1253,1	417,7 ± 11,8	423,6	141,2 ± 6,86	22461	7487 ± 5) 211,9 18	80
02	BKG	353	87,25 ± 4,64	129	31,89 ± 2,81	84	20,76 ± 2,27	6067	1499,63 ± 19,25	242,7	1601,2	400,3 ± 10	792,8	198,2 ± 7,04	538,8	134,7 ± 5,8	20328	5082 ± 35	,6 129,7 24	40
	U2	870	215,72 ± 7,31	625	154,97 ± 6,20	61	15,13 ± 1,94	15749	3905,03 ± 31,12	242	2136,4	534,1 ± 11,6	1758,8	439,7 ± 10,5	516,8	129,2 ± 5,68	30188	7547 ± 43	,4 214,4 24	40
	BKG	481	95,07 ± 4,33	161	31,82 ± 2,51	90	17,79 ± 1,88	7600	1502,17 ± 17,23	303,6	1909	381,8 ± 8,74	995	199 ± 6,31	581	116,2 ± 4,82	24060	4812 ± 3	123,6 30	00
	U2	1103	220,63 ± 6,64	710	142,02 ± 5,33	88	17,60 ± 1,88	19537	3907,92 ± 27,96	300	2683	536,6 ± 10,4	2066	413,2 ± 9,09	641	128,2 ± 5,06	36955	7391 ± 38	,4 206,2 30	00
	BKG	935	92,27 ± 3,02	275	27,14 ± 1,64	203	20,03 ± 1,41	15278	1507,75 ± 12,20	608	4020	402 ± 6,34	1974	197,4 ± 4,44	1170	117 ± 3,42	48060	4806 ± 21	,9 125 60	00
	U2	2099	205,87 ± 4,49	1479	145,06 ± 3,77	195	19,13 ± 1,37	40102	3933,24 ± 19,64	611,7	5356	535,6 ± 7,32	4152	415,2 ± 6,44	1323	132,3 ± 3,64	73540	7354 ± 27	,1 207,8 60	00
	BKG	1334	87,94 ± 2,41	435	28,68 ± 1,37	237	15,62 ± 1,01	22764	1500,66 ± 9,95	910,2	5865	391 ± 5,11	3004,5	200,3 ± 3,65	1743	116,2 ± 2,78	72330	4822 ± 17	,9 124,8 90	00
	U2	3265	216,18 ± 3,78	2197	145,46 ± 3,10	278	18,41 ± 1,10	59239	3922,25 ± 16,12	906,2	8098,5	\$39,9 ± 6	6037,5	402,5 ± 5,18	1945,5	129,7 ± 2,94	109395	7293 ± 2	2 203,5 90	00
	BKG	2790	92,77 ± 1,76	891	29,63 ± 0,99	453	15,06 ± 0,71	44828	1490,51 ± 7,04	1805	8460	282 ± 3,07	2193	73,1 ± 1,56	2724	90,8 ± 1,74	86343	2878,1 ± 9,7	9 69,7 18	:00
	U2	6468	213,90 ± 2,66	4346	143,72 ± 2,18	517	17,10 ± 0,75	117628	3889,99 ± 11,34	1814	12906	430,2 ± 3,79	8781	292,7 ± 3,12	2796	93,2 ± 1,76	164394	5479,8 ± 13	,5 150,9 18	00

Pade	rão/					Nal(T	1)								BGO RS-2	230				
Bra	nco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose	
(ВК	(G)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	t (s)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	срт	nSv/h	t (s)
	BKG	-		- T	'	-		-		-	205,05	410,1 ± 28,6	97,5	195 ± 19,7	62,1	124,2 ± 15,8	2514	5028 ± 100	126,8	30
	U1		[- <u>-</u> -]	-	[-	- <u></u>			-	852,6	1705,2 ± 58,4	1104,65	2209,3 ± 66,5	123,3	246,6 ± 22,2	14006,5	28013 ± 237	891,9	30
	BKG	93	92,41 ± 9,58	29	28,82 ± 5,35	21	20,87 ± 4,55	1790	1778,73 ± 42,04	60,38	269,8	269,8 ± 16,4	80,7	80,7 ± 8,98	98,3	98,3 ± 9,91	2809,2	2809,2 ± 53	73	60
	U1	1284	1243,78 ± 34,71	1085	1051,02 ± 31,91	39	37,78 ± 6,05	25185	24396,19 ± 153,73	61,94	1539,3	1539,3 ± 39,2	2072,5	2072,5 ± 45,5	162,2	162,2 ± 12,7	26576,4	26576,4 ± 163	813,8	60
	BKG	139	88,63 ± 7,52	62	39,53 ± 5,02	33	21,04 ± 3,66	2725	1737,51 ± 33,28	94,1	598,05	398,7 ± 16,3	297,3	198,2 ± 11,5	188,1	125,4 ± 9,14	7495,5	4997 ± 57,7	127,2	90
	U1	1907	1270,20 ± 29,09	1622	1080,37 ± 26,83	54	35,97 ± 4,89	35790	23838,81 ± 126,01	90,08	2722,8	1815,2 ± 34,8	3350,7	2233,8 ± 38,6	354,9	236,6 ± 12,6	43414,5	28943 ± 139	906,2	90
	BKG	187	92,60 ± 6,77	69	34,17 ± 4,11	23	11,39 ± 2,37	3087	1528,72 ± 27,51	121,2	777,8	388,9 ± 13,9	385,8	192,9 ± 9,82	245,6	122,8 ± 7,84	9766	4883 ± 49,4	124	120
	U1	2473	1221,84 ± 24,57	2262	1117,59 ± 23,50	51	25,20 ± 3,53	48907	24163,54 ± 109,26	121,4	3554	1777 ± 29,8	4234,2	2117,1 ± 32,5	452,6	226,3 ± 10,6	56538	28269 ± 119	864,1	120
	BKG	303	99,11 ± 5,69	113	36,96 ± 3,48	67	21,91 ± 2,68	5497	1797,97 ± 24,25	183,4	1162,5	387,5 ± 11,4	632,4	210,8 ± 8,38	349,2	116,4 ± 6,23	14886	4962 ± 40,7	127,8	180
111	U1	4071	1262,46 ± 19,79	3588	1112,67 ± 18,58	97	30,08 ± 3,05	77462	24021,71 ± 86,31	193,5	5205,9	1735,3 ± 24,1	6420,6	2140,2 ± 26,7	618,9	206,3 ± 8,29	84408	28136 ± 96,8	862,6	180
01	BKG	394	98,11 ± 4,94	126	31,37 ± 2,80	71	17,68 ± 2,10	6041	1504,23 ± 19,35	241	1635,2	408,8 ± 10,1	850,8	212,7 ± 7,29	550,8	137,7 ± 5,87	20512	5128 ± 35,8	135,7	240
	U1	5006	1230,48 ± 17,39	4396	1080,54 ± 16,30	106	26,05 ± 2,53	96235	23654,65 ± 76,25	244,1	7078,8	1769,7 ± 21	8689,2	2172,3 ± 23,3	918	229,5 ± 7,57	116020	29005 ± 85,2	881,4	240
	BKG	462	92,31 ± 4,29	160	31,97 ± 2,53	90	17,98 ± 1,90	7605	1519,48 ± 17,42	300,3	2005,5	401,1 ± 8,96	965,5	193,1 ± 6,21	580	116 ± 4,82	24125	4825 ± 31,1	123,4	300
	U1	6383	1271,43 ± 15,91	5525	1100,52 ± 14,81	131	26,09 ± 2,28	119452	23793,64 ± 68,84	301,2	8830,5	1766,1 ± 18,8	10957,5	2191,5 ± 20,9	1096,5	219,3 ± 6,62	142715	28543 ± 75,6	884,5	300
	BKG	923	91,19 ± 3,00	298	29,44 ± 1,71	178	17,59 ± 1,32	15391	1520,55 ± 12,26	607,3	3752	375,2 ± 6,13	2062	206,2 ± 4,54	1204	120,4 ± 3,47	47950	4795 ± 21,9	126,4	600
	U1	12195	1217,80 ± 11,03	10859	1084,38 ± 10,41	232	23,17 ± 1,52	234570	23424,21 ± 48,36	600,8	17690	1769 ± 13,3	21762	2176,2 ± 14,8	2287	228,7 ± 4,78	285970	28597 ± 53,5	882,4	600
	BKG	1415	93,48 ± 2,49	465	30,72 ± 1,42	278	18,37 ± 1,10	22914	1513,77 ± 10,00	908,2	5977,5	398,5 ± 5,15	2967	197,8 ± 3,63	1917	127,8 ± 2,92	72720	4848 ± 18	127,6	900
	U1	18256	1215,69 ± 9,00	16760	1116,07 ± 8,62	338	22,51 ± 1,22	355270	23657,85 ± 39,69	901	27252	1816,8 ± 11	32179,5	2145,3 ± 12	3603	240,2 ± 4	430995	28733 ± 43,8	879,7	900
	BKG	2757	90,96 ± 1,73	846	27,91 ± 0,96	453	14,95 ± 0,70	44897	1481,33 ± 6,99	1819	11523	384,1 ± 3,58	5934	197,8 ± 2,57	3453	115,1 ± 1,96	144180	4806 ± 12,7	123,2	1800
	U1	35972	1193,71 ± 6,29	34163	1133,68 ± 6,13	640	21,24 ± 0,84	715543	23744,85 ± 28,07	1808	50904	1696,8 ± 7,52	66000	2200 ± 8,56	6333	211,1 ± 2,65	856200	28540 ± 30,8	879,2	1800
!	BKG	41	81,89 ± 12,79	15	29,96 ± 7,74	3	5,99 ± 3,46	701	1400,13 ± 52,88	30,04	216,7	433,4 ± 29,4	105,5	211 ± 20,5	72,4	144,8 ± 17	2475,5	4951 ± 99,5	139	30
!	Th8	42	78,90 ± 12,17	17	31,93 ± 7,75	4	7,51 ± 3,76	781	1467,13 ± 52,50	31,94	195,45	390,9 ± 28	101,75	203,5 ± 20,2	67,4	134,8 ± 16,4	2422,5	4845 ± 98,4	130,6	30
!	BKG	85	83,33 ± 9,04	32	31,37 ± 5,55	9	8,82 ± 2,94	1470	1441,18 ± 37,59	61,2	403	403 ± 20,1	193	193 ± 13,9	120	120 ± 11	4679	4679 ± 68,4	124,5	60
!	Th8	90	88,82 ± 9,36	21	20,72 ± 4,52	13	12,83 ± 3,56	1423	1404,28 ± 37,23	60,8	395,2	395,2 ± 19,9	197,1	197,1 ± 14	122	122 ± 11	4608	4608 ± 67,9	125,7	60
!	BKG	106	69,36 ± 6,74	28	18,32 ± 3,46	20	13,09 ± 2,93	2141	1400,87 ± 30,28	91,7	583,35	388,9 ± 16,1	271,8	181,2 ± 11	173,25	115,5 ± 8,77	6915	4610 ± 55,4	118,6	90
!	Th8	110	71,15 ± 6,78	35	22,64 ± 3,83	17	11,00 ± 2,67	2134	1380,34 ± 29,88	92,76	508,65	<u>33</u> 9,1 ± 15	294,6	196,4 ± 11,4	144,75	96,5 ± 8,02	6824,7	4549,8 ± 55,1	114,2	90
!	BKG	158	78,58 ± 6,25	45	22,38 ± 3,34	27	13,43 ± 2,58	2868	1426,39 ± 26,63	120,6	751,6	<u>37</u> 5,8 ± 13,7	382,2	<u>1</u> 91,1 ± 9,77	244	122 ± 7,81	9330,4	4665,2 ± 48,3	122,2	120
!	Th8	168	79,31 ± 6,12	54	25,49 ± 3,47	21	9,91 ± 2,16	3065	1446,89 ± 26,13	127,1	735	367,5 ± 13,6	410,2	205,1 ± 10,1	218,6	109,3 ± 7,39	9294,4	4647,2 ± 48,2	122,6	120
!	BKG	232	76,91 ± 5,05	87	28,84 ± 3,09	26	8,62 ± 1,69	4268	1414,81 ± 21,66	181	916,8	305,6 ± 10,1	344,4	114,8 ± 6,19	300,9	100,3 ± 5,78	10042,2	3347,4 ± 33,4	87	180
Th8	Th8	227	73,61 ± 4,89	100	32,43 ± 3,24	22	7,13 ± 1,52	4342	1408,06 ± 21,37	185	922,5	307,5 ± 10,1	329,1	109,7 ± 6,05	259,2	86,4 ± 5,37	9864,3	3288,1 ± 33,1	82	180
	BKG	292	72,74 ± 4,26	100	24,91 ± 2,49	25	6,23 ± 1,25	5812	1447,81 ± 18,99	240,9	1143,2	285,8 ± 8,45	446	111,5 ± 5,28	398	99,5 ± 4,99	13344	3336 ± 28,9	84,2	240
!	Th8	299	74,39 ± 4,30	97	24,13 ± 2,45	38	9,45 ± 1,53	5743	1428,84 ± 18,85	241,2	1223,2	<u>3</u> 05,8 ± 8,74	418	104,5 ± 5,11	372	93 ± 4,82	13477,6	3369,4 ± 29	82	240
!	BKG	420	79,32 ± 3,87	145	27,38 ± 2,27	52	9,82 ± 1,36	7578	1431,16 ± 16,44	317,7	1549	309,8 ± 7,87	516	103,2 ± 4,54	454,5	90,9 ± 4,26	16353	3270,6 ± 25,6	81,4	300
!	Th8	389	76,31 ± 3,87	120	23,54 ± 2,15	49	9,61 ± 1,37	7175	1407,51 ± 16,62	305,9	1552,5	310,5 ± 7,88	491,5	98,3 ± 4,43	475,5	95,1 ± 4,36	16228	3245,6 ± 25,5	81	300
	BKG	827	80,44 ± 2,80	252	24,51 ± 1,54	97	9,43 ± 0,96	14640	1423,94 ± 11,77	616,9	3097	309,7 ± 5,57	1027	102,7 ± 3,2	948	94,8 ± 3,08	32519	3251,9 ± 18	82,2	600
!	Th8	803	79,19 ± 2,79	264	26,04 ± 1,60	79	7,79 ± 0,88	14339	1414,15 ± 11,81	608,4	3026	302,6 ± 5,5	1004	100,4 ± 3,17	922	92,2 ± 3,04	32152	3215,2 ± 17,9	80,2	600
!	BKG	-	<u> </u>	<u> </u>	<u> </u> '	<u> </u>	<u> '</u>	-		-	4270,5	284,7 ± 4,36	1240,5	82,7 ± 2,35	1369,5	91,3 ± 2,47	43171,5	2878,1 ± 13,9	73	900
!	Th8	-	<u> </u>	<u> </u>	<u> </u>	<u> </u>	<u> '</u>	-		-	4380	292 ± 4,41	1180,5	78,7 ± 2,29	1392	92,8 ± 2,49	43326	2888,4 ± 13,9	72,8	900
	BKG	2834	94,03 ± 1,77	892	29,59 ± 0,99	506	16,79 ± 0,75	44455	1474,92 ± 7,00	1808	8943	298,1 ± 3,15	2052	68,4 ± 1,51	2421	80,7 ± 1,64	82476	2749,2 ± 9,57	67	1800
	Th8	2774	91,51 ± 1,74	794	26,19 ± 0,93	487	16,07 ± 0,73	44332	1462,46 ± 6,95	1819	10230	341 ± 3,37	2730	91 ± 1,74	2967	98,9 ± 1,82	86265	2875,5 ± 9,79	82,3	1800

Pad	rão/					Nal(T	1)				BGO RS-230									
Bra	nco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose	
(Bł	(G)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	τ (s)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	nSv/h	t (s)
	BKG	39	62,80 ± 10,06	9	14,49 ± 4,83	7	11,27 ± 4,26	863	1389,69 ± 47,31	37,26	188,1	376,2 ± 27,4	97,5	195 ± 19,7	53,6	107,2 ± 14,6	2418	4836 ± 98,3	119,6	30
	Th7	52	103,11 ± 14,30	11	21,81 ± 6,58	4	7,93 ± 3,97	714	1415,73 ± 52,98	30,26	187,9	375,8 ± 27,4	108,05	216,1 ± 20,8	45,05	90,1 ± 13,4	2392	4784 ± 97,8	121,7	30
	BKG	80	79,29 ± 8,86	29	28,74 ± 5,34	12	11,89 ± 3,43	1426	1413,28 ± 37,43	60,54	413,8	413,8 ± 20,3	187,8	187,8 ± 13,7	119	119 ± 10,9	4628	4628 ± 68	123,6	60
	Th7	68	62,20 ± 7,54	27	24,70 ± 4,75	9	8,23 ± 2,74	1530	1399,39 ± 35,78	65,6	397,5	397,5 ± 19,9	195,1	195,1 ± 14	113,6	113,6 ± 10,7	4739	4739 ± 68,8	123,1	60
	BKG	105	68,85 ± 6,72	35	22,95 ± 3,88	13	8,52 ± 2,36	2215	1452,46 ± 30,86	91,5	576,45	384,3 ± 16	300,3	200,2 ± 11,6	197,55	131,7 ± 9,37	6967,2	4644,8 ± 55,6	128,2	90
	Th7	124	80,07 ± 7,19	33	21,31 ± 3,71	20	12,91 ± 2,89	2230	1439,95 ± 30,49	92,92	573,15	382,1 ± 16	272,1	181,4 ± 11	138,3	92,2 ± 7,84	7015,35	4676,9 ± 55,8	112	90
	BKG	156	76,17 ± 6,10	54	26,37 ± 3,59	20	9,77 ± 2,18	2877	1404,79 ± 26,19	122,9	618,6	309,3 ± 12,4	210	105 ± 7,25	193,8	96,9 ± 6,96	6552,6	3276,3 ± 40,5	83,4	120
	Th7	145	71,92 ± 5,97	46	22,82 ± 3,36	23	11,41 ± 2,38	2869	1423,12 ± 26,57	121	610,4	305,2 ± 12,4	205,4	102,7 ± 7,17	173,2	86,6 ± 6,58	6312	3156 ± 39,7	79 <i>,</i> 8	120
	BKG	256	85,03 ± 5,31	78	25,91 ± 2,93	25	8,30 ± 1,66	4416	1466,78 ± 22,07	180,6	884,4	294,8 ± 9,91	316,8	105,6 ± 5,93	236,1	78,7 ± 5,12	9615,6	3205,2 ± 32,7	77,7	180
Th7	Th7	226	74,83 ± 4,98	80	26,49 ± 2,96	27	8,94 ± 1,72	4301	1424,17 ± 21,72	181,2	911,7	303,9 ± 10,1	319,2	106,4 ± 5,96	249	83 ± 5,26	9598,5	3199,5 ± 32,7	79,9	180
	BKG	332	82,62 ± 4,53	96	23,89 ± 2,44	41	10,20 ± 1,59	5803	1444,13 ± 18,96	241,1	1209,6	302,4 ± 8,69	443,6	110,9 ± 5,27	376	94 ± 4,85	13550,8	3387,7 ± 29,1	83,9	240
	Th7	324	80,66 ± 4,48	98	24,40 ± 2,46	38	9,46 ± 1,53	5668	1411,12 ± 18,74	241	1285,2	321,3 ± 8,96	447,2	111,8 ± 5,29	374,8	93,7 ± 4,84	13253,6	3313,4 ± 28,8	85,7	240
	BKG	436	79,58 ± 3,81	143	26,10 ± 2,18	56	10,22 ± 1,37	7872	1436,76 ± 16,19	328,7	1552,5	310,5 ± 7,88	539,5	107,9 ± 4,65	472,5	94,5 ± 4,35	16221,5	3244,3 ± 25,5	83 <i>,</i> 8	300
	Th7	410	78,10 ± 3,86	130	24,76 ± 2,17	46	8,76 ± 1,29	7454	1419,90 ± 16,45	315	1568,5	313,7 ± 7,92	494,5	98,9 ± 4,45	478,5	95,7 ± 4,37	16364,5	3272,9 ± 25,6	81,6	300
	BKG	827	80,44 ± 2,80	252	24,51 ± 1,54	97	9,43 ± 0,96	14640	1423,94 ± 11,77	616,9	3064	306,4 ± 5,54	1000	100 ± 3,16	987	98,7 ± 3,14	32616	3261,6 ± 18,1	82,1	600
	Th7	803	78,17 ± 2,76	264	25,70 ± 1,58	79	7,69 ± 0,87	14339	1395,79 ± 11,66	616,4	3031	303,1 ± 5,51	1024	102,4 ± 3,2	942	94,2 ± 3,07	32477	3247,7 ± 18	81,4	600
	BKG	-		-		-		-		-	4474,5	298,3 ± 4,46	1143	76,2 ± 2,25	1363,5	90,9 ± 2,46	43047	2869,8 ± 13,8	72,1	900
	Th7	-		-		-		-		-	4456,5	297,1 ± 4,45	1197	79,8 ± 2,31	1359	90,6 ± 2,46	43380	2892 ± 13,9	73	900
	BKG	2785	92,55 ± 1,75	859	28,55 ± 0,97	455	15,12 ± 0,71	44373	1474,59 ± 7,00	1806	8754	291,8 ± 3,12	2304	76,8 ± 1,6	2697	89,9 ± 1,73	85722	2857,4 ± 9,76	71,4	1800
	Th7	2695	89,73 ± 1,73	797	26,53 ± 0,94	446	14,85 ± 0,70	43901	1461,61 ± 6,98	1802	9195	306,5 ± 3,2	2508	83,6 ± 1,67	2829	94,3 ± 1,77	88524	2950,8 ± 9,92	75 <i>,</i> 9	1800
	BKG	45	87,32 ± 13,02	24	46,57 ± 9,51	5	9,70 ± 4,34	749	1453,43 ± 53,11	30,92	184,7	369,4 ± 27,2	99,55	199,1 ± 20	50,35	100,7 ± 14,2	2425	4850 ± 98,5	118,7	30
	Th6	31	62,04 ± 11,14	18	36,02 ± 8,49	6	12,01 ± 4,90	720	1440,96 ± 53,70	29,98	201,7	403,4 ± 28,4	88,3	176,6 ± 18,8	62,35	124,7 ± 15,8	2421	4842 ± 98,4	120,7	30
	BKG	82	77,92 ± 8,61	26	24,71 ± 4,85	12	11,40 ± 3,29	1498	1423,50 ± 36,78	63,14	398,1	398,1 ± 20	209,2	209,2 ± 14,5	106,3	106,3 ± 10,3	4718	4718 ± 68,7	125,6	60
	Th6	84	82,35 ± 8,99	26	25,49 ± 5,00	10	9,80 ± 3,10	1516	1486,27 ± 38,17	61,2	392,3	392,3 ± 19,8	204,7	204,7 ± 14,3	96,6	96,6 ± 9,83	4605	4605 ± 67,9	121,3	60
	BKG	141	87,22 ± 7,34	52	32,16 ± 4,46	11	6,80 ± 2,05	2397	1482,68 ± 30,28	97	562,05	374,7 ± 15,8	289,35	192,9 ± 11,3	185,25	123,5 ± 9,07	7014,6	4676,4 ± 55,8	123	90
	Th6	96	63,53 ± 6,48	32	21,18 ± 3,74	12	7,94 ± 2,29	2092	1384,51 ± 30,27	90,66	577,05	384,7 ± 16	274,5	183 ± 11	178,8	119,2 ± 8,91	6899,7	4599,8 ± 55,4	119,7	90
	BKG	159	78,30 ± 6,21	52	25,61 ± 3,55	22	10,83 ± 2,31	2902	1429,09 ± 26,53	121,8	635,8	317,9 ± 12,6	210,6	105,3 ± 7,26	190,2	95,1 ± 6,9	6548	3274 ± 40,5	83,8	120
	Th6	166	82,45 ± 6,40	50	24,83 ± 3,51	22	10,93 ± 2,33	2833	1407,12 ± 26,44	120,8	643,6	321,8 ± 12,7	200,8	100,4 ± 7,09	149,2	74,6 ± 6,11	6266,4	3133,2 ± 39,6	77,3	120
	BKG	271	90,09 ± 5,47	81	26,93 ± 2,99	39	12,97 ± 2,08	4294	1427,53 ± 21,78	180,5	885,9	295,3 ± 9,92	346,5	115,5 ± 6,2	267,9	89,3 ± 5,46	9828,6	3276,2 ± 33	83,6	180
Th6	Th6	224	74,25 ± 4,96	77	25,52 ± 2,91	33	10,94 ± 1,90	4296	1424,09 ± 21,73	181	935,1	311,7 ± 10,2	321,3	107,1 ± 5,97	306,6	102,2 ± 5,84	9708	3236 ± 32,8	85,6	180
	BKG	359	89,50 ± 4,72	110	27,42 ± 2,61	45	11,22 ± 1,67	5836	1454,88 ± 19,04	240,7	1216	304 ± 8,72	442,8	110,7 ± 5,26	386	96,5 ± 4,91	13321,6	3330,4 ± 28,9	84,7	240
	Th6	288	70,58 ± 4,16	111	27,20 ± 2,58	41	10,05 ± 1,57	5570	1365,08 ± 18,29	244,8	1147,6	286,9 ± 8,47	342,4	85,6 ± 4,63	322	80,5 ± 4,49	11365,2	2841,3 ± 26,7	71,3	240
	BKG	390	77,63 ± 3,93	129	25,68 ± 2,26	50	9,95 ± 1,41	7170	1427,24 ± 16,86	301,4	1574	314,8 ± 7,93	513,5	102,7 ± 4,53	465,5	93,1 ± 4,32	16204,5	3240,9 ± 25,5	82,2	300
	Th6	383	75,68 ± 3,87	133	26,28 ± 2,28	49	9,68 ± 1,38	7161	1414,94 ± 16,72	303,7	1590	318 ± 7,97	497	99,4 ± 4,46	487,5	97,5 ± 4,42	16391	3278,2 ± 25,6	82,6	300
	BKG	872	78,65 ± 2,66	285	25,70 ± 1,52	123	11,09 ± 1,00	15712	1417,07 ± 11,31	665,3	3169	316,9 ± 5,63	1051	105,1 ± 3,24	928	92,8 ± 3,05	32783	3278,3 ± 18,1	83,1	600
	Th6	785	76,85 ± 2,74	248	24,28 ± 1,54	111	10,87 ± 1,03	14574	1426,68 ± 11,82	612,9	3117	311,7 ± 5,58	1024	102,4 ± 3,2	883	88,3 ± 2,97	32332	3233,2 ± 18	80,6	600
	BKG	-		-		-		-		-	4546,5	303,1 ± 4,5	1185	79 ± 2,29	1413	94,2 ± 2,51	43488	2899,2 ± 13,9	74,1	900
	Th6	-		-		-		-		-	4426,5	295,1 ± 4,44	1165,5	77,7 ± 2,28	1317	87,8 ± 2,42	42961,5	2864,1 ± 13,8	71,4	900
	BKG	2777	91,99 ± 1,75	830	27,49 ± 0,95	519	17,19 ± 0,75	44489	1473,67 ± 6,99	1811	9321	310,7 ± 3,22	2661	88,7 ± 1,72	2775	92,5 ± 1,76	91077	3035,9 ± 10,1	77,4	1800
	Th6	2724	90,69 ± 1,74	766	25,50 ± 0,92	510	16,98 ± 0,75	43924	1462,31 ± 6,98	1802	9135	304,5 ± 3,19	2637	87,9 ± 1,71	2802	93,4 ± 1,76	90345	3011,5 ± 10	76,8	1800

Padr	rão/	Nal(TI)												BGO RS-2	230					
Bra	nco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose	
(BK	(G)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	- t (s)	Ctotal	cpm	Ctotal	срт	Ctotal	cpm	Ctotal	cpm	nSv/h	: (S)
	BKG	37	73,75 ± 12,13	14	27,91 ± 7,46	3	5,98 ± 3,45	716	1427,24 ± 53,34	30,1	182,6	365,2 ± 27	94,25	188,5 ± 19,4	63,1	126,2 ± 15,9	2432	4864 ± 98,6	121,6	30
	Th5	39	75,78 ± 12,13	7	13,60 ± 5,14	6	11,66 ± 4,76	722	1402,85 ± 52,21	30,88	182,85	365,7 ± 27	98,65	197,3 ± 19,9	71,7	143,4 ± 16,9	2391,5	4783 ± 97,8	128,7	30
	BKG	79	77,45 ± 8,71	26	25,49 ± 5,00	14	13,73 ± 3,67	1500	1470,59 ± 37,97	61,2	370,5	370,5 ± 19,2	182,1	182,1 ± 13,5	114,5	114,5 ± 10,7	4681	4681 ± 68,4	117	60
	Th5	89	87,43 ± 9,27	35	34,38 ± 5,81	9	8,84 ± 2,95	1493	1466,60 ± 37,96	61,08	296,6	296,6 ± 17,2	115,3	115,3 ± 10,7	90,2	90,2 ± 9,5	3498	3498 ± 59,1	83,9	60
	BKG	134	88,45 ± 7,64	35	23,10 ± 3,91	20	13,20 ± 2,95	2188	1444,22 ± 30,88	90,9	588,6	392,4 ± 16,2	288,9	192,6 ± 11,3	183,9	122,6 ± 9,04	7221,3	4814,2 ± 56,7	124,2	90
	Th5	115	73,94 ± 6,89	37	23,79 ± 3,91	16	10,29 ± 2,57	2261	1453,71 ± 30,57	93,32	536,7	357,8 ± 15,4	264,9	176,6 ± 10,9	184,2	122,8 ± 9,05	6940,05	4626,7 ± 55,5	116,4	90
	BKG	142	69,81 ± 5,86	51	25,07 ± 3,51	24	11,80 ± 2,41	3046	1497,54 ± 27,13	122	631,8	315,9 ± 12,6	200,4	100,2 ± 7,08	200,4	100,2 ± 7,08	6321	3160,5 ± 39,8	83,4	120
	Th5	162	80,16 ± 6,30	46	22,76 ± 3,36	18	8,91 ± 2,10	2883	1426,52 ± 26,57	121,3	583,2	291,6 ± 12,1	190	95 ± 6,89	167,4	83,7 ± 6,47	6355,8	3177,9 ± 39,9	75,5	120
	BKG	291	96,05 ± 5,63	80	26,41 ± 2,95	35	11,55 ± 1,95	4322	1426,56 ± 21,70	181,8	949,8	316,6 ± 10,3	333,3	111,1 ± 6,09	292,8	97,6 ± 5,7	10296,3	3432,1 ± 33,8	86,1	180
Th5	Th5	241	79,99 ± 5,15	86	28,54 ± 3,08	40	13,28 ± 2,10	4369	1450,05 ± 21,94	180,8	892,5	297,5 ± 9,96	318	106 ± 5,94	204	68 ± 4,76	9502,5	3167,5 ± 32,5	75,4	180
	BKG	330	80,49 ± 4,43	133	32,44 ± 2,81	41	10,00 ± 1,56	6003	1464,15 ± 18,90	246	1249,2	312,3 ± 8,84	387,2	96,8 ± 4,92	411,6	102,9 ± 5,07	12953,6	3238,4 ± 28,5	82,7	240
	Th5	307	76,35 ± 4,36	108	26,86 ± 2,58	28	6,96 ± 1,32	5807	1444,17 ± 18,95	241,3	1218,4	304,6 ± 8,73	398,4	99,6 ± 4,99	391,6	97,9 ± 4,95	12974	3243,5 ± 28,5	81,6	240
	BKG	395	75,49 ± 3,80	133	25,42 ± 2,20	44	8,41 ± 1,27	7535	1439,99 ± 16,59	314	1517,5	303,5 ± 7,79	530	106 ± 4,6	459,5	91,9 ± 4,29	16310,5	3262,1 ± 25,5	82	300
	Th5	415	82,37 ± 4,04	149	29,57 ± 2,42	52	10,32 ± 1,43	7130	1415,15 ± 16,76	302,3	1509,5	301,9 ± 7,77	507,5	101,5 ± 4,51	478	95,6 ± 4,37	16135,5	3227,1 ± 25,4	81,4	300
	BKG	819	81,62 ± 2,85	263	26,21 ± 1,62	110	10,96 ± 1,05	14482	1443,20 ± 11,99	602,1	2958	295,8 ± 5,44	1040	104 ± 3,22	917	91,7 ± 3,03	32162	3216,2 ± 17,9	80,7	600
	Th5	742	73,88 ± 2,71	240	23,90 ± 1,54	118	11,75 ± 1,08	14182	1412,17 ± 11,86	602,6	3194	319,4 ± 5,65	1005	100,5 ± 3,17	981	98,1 ± 3,13	32347	3234,7 ± 18	83,2	600
	BKG		<u> </u>	<u> </u>	<u> </u>	<u> </u>		<u> </u>		-	4600,5	306,7 ± 4,52	1168,5	77,9 ± 2,28	1336,5	89,1 ± 2,44	43708,5	2913,9 ± 13,9	72,8	900
	Th5		<u> </u>	<u> </u>	<u> </u>	<u> </u>	'	<u>['</u>		-	4450,5	296,7 ± 4,45	1194	79,6 ± 2,3	1288,5	85,9 ± 2,39	43512	2900,8 ± 13,9	71,7	900
	BKG	2803	92,78 ± 1,75	843	27,90 ± 0,96	534	17,68 ± 0,76	45033	1490,60 ± 7,02	1813	9144	304,8 ± 3,19	2745	91,5 ± 1,75	2799	93,3 ± 1,76	90117	3003,9 ± 10	78 1	1800
	Th5	2708	89,27 ± 1,72	855	28,18 ± 0,96	472	15,56 ± 0,72	44239	1458,28 ± 6,93	1820	9075	302,5 ± 3,18	2523	84,1 ± 1,67	2778	92,6 ± 1,76	88296	2943,2 ± 9,9	75,3 1	1800
	BKG	45	88,35 ± 13,17	9	17,67 ± 5,89	7	13,74 ± 5,19	684	1342,93 ± 51,35	30,56	142,8	285,6 ± 23,9	39,1	78,2 ± 12,5	49,5	99 ± 14,1	1456	2912 ± 76,3	73,7	30
	Th4	45	89,88 ± 13,40	17	33,95 ± 8,24	6	11,98 ± 4,89	799	1595,87 ± 56,46	30,04	145,45	290,9 ± 24,1	38,15	76,3 ± 12,4	51,8	103,6 ± 14,4	1496,5	2993 ± 77,4	74,7	30
	BKG	89	84,71 ± 8,98	32	30,46 ± 5,38	15	14,28 ± 3,69	1527	1453,36 ± 37,19	63,04	359,6	359,6 ± 19	168,2	168,2 ± 13	99,6	99,6 ± 9,98	4502	4502 ± 67,1	108	60
	Th4	87	85,29 ± 9,14	32	31,37 ± 5,55	12	11,76 ± 3,40	1549	1518,63 ± 38,59	61,2	412,9	412,9 ± 20,3	169,7	169,7 ± 13	135	135 ± 11,6	5008	5008 ± 70,8	122	60
	BKG	124	79,76 ± 7,16	50	32,16 ± 4,55	14	9,01 ± 2,41	2311	1486,49 ± 30,92	93,28	646,8	431,2 ± 17	257,25	171,5 ± 10,7	170,25	113,5 ± 8,7	7023,3	4682,2 ± 55,9	118,6	90
	Th4	109	71,85 ± 6,88	38	25,05 ± 4,06	21	13,84 ± 3,02	2329	1535,27 ± 31,81	91,02	514,05	342,7 ± 15,1	262,65	175,1 ± 10,8	188,4	125,6 ± 9,15	7136,55	4757,7 ± 56,3	115,3	90
	BKG	150	74,16 ± 6,06	50	24,72 ± 3,50	16	7,91 ± 1,98	2925	1446,11 ± 26,74	121,4	589,6	294,8 ± 12,1	198,2	99,1 ± 7,04	179,8	89,9 ± 6,7	6424,6	3212,3 ± 40,1	78,6	120
	Th4	154	75,69 ± 6,10	53	26,05 ± 3,58	36	17,69 ± 2,95	3128	1537,35 ± 27,49	122,1	606,4	303,2 ± 12,3	218,4	109,2 ± 7,39	206,4	103,2 ± 7,18	6663,2	3331,6 ± 40,8	85,8	120
	BKG	242	80,20 ± 5,16	90	29,83 ± 3,14	25	8,29 ± 1,66	4332	1435,70 ± 21,81	181	949,5	316,5 ± 10,3	336,9	112,3 ± 6,12	291	97 ± 5,69	9988,5	3329,5 ± 33,3	86,3	180
T L 4	Th4	257	85,50 ± 5,33	81	26,95 ± 2,99	41	13,64 ± 2,13	4637	1542,58 ± 22,65	180,4	903,9	301,3 ± 10	305,7	101,9 ± 5,83	269,4	89,8 ± 5,47	9856,2	3285,4 ± 33,1	80	180
1n4	BKG	331	80,47 ± 4,42	110	26,74 ± 2,55	35	8,51 ± 1,44	6084	1479,09 ± 18,96	246,8	1138,4	284,6 ± 8,44	447,2	111,8 ± 5,29	403,2	100,8 ± 5,02	13040,8	3260,2 ± 28,5	84,5	240
	Th4	326	81,05 ± 4,49	120	29,83 ± 2,72	42	10,44 ± 1,61	6192	1539,40 ± 19,56	241,3	1164	291 ± 8,53	389,6	97,4 ± 4,93	344,8	86,2 ± 4,64	13012,8	3253,2 ± 28,5	76,8	240
	BKG	411	79,78 ± 3,94	114	22,13 ± 2,07	55	10,68 ± 1,44	7234	1404,21 ± 16,51	309,1	1581	316,2 ± 7,95	507	101,4 ± 4,5	458,5	91,7 ± 4,28	16249	3249,8 ± 25,5	81,6	300
	Th4	399	79,38 ± 3,97	140	27,85 ± 2,35	60	11,94 ± 1,54	7726	1537,00 ± 17,49	301,6	1496,5	299,3 ± 7,74	535,5	107,1 ± 4,63	542	108,4 ± 4,66	16678	3335,6 ± 25,8	86,2	300
	BKG	833	82,97 ± 2,87	271	26,99 ± 1,64	94	9,36 ± 0,97	14531	1447,31 ± 12,01	602,4	3096	309,6 ± 5,56	1005	100,5 ± 3,17	880	88 ± 2,97	32048	3204,8 ± 17,9	79,8	600
	Th4	918	90,22 ± 2,98	303	29,78 ± 1,71	129	12,68 ± 1,12	15658	1538,87 ± 12,30	610,5	3020	302 ± 5,5	1053	105,3 ± 3,24	1030	103 ± 3,21	33605	3360,5 ± 18,3	84,5	600
	BKG			<u> </u>	<u> </u>	-	<u> </u>	<u>[</u> '	<u> </u>	-	4533	302,2 ± 4,49	1272	84,8 ± 2,38	1419	94,6 ± 2,51	43801,5	2920,1 ± 14	76	900
	Th4	-	<u> </u>	- '		-	'	· · · ·		-	4560	304 ± 4,5	1182	78,8 ± 2,29	1434	95,6 ± 2,52	45111	3007,4 ± 14,2	74,5	900
	BKG	3129	92,42 ± 1,65	938	27,71 ± 0,90	538	15,89 ± 0,69	49833	1471,90 ± 6,59	2031	9210	307 ± 3,2	2463	82,1 ± 1,65	2757	91,9 ± 1,75	88530	2951 ± 9,92	74,9 1	1800
	Th4	2755	90,52 ± 1,72	932	30,62 ± 1,00	576	18,93 ± 0,79	47970	1576,15 ± 7,20	1826	9120	304 ± 3,18	2460	82 ± 1,65	3012	100,4 ± 1,83	90549	3018,3 ± 10	76,8 1	1800

Pad	rão/					Nal(T	1)				BGO RS-230									
Bra	inco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose . ,	Ţ
(Bl	KG)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	t (s)	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	Ctotal	cpm	nSv/h t (s	1)
	BKG	43	85,89 ± 13,10	13	25,97 ± 7,20	4	7,99 ± 3,99	743	1484,02 ± 54,44	30,04	223,25	446,5 ± 29,9	125,2	250,4 ± 22,4	55,7	111,4 ± 14,9	2480	4960 ± 99,6	143,8 30	,
	Th3	59	112,45 ± 14,64	26	49,56 ± 9,72	11	20,97 ± 6,32	1043	1987,93 ± 61,55	31,48	189,6	379,2 ± 27,5	102,55	205,1 ± 20,3	77,85	155,7 ± 17,6	2658,5	5317 ± 103	135,4 30)
	BKG	81	80,49 ± 8,94	23	22,86 ± 4,77	10	9,94 ± 3,14	1441	1431,93 ± 37,72	60,38	380,8	380,8 ± 19,5	201,6	201,6 ± 14,2	130,7	130,7 ± 11,4	4604	4604 ± 67,9	128,1 60)
	Th3	90	88,47 ± 9,33	44	43,25 ± 6,52	23	22,61 ± 4,71	2019	1984,60 ± 44,17	61,04	408,2	408,2 ± 20,2	215,8	215,8 ± 14,7	181,3	181,3 ± 13,5	5286	5286 ± 72,7	147,8 60)
	BKG	131	86,79 ± 7,58	26	17,23 ± 3,38	14	9,28 ± 2,48	2161	1431,76 ± 30,80	90,56	609,75	406,5 ± 16,5	272,85	181,9 ± 11	165,75	110,5 ± 8,58	6876,3	4584,2 ± 55,3	119 90)
	Th3	164	107,89 ± 8,43	69	45,39 ± 5,46	30	19,74 ± 3,60	2996	1971,05 ± 36,01	91,2	598,65	399,1 ± 16,3	313,5	209 ± 11,8	255,15	170,1 ± 10,6	7787,85	5191,9 ± 58,8	142 90)
	BKG	187	92,45 ± 6,76	42	20,76 ± 3,20	17	8,40 ± 2,04	2983	1474,79 ± 27,00	121,4	595,4	297,7 ± 12,2	172,6	86,3 ± 6,57	149	74,5 ± 6,1	6329,4	3164,7 ± 39,8	70,9 12	0
	Th3	178	86,73 ± 6,50	67	32,65 ± 3,99	40	19,49 ± 3,08	4042	1969,47 ± 30,98	123,1	609,2	304,6 ± 12,3	245,2	122,6 ± 7,83	258	129 ± 8,03	7479,2	3739,6 ± 43,2	96,7 12	0
	BKG	258	85,30 ± 5,31	74	24,47 ± 2,84	35	11,57 ± 1,96	4483	1482,15 ± 22,14	181,5	886,8	295,6 ± 9,93	322,5	107,5 ± 5,99	257,7	85,9 ± 5,35	10016,1	3338,7 ± 33,4	80,3 18	0
762	Th3	254	84,53 ± 5,30	116	38,60 ± 3,58	63	20,97 ± 2,64	6062	2017,42 ± 25,91	180,3	972,3	324,1 ± 10,4	407,7	135,9 ± 6,73	354,6	118,2 ± 6,28	11629,2	3876,4 ± 35,9	99,7 18	0
The	BKG	313	77,88 ± 4,40	105	26,13 ± 2,55	43	10,70 ± 1,63	5753	1431,45 ± 18,87	241,1	1256,8	314,2 ± 8,86	468,8	117,2 ± 5,41	528,4	132,1 ± 5,75	15164	3791 ± 30,8	96,7 24	0
	Th3	357	87,78 ± 4,65	144	35,41 ± 2,95	78	19,18 ± 2,17	8202	2016,72 ± 22,27	244	1240	310 ± 8,8	424	106 ± 5,15	419,6	104,9 ± 5,12	13276,4	3319,1 ± 28,8	85,9 24	0
	BKG	418	83,40 ± 4,08	134	26,74 ± 2,31	44	8,78 ± 1,32	7417	1479,85 ± 17,18	300,7	1601,5	320,3 ± 8	508	101,6 ± 4,51	482,5	96,5 ± 4,39	16365,5	3273,1 ± 25,6	83,2 30	0
	Th3	459	88,31 ± 4,12	191	36,75 ± 2,66	82	15,78 ± 1,74	10267	1975,44 ± 19,50	311,8	1662	332,4 ± 8,15	600	120 ± 4,9	670,5	134,1 ± 5,18	19568,5	3913,7 ± 28	99,6 30	0
	BKG	838	82,88 ± 2,86	255	25,22 ± 1,58	104	10,29 ± 1,01	14674	1451,24 ± 11,98	606,7	3039	303,9 ± 5,51	1034	103,4 ± 3,22	901	90,1 ± 3	32619	3261,9 ± 18,1	80,7 60	0
	Th3	899	87,82 ± 2,93	396	38,68 ± 1,94	206	20,12 ± 1,40	20456	1998,18 ± 13,97	614,2	3306	330,6 ± 5,75	1138	113,8 ± 3,37	1347	134,7 ± 3,67	38726	3872,6 ± 19,7	97,7 60	0
	BKG	i - 1	<u> </u>	_ T	[]	- 1	[¹	[- [']		-	4705,5	313,7 ± 4,57	1191	79,4 ± 2,3	1375,5	91,7 ± 2,47	43711,5	2914,1 ± 13,9	74,5 90	0
	Th3	-		-		- 1	1	1 - 1		-	4843,5	322,9 ± 4,64	1405,5	93,7 ± 2,5	2074,5	138,3 ± 3,04	52774,5	3518,3 ± 15,3	91,7 90	0
	BKG	2746	91,48 ± 1,75	843	28,08 ± 0,97	464	15,46 ± 0,72	44727	1489,99 ± 7,05	1801	8991	299,7 ± 3,16	2349	78,3 ± 1,62	2685	89,5 ± 1,73	87153	2905,1 ± 9,84	72,5 180)0
	Th3	3010	99,77 ± 1,82	1163	38,55 ± 1,13	935	30,99 ± 1,01	61128	2026,21 ± 8,20	1810	9408	313,6 ± 3,23	2739	91,3 ± 1,74	3840	128 ± 2,07	105066	3502,2 ± 10,8	87,5 180)0
	BKG	37	72,64 ± 11,94	9	17,67 ± 5,89	5	9,82 ± 4,39	711	1395,94 ± 52,35	30,56	199,5	399 ± 28,2	108	216 ± 20,8	64,15	128,3 ± 16	2442	4884 ± 98,8	133,5 30	J
	Th2	60	117,11 ± 15,12	25	48,80 ± 9,76	12	23,42 ± 6,76	1339	2613,53 ± 71,42	30,74	221,05	442,1 ± 29,7	111,35	222,7 ± 21,1	91,9	183,8 ± 19,2	2982,5	5965 ± 109	153,4 30	J
	BKG	77	75,17 ± 8,57	21	20,50 ± 4,47	16	15,62 ± 3,90	1580	1542,47 ± 38,80	61,46	388,8	388,8 ± 19,7	156,7	156,7 ± 12,5	96,5	96,5 ± 9,82	4481	4481 ± 66,9	106 60	J
	Th2	123	120,94 ± 10,91	48	47,20 ± 6,81	25	24,58 ± 4,92	2589	2545,72 ± 50,03	61,02	416,1	416,1 ± 20,4	232	232 ± 15,2	194,2	194,2 ± 13,9	5918	5918 ± 76,9	156,8 60	J
	BKG	125	82,40 ± 7,37	39	25,71 ± 4,12	12	7,91 ± 2,28	2190	1443,64 ± 30,85	91,02	585,3	390,2 ± 16,1	266,85	177,9 ± 10,9	186,15	124,1 ± 9,1	6935,7	4623,8 ± 55,5	119,9 90	J
	Th2	155	101,62 ± 8,16	73	47,86 ± 5,60	42	27,53 ± 4,25	3963	2598,12 ± 41,27	91,52	663,9	442,6 ± 17,2	337,65	225,1 ± 12,3	309,15	206,1 ± 11,7	9009,75	6006,5 ± 63,3	159,9 90	J
	BKG	152	74,98 ± 6,08	50	24,66 ± 3,49	27	13,32 ± 2,56	2891	1426,01 ± 26,52	121,6	621	310,5 ± 12,5	177	88,5 ± 6,65	178,8	89,4 ± 6,69	6355,4	3177,7 ± 39,9	76,5 12	.0
	Th2	200	98,88 ± 6,99	115	56,86 ± 5,30	59	29,17 ± 3,80	5288	2614,37 ± 35,95	121,4	693,6	346,8 ± 13,2	236	118 ± 7,68	368	184 ± 9,59	9034,2	4517,1 ± 47,5	113 12	.0
	BKG	249	82,63 ± 5,24	83	27,54 ± 3,02	22	7,30 ± 1,56	4296	1425,66 ± 21,75	180,8	944,7	314,9 ± 10,2	347,1	115,7 ± 6,21	278,1	92,7 ± 5,56	10214,4	3404,8 ± 33,7	86,2 18	0
	Th2	308	102,02 ± 5,81	154	51,01 ± 4,11	84	27,82 ± 3,04	7755	2568,73 ± 29,17	181,1	1025,7	341,9 ± 10,7	439,8	146,6 ± 6,99	484,8	161,6 ± 7,34	13675,5	4558,5 ± 39	115,7 18	0
Th2	BKG	330	81,35 ± 4,48	113	27,86 ± 2,62	49	12,08 ± 1,73	5961	1469,43 ± 19,03	243,4	1397,2	349,3 ± 9,34	508,4	127,1 ± 5,64	783,6	195,9 ± 7	18121,6	4530,4 ± 33,7	119,1 24	0
	Th2	448	108,51 ± 5,13	237	57,40 ± 3,73	118	28,58 ± 2,63	10646	2578,56 ± 24,99	247,7	1288	322 ± 8,97	420,8	105,2 ± 5,13	399,2	99,8 ± 4,99	13218	3304,5 ± 28,7	85,3 24	0
	BKG	426	82,08 ± 3,98	112	21,58 ± 2,04	65	12,52 ± 1,55	7546	1453,95 ± 16,74	311,4	1527,5	305,5 ± 7,82	518,5	103,7 ± 4,55	474	94,8 ± 4,35	16219,5	3243,9 ± 25,5	82,2 30	0
	Th2	552	107,50 ± 4,58	266	51,80 ± 3,18	163	31,74 ± 2,49	13287	2587,54 ± 22,45	308,1	1706	341,2 ± 8,26	660,5	132,1 ± 5,14	902,5	180,5 ± 6,01	22357	4471,4 ± 29,9	116 30	0
	BKG	888	88.54 ± 2,97	247	24.63 ± 1,57	96	9.57 ± 0,98	14608	1456.53 ± 12,05	601,8	3935	393.5 ± 6,27	1908	190.8 ± 4,37	1279	127.9 ± 3,58	47217	4721.7 ± 21,7	125.1 60	0
	Th2	1092	108,65 ± 3,29	524	52,13 ± 2,28	317	31,54 ± 1,77	25302	2517,36 ± 15,83	603,1	4130	413 ± 6,43	2241	224,1 ± 4,73	1980	198 ± 4,45	59616	5961,6 ± 24,4	155 60	0
	BKG			<u> </u>		È-		<u> </u>		<u> </u>	4611	307.4 ± 4.53	1189.5	79.3 ± 2.3	1374	91.6 ± 2.47	43723.5	2914.9 ± 13.9	74 90	0
	Th2		[<u> </u>	<u>⊢</u>	⁺	-	/	<u> </u>	<u> </u>	+	5106	340.4 ± 4.76	1654.5	110.3 ± 2.71	2680.5	178.7 ± 3.45	62679	4178.6 ± 16.7	108.7 90	0
	BKG	2557	84.53 ± 1.67	822	27.17 ± 0.95	364	12.03 ± 0.63	43779	1447.21 ± 6.92	1815	8940	298 ± 3.15	2370	79 ± 1.62	2724	90.8 ± 1.74	86526	2884.2 ± 9.81	72.9 180	10
	0.00	2007	0.000 1 100)						1010	40440	207 1 2 25	2221		5202	1761 + 2.42	124724		107.0 190	

Padr	ão/					Nal(1	[])				BGO RS-230										
Bra	nco		K-40		U-238		Th-232		Total			K-40		U-238		Th-232		Total	Dose	+ (a)	
(BK	(G)	Ctotal	cpm	Ctotal	total cpm		Ctotal cpm		Ctotal cpm		Ctotal	cpm	Ctotal	Ctotal cpm		cpm	Ctotal cpm		nSv/h	nSv/h	
	BKG	38	75,65 ± 12,27	29	57,73 ± 10,72	3	5,97 ± 3,45	709	1411,41 ± 53,01	30,14	193,1	386,2 ± 27,8	91	182 ± 19,1	73,7	147,4 ± 17,2	2368	4736 ± 97,3	126,8	30	
	Th1	195	373,80 ± 26,77	151	289,46 ± 23,56	109	208,95 ± 20,01	6572	12598,08 ± 155,40	31,3	365,55	731,1 ± 38,2	261,2	522,4 ± 32,3	517,2	1034,4 ± 45,5	8615	17230 ± 186	489	30	
	BKG	76	73,24 ± 8,40	32	30,84 ± 5,45	13	12,53 ± 3,47	1462	1408,93 ± 36,85	62,26	361,4	361,4 ± 19	194,1	194,1 ± 13,9	114,7	114,7 ± 10,7	4597	4597 ± 67,8	120	60	
	Th1	399	381,09 ± 19,08	303	289,40 ± 16,63	237	226,36 ± 14,70	13249	12654,25 ± 109,94	62,82	767,9	767,9 ± 27,7	454,1	454,1 ± 21,3	960,5	960,5 ± 31	17196	17196 ± 131	452	60	
	BKG	104	68,39 ± 6,71	52	34,20 ± 4,74	9	5,92 ± 1,97	2157	1418,46 ± 30,54	91,24	588	392 ± 16,2	285,9	190,6 ± 11,3	189,3	126,2 ± 9,17	7108,65	4739,1 ± 56,2	124,5	90	
	Th1	559	369,55 ± 15,63	407	269,06 ± 13,34	355	234,68 ± 12,46	18917	12505,73 ± 90,92	90,76	1130,55	753,7 ± 22,4	772,2	514,8 ± 18,5	1495,95	997,3 ± 25,8	26190,15	17460,1 ± 108	479	90	
	BKG	167	83,17 ± 6,44	57	28,39 ± 3,76	17	8,47 ± 2,05	2819	1403,88 ± 26,44	120,5	627,4	313,7 ± 12,5	213,6	106,8 ± 7,31	177	88,5 ± 6,65	6621	3310,5 ± 40,7	82,2	120	
	Th1	728	358,21 ± 13,28	557	274,07 ± 11,61	449	220,93 ± 10,43	25906	12746,92 ± 79,20	121,9	1341	670,5 ± 18,3	804	402 ± 14,2	1939,8	969,9 ± 22	32075,4	16037,7 ± 89,5	430	120	
	BKG	265	87,90 ± 5,40	71	23,55 ± 2,80	39	12,94 ± 2,07	4341	1439,96 ± 21,86	180,9	948,9	316,3 ± 10,3	327,6	109,2 ± 6,03	287,4	95,8 ± 5,65	10101,9	3367,3 ± 33,5	85,1	180	
Th 1	Th1	1109	367,75 ± 11,04	803	266,28 ± 9,40	658	218,19 ± 8,51	38349	12716,59 ± 64,94	180,9	2054,7	684,9 ± 15,1	1198,5	399,5 ± 11,5	2754,3	918,1 ± 17,5	47694,3	15898,1 ± 72,8	417,2	180	
IUT	BKG	366	90,45 ± 4,73	98	24,22 ± 2,45	43	10,63 ± 1,62	5777	1427,71 ± 18,78	242,8	1241,2	310,3 ± 8,81	387,2	96,8 ± 4,92	374	93,5 ± 4,83	12709,6	3177,4 ± 28,2	80,1	240	
	Th1	1518	377,14 ± 9,68	1057	262,61 ± 8,08	861	213,91 ± 7,29	51032	12678,76 ± 56,12	241,5	2704	676 ± 13	1560,4	390,1 ± 9,88	3780,4	945,1 ± 15,4	63167,6	15791,9 ± 62,8	420,4	240	
	BKG	405	78,55 ± 3,90	128	24,83 ± 2,19	53	10,28 ± 1,41	7464	1447,63 ± 16,76	309,4	1534	306,8 ± 7,83	540	108 ± 4,65	480,5	96,1 ± 4,38	16288,5	3257,7 ± 25,5	83,9	300	
	Th1	1942	381,01 ± 8,65	1417	278,01 ± 7,39	1060	207,97 ± 6,39	65214	12794,59 ± 50,10	305,8	3390,5	678,1 ± 11,6	1963,5	392,7 ± 8,86	4581	916,2 ± 13,5	78753,5	15750,7 ± 56,1	414	300	
	BKG	812	80,80 ± 2,84	292	29,05 ± 1,70	100	9,95 ± 1,00	14606	1453,33 ± 12,03	603	3716	371,6 ± 6,1	1864	186,4 ± 4,32	1176	117,6 ± 3,43	46773	4677,3 ± 21,6	119,2	600	
	Th1	3754	369,31 ± 6,03	2937	288,93 ± 5,33	2085	205,12 ± 4,49	131323	12919,13 ± 35,65	609,9	7393	739,3 ± 8,6	5078	507,8 ± 7,13	9960	996 ± 9,98	175049	17504,9 ± 41,8	475,3	600	
	BKG	-		-		-		-		-	4554	303,6 ± 4,5	1182	78,8 ± 2,29	1356	90,4 ± 2,45	44206,5	2947,1 ± 14	73,2	900	
	Th1	-		-		-		-		-	10210,5	680,7 ± 6,74	5827,5	388,5 ± 5,09	14343	956,2 ± 7,98	235894,5	15726,3 ± 32,4	423,2	900	
E	BKG	2461	81,55 ± 1,64	774	25,65 ± 0,92	345	11,43 ± 0,62	43293	1434,64 ± 6,89	1811	9177	305,9 ± 3,19	2412	80,4 ± 1,64	2877	95,9 ± 1,79	87303	2910,1 ± 9,85	75,2	1800	
	Th1	11458	381,25 ± 3,56	8326	277,04 ± 3,04	6453	214,72 ± 2,67	391569	13028,99 ± 20,82	1803	20010	667 ± 4,72	11649	388,3 ± 3,6	28812	960,4 ± 5,66	467799	15593,3 ± 22,8	423	1800	

Anexo 4

Cálculo de χ^2 para a determinação dos tempos adequados à distribuição de Poisson baseado nos dados espectrais do detector *NaI(Tl)* e *BGO 2"x 2"*

- a) Os quadrantes em cinza representam os dados que não pertencem ao intervalo do teste de χ^2 para o número de graus de liberdade calculado.
- b) Os quadrantes em branco representam os dados pertencentes ao intervalo do teste de χ^2 para o número de graus de liberdade calculado.

Padrões de KCl

Tabela 28 - Cálculo do χ^2 dos padrões de Potássio para *NaI(Tl)* e *BGO* para a janela de K-40.

tempo (s)	GL	Padroes	>	0	5	4	3	2	
	(N-1)	Intervalo	χ^2	χ ² Κ	χ² Κ	χ ² Κ	$\chi^2 K$	$\chi^2 K$	$\chi^2 K$
				NaI(T	1)				
≥30	9	$2,70 > \chi^2 >$	19,02	-91,99	1438,50	197,45	211,17	37,93	6,31
≥60	8	$2,18 > \chi^2 >$	17,53	-79,97	-951,36	149,03	33,97	29,10	6,18
≥90	7	$1,69 > \chi^2 >$	16,01	-24,91	-223,38	140,27	17,20	10,07	3,06
≥120	6	$1,24 > \chi^2 >$	14,45	-11,83	-282,47	137,44	16,52	5,26	2,14
≥180	5	$0,83 > \chi^2 >$	12,83	-10,27	-240,60	236,22	16,56	4,83	0,82
≥240	4	$0,48 > \chi^2 >$	11,14	-8,82	-500,39	-73,55	12,25	2,48	0,65
≥300	3	$0,22 > \chi^2 >$	9,35	-3,80	-1,69	-307,21	5,16	2,45	0,15
≥600	2	$0,05 > \chi^2 >$	7,38	-3,52	-0,87	2,04	3,78	1,18	0,09
≥900	1	$0,00 > \chi^2 >$	5,02	-3,61	-0,88	1,63	1,16	0,23	0,08
				BGC)				
≥30	9	2,70 > χ^2 >	19,02	-484,10	11471,19	-542,24	645,93	121,45	65,26
≥60	8	2,18 > χ^2 >	17,53	-375,50	3444,99	-735,44	624,33	117,41	62,09
≥90	7	$1,69 > \chi^2 >$	16,01	-325,88	1854,65	-359,20	608,83	117,43	62,09
≥120	6	$1,24 > \chi^2 >$	14,45	-216,30	913,97	-176,59	664,89	117,20	57,58
≥180	5	$0,83 > \chi^2 >$	12,83	-187,58	486,43	-156,11	621,66	117,88	57,39
≥240	4	0,48 > χ^2 >	11,14	-143,51	410,52	-104,03	515,70	119,55	56,14
≥300	3	$0,22 > \chi^2 >$	9,35	-110,36	351,79	-37,56	651,25	122,08	56,35
≥600	2	$0,05 > \chi^2 >$	7,38	-90,51	379,21	-39,12	-554,38	127,56	47,49
≥900	1	$0,00 > \chi^2 >$	5,02	-7,89	392,06	-0,76	-131,36	30,79	45,36

Tabela 29 - Cálculo do χ^2 dos padrões de Potássio para *Nal*(*Tl*) e *BGO* para a janela de Bi-214.

tempo (s)	GL	Padrões >	>	6	5	4	3	2	1
	(N-1)	Intervalo ;	$\chi^2 U$	χ² U	$\chi^2 U$	$\chi^2 U$	$\chi^2 U$	$\chi^2 U$	
				Na	I(Tl)				
≥30	9	$2,70 > \chi^2 >$	19,02	649,24	-226,23	-179,65	-803,04	868,80	126,53
≥60	8	$2,18 > \chi^2 >$	17,53	127,46	-283,16	-319,92	297,17	154,89	174,40
≥90	7	$1,69 > \chi^2 >$	16,01	297,71	-4688,57	72,05	448,69	123,30	-262,95
≥120	6	$1,24 > \chi^2 >$	14,45	-306,48	-823,35	71,34	-295,98	226,63	-83,87
≥180	5	$0,83 > \chi^2 >$	12,83	44,53	-705,60	-53,66	-10,63	118,03	-163,17
≥240	4	$0,48 > \chi^2 >$	11,14	28,21	445,32	-5,72	-10,95	70,20	-17,99
≥300	3	$0,22 > \chi^2 >$	9,35	35,70	478,24	-6,39	-11,35	53,83	-13,95
≥600	2	$0,05 > \chi^2 >$	7,38	-16,41	-0,28	-1,86	-1,23	-0,22	-12,16
≥900	1	$0,00 > \chi^2 >$	5,02	1,86	-0,14	-0,23	-1,16	-0,18	-6,11
				B	GO				
≥30	9	$2,70 > \chi^2 >$	19,02	-305,81	-554,38	219,06	-100,09	-60,96	1267,00
≥60	8	2,18 > χ^2 >	17,53	-253,87	265,42	204,04	-99,00	-54,49	-12291,20
≥90	7	$1,69 > \chi^2 >$	16,01	-292,76	136,67	229,85	-79,64	-52,20	2823,06
≥120	6	$1,24 > \chi^2 >$	14,45	-273,76	42,80	323,71	-74,59	-54,32	1731,90
≥180	5	0,83 > χ^2 >	12,83	-176,55	38,85	557,64	-48,29	-50,16	1229,49
≥240	4	$0,48 > \chi^2 >$	11,14	-178,30	31,39	1160,21	-45,64	-29,96	935,60
≥300	3	$0,22 > \chi^2 >$	9,35	-146,80	25,67	93,17	-1,56	-31,65	500,27
≥600	2	$0,05 > \chi^2 >$	7,38	-167,63	24,35	94,35	-0,82	-34,17	414,03
≥900	1	$0,00 > \chi^2 >$	5,02	47,49	35,18	25,93	-0,50	2,59	164,91
tempo (s)	GL	Padroes >	0	Э	4	3	2	1	
-----------	-------	--------------------------	----------	----------	----------	---------------	-----------	----------	
	(N-1)	Intervalo χ ²	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	
			N	aI(Tl)					
≥30	9	$2,70 > \chi^2 > 19,02$	-64,55	-355,37	-1122,13	-16,94	-80,65	-54,02	
≥60	8	$2,18 > \chi^2 > 17,53$	-75,25	-61,96	83,44	-12,93	-73,95	-60,54	
≥90	7	$1,69 > \chi^2 > 16,01$	-41,92	-63,40	110,10	-12,94	-83,15	-54,16	
≥120	6	$1,24 > \chi^2 > 14,45$	-41,12	-87,30	-181,61	-13,41	-123,08	-64,22	
≥180	5	$0,83 > \chi^2 > 12,83$	-117,22	-74,15	268,42	-14,29	-44,47	-48,37	
≥240	4	$0,48 > \chi^2 > 11,14$	-8,01	913,61	22,92	-5,78	-16,54	-132,36	
≥300	3	$0,22 > \chi^2 > 9,35$	-5,98	-8,92	-3,88	-3,08	-15,20	5,97	
≥600	2	$0,05 > \chi^2 > -7,38$	-4,72	-0,08	-11,56	-0,24	-18,50	2,63	
≥900	1	$0,00 > \chi^2 > 5,02$	-3,61	-0,02	0,40	0,00	-5,34	0,63	
]	BGO					
≥30	9	$2,70 > \chi^2 > 19,02$	505,64	-405,62	-281,36	-1221,44	-19492,20	-6461,09	
≥60	8	$2,18 > \chi^2 > 17,53$	31154,20	-164,16	-490,83	-3393,65	-65,23	174,34	
≥90	7	$1,69 > \chi^2 > 16,01$	1388,16	-155,12	-429,82	-1750,04	-49,23	128,17	
≥120	6	$1,24 > \chi^2 > 14,45$	23272,70	-157,94	-540,83	-1809,65	-51,87	144,99	
≥180	5	$0,83 > \chi^2 > 12,83$	4428,77	-185,49	-324,74	-901,51	-27,07	138,37	
≥240	4	$0,48 > \chi^2 > 11,14$	4151,95	-234,29	-24,58	1675,69	-28,27	74,25	
≥300	3	$0,22 > \chi^2 > 9,35$	-781,71	-2825,70	-24,69	254,46	-29,73	89,77	
≥600	2	$0,05 > \chi^2 > -7,38$	91,39	94,83	-18,52	161,73 -33,53		124,80	
≥900	1	$0,00 > \chi^2 > 5,02$	-78,53	21,31	-8,83	28,26	72,20	13,93	

Tabela 30 <u>- Cálculo do χ^2 dos padrões de Potássio para *NaI(Tl)* e *BGO* para a janela de TI-208.</u>

Tabela 31 - Cálculo do χ^2 dos padrões de Potássio para *NaI(Tl)* e *BGO* para a janela de Contagem Total.

tempo (s)	GL	Padrões >	6	5	4	3	2	1
	(N-1)	Intervalo χ ²	χ ² CT	$\chi^2 CT$	χ ² CT	χ² CT	χ ² CT	χ ² CT
			N	aI(Tl)				
≥30	9	$2,70 > \chi^2 > 19,02$	-317,91	-171,55	-554,23	-722,87	60,04	22,14
≥60	8	$2,18 > \chi^2 > 17,53$	-198,16	-158,54	-249,78	-816,76	55,64	21,85
≥90	7	$1,69 > \chi^2 > 16,01$	-152,65	-122,70	-84,25	-1017,11	36,39	19,30
≥120	6	$1,24 > \chi^2 > 14,45$	-144,34	-123,93	-23,32	-1094,45	21,29	17,63
≥180	5	$0,83 > \chi^2 > 12,83$	-136,80	-63,28	-22,91	-195,17	1,21	12,85
≥240	4	$0,48 > \chi^2 > 11,14$	-45,49	-59,20	-11,52	-144,85	0,32	4,06
≥300	3	$0,22 > \chi^2 > 9,35$	-672,47	-408,56	-482,13	-1744,83	133,71	107,90
≥600	2	$0,05 > \chi^2 > -7,38$	-28,01	-1,27	-1,12	-97,59	0,06	2,74
≥900	1	$0,00 > \chi^2 > 5,02$	-0,99	-0,27	-0,78	-12,49	0,03	0,87
			Ī	3GO				
≥30	9	$2,70 > \chi^2 > 19,02$	-902,79	-932,52	-9961,66	-2130,52	130,60	285,83
≥60	8	$2,18 > \chi^2 > 17,53$	-863,60	-917,35	8631,32	-1000,94	128,21	255,84
≥90	7	$1,69 > \chi^2 > 16,01$	-891,72	-947,12	7760,03	-913,07	125,98	254,82
≥120	6	$1,24 > \chi^2 > 14,45$	-757,36	-850,64	-618,75	-943,44	124,61	254,30
≥180	5	$0,83 > \chi^2 > 12,83$	-721,48	-1021,91	-548,44	-420,99	94,58	250,80
≥240	4	$0,48 > \chi^2 > 11,14$	-691,15	-1022,06	-236,82	-438,07	95,66	251,86
≥300	3	$0,22 > \chi^2 > -9,35$	-3886,68	-10063,52	-3886,43	-4129,15	866,82	1603,13
≥600	2	$0,05 > \chi^2 > -7,38$	-526,63	-1221,16	-224,33	-507,11	21,02	231,82
≥900	1	$0,00 > \chi^2 > 5,02$	-6,70	-1,69	-195,71	-74,07	0,24	138,96

Tabela 32 - Cálculo do χ^2 dos padrões de Pechblenda para NaI(Tl) e *BGO* para a janela de K-40.

tempo (s)	GL	Padrões	>	5	4	3	2	1
	(N-1)	Intervalo	χ^2	χ ² Κ	$\chi^2 K$	$\chi^2 K$	χ² Κ	χ² Κ
			Ν	aI(Tl)				
≥30	9	$2,70 > \chi^2 >$	19,02	1499,70	48,07	14,91	7,32	-
≥60	8	$2,18 > \chi^2 >$	17,53	-99,06	33,40	8,89	6,73	5,16
≥90	7	$1,69 > \chi^2 >$	16,01	-96,46	29,58	7,74	3,14	5,10
≥120	6	$1,24 > \chi^2 >$	14,45	-109,13	29,85	3,78	2,67	3,56
≥ 180	5	$0,83 > \chi^2 >$	12,83	-124,41	18,71	1,86	2,42	3,50
≥240	4	$0,48 > \chi^2 >$	11,14	-78,43	18,44	1,54	1,26	2,82
≥300	3	$0,22 > \chi^2 >$	9,35	67,38	5,97	0,83	1,01	2,82
≥600	2	$0,05 > \chi^2 >$	7,38	-105,23	2,55	0,82	0,89	0,29
≥900	1	$0,00 > \chi^2 >$	5,02	-19,44	0,96	0,23	0,20	0,17
]	BGO				
	(N-1)	Intervalo	χ^2	χ² Κ	$\chi^2 K$	$\chi^2 K$	$\chi^2 K$	$\chi^2 K$
≥30	9	$2,70 > \chi^2 >$	19,02	-1153,23	108,87	499,42	738,89	17,38
≥60	8	2,18 > χ^2 >	17,53	-1427,70	78,70	490,08	752,84	13,94
≥90	7	$1,69 > \chi^2 >$	16,01	-1594,73	79,59	225,50	5,52	6,57
≥120	6	$1,24 > \chi^2 >$	14,45	-2136,03	78,12	162,39	4,87	5,19
≥180	5	$0,83 > \chi^2 >$	12,83	-1462,74	52,55	161,93	4,83	4,91
≥240	4	$0,48 > \chi^2 >$	11,14	-706,57	35,37	158,63	2,57	4,59
≥300	3	$0,22 > \chi^2 >$	9,35	-276,31	17,14	134,59	1,67	4,51
≥600	2	$0,05 > \chi^2 >$	7,38	-179,55	14,96	73,59	1,04	4,44
≥900	1	$0,00 > \chi^2 >$	5,02	-122,89	14,75	0,58	0,00	4,08

Tabela 33 - Cálculo do χ^2 dos padrões de Pechblenda para *NaI*(*Tl*) e *BGO* para a janela de Bi-214.

tempo (s)	GL	Padrões	>	5	4	3	2	1
	(N-1)	Intervalo	χ^2	χ² U	χ² U	χ² U	χ² U	χ² U
			Na	aI(Tl)				
≥30	9	$2,70 > \chi^2 >$	19,02	97,66	50,36	164,27	6,82	1070,09
≥60	8	$2,18 > \chi^2 >$	17,53	40,77	18,38	155,48	6,28	4,99
≥90	7	$1,69 > \chi^2 >$	16,01	43,60	18,45	136,53	4,44	3,03
≥120	6	$1,24 > \chi^2 >$	14,45	48,74	14,50	132,76	2,04	2,08
≥180	5	$0,83 > \chi^2 >$	12,83	39,36	14,09	128,06	2,00	2,00
≥240	4	$0,48 > \chi^2 >$	11,14	47,98	1,92	121,28	0,78	1,99
≥300	3	$0,22 > \chi^2 >$	9,35	15,82	1,17	115,14	0,31	1,34
≥600	2	$0,05 > \chi^2 >$	7,38	15,19	0,59	0,17	0,07	1,21
≥900	1	$0,00 > \chi^2 >$	5,02	-34,53	0,25	0,13	0,03	0,19
			E	BGO				
	(N-1)	Intervalo	χ^2	χ² U	χ² U	χ² U	χ² U	χ² U
≥30	9	$2,70 > \chi^2 >$	19,02	54,38	38,71	413,57	962,53	6,38
≥60	8	2,18 > χ^2 >	17,53	54,92	38,87	418,12	974,24	5,52
≥90	7	$1,69 > \chi^2 >$	16,01	54,70	20,00	1,90	4,48	5,33
≥120	6	$1,24 > \chi^2 >$	14,45	52,61	19,46	0,45	4,48	2,91
≥180	5	$0,83 > \chi^2 >$	12,83	53,03	15,51	0,35	4,44	2,07
≥240	4	$0,48 > \chi^2 >$	11,14	14,87	12,96	0,13	3,71	1,17
≥300	3	$0,22 > \chi^2 >$	9,35	11,31	13,04	0,11	0,86	1,00
≥600	2	$0,05 > \chi^2 >$	7,38	2,45	5,34	0,08	0,86	0,77
≥900	1	$0,00 > \chi^2 >$	5,02	2,33	1,91	0,04	0,72	0,76

tempo (s)	GL	Padrões	>	5	4	3	2	1
	(N-1)	Intervalo	χ^2	χ^2 Th	χ² Th	γ² Th	χ^2 Th	χ^2 Th
			, •	NaI(Tl)				
≥30	9	$2,70 > \chi^2 >$	19,02	109,71	425,91	1318,71	-242,34	19,75
≥60	8	$2,18 > \chi^2 >$	17,53	106,72	-63,74	-119,77	-374,81	16,91
≥90	7	$1,69 > \chi^2 >$	16,01	35,49	-102,58	-68,47	237,48	11,74
≥120	6	$1,24 > \chi^2 >$	14,45	32,15	-117,34	-121,77	233,04	7,35
≥180	5	$0,83 > \chi^2 >$	12,83	781,89	66,97	-46,87	300,76	2,19
≥240	4	$0,48 > \chi^2 >$	11,14	81,62	-2,38	5359,19	-114,42	1,93
≥300	3	$0,22 > \chi^2 >$	9,35	-7,77	-2,24	16,52	9,97	1,35
≥600	2	$0,05 > \chi^2 >$	7,38	49,54	-0,75	4,03	5,84	0,45
≥900	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		-0,17	-0,11	0,99	0,12	0,44
				BGO				
	(N-1)	Intervalo	χ^2	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th
≥30	9	$2,70 > \chi^2 >$	19,02	-216,46	-662,95	-318,99	200,62	18,66
≥60	8	2,18 > χ^2 >	17,53	-129,80	-1098,13	-336,34	113,17	18,57
≥90	7	$1,69 > \chi^2 >$	16,01	-143,38	-143,19	-918,69	118,46	5,12
≥120	6	$1,24 > \chi^2 >$	14,45	-182,24	-199,31	338,22	81,47	4,24
≥180	5	$0,83 > \chi^2 >$	12,83	-306,07	-257,83	92,56	55,74	4,17
≥240	4	$0,48 > \chi^2 >$	11,14	6,62	-48,95	24,84	41,39	2,82
≥300	3	$0,22 > \chi^2 >$	9,35	1,44	-26,40	7,68	9,22	1,42
≥600	2	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		0,61	-8,04	0,52	9,39	1,38
≥900	1	$0,00 > \chi^2 >$	5,02	0,16	-1,41	0,44	7,75	1,29

Tabela 34 - Cálculo do χ^2 dos padrões de Pechblenda para *NaI*(*Tl*) e *BGO* para a janela de TI-208.

Tabela 35 - Cálculo do χ^2 dos padrões de Pechblenda para NaI(Tl) e *BGO* para a janela de contagem total.

tempo (s)	GL	Padrões 2	>	5	4	3	2	1
	(N-1)	Intervalo	χ^2	χ² CT	χ² CT	χ ² CT	χ² CT	χ² CT
				NaI(Tl)				
≥30	9	$2,70 > \chi^2 >$	19,02	3309,13	66,25	16,56	6,46	2248,03
≥60	8	$2,18 > \chi^2 >$	17,53	3348,49	60,95	11,46	4,05	20,10
≥90	7	$1,69 > \chi^2 >$	16,01	-879,73	38,04	7,22	3,91	13,56
≥120	6	$1,24 > \chi^2 >$	14,45	-2080,61	9,29	7,17	1,86	12,92
≥180	5	$0,83 > \chi^2 >$	12,83	-697,89	5,55	6,92	1,86	4,24
≥240	4	$0,48 > \chi^2 >$	11,14	1440,69	4,72	5,75	0,21	4,02
≥300	3	$0,22 > \chi^2 >$	9,35	-30473,40	161,81	70,22	41,97	89,09
≥600	2	$0,05 > \chi^2 >$	7,38	29,01	1,27	0,07	0,16	3,04
≥900	1	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$		29,72	1,25	0,06	0,10	0,32
				BGO				
	(N-1)	Intervalo	χ^2	$\chi^2 CT$	$\chi^2 CT$	$\chi^2 CT$	$\chi^2 CT$	$\chi^2 CT$
≥30	9	$2,70 > \chi^2 >$	19,02	905,88	14934,39	6169,50	10299,71	23,85
≥60	8	2,18 > χ^2 >	17,53	956,90	13575,27	6280,60	10361,54	21,85
≥90	7	$1,69 > \chi^2 >$	16,01	1025,15	12004,53	17,44	21,60	21,63
≥120	6	$1,24 > \chi^2 >$	14,45	425,54	10484,80	13,97	19,92	18,51
≥ 180	5	$0,83 > \chi^2 >$	12,83	378,20	9255,42	13,51	6,44	14,94
≥240	4	$0,48 > \chi^2 >$	11,14	266,48	8214,82	12,72	6,13	1,02
≥300	3	$0,22 > \chi^2 >$	9,35	4235,86	44411,42	4873,26	8258,83	108,26
≥600	2	$0,05 > \chi^2 >$	7,38	198,60	4780,67	3,23	3,40	0,48
≥900	1	$0,00 > \chi^2 >$	5,02	14,36	2461,43	0,74	3,37	0,48

Padrões de Areia Monazítica e SiO₂ (Th-232):

Tabela 36 - Cálculo do χ^2 dos padrões de Areia Monazítica para *NaI*(*Tl*) e *BGO* para a janela de K-40.

tempo (s)	GL	Padrões	>	8	7	6	5	4	3	2	1
	(N-1)	Intervalo	χ^2	χ² Κ	χ² Κ	χ ² Κ	χ ² Κ	χ² Κ	χ ² Κ	χ² Κ	χ ² Κ
					Na	I(Tl)					
≥30	8	$2,18 > \chi^2 >$	17,53	-190,60	1703,94	-127,91	-422,05	2656,79	93,39	32,17	3,42
≥60	7	$1,69 > \chi^2 >$	16,01	-1266,48	-126,19	-122,12	-327,46	-661,33	69,05	21,76	3,33
≥90	6	$1,24 > \chi^2 >$	14,45	-34,83	-147,19	-81,68	-144,79	-385,10	71,21	2,81	2,45
≥120	5	$0,83 > \chi^2 >$	12,83	-16,55	-13,89	-71,12	-197,43	28,62	47,65	2,28	2,01
≥180	4	$0,48 > \chi^2 >$	11,14	-9,72	-14,15	-37,73	-55,75	31,43	12,30	2,23	1,22
≥240	3	$0,22 > \chi^2 >$	9,35	-10,25	-0,45	-37,19	-55,76	-29,44	2,66	1,64	0,64
≥300	2	$0,05 > \chi^2 >$	7,38	-0,74	-0,42	-0,14	-77,76	-10,23	1,25	0,81	0,37
≥600	1	$0,00 > \chi^2 >$	5,02	-0,43	-0,06	-0,08	-1,58	-10,01	0,85	0,00	0,21
					B	GO					
	(N-1)	Intervalo	χ^2	$\chi^2 K$	$\chi^2 K$	χ² Κ	χ² Κ	$\chi^2 K$	χ ² Κ	$\chi^2 K$	χ² Κ
≥30	9	2,70 > χ^2 >	19,02	-1541,43	506,70	770,81	-408,70	-1979,61	1558,89	147,75	6,32
≥60	8	2,18 > χ^2 >	17,53	-223108,90	443,66	-860,46	-350,70	-1608,22	111,32	147,92	4,66
≥90	7	$1,69 > \chi^2 >$	16,01	5147,28	124,52	-2173,80	-226,80	-480,89	107,48	148,13	0,79
≥120	6	$1,24 > \chi^2 >$	14,45	237,37	93,22	-372,70	-242,56	-161,15	58,38	139,48	0,72
≥180	5	$0,83 > \chi^2 >$	12,83	148,75	56,96	-232,01	-364,97	-74,65	50,72	144,45	0,39
≥240	4	$0,83 > \chi > 12,83$ $0,48 > \chi^2 > 11,14$		119,95	59,94	-31,58	1808,25	-83,44	42,37	150,85	0,39
≥300	3	$0,22 > \chi^2 >$	9,35	133,79	57,84	-18,30	264,45	-29,65	11,58	6,91	0,36
≥600	2	$0,05 > \chi^2 >$	7,38	92,22	56,98	-0,62	164,52	-15,06	9,88	6,54	0,35
≥900	1	$0,00 > \chi^2 >$	5,02	25,25	18,73	-0,23	-4,82	-19,20	2,00	0,50	0,35

Tabela 37 - Cálculo do χ^2 dos padrões de Areia Monazítica para *NaI*(*Tl*) e *BGO* para a janela de Bi-214.

tempo (s)	GL	Padrões >	8	7	6	5	4	3	2	1
	(N-1)	Intervalo χ ²	χ² U	χ² U	χ² U	χ² U	χ² U	χ ² U	χ² U	χ ² U
				NaI(Tl)						
≥30	8	$2,18 > \chi^2 > 17,53$	-402,86	-277,20	-57,77	-366,29	125,45	23,09	4,40	3,36
≥60	7	$1,69 > \chi^2 > 16,01$	-233,97	-20,36	-52,20	186,75	129,88	19,89	3,84	2,37
≥90	6	$1,24 > \chi^2 > 14,45$	104,61	-19,60	-39,84	-149,80	130,37	18,41	3,84	1,88
≥120	5	$0,83 > \chi^2 > 12,83$	1530,75	-21,93	-5,12	-101,74	18,54	1,66	2,83	1,22
≥180	4	$0,48 > \chi^2 > 11,14$	-69,59	-35,58	-5,00	-220,37	16,76	1,66	1,95	1,18
≥240	3	$0,22 > \chi^2 > 9,35$	-11,53	-16,51	-5,41	-58,87	1,44	0,94	1,45	0,97
≥300	2	$0.05 > \chi^2 > -7.38$	-9,32	-7,90	-3,96	29,90	1,23	0,62	1,25	0,16
≥600	1	$0,00 > \chi^2 > 5,02$	-12,95	-12,43	-0,09	-3,31	0,01	0,38	0,57	0,14
				BGO						
	(N-1)	Intervalo χ ²	χ² U	χ² U	χ² U	χ² U	χ² U	χ² U	χ² U	χ² U
≥30	9	$2,70 > \chi^2 > 19,02$	425,57	772,07	-80,82	-424,41	-736,41	468,08	191,60	15,71
≥60	8	$2,18 > \chi^2 > 17,53$	264,16	-598,31	-66,69	-317,38	-902,21	88,02	158,73	10,64
≥90	7	$1,69 > \chi^2 > 16,01$	268,51	-243,96	-63,19	-50,34	-616,62	85,94	110,28	4,97
≥120	6	$1,24 > \chi^2 > 14,45$	422,00	330,83	-65,66	-28,67	-335,67	86,47	102,92	3,36
≥180	5	$0,83 > \chi^2 > 12,83$	-5408,47	155,31	-62,40	-30,50	-99,32	70,13	105,69	3,25
≥240	4	$0,48 > \chi^2 > 11,14$	683,17	151,44	-64,77	-34,05	-139,45	60,41	110,23	2,75
≥300	3	$0,22 > \chi^2 > 9,35$	183,71	149,84	-2,03	-12,62	78,82	2,38	0,40	2,31
≥600	2	$0,05 > \chi^2 > -7,38$	81,62	2,42	-1,21	-13,59	-134,97	0,63	0,09	0,34
≥900	1	$0,00 > \chi^2 > 5,02$	38,04	0,98	-0,12	-14,53	-5,71	2,00	0,01	0,01

tempo (s)	GL	Padrões >	8	7	6	5	4	3	2	1
	(N-1)	Intervalo χ ²	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th
				NaI(Tl)						
≥30	8	$2,18 > \chi^2 > 17,53$	-503,45	-99,77	-65,74	-141,41	71,99	4,95	7,89	3,98
≥60	7	$1,69 > \chi^2 > 16,01$	-157,62	-273,90	-13,51	-31,77	51,94	4,58	6,76	3,88
≥90	6	$1,24 > \chi^2 > 14,45$	-29,02	77,96	-15,50	-33,95	31,47	4,22	1,56	3,68
≥120	5	$0,83 > \chi^2 > 12,83$	-34,63	-25,63	-5,08	-44,93	33,30	4,23	1,55	0,91
≥180	4	$0,48 > \chi^2 > 11,14$	-94,61	-5,08	-3,32	-142,80	26,84	4,21	0,86	0,37
≥240	3	$0,22 > \chi^2 > -9,35$	83,20	-1,28	-1,39	-26,86	38,22	4,09	0,83	0,25
≥300	2	$0.05 > \chi^2 > -7.38$	-1,23	-1,05	-0,01	44,44	95,60	3,50	0,18	0,17
≥600	1	$0,00 > \chi^2 > 5,02$	-0,36	-1,08	0,00	-6,35	-82,39	1,28	0,05	0,17
				BGO						
	(N-1)	Intervalo χ ²	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th	χ² Th
≥30	9	$2,70 > \chi^2 > 19,02$	-275,54	-235,85	-820,71	-358,46	202,91	139,97	469,42	5,79
≥60	8	$2,18 > \chi^2 > 17,53$	-321,09	-263,03	-172,76	-169,61	191,21	141,40	462,24	4,78
≥90	7	$1,69 > \chi^2 > 16,01$	-258,98	-261,86	-191,58	-177,01	163,31	142,46	473,43	4,65
≥120	6	$1,24 > \chi^2 > 14,45$	-435,87	-205,53	-192,32	-148,23	185,44	137,45	490,06	4,39
≥180	5	$0,83 > \chi^2 > 12,83$	3954,77	69,85	-338,74	-175,80	241,06	135,25	518,34	3,44
≥240	4	$0,48 > \chi^2 > 11,14$	120,38	411,80	-56,50	375,38	121,95	138,15	551,10	2,31
≥300	3	$0,22 > \chi^2 > -9,35$	45,91	204,90	-52,53	35,98	14,83	1,42	2,34	2,28
≥600	2	$0,05 > \chi^2 > -7,38$	42,59	-297,35	-8,61	59,53	12,02	0,82	2,16	0,14
≥900	1	$0,00 > \chi^2 > 5,02$	14,16	5,39	-9,69	-1,60	5,92	2,00	0,02	0,00

Tabela 38 - Cálculo do χ^2 dos padrões de Areia Monazítica para *NaI(Tl)* e *BGO* para a janela de Tl-208.

Tabela 39	- Cálculo	do χ ²	dos	padrões	de	Areia	Monazítica	para	NaI(Tl)	e <i>BGO</i>	para a	ı janela	de
contagem t	total.												

tempo (s)	GL		Padrões	>	8	7	6	5	4	3	2	1
	(N-1)	I	ntervalo	χ^2	$\chi^2 CT$	$\chi^2 CT$	$\chi^2 CT$	$\chi^2 CT$	χ² CT	χ ² CT	$\chi^2 CT$	χ² CT
						Na	I(Tl)					
≥30	8	2,18	$>\chi^{2}>$	17,53	-1670,88	-313,47	-974,47	-305,84	453,35	13,30	29,89	16,02
≥60	7	1,69	$>\chi^{2}>$	16,01	-143,45	-131,38	-928,94	-314,52	193,59	11,53	21,25	14,47
≥90	6	1,24	$>\chi^2>$	14,45	-129,39	-126,54	-344,07	-270,74	188,98	10,97	9,02	13,79
≥120	5	0,83	$>\chi^2>$	12,83	-140,93	-118,23	-285,29	-176,46	167,82	10,91	8,29	7,30
≥180	4	0,48	$>\chi^2>$	11,14	-13,27	-21,71	-286,42	-126,43	170,69	7,61	3,73	7,16
≥240	3	0,22	$>\chi^{2}>$	9,35	-7,29	-11,63	-221,09	-3,64	173,39	7,54	2,49	5,80
≥300	2	0,05	$>\chi^2>$	7,38	-299,52	-380,34	-10259,99	-606,49	1100,98	77,64	73,30	75,53
≥600	1	0,00	$>\chi^2>$	5,02	-0,32	-5,59	-251,97	-0,03	155,33	0,11	0,76	0,72
						B	GO					
	(N-1)	Ι	ntervalo	χ^2	$\chi^2 CT$	$\chi^2 CT$	$\chi^2 CT$	$\chi^2 CT$	χ ² CT	χ ² CT	χ² CT	χ² CT
≥30	9	2,70	$>\chi^{2}>$	19,02	-1873,66	21925,84	-2108,99	-6719,78	1786,57	2241,23	5591,65	10,07
≥60	8	2,18	$>\chi^2>$	17,53	-2742,68	5295,39	-1835,61	-6279,77	1722,85	2150,17	5626,38	8,00
≥90	7	1,69	$>\chi^2>$	16,01	-7261,15	-6565,38	-1857,05	-1186,91	433,62	2170,99	5725,91	7,62
≥120	6	1,24	$>\chi^{2}>$	14,45	5159,32	-2955,26	-1786,85	-1263,14	440,00	2218,38	5883,37	7,41
≥180	5	0,83	$>\chi^2>$	12,83	2725,90	1832,07	-1878,30	-944,58	450,63	2286,36	6133,24	7,06
≥240	4	0,48	$>\chi^2>$	11,14	775,60	1350,08	-1640,50	-234,60	173,78	2380,38	6496,86	5,59
≥300	3	0,22	$>\chi^2>$	9,35	887,97	183,67	-244,89	-149,94	45,76	1,79	1,08	5,17
≥600	2	0,05	$>\chi^2>$	7,38	422,76	175,87	-6,15	-172,46	41,55	0,15	0,48	0,85
≥900	1	0,00	$>\chi^2>$	5,02	98,51	43,85	-1,92	-30,70	2,59	2,00	0,04	0,36

Dados de calibração do detector ORTEC NaI(Tl) 2" X 2".

- a) Os quadrantes em azul claro representam os dados descartados pelo Critério de Chauvenet; o critério foi necessário até um máximo de 4 iterações.
- b) Os quadrantes em verde claro representam os dados cujo desvio fracionário é menor ou igual à uma precisão de 10%, e os valores em vermelho são aqueles cujo desvio fracionário é maior que 10%.
- c) Os quadrantes em amarelo claro representam os números de contagem relativos aos padrões que são maiores ou iguais ao limite de detecção para cada um dos tempos calculados (ver Anexo 5).

	BACKGROUND					ND (BKG)											PADF	RÕES					
		К			U				Th		Tempo	Dead		к			U			Th		Tempo	Dead
Padrão	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (l	CPM)	σ_r/r	(s)	(s)	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	(s)	(s)
	1250	41,69 ± 1,18	2,83%	453	15,11 ± 0,71	4,70%	232	7,74	± 0,5	6,57%	1799,08	0,07	1131	37,70 ± 1,12	2,97%	458	15,27 ± 0,71	4,67%	225	7,50 ± 0,50	6,67%	1799,9	0,07
	610	40,68 ± 1,65	4,05%	230	15,34 ± 1,01	6,59%	96	6,40	± 0,6	55 10,21%	899,74	0,07	594	39,62 ± 1,63	4,10%	203	13,54 ± 0,95	7,02%	114	7,60 ± 0,71	9,37%	899,54	0,07
	380	37,99 ± 1,95	5,13%	149	14,90 ± 1,22	8,19%	86	8,60	± 0,9	3 10,78%	600,16	0,07	400	39,81 ± 1,99	5,00%	142	14,13 ± 1,19	8,39%	68	6,77 ± 0,82	12,13%	602,8	0,07
	191	37,88 ± 2,74	7,24%	75	14,88 ± 1,72	11,55%	42	8,33	± 1,2	15,43%	302,52	0,07	218	43,53 ± 2,95	6,77%	77	15,38 ± 1,75	11,40%	39	7,79 ± 1,25	16,01%	300,46	0,07
KG	165	41,12 ± 3,20	7,78%	55	13,71 ± 1,85	13,48%	31	7,73	± 1,3	³⁹ 17,96%	240,76	0,07	145	36,23 ± 3,01	8,30%	52	12,99 ± 1,80	13,87%	23	5,75 ± 1,20	20,85%	240,16	0,07
KÖ	124	41,26 ± 3,70	8,98%	49	16,30 ± 2,33	14,29%	23	7,65	± 1,6	50 20,85%	180,34	0,08	127	42,16 ± 3,74	8,87%	35	11,62 ± 1,96	16,90%	27	8,96 ± 1,73	19,25%	180,72	0,07
	68	33,96 ± 4,12	12,13%	39	19,5 ± 3,1	-	19	9,49	± 2,2	22,94%	120,14	0,07	74	36,85 ± 4,28	11,62%	26	12,95 ± 2,54	19,61%	13	6,47 ± 1,80	27,74%	120,5	0,07
	49	32,49 ± 4,64	14,29%	23	15,25 ± 3,18	20,85%	10	6,63	± 2,2	31,62%	90,5	0,09	63	42,04 ± 5,30	12,60%	28	18,68 ± 3,53	18,90%	17	11,34 ± 2,75	24,25%	89,92	0,07
	44	43,69 ± 6,59	15,08%	5	4,97 ± 2,2	-	6	5,96	± 2,4	40,82%	60,42	0,07	42	41,24 ± 6,36	15,43%	18	17,68 ± 4,17	23,57%	9	8,84 ± 2,95	33,33%	61,1	0,07
	26	51,7 ± 10	20%	4	7,95 ± 4	-	1	1,988	± 1,9	- 99	30,18	0,07	32	63,7027 ± 11,3	-	8	15,93 ± 5,63	35,36%	5	9,95 ± 4,45	44,72%	30,14	0,07
	1197	39,92 ± 1,15	2,89%	444	14,81 ± 0,70	4,75%	227	7,57	± 0,5	6,64%	1799,2	0,07	1197	39,93 ± 1,15	2,89%	460	15,34 ± 0,72	4,66%	238	7,94 ± 0,51	6,48%	1798,76	0,07
	608	40,47 ± 1,64	4,06%	213	14,18 ± 0,97	6,85%	106	7,06	± 0,6	9,71%	901,36	0,07	638	42,55 ± 1,68	3,96%	247	16,47 ± 1,05	6,36%	129	8,60 ± 0,76	8,80%	899,58	0,07
	411	40,95 ± 2,02	4,93%	166	16,54 ± 1,28	7,76%	84	8,37	± 0,9	10,91%	602,18	0,07	425	42,50 ± 2,06	4,85%	147	14,70 ± 1,21	8,25%	85	8,50 ± 0,92	10,85%	600,02	0,07
	200	40,17 ± 2,84	7,07%	86	17,27 ± 1,86	10,78%	31	6,23	± 1,2	17,96%	298,76	0,07	202	40,35 ± 2,84	7,04%	70	13,98 ± 1,67	11,95%	40	7,99 ± 1,26	15,81%	300,38	0,07
KE	160	40,05 ± 3,17	7,91%	53	13,27 ± 1,82	13,74%	16	4,00	± 1,0	00 25,00%	239,72	0,07	171	42,72 ± 3,27	7,65%	62	15,49 ± 1,97	12,70%	31	7,74 ± 1,39	17,96%	240,18	0,07
KJ	144	47,70 ± 3,97	8,33%	45	14,91 ± 2,22	14,91%	32	10,60	± 1,8	17,68%	181,14	0,07	124	41,17 ± 3,70	8,98%	54	17,93 ± 2,44	13,61%	28	9,30 ± 1,76	18,90%	180,72	0,07
	92	45,80 ± 4,78	10,43%	34	16,93 ± 2,90	17,15%	11	5,48	± 1,6	55 30,15%	120,52	0,07	85	42,26 ± 4,58	10,85%	28	13,92 ± 2,63	18,90%	14	6,96 ± 1,86	26,73%	120,68	0,07
	53	35,10 ± 4,82	13,74%	13	8,61 ± 2,4	-	13	8,61	± 2,3	39 27,74%	90,6	0,07	47	31,2986 ± 4,57	-	15	9,9889 ± 2,58	-	19	12,65 ± 2,9	-	90,1	0,07
	42	41,42 ± 6,39	15,43%	16	15,78 ± 3,94	25,00%	5	4,93	± 2,2	44,72%	60,84	0,07	38	37,377 ± 6,06	-	14	13,77 ± 3,68	26,73%	8	7,87 ± 2,78	35,36%	61	0,07
	34	67,6 ± 12	17%	8	15,90 ± 5,62	35,36%	3	5,96	± 3,4	4 57,74%	30,18	0,13	21	41,75 ± 9,11	21,82%	8	15,90 ± 5,62	35,36%	5	9,94 ± 4,45	44,72%	30,18	0,13
	1213	40,45 ± 1,16	2,87%	432	14,41 ± 0,69	4,81%	212	7,07	± 0,4	6,87%	1799,26	0,07	1362	45,41 ± 1,23	2,71%	433	14,44 ± 0,69	4,81%	252	8,40 ± 0,53	6,30%	1799,48	0,07
	609	40,63 ± 1,65	4,05%	217	14,48 ± 0,98	6,79%	136	9,07	± 0,	8,57%	899,44	0,07	620	41,19 ± 1,65	4,02%	234	15,54 ± 1,02	6,54%	117	7,77 ± 0,72	9,25%	903,24	0,07
	430	42,98 ± 2,07	4,82%	140	13,99 ± 1,18	8,45%	87	8,70	± 0,9	10,72%	600,22	0,07	460	45,41 ± 2,12	4,66%	161	15,89 ± 1,25	7,88%	87	8,59 ± 0,92	10,72%	607,82	0,07
	200	39,65 ± 2,80	7,07%	70	13,88 ± 1,66	11,95%	37	7,34	± 1,2	16,44%	302,62	0,07	203	40,50 ± 2,84	7,02%	87	17,36 ± 1,86	10,72%	47	9,38 ± 1,37	14,59%	300,74	0,07
ка	173	43,25 ± 3,29	7,60%	74	18,50 ± 2,15	11,62%	38	9,50	± 1,5	64 16,22%	240,02	0,07	183	45,78 ± 3,38	7,39%	58	14,51 ± 1,91	13,13%	29	7,25 ± 1,35	18,57%	239,86	0,07
	130	43,13 ± 3,78	8,77%	48	15,92 ± 2,30	14,43%	19	6,30	± 1,4	22,94%	180,86	0,08	114	37,85 ± 3,55	9,37%	42	13,95 ± 2,15	15,43%	25	8,30 ± 1,66	20,00%	180,7	0,07
	70	34,80 ± 4,16	11,95%	29	14,42 ± 2,68	18,57%	14	6,96	± 1,8	36 26,73%	120,68	0,07	75	36,66 ± 4,23	11,55%	28	13,69 ± 2,59	18,90%	13	6,35 ± 1,76	27,74%	122,76	0,07
	54	35,85 ± 4,88	13,61%	23	15,27 ± 3,18	20,85%	9	5,97	± 1,9	9 33,33%	90,38	0,09	51	33,95 ± 4,75	14,00%	22	14,65 ± 3,12	21,32%	15	9,99 ± 2,58	25,82%	90,12	0,07
	43	39,83 ± 6,07	15,25%	11	10,19 ± 3,07	30,15%	8	7,41	± 2,6	52 35,36%	64,78	0,06	51	50,16 ± 7,02	14,00%	14	13,77 ± 3,68	26,73%	8	7,869 ± 2,78	-	61	0,07
	23	44,72 ± 9,32	20,85%	5	9,72 ± 4,35	44,72%	3	5,83	± 3,3	57,74%	30,86	0,13	20	40,19 ± 8,99	22,36%	6	12,06 ± 4,92	40,82%	5	9,94 ± 4,45	-	29,86	0,07
	1239	41,32 ± 1,17	2,84%	460	15,34 ± 0,72	4,66%	249	8,30	± 0,5	6,34%	1799,2	0,07	1417	47,27 ± 1,26	2,66%	466	15,54 ± 0,72	4,63%	234	7,81 ± 0,51	6,54%	1798,78	0,07
	612	40,81 ± 1,65	4,04%	225	15,01 ± 1,00	6,67%	121	8,07	± 0,7	9,09%	899,7	0,07	661	44,11 ± 1,72	3,89%	237	15,82 ± 1,03	6,50%	124	8,27 ± 0,74	8,98%	899,12	0,07
	395	39,49 ± 1,99	5,03%	175	17,50 ± 1,32	7,56%	75	7,50	± 0,8	37 11,55%	600,08	0,07	459	45,93 ± 2,14	4,67%	143	14,31 ± 1,20	8,36%	66	6,60 ± 0,81	12,31%	599,66	0,07
К3	221	44,12 ± 2,97	6,73%	80	15,97 ± 1,79	11,18%	55	10,98	± 1,4	13,48%	300,56	0,07	237	47,33 ± 3,07	6,50%	77	15,38 ± 1,75	11,40%	45	8,99 ± 1,34	14,91%	300,44	0,07
	178	44,34 ± 3,32	7,50%	60	14,95 ± 1,93	12,91%	32	7,97	± 1,4	17,68%	240,86	0,07	212	52,80 ± 3,63	6,87%	57	14,20 ± 1,88	13,25%	39	9,71 ± 1,56	16,01%	240,92	0,07
	125	41,54 ± 3,72	8,94%	39	12,96 ± 2,08	16,01%	34	11,30	± 1,9	4 17,15%	180,56	0,07	135	44,88 ± 3,86	8,61%	49	16,29 ± 2,33	14,29%	17	5,65 ± 1,37	24,25%	180,5	0,07
	73	36,26 ± 4,24	11,70%	30	14,90 ± 2,72	18,26%	20	9,94	± 2,2	22 22,36%	120,78	0,07	94	46,73 ± 4,82	10,31%	25	12,43 ± 2,49	20,00%	22	10,94 ± 2,33	21,32%	120,7	0,07

					BACKGROU	ND (BKG)											PAD	RÕES					
		К			U				Th		Tempo	Dead		К			U			Th		Tempo	Dead
Padrão	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r(C	CPM)	σ_r/r	(s)	(s)	C _{Total}	r (CPM)	σ_r/r	C _{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	(s)	(s)
	52	34,15 ± 4,74	13,87%	21	13,79 ± 3,01	21,82%	15	9,85	± 2,54	25,82%	91,36	0,07	80	53,19 ± 5,95	11,18%	18	11,97 ± 2,82	23,57%	14	9,31 ± 2,49	26,73%	90,24	0,07
КЗ	36	35,41 ± 5,90	16,67%	15	14,75 ± 3,81	25,82%	9	8,85	± 2,95	33,33%	61	0,07	47	46,23 ± 6,74	14,59%	12	11,80 ± 3,41	28,87%	11	10,82 ± 3,26	30,15%	61	0,07
	25	49,77 ± 9,95	20,00%	6	11,94 ± 4,88	40,82%	4	7,96	± 3,98	50,00%	30,14	0,07	28	55,85 ± 10,55	18,90%	3	5,98404 ± 3,45	-	5	9,97 ± 4,46	44,72%	30,08	0,07
	1232	41,05 ± 1,17	2,85%	469	15,63 ± 0,72	4,62%	250	8,33	± 0,53	6,32%	1800,74	0,07	2273	75,58 ± 1,59	2,10%	460	15,30 ± 0,71	4,66%	258	8,58 ± 0,53	6,23%	1804,5	0,08
	597	39,81 ± 1,63	4,09%	219	14,60 ± 0,99	6,76%	112	7,47	± 0,71	9,45%	899,86	0,07	1143	76,25 ± 2,26	2,96%	220	14,68 ± 0,99	6,74%	138	9,21 ± 0,78	8,51%	899,42	0,08
	400	40,02 ± 2,00	5,00%	146	14,61 ± 1,21	8,28%	91	9,10	± 0,95	10,48%	599,68	0,07	778	77,79 ± 2,79	3,59%	150	15,00 ± 1,22	8,16%	87	8,70 ± 0,93	10,72%	600,08	0,08
	197	39,36 ± 2,80	7,12%	59	11,79 ± 1,53	13,02%	42	8,39	± 1,29	15,43%	300,3	0,07	396	79,05 ± 3,97	5,03%	73	14,57 ± 1,71	11,70%	33	6,59 ± 1,15	17,41%	300,58	0,07
K2	156	38,90 ± 3,11	8,01%	65	16,21 ± 2,01	12,40%	35	8,73	± 1,48	16,90%	240,6	0,07	310	77,36 ± 4,39	5,68%	59	14,72 ± 1,92	13,02%	29	7,24 ± 1,34	18,57%	240,42	0,07
112	126	41,94 ± 3,74	8,91%	47	15,65 ± 2,28	14,59%	27	8,99	± 1,73	19,25%	180,24	0,07	231	77,51 ± 5,10	6,58%	42	14,09 ± 2,17	15,43%	33	11,07 ± 1,93	-	178,82	0,07
	82	40,99 ± 4,53	11,04%	23	11,50 ± 2,40	20,85%	19	9,50	± 2,18	22,94%	120,04	0,07	148	73,56 ± 6,05	8,22%	32	15,90 ± 2,81	17,68%	14	6,96 ± 1,86	26,73%	120,72	0,07
	57	37,97 ± 5,03	13,25%	22	14,65 ± 3,12	21,32%	17	11,32	± 2,75	24,25%	90,08	0,07	105	68,70 ± 6,70	9,76%	23	15,05 ± 3,14	20,85%	11	7,20 ± 2,17	30,15%	91,7	0,07
	46	44,9 ± 6,6	0,14744	23	22,4 ± 4,7	-	11	10,73	± 3,24	30,15%	61,5	0,06	84	83,78 ± 9,14	10,91%	11	10,9707 ± 3,31	-	8	7,98 ± 2,82	35,36%	60,16	0,07
	20	38,49 ± 8,61	22,36%	6	11,55 ± 4,71	40,82%	4	7,963	± 3,98	-	31,18	0,06	46	90,0196 ± 13,3	-	5	9,78474 ± 4,38	-	4	7,83 ± 3,91	50,00%	30,66	0,07
	1165	38,83 ± 1,14	2,93%	436	14,53 ± 0,70	4,79%	239	7,97	± 0,52	6,47%	1800,06	0,07	3640	120,68 ± 2,00	1,66%	476	15,78 ± 0,72	4,58%	261	8,65 ± 0,54	6,19%	1809,76	0,08
	608	40,39 ± 1,64	4,06%	216	14,35 ± 0,98	6,80%	131	8,70	± 0,76	8,74%	903,14	0,07	1924	127,33 ± 2,90	2,28%	236	15,62 ± 1,02	6,51%	127	8,40 ± 0,75	8,87%	906,64	0,08
	417	41,71 ± 2,04	4,90%	158	15,80 ± 1,26	7,96%	80	8,00	± 0,89	11,18%	599,92	0,07	1188	118,88 ± 3,45	2,90%	176	17,61 ± 1,33	7,54%	76	7,61 ± 0,87	11,47%	599,6	0,08
	233	46,5 ± 3	0,06551	83	16,57 ± 1,82	10,98%	50	9,98	± 1,41	14,14%	300,48	0,07	631	124,61 ± 4,96	3,98%	72	14,22 ± 1,68	11,79%	36	7,11 ± 1,18	16,67%	303,84	0,09
1/1	175	43,70 ± 3,30	7,56%	62	15,48 ± 1,97	12,70%	26	6,49	± 1,27	19,61%	240,28	0,07	480	119,67 ± 5,46	4,56%	54	13,46 ± 1,83	13,61%	40	9,97 ± 1,58	15,81%	240,66	0,08
KI	120	39,88 ± 3,64	9,13%	58	19,3 ± 2,5	-	20	6,65	± 1,49	22,36%	180,56	0,07	356	118,35 ± 6,27	5,30%	49	16,29 ± 2,33	14,29%	29	9,64 ± 1,79	18,57%	180,48	0,08
	69	34,4 ± 4,1	0,12039	31	15,47 ± 2,78	17,96%	11	5,49	± 1,65	30,15%	120,26	0,07	253	126,35 ± 7,94	6,29%	33	16,48 ± 2,87	17,41%	17	8,49 ± 2,06	24,25%	120,14	0,08
	61	40,54 ± 5,19	12,80%	24	15,95 ± 3,26	20,41%	8	5,32	± 1,88	35,36%	90,28	0,07	159	105,859 ± 8,4	-	20	13,32 ± 2,98	22,36%	11	7,32 ± 2,21	30,15%	90,12	0,07
	42	41,06 ± 6,34	15,43%	15	14,66 ± 3,79	25,82%	6	5,87	± 2,39	40,82%	61,38	0,07	113	112,70 ± 10,60	9,41%	12	11,97 ± 3,45	28,87%	10	9,97 ± 3,15	31,62%	60,16	0,07
	20	39,81 ± 8,90	22,36%	8	15,93 ± 5,63	35,36%	4	7,96	± 3,98	50,00%	30,14	0,07	64	123,55 ± 15,44	12,50%	14	27,027 ± 7,22	-	4	7,72 ± 3,86	50,00%	31,08	0,06
	1283	42,77 ± 1,19	2,79%	468	15,60 ± 0,72	4,62%	264	8,80	± 0,54	6,15%	1800	0,07	1339	44,61 ± 1,22	2,73%	490	16,33 ± 0,74	4,52%	266	8,86 ± 0,54	6,13%	1800,74	0,08
	645	43,00 ± 1,69	3,94%	231	15,40 ± 1,01	6,58%	135	9,00	± 0,77	8,61%	899,94	0,08	626	41,75 ± 1,67	4,00%	244	16,27 ± 1,04	6,40%	137	9,14 ± 0,78	8,54%	899,72	0,08
	452	45,22 ± 2,13	4,70%	153	15,31 ± 1,24	8,08%	80	8,00	± 0,89	11,18%	599,76	0,07	475	47,53 ± 2,18	4,59%	178	17,81 ± 1,34	7,50%	79	7,91 ± 0,89	11,25%	599,6	0,08
	226	45,10 ± 3,00	6,65%	93	18,56 ± 1,92	10,37%	31	6,19	± 1,11	17,96%	300,68	0,07	228	45,27 ± 3,00	6,62%	93	18,46 ± 1,91	10,37%	46	9,13 ± 1,35	14,74%	302,2	0,07
	189	46,94 ± 3,41	7,27%	74	18,38 ± 2,14	11,62%	51	12,67	± 1,77	14,00%	241,58	0,07	176	43,73 ± 3,30	7,54%	71	17,64 ± 2,09	11,87%	27	6,708 ± 1,29	-	241,5	0,07
05	139	46,22 ± 3,92	8,48%	43	14,30 ± 2,18	15,25%	27	8,98	± 1,73	19,25%	180,46	0,07	136	45,06 ± 3,86	8,57%	60	19,88 ± 2,57	12,91%	24	7,95 ± 1,62	20,41%	181,08	0,07
	95	45,40 ± 4,66	10,26%	29	13,86 ± 2,57	18,57%	25	11,95	± 2,39	20,00%	125,54	0,08	96	47,27 ± 4,82	10,21%	31	15,26 ± 2,74	17,96%	19	9,355 ± 2,15	-	121,86	0,08
	76	50,1 ± 5,7	0,11471	23	15,17 ± 3,16	20,85%	20	13,19	± 2,95	22,36%	90,98	0,07	64	42,84 ± 5,35	12,50%	22	14,73 ± 3,14	21,32%	12	8,03 ± 2,32	28,87%	89,64	0,09
	55	53,5 ± 7,2	0,13484	13	12,65 ± 3,51	27,74%	4	3,89	± 1,95	50,00%	61,68	0,06	48	48,00 ± 6,93	14,43%	22	22,00 ± 4,69	21,32%	4	4 ± 2	-	60	0,07
	24	46,88 ± 9,57	20,41%	13	25,4 ± 7	-	2	3,91	± 2,76	70,71%	30,72	0,07	19	35,7367 ± 8,2	-	7	13,17 ± 4,98	37,80%	5	9,404 ± 4,21	-	31,9	0,06
	1300	43,36 ± 1,20	2,77%	510	17,01 ± 0,75	4,43%	276	9,21	± 0,55	6,02%	1798,96	0,07	1653	55,15 ± 1,36	2,46%	821	27,39 ± 0,96	3,49%	294	9,81 ± 0,57	5,83%	1798,42	0,09
	635	42,35 ± 1,68	3,97%	228	15,21 ± 1,01	6,62%	137	9,14	± 0,78	8,54%	899,7	0,08	886	59,13 ± 1,99	3,36%	384	25,63 ± 1,31	5,10%	109	7,27 ± 0,70	9,58%	899,06	0,09
	382	38,18 ± 1,95	5,12%	153	15,29 ± 1,24	8,08%	80	8,00	± 0,89	11,18%	600,3	0,07	580	58,01 ± 2,41	4,15%	291	29,11 ± 1,71	5,86%	83	8,30 ± 0,91	10,98%	599,86	0,09
- 04	220	44,09 ± 2,97	6,74%	80	16,03 ± 1,79	11,18%	50	10,02	± 1,42	14,14%	299,42	0,07	286	57,25 ± 3,39	5,91%	121	24,22 ± 2,20	9,09%	34	6,81 ± 1,17	17,15%	299,72	0,09
	169	42,30 ± 3,25	7,69%	68	17,02 ± 2,06	12,13%	27	6,76	± 1,30	19,25%	239,74	0,08	220	54,47 ± 3,67	6,74%	121	29,96 ± 2,72	9,09%	38	9,41 ± 1,53	16,22%	242,32	0,09
	136	45,09 ± 3,87	8,57%	60	19,89 ± 2,57	12,91%	25	8,29	± 1,66	20,00%	180,96	0,08	168	55,60 ± 4,29	7,72%	78	25,81 ± 2,92	11,32%	29	9,60 ± 1,78	18,57%	181,3	0,09

		К			U				Th		Tempo	Dead		К			U			Th		Tempo	Dead
Padrão	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (C	PM)	σ_r/r	(s)	(s)	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	(s)	(s)
	73	36,36 ± 4,26	11,70%	26	12,95 ± 2,54	19,61%	12	5,98	± 1,73	28,87%	120,46	0,07	106	52,86 ± 5,13	9,71%	42	20,94 ± 3,23	15,43%	27	13,46 ± 2,59	19,25%	120,32	0,1
	62	41,23 ± 5,24	12,70%	24	15,96 ± 3,26	20,41%	20	13,30	± 2,97	22,36%	90,22	0,09	79	52,71 ± 5,93	11,25%	37	24,69 ± 4,06	16,44%	13	8,67 ± 2,41	27,74%	89,92	0,09
04	37	35,25 ± 5,79	16,44%	21	20,01 ± 4,37	21,82%	14	13,34	± 3,56	26,73%	62,98	0,06	48	47,3062 ± 6,83	-	26	25,62 ± 5,03	19,61%	12	11,83 ± 3,41	28,87%	60,88	0,1
	24	46,72 ± 9,54	20,41%	5	9,73 ± 4,4	-	6	11,68	± 4,77	40,82%	30,82	0,06	33	65,3465 ± 11,4	-	11	21,78 ± 6,57	30,15%	3	5,94 ± 3,43	57,74%	30,3	0,13
	1258	41,91 ± 1,18	2,82%	505	16,82 ± 0,75	4,45%	247	8,23	± 0,52	6,36%	1801,06	0,07	3382	112,84 ± 1,94	1,72%	2325	77,57 ± 1,61	2,07%	291	9,71 ± 0,57	5,86%	1798,26	0,18
	700	46,75 ± 1,77	3,78%	240	16,03 ± 1,03	6,45%	146	9,75	± 0,81	8,28%	898,4	0,07	1708	114,08 ± 2,76	2,42%	1187	79,28 ± 2,30	2,90%	164	10,95 ± 0,86	7,81%	898,32	0,18
	461	46,17 ± 2,15	4,66%	161	16,12 ± 1,27	7,88%	95	9,51	± 0,98	10,26%	599,14	0,07	1149	115,20 ± 3,40	2,95%	838	84,02 ± 2,90	3,45%	105	10,53 ± 1,03	9,76%	598,44	0,18
	231	46,22 ± 3,04	6,58%	90	18,01 ± 1,90	10,54%	48	9,60	± 1,39	14,43%	299,86	0,07	551	110,61 ± 4,71	4,26%	417	83,71 ± 4,10	4,90%	65	13,05 ± 1,62	12,40%	298,88	0,19
113	167	41,16 ± 3,19	7,74%	78	19,23 ± 2,18	11,32%	40	9,86	± 1,56	15,81%	243,42	0,07	487	121,80 ± 5,52	4,53%	299	74,78 ± 4,32	5,78%	45	11,25 ± 1,68	14,91%	239,9	0,18
0.5	126	42,05 ± 3,75	8,91%	70	23,36 ± 2,79	11,95%	29	9,68	± 1,80	18,57%	179,8	0,08	360	120,08 ± 6,33	5,27%	238	79,39 ± 5,15	6,48%	24	8,01 ± 1,63	20,41%	179,88	0,18
	92	46,11 ± 4,81	10,43%	42	21,05 ± 3,25	15,43%	12	6,014	± 1,74	-	119,72	0,07	236	118,51 ± 7,71	6,51%	157	78,84 ± 6,29	7,98%	19	9,54 ± 2,19	22,94%	119,48	0,18
	56	37,37 ± 4,99	13,36%	29	19,35 ± 3,59	18,57%	16	10,68	± 2,67	25,00%	89,92	0,07	179	119,57 ± 8,94	7,47%	124	82,83 ± 7,44	8,98%	14	9,35 ± 2,50	26,73%	89,82	0,18
	48	47,26 ± 6,82	14,43%	20	19,69 ± 4,40	22,36%	12	11,81	± 3,41	28,87%	60,94	0,1	100	99,5685 ± 9,96	-	69	68,7023 ± 8,27	' -	11	10,95 ± 3,30	30,15%	60,26	0,17
	34	66,9 ± 11	0,1715	7	13,78 ± 5,21	37,80%	6	11,81	± 4,82	40,82%	30,48	0,07	62	122,53 ± 15,56	12,70%	27	53,3597 ± 10,3	-	12	23,72 ± 6,85	-	30,36	0,2
	1374	45,83 ± 1,24	2,70%	496	16,54 ± 0,74	4,49%	256	8,54	± 0,53	6,25%	1798,82	0,07	5485	183,40 ± 2,48	1,35%	4325	144,61 ± 2,20	1,52%	372	12,44 ± 0,64	5,18%	1794,48	0,3
	678	45,23 ± 1,74	3,84%	263	17,54 ± 1,08	6,17%	122	8,14	± 0,74	9,05%	899,44	0,07	2760	184,41 ± 3,51	1,90%	2099	140,24 ± 3,06	2,18%	178	11,89 ± 0,89	7,50%	898	0,29
	420	42,08 ± 2,05	4,88%	167	16,73 ± 1,29	7,74%	88	8,82	± 0,94	10,66%	598,88	0,07	1936	194,11 ± 4,41	2,27%	1510	151,40 ± 3,90	2,57%	118	11,83 ± 1,09	9,21%	598,42	0,3
	194	38,81 ± 2,79	7,18%	88	17,61 ± 1,88	10,66%	47	9,40	± 1,37	14,59%	299,9	0,07	920	184,57 ± 6,08	3,30%	715	143,44 ± 5,36	3,74%	55	11,03 ± 1,49	13,48%	299,08	0,29
112	171	42,65 ± 3,26	7,65%	52	12,97 ± 1,80	13,87%	41	10,23	± 1,60	15,62%	240,54	0,07	756	188,37 ± 6,85	3,64%	584	145,51 ± 6,02	4,14%	51	12,71 ± 1,78	14,00%	240,8	0,31
02	126	41,92 ± 3,73	8,91%	35	11,64 ± 1,97	16,90%	31	10,31	± 1,85	17,96%	180,36	0,07	538	179,85 ± 7,75	4,31%	427	142,75 ± 6,91	4,84%	33	11,03 ± 1,92	17,41%	179,48	0,29
	78	39,15 ± 4,43	11,32%	37	18,57 ± 3,05	16,44%	16	8,03	± 2,01	25,00%	119,54	0,08	363	181,20 ± 9,51	5,25%	309	154,24 ± 8,77	5,69%	27	13,48 ± 2,59	19,25%	120,2	0,28
	75	49,90 ± 5,76	11,55%	28	18,63 ± 3,52	18,90%	17	11,31	± 2,74	24,25%	90,18	0,07	289	193,27 ± 11,37	5,88%	233	155,82 ± 10,2	6,55%	19	12,71 ± 2,92	22,94%	89,72	0,29
	44	43,67 ± 6,58	15,08%	15	14,89 ± 3,84	25,82%	13	12,9	± 3,58	-	60,46	0,07	169	169,00 ± 13,00	7,69%	138	138,00 ± 11,7	5 8,51%	13	13,00 ± 3,61	27,74%	60	0,3
	14	27,3 ± 7,3	0,26726	11	21,48 ± 6,48	30,15%	4	7,81	± 3,91	50,00%	30,72	0,07	82	163,56 ± 18,06	11,04%	68	135,64 ± 16,4	5 12,13%	6	11,97 ± 4,89	40,82%	30,08	0,27
	1431	47,72 ± 1,26	2,64%	624	20,81 ± 0,83	4,00%	283	9,44	± 0,56	5,94%	1799,14	0,08	35413	1204,01 ± 6,40	0,53%	30978	1053,22 ± 5,98	0,57%	984	33,45 ± 1,07	3,19%	1764,76	1,95
	736	49,14 ± 1,81	3,69%	339	22,63 ± 1,23	5,43%	134	8,95	± 0,77	8,64%	898,74	0.08	17920	1218,69 ± 9,10	0,75%	15429	1049,28 ± 8,45	0,81%	497	33,80 ± 1,52	4,49%	882,26	1,93
	552	54,74 ± 2,33	4,26%	225	22,31 ± 1,49	6,67%	81	8,03	± 0,89	11,11%	605,06	0,08	12033	1212,92 ± 11,06	0,91%	10377	1046,00 ± 10,2	7 0,98%	361	36,39 ± 1,92	5,26%	595,24	1,91
	212	42,19 ± 2,90	6,87%	85	16,92 ± 1,83	10,85%	34	6,77	± 1,16	17,15%	301,46	0,07	6014	1225,68 ± 15,81	1,29%	4970	1012,91 ± 14,3	7 1,42%	179	36,48 ± 2,73	7,47%	294,4	1,91
111	187	46,77 ± 3,42	7,31%	89	22,26 ± 2,36	10,60%	50	12,51	± 1,77	14,14%	239,9	0,07	4633	1180,48 ± 17,34	1,47%	4036	1028,37 ± 16,19	9 1,57%	167	42,55 ± 3,29	7,74%	235,48	1,88
01	122	40,59 ± 3,67	9,05%	50	16,64 ± 2,35	14,14%	29	9,65	± 1,79	18,57%	180,34	0,08	3608	1225,68 ± 20,41	1,66%	3047	1035,10 ± 18,7	5 1,81%	137	46,54 ± 3,98	8,54%	176,62	1,93
	90	44,67 ± 4,71	10,54%	28	13,90 ± 2,63	18,90%	24	11,91	± 2,43	20,41%	120,88	0,07	2470	1254,87 ± 25,25	2,01%	2123	1078,58 ± 23,4	1 2,17%	94	47,76 ± 4,93	10,31%	118,1	1,93
	74	49,32 ± 5,73	11,62%	11	7,33 ± 2,2	-	8	5,33	± 1,89	35,36%	90,02	0,07	1828	1241,85 ± 29,05	2,34%	1614	1096,47 ± 27,2	9 2,49%	77	52,31 ± 5,96	11,40%	88,32	1,95
	36	35,98 ± 6,00	16,67%	22	21,99 ± 4,69	21,32%	9	8,99	± 3,00	33,33%	60,04	0,1	1128	1141,70 ± 33,99	2,98%	994	1006,07 ± 31,9	1 3,17%	54	54,66 ± 7,44	13,61%	59,28	1,85
	18	36,02 ± 8,49	23,57%	8	16,01 ± 5,66	35,36%	8	16,01	± 5,66	-	29,98	0,07	562	1148,50 ± 48,45	4,22%	510	1042,23 ± 46,1	5 4,43%	27	55,18 ± 10,62	19,25%	29,36	1,94
	1259	41,97 ± 1,18	2,82%	443	14,77 ± 0,70	4,75%	240	8,00	± 0,52	6,45%	1799,8	0,07	1298	43,30 ± 1,20	2,78%	497	16,58 ± 0,74	4,49%	257	8,57 ± 0,53	6,24%	1798,62	0,07
	643	42,87 ± 1,69	3,94%	235	15,67 ± 1,02	6,52%	144	9,60	± 0,80	8,33%	899,98	0,07	658	43,83 ± 1,71	3,90%	239	15,92 ± 1,03	6,47%	123	8,19 ± 0,74	9,02%	900,66	0,07
Th8	400	39,97 ± 2,00	5,00%	168	16,79 ± 1,30	7,72%	85	8,49	± 0,92	10,85%	600,4	0,07	424	42,40 ± 2,06	4,86%	157	15,70 ± 1,25	7,98%	99	9,90 ± 0,99	10,05%	600,04	0,07
	234	46,70 ± 3,05	6,54%	92	18,36 ± 1,91	10,43%	43	8,58	± 1,31	15,25%	300,64	0,07	205	41,06 ± 2,87	6,98%	79	15,82 ± 1,78	11,25%	53	10,61 ± 1,46	13,74%	299,58	0,07
	169	42,13 ± 3,24	7,69%	63	15,71 ± 1,98	12,60%	39	9,72	± 1,56	16,01%	240,68	0,07	176	43,90 ± 3,31	7,54%	60	14,97 ± 1,93	12,91%	38	9,48 ± 1,54	16,22%	240,54	0,07

					BACKGROU	ND (BKG)											PADE	RÕES					
		К			U				Th		Tempo	Dead		К			U			Th		Temno	Dead
Padrão	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r(C	PM)	σ_r/r	(s)	(s)	C _{Total}	r (CPM)	σ_r/r	C _{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	(s)	(s)
	126	41,91 ± 3,73	8,91%	40	13,30 ± 2,10	15,81%	21	6,98	± 1,52	21,82%	180,4	0,07	121	40,21 ± 3,66	9,09%	53	17,61 ± 2,42	13,74%	29	9,64 ± 1,79	18,57%	180,56	0,07
	89	44,08 ± 4,67	10,60%	34	16,84 ± 2,89	17,15%	18	8,92	± 2,10	23,57%	121,14	0,07	94	46,96 ± 4,84	10,31%	31	15,49 ± 2,78	17,96%	16	7,99 ± 2,00	25,00%	120,1	0,07
Th8	69	46,11 ± 5,55	12,04%	17	11,36 ± 2,76	24,25%	12	8,02	± 2,32	28,87%	89,78	0,09	54	35,90 ± 4,89	13,61%	29	19,28 ± 3,58	18,57%	15	9,97 ± 2,58	25,82%	90,24	0,07
	42	41,86 ± 6,46	15,43%	16	15,95 ± 3,99	25,00%	13	12,96	± 3,59	-	60,2	0,1	43	42,77 ± 6,52	15,25%	18	17,90 ± 4,22	23,57%	8	7,96 ± 2,81	35,36%	60,32	0,07
	21	41,94 ± 9,15	21,82%	6	11,98 ± 4,89	40,82%	7	13,98	± 5,28	-	30,04	0,07	26	50,45 ± 9,89	19,61%	10	19,40 ± 6,14	31,62%	2	3,881 ± 2,74	-	30,92	0,06
	1205	40,19 ± 1,16	2,88%	486	16,21 ± 0,74	4,54%	273	9,11	± 0,55	6,05%	1798,96	0,07	1305	43,28 ± 1,20	2,77%	487	16,15 ± 0,73	4,53%	278	9,22 ± 0,55	6,00%	1809,24	0,07
	646	42,95 ± 1,69	3,93%	225	14,96 ± 1,00	6,67%	141	9,37	± 0,79	8,42%	902,44	0,07	596	39,64 ± 1,62	4,10%	244	16,23 ± 1,04	6,40%	131	8,71 ± 0,76	8,74%	902,2	0,07
	426	42,36 ± 2,05	4,85%	159	15,81 ± 1,25	7,93%	88	8,75	± 0,93	10,66%	603,34	0,07	423	42,12 ± 2,05	4,86%	164	16,33 ± 1,28	7,81%	76	7,57 ± 0,87	11,47%	602,56	0,07
	213	42,08 ± 2,88	6,85%	99	19,56 ± 1,97	10,05%	41	8,10	± 1,27	15,62%	303,68	0,07	234	46,75 ± 3,06	6,54%	77	15,38 ± 1,75	11,40%	49	9,79 ± 1,40	14,29%	300,32	0,07
Th7	168	41,67 ± 3,21	7,72%	67	16,62 ± 2,03	12,22%	28	6,95	± 1,31	18,90%	241,9	0,07	152	37,94 ± 3,08	8,11%	67	16,72 ± 2,04	12,22%	40	9,98 ± 1,58	15,81%	240,38	0,07
,	142	46,88 ± 3,93	8,39%	49	16,18 ± 2,31	14,29%	14	4,62	± 1,24	26,73%	181,76	0,07	121	39,99 ± 3,64	9,09%	58	19,17 ± 2,52	13,13%	21	6,94 ± 1,51	21,82%	181,56	0,08
	92	45,60 ± 4,75	10,43%	26	12,89 ± 2,53	19,61%	14	6,94	± 1,85	26,73%	121,04	0,07	89	44,18 ± 4,68	10,60%	32	15,88 ± 2,81	17,68%	18	8,93 ± 2,11	23,57%	120,88	0,07
	62	40,91 ± 5,20	12,70%	19	12,54 ± 2,88	22,94%	22	14,52	± 3,09	-	90,94	0,07	70	45,97 ± 5,49	11,95%	26	17,08 ± 3,35	19,61%	15	9,85 ± 2,54	25,82%	91,36	0,07
	43	42,45 ± 6,47	15,25%	17	16,78 ± 4,07	24,25%	8	7,90	± 2,79	35,36%	60,78	0,07	47	46,75 ± 6,82	14,59%	18	17,90 ± 4,22	23,57%	9	8,95 ± 2,98	33,33%	60,32	0,07
	36	69,9 ± 12	0,16667	14	27,2 ± 7,3	-	6	11,66	± 4,76	40,82%	30,88	0,06	24	45,43 ± 9,27	20,41%	10	18,93 ± 5,99	31,62%	3	5,678 ± 3,28	-	31,7	0,06
	1330	44,34 ± 1,22	2,74%	489	16,30 ± 0,74	4,52%	252	8,40	± 0,53	6,30%	1799,86	0,07	1295	43,19 ± 1,20	2,78%	505	16,84 ± 0,75	4,45%	263	8,77 ± 0,54	6,17%	1799,02	0,07
	677	45,07 ± 1,73	3,84%	253	16,84 ± 1,06	6,29%	142	9,45	± 0,79	8,39%	901,24	0,07	642	42,78 ± 1,69	3,95%	249	16,59 ± 1,05	6,34%	132	8,80 ± 0,77	8,70%	900,48	0,07
	419	41,88 ± 2,05	4,89%	160	15,99 ± 1,26	7,91%	91	9,10	± 0,95	10,48%	600,26	0,07	440	43,63 ± 2,08	4,77%	142	14,08 ± 1,18	8,39%	103	10,21 ± 1,01	9,85%	605,02	0,07
	222	44,20 ± 2,97	6,71%	73	14,53 ± 1,70	11,70%	45	8,96	± 1,34	14,91%	301,36	0,07	224	44,79 ± 2,99	6,68%	81	16,19 ± 1,80	11,11%	52	10,40 ± 1,44	13,87%	300,1	0,07
Th6	146	36,43 ± 3,01	8,28%	77	19,21 ± 2,19	11,40%	43	10,73	± 1,64	15,25%	240,48	0,07	183	45,59 ± 3,37	7,39%	50	12,46 ± 1,76	14,14%	42	10,46 ± 1,61	15,43%	240,86	0,07
1110	127	41,33 ± 3,67	8,87%	39	12,69 ± 2,03	16,01%	24	7,81	± 1,59	20,41%	184,38	0,07	127	41,33 ± 3,67	8,87%	73	23,7553 ± 2,78	-	28	9,11 ± 1,72	18,90%	184,38	0,07
	75	37,13 ± 4,29	11,55%	31	15,35 ± 2,76	17,96%	10	4,95	± 1,57	-	121,2	0,07	92	45,60 ± 4,75	10,43%	35	17,35 ± 2,93	16,90%	13	6,444 ± 1,79	-	121,04	0,08
	57	37,86 ± 5,01	13,25%	25	16,60 ± 3,32	20,00%	20	13,28	± 2,97	-	90,34	0,07	64	39,68 ± 4,96	12,50%	21	13,02 ± 2,84	21,82%	13	8,06 ± 2,24	27,74%	96,78	0,06
	43	42,96 ± 6,55	15,25%	13	12,99 ± 3,60	27,74%	8	7,99	± 2,83	35,36%	60,06	0,07	49	48,29 ± 6,90	14,29%	14	13,80 ± 3,69	26,73%	9	8,87 ± 2,96	33,33%	60,88	0,1
	23	42,25 ± 8,81	20,85%	9	16,53 ± 5,51	33,33%	5	9,19	± 4,11	44,72%	32,66	0,06	15	29,1451 ± 7,53	-	11	21,3731 ± 6,44	-	1	1,943 ± 1,94	-	30,88	0,06
	1220	40,68 ± 1,16	2,86%	506	16,87 ± 0,75	4,45%	311	10,37	± 0,59	5,67%	1799,6	0,07	1323	44,13 ± 1,21	2,75%	491	16,38 ± 0,74	4,51%	282	9,41 ± 0,56	5,95%	1798,96	0,07
	655	41,72 ± 1,63	3,91%	227	14,46 ± 0,96	6,64%	123	7,84	± 0,71	9,02%	941,9	0,07	650	43,39 ± 1,70	3,92%	260	17,35 ± 1,08	6,20%	128	8,54 ± 0,76	8,84%	898,9	0,07
	425	42,43 ± 2,06	4,85%	153	15,27 ± 1,23	8,08%	80	7,99	± 0,89	11,18%	601	0,07	433	43,32 ± 2,08	4,81%	176	17,61 ± 1,33	7,54%	77	7,70 ± 0,88	11,40%	599,78	0,07
	218	43,55 ± 2,95	6,77%	73	14,58 ± 1,71	11,70%	50	9,99	± 1,41	14,14%	300,32	0,07	228	45,58 ± 3,02	6,62%	86	17,19 ± 1,85	10,78%	50	10,00 ± 1,41	14,14%	300,1	0,07
Th5	174	43,34 ± 3,29	7,58%	62	15,44 ± 1,96	12,70%	47	11,71	± 1,71	14,59%	240,9	0,07	172	42,87 ± 3,27	7,62%	65	16,20 ± 2,01	12,40%	32	7,98 ± 1,41	17,68%	240,7	0,07
_	138	45,85 ± 3,90	8,51%	49	16,28 ± 2,33	14,29%	29	9,63	± 1,79	18,57%	180,6	0,08	118	39,2244 ± 3,61	-	49	16,29 ± 2,33	14,29%	27	8,98 ± 1,73	19,25%	180,5	0,07
	80	39,77 ± 4,45	11,18%	30	14,92 ± 2,72	18,26%	15	7,46	± 1,93	25,82%	120,68	0,07	87	43,30 ± 4,64	10,72%	41	20,40 ± 3,19	15,62%	22	10,95 ± 2,33	21,32%	120,56	0,07
	74	48,81 ± 5,67	11,62%	22	14,51 ± 3,09	21,32%	10	6,60	± 2,09	31,62%	90,96	0,07	56	37,0452 ± 4,95	-	21	13,89 ± 3,03	21,82%	15	9,92 ± 2,56	25,82%	90,7	0,07
	44	43,62 ± 6,58	15,08%	16	15,86 ± 3,97	25,00%	12	11,90	± 3,43	28,87%	60,52	0,07	42	41,64 ± 6,43	15,43%	18	17,85 ± 4,21	23,57%	12	11,90 ± 3,43	28,87%	60,52	0,07
	24	45,89 ± 9,37	20,41%	2	3,82 ± 2,7	-	4	7,65	± 3,82	50,00%	31,38	0,13	30	60,0801 ± 11	-	7	14,02 ± 5,30	37,80%	7	14,02 ± 5,3	-	29,96	0,07
	1206	40,21 ± 1,16	2,88%	515	17,17 ± 0,76	4,41%	270	9,00	± 0,55	6,09%	1799,38	0,07	1379	45,99 ± 1,24	2,69%	575	19,17 ± 0,80	4,17%	343	11,44 ± 0,62	5,40%	1799,26	0,08
Th4	636	42,22 ± 1,67	3,97%	237	15,73 ± 1,02	6,50%	137	9,10	± 0,78	8,54%	903,78	0,07	696	46,46 ± 1,76	3,79%	276	18,42 ± 1,11	6,02%	170	11,35 ± 0,87	7,67%	898,82	0,08
	411	41,10 ± 2,03	4,93%	162	16,20 ± 1,27	7,86%	84	8,40	± 0,92	10,91%	600	0,07	418	41,82 ± 2,05	4,89%	198	19,81 ± 1,41	7,11%	105	10,50 ± 1,03	9,76%	599,74	0,08
	195	39,05 ± 2,80	7,16%	82	16,42 ± 1,81	11,04%	32	6,41	± 1,13	17,68%	299,6	0,07	223	44,67 ± 2,99	6,70%	102	20,43 ± 2,02	9,90%	61	12,22 ± 1,56	12,80%	299,5	0,08

					BACKGROU	ND (BKG)												PADR	ÕES						
		К			U			T	h		Temno	Dead		к			U				Т	ĥ		Tempo	Dead
Padrão	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CPM)	σ_r/r	C_{Total}	r (CP	M)	σ_r/r	(s)	(s)	C_{Total}	r (CPM)	σ_r/r	C _{Tota}	r (CPM))	σ_r/r	C_{Total}	r (C	PM)	σ_r/r	(s)	(s)
	158	39,35 ± 3,13	7,96%	64	15,94 ± 1,99	12,50%	30	7,47	± 1,36	18,26%	240,92	0,07	212	52,86 ± 3,6	3 6,87%	82	20,45 ±	2,26	11,04%	57	14,21	± 1,88	13,25%	240,62	0,08
	130	43,20 ± 3,79	8,77%	45	14,96 ± 2,23	14,91%	23	7,64	± 1,59	20,85%	180,54	0,08	136	45,25 ± 3,8	8 8,57%	62	20,63 ±	2,62	12,70%	41	13,64	± 2,13	15,62%	180,32	0,09
Th 4	88	43,76 ± 4,66	10,66%	17	8,45 ± 2,1	-	15	7,46	± 1,93	25,82%	120,66	0,08	70	34,87 ± 4,1	7 11,95%	48	23,9084 ±	3,45	-	27	13,45	± 2,59	19,25%	120,46	0,07
1114	53	35,2 ± 4,8	0,13736	21	13,96 ± 3,05	21,82%	14	9,30	± 2,49	26,73%	90,28	0,07	52	34,38 ± 4,7	7 13,87%	29	19,18 ±	3,56	18,57%	16	10,58	± 2,64	25,00%	90,74	0,09
	46	44,86 ± 6,61	14,74%	12	11,70 ± 3,38	28,87%	10	9,75	± 3,08	31,62%	61,52	0,06	45	44,42 ± 6,6	2 14,91%	22	21,72 ±	4,63	21,32%	19	18,76	± 4,3	-	60,78	0,07
	23	44,46 ± 9,27	20,85%	11	21,26 ± 6,41	30,15%	0	0 :	± 0	-	31,04	0,06	33	56,83 ± 9,8	9 17,41%	10	17,22 ±	5,45	31,62%	2	3,444	± 2,44	-	34,84	0,11
	1252	41,74 ± 1,18	2,83%	514	17,14 ± 0,76	4,41%	271	9,04	± 0,55	6,07%	1799,6	0,07	1665	55,54 ± 1,3	6 2,45%	928	30,96 ±	1,02	3,28%	755	25,18	± 0,92	3,64%	1798,74	0,12
	619	41,28 ± 1,66	4,02%	219	14,61 ± 0,99	6,76%	158	10,54	± 0,84	7,96%	899,62	0,07	853	56,92 ± 1,9	5 3,42%	458	30,56 ±	1,43	4,67%	361	24,09	± 1,27	5,26%	899,14	0,12
	423	42,28 ± 2,06	4,86%	154	15,39 ± 1,24	8,06%	87	8,70	± 0,93	10,72%	600,24	0,08	536	53,61 ± 2,3	2 4,32%	293	29,30 ±	1,71	5,84%	244	24,40	± 1,56	6,40%	599,94	0,12
	224	44,79 ± 2,99	6,68%	74	14,80 ± 1,72	11,62%	53	10,60	± 1,46	13,74%	300,06	0,07	293	58,65 ± 3,4	3 5,84%	158	31,63 ±	2,52	7,96%	102	20,42	± 2,02	9,90%	299,74	0,12
Tho	176	43,87 ± 3,31	7,54%	50	12,46 ± 1,76	14,14%	37	9,22	± 1,52	16,44%	240,7	0,07	223	55,70 ± 3,7	3 6,70%	134	33,47 ±	2,89	8,64%	88	21,98	± 2,34	10,66%	240,2	0,12
1115	139	46,15 ± 3,91	8,48%	53	17,60 ± 2,42	13,74%	24	7,97	± 1,63	20,41%	180,7	0,08	162	53,87 ± 4,2	3 7,86%	92	30,60 ±	3,19	10,43%	84	27,93	± 3,05	10,91%	180,42	0,11
	85	42,07 ± 4,56	10,85%	26	12,87 ± 2,52	19,61%	25	12,37	± 2,47	20,00%	121,24	0,08	110	54,61 ± 5,2	9,53%	58	28,79 ±	3,78	13,13%	53	26,31	± 3,61	13,74%	120,86	0,13
	48	32,03 ± 4,62	14,43%	33	22,02 ± 3,83	17,41%	8	5,338	± 1,89	-	89,92	0,07	77	51,22 ± 5,8	4 11,40%	42	27,94 ±	4,31	15,43%	35	23,28	± 3,94	16,90%	90,2	0,11
	41	40,61 ± 6,34	15,62%	12	11,89 ± 3,43	28,87%	9	8,91	± 2,97	33,33%	60,58	0,07	78	69,7259 ± 7,8	9 -	32	28,61 ±	5,06	17,68%	24	21,45	± 4,38	20,41%	67,12	0,12
	17	32,92 ± 7,99	24,25%	12	23,24 ± 6,71	28,87%	6	11,62	± 4,74	40,82%	30,98	0,06	25	50,10 ± 10,0	20,00%	17	34,07 ±	8,26	24,25%	8	16,03	± 5,67	-	29,94	0,13
	1343	44,79 ± 1,22	2,73%	490	16,34 ± 0,74	4,52%	291	9,70	± 0,57	5,86%	1799,18	0,07	2112	70,49 ± 1,5	3 2,18%	1393	46,49 ±	1,25	2,68%	1174	39,18	± 1,14	2,92%	1797,78	0,17
	589	39,28 ± 1,62	4,12%	252	16,81 ± 1,06	6,30%	119	7,94	± 0,73	9,17%	899,72	0,07	1039	69,34 ± 2,1	5 3,10%	726	48,45 ±	1,80	3,71%	551	36,77	± 1,57	4,26%	899	0,17
	438	43,82 ± 2,09	4,78%	146	14,61 ± 1,21	8,28%	75	7,50	± 0,87	11,55%	599,78	0,07	667	66,75 ± 2,5	8 3,87%	469	46,94 ±	2,17	4,62%	372	37,23	± 1,93	5,18%	599,54	0,16
	208	41,68 ± 2,89	6,93%	75	15,03 ± 1,74	11,55%	30	6,01	± 1,10	18,26%	299,42	0,07	355	71,18 ± 3,7	8 5,31%	269	53,9366 ±	3,29	-	157	31,48	± 2,51	-	299,24	0,17
The	178	44,35 ± 3,32	7,50%	54	13,46 ± 1,83	13,61%	42	10,47	± 1,61	15,43%	240,8	0,07	272	67,76 ± 4,1	1 6,06%	176	43,85 ±	3,31	7,54%	154	38,37	± 3,09	8,06%	240,84	0,17
Inz	118	39,20 ± 3,61	9,21%	41	13,62 ± 2,13	15,62%	24	7,97	± 1,63	20,41%	180,6	0,08	207	68,88 ± 4,7	9 6,95%	135	44,92 ±	3,87	8,61%	104	34,61	± 3,39	9,81%	180,32	0,17
	76	37,65 ± 4,32	11,47%	29	14,37 ± 2,67	18,57%	14	6,94	± 1,85	26,73%	121,1	0,07	140	69,86 ± 5,9	0 8,45%	87	43,41 ±	4,65	10,72%	83	41,42	± 4,55	10,98%	120,24	0,17
	48	31,9 ± 4,6	0,14434	26	17,26 ± 3,39	19,61%	6	3,98	± 1,63	40,82%	90,38	0,09	102	66,16 ± 6,5	5 9,90%	63	40,86 ±	5,15	12,60%	60	38,92	± 5,02	12,91%	92,5	0,17
	38	38,00 ± 6,16	16,22%	14	14,00 ± 3,74	26,73%	8	8,00	± 2,83	35,36%	60	0,07	60	59,7015 ± 7,7	1 -	42	41,79 ±	6,45	15,43%	51	50,75	± 7,11	-	60,3	0,2
	12	23,9 ± 6,9	0,28868	9	17,89 ± 5,96	33,33%	1	1,988	± 1,99	-	30,18	0,07	34	65,05 ± 11,1	17,15%	22	42,09 ±	8,97	21,32%	19	36,35	± 8,34	22,94%	31,36	0,19
	1224	40,81 ± 1,17	2,86%	429	14,31 ± 0,69	4,83%	241	8,04	± 0,52	6,44%	1799,36	0,07	9420	316,88 ± 3,2	6 1,03%	8647	290,88 ±	3,13	1,08%	8585	288,79	± 3,12	1,08%	1783,64	0,93
	610	40,70 ± 1,65	4,05%	217	14,48 ± 0,98	6,79%	135	9,01	± 0,78	8,61%	899,36	0,07	4669	312,80 ± 4,5	8 1,46%	4435	297,13 ±	4,46	1,50%	4322	289,56	± 4,40	1,52%	895,58	0,93
	427	42,69 ± 2,07	4,84%	174	17,39 ± 1,32	7,58%	72	7,20	± 0,85	11,79%	600,2	0,07	3097	312,36 ± 5,6	1 1,80%	2941	296,62 ±	5,47	1,84%	2861	288,55	± 5,39	1,87%	594,9	0,93
	205	41,02 ± 2,87	6,98%	75	15,01 ± 1,73	11,55%	54	10,81	± 1,47	13,61%	299,84	0,07	1521	303,73 ± 7,7	9 2,56%	1436	286,76 ±	7,57	2,64%	1399	279,37	± 7,47	2,67%	300,46	0,9
Th 1	174	42,81 ± 3,25	7,58%	62	15,25 ± 1,94	12,70%	38	9,35	± 1,52	16,22%	243,88	0,07	1320	332,38 ± 9,1	5 2,75%	1144	288,06 ±	8,52	2,96%	1085	273,21	± 8,29	3,04%	238,28	0,91
101	113	37,53 ± 3,53	9,41%	45	14,95 ± 2,23	14,91%	19	6,31	± 1,45	22,94%	180,66	0,07	974	326,37 ± 10,4	6 3,20%	886	296,88 ±	9,97	3,36%	839	281,13	± 9,71	3,45%	179,06	0,92
	79	39,35 ± 4,43	11,25%	39	19,4 ± 3,1	-	12	5,98	± 1,73	28,87%	120,46	0,07	630	315,63 ± 12,5	3,98%	596	298,60 ±	12,23	4,10%	532	266,53	± 11,56	4,34%	119,76	0,91
	52	34,48 ± 4,78	13,87%	22	14,59 ± 3,11	21,32%	10	6,63	± 2,10	31,62%	90,5	0,07	456	304,07 ± 14,2	4,68%	440	293,40 ±	13,99	4,77%	423	282,06	± 13,71	4,86%	89,98	0,92
	49	48,37 ± 6,91	14,29%	12	11,85 ± 3,42	28,87%	8	7,90	± 2,79	35,36%	60,78	0,07	319	319,21 ± 17,8	5,60%	272	272,181 ±	16,5	-	260	260,17	± 16,14	6,20%	59,96	0,93
	29	55,1 ± 10	0,1857	7	13,31 ± 5,03	37,80%	8	15,21	± 5,38	-	31,56	0,06	178	326,61 ± 24,4	8 7,50%	157	288,07 ±	22,99	7,98%	145	266,06	± 22,09	8,30%	32,7	0,91

Regressão Linear através do Método dos Mínimos Quadrados fornecidas pelo software Excel, com os testes estatísticos de hipótese (H₀ e H₁) com α = 0,05 (*I.C.* = 95%), para a determinação das equações de calibração do detector NaI(*Tl*)2"x 2".

1. MODELO DE CALIBRAÇÃO PARA O NÚMERO DE CONTAGENS

Estatística d	a roaroccão							
Estatistica de	e regressão							
R múltiplo	99,98%							
R-Quadrado	0,9995							
quadrado ajustac	0,9370							
Erro padrão	6,6466							
Observações	19							
ANOVA								
	gl	sQ	MQ	F	F de significação	F crítico		
Regressão	3	1,46E+06	4,86E+05	1,10E+04	2,78E-25	3,24E+00		
Resíduo	16	7,07E+02	4,42E+01					
Total	19	1,46E+06						
						valor-P		
	Castiniantas	5	<u> </u>	the state of the state of		(Probabilidade	1. (C
	Coeficientes	Erro paarao	Statt	t critico inferior	t critico superior	tcrítico > t)	Inferior 95,0%	Superior 95,0%
						(α <i>=0,05</i>)		
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
CK - K (%)	1,5320	1,15E-01	13,3686	-2,1199	2,1199	4,24E-10	1,2891	1,7749
CU - eU (ppm)	0,1156	6,56E-04	176,1964	-2,1199	2,1199	9,74E-28	0,1142	0,1169
CTh - eTh (ppm)	0,0223	6,42E-04	34,7769	-2,1199	2,1199	1,67E-16	0,0210	0,0237

176

Estatística de rearessão	ĺ							
R múltiplo	99.97%	-						
R-Quadrado	0,9994							
R-guadrado ajustado	0,9368							
Erro padrão	6,6306							
Observações	19							
ANOVA								
	gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	3	1,15E+06	3,83E+05	8,72E+03	1,58E-24	3,24E+00		
Resíduo	16	7,03E+02	4,40E+01					
Total	19	1,15E+06						
	Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilidade tcrítico > t)	Inferior 95,0%	Superior 95,0%
						(α=0,05)		
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
CK (K - %)	-0,0006	0,1143	-0,0053	-2,1199	2,1199	9,96E-01	-0,2430	0,2417
CU - (eU - ppm)	0,1021	0,0007	156,1110	-2,1199	2,1199	6,74E-27	0,1007	0,1035
CTh - (eTh - ppm)	0,0231	0,0006	36,0390	-2,1199	2,1199	9,50E-17	0,0217	0,0245

1.2. Calibração do Número de Contagens - nU (CPM) (modelo rejeitado)

1.3. Calibração do Número de Contagens - nU (CPM) (modelo aceito)

Estatística de regressão								
R múltiplo	99,97%							
R-Quadrado	0,9994							
R-quadrado ajustado	0,9405							
Erro padrão	6,4327							
Observações	19							
ANOVA								
	gl	sQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	2	1150008,92	575004,4602	13895,98519	1,20117E-26	3,591530568		
Resíduo	17	703,4460449	41,37917911					
Total	19	1150712,366						
	Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilidade tcrítico > t) (α=0,05)	Inferior 95,0%	Superior 95,0%
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
CU (eU - ppm)	0,1021	0,0006	160,9154	-2,1098	2,1098	1,67762E-28	0,1008	0,1035
CTh (eTh - ppm)	0,0231	0,0006	37,1481	-2,1098	2,1098	1,01719E-17	0,0218	0,0244

Estatística de rearessão	Î							
R múltiplo	99,99%							
R-Quadrado	0.9997							
R-guadrado ajustado	0,9372							
Erro padrão	1,1834							
Observações	19							
ANOVA								
	gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	3	75036,4289	25012,14297	17859,47421	7,29585E-27	3,238871517		
Resíduo	16	22,40795461	1,400497163					
Total	19	75058,83686						
	Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilidade tcrítico > t) (α=0,05)	Inferior 95,0%	Superior 95,0%
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
CK (K - %)	0,0099	0,0204	0,4854	-2,1199	2,1199	6,34E-01	-0,0333	0,0532
CU - (eU - ppm)	0,0034	0,0001	29,5244	-2,1199	2,1199	2,21E-15	0,0032	0,0037
CTh - (eTh - ppm)	0,0261	0,0001	228,2265	-2,1199	2,1199	1,55E-29	0,0259	0,0263

1.4. Calibração do Número de Contagens - nTh (CPM) (modelo rejeitado)

1.5. Calibração do Número de Contagens - nTh (CPM) (Modelo aceito)

		_						
Estatística de regressão								
R múltiplo	99,98%							
R-Quadrado	0,9997							
R-quadrado ajustado	0,9409							
Erro padrão	1,1565							
Observações	19							
ANOVA								
	gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	2	75036,09889	37518,04945	28050,30596	4,36745E-29	3,591530568		
Resíduo	17	22,73796377	1,33752728					
Total	19	75058,83686						
	Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilidade tcrítico > t) (α=0,05)	Inferior 95,0%	Superior 95,0%
Interseção	0	-	-			-	-	-
CU (eU - ppm)	0,0034	0,0001	30,2114	-2,1098	2,1098	3,24871E-16	0,0032	0,0037
CTh (eTh - ppm)	0,0261	0,0001	233,5370	-2,1098	2,1098	2,99234E-31	0,0259	0,0263

2. MODELO DE CALIBRAÇÃO PARA A CONCENTRAÇÃO

2.1. Calibração da Concentração K (%) (modelo aceito)

Estatística de regressão								
R múltiplo	100,00%							
R-Quadrado	1							
R-quadrado ajustado	0,9375							
Erro padrão	8,57276E-14							
Observações	19							
ANOVA								
	gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	3	3364	1121,333333	1,52578E+29	7,5311E-214	3,238871517		
Resíduo	16	1,17588E-25	7,34922E-27					
Total	19	3364						
						valor-P		
	Conficientes	Erro padrão	Statt	t crítico inforior	t crítico cuporior	(Probabilidad	Inforior OF OV	Supariar OF 0%
	COEJICIEITIES	Eno puuruo	Start	t critico injerior	t critico superior	e tcrítico > t)	111je1101 95,0%	Superior 95,0%
						(α <i>=0,05</i>)		
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
nK (CPM)	0,6527	9,65E-16	6,77E+14	-2,1199	2,1199	4,38E-229	0,6527	0,6527
nU (CPM)	-0,7418	1,10E-15	-6,74E+14	-2,1199	2,1199	4,60E-229	-0,7418	-0,7418
nTh (CPM)	0.0977	3,68E-16	2,65E+14	-2,1199	2,1199	1,40E-222	0,0977	0.0977

						1	1	
Estatística de regressão								
R múltiplo	100,00%							
R-Quadrado	1							
R-quadrado ajustado	0,9412							
Erro padrão	2,25703E-13							
Observações	19							
ANOVA								
	gl	sq	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	2	1,03E+08	5,14E+07	1,00975E+33	1,5525E-257	3,5915		
Resíduo	17	8,66E-25	5,09E-26					
Total	19	1,03E+08						
						valor-P		
	Confinition	Constant da Sta	Charter	t (time informion	4	(Probabilidade		Currania # 05.0%
	Coeficientes	Erro paarao	Statt	t critico inferior	t critico superior	tcrítico > t)	Inferior 95,0%	Superior 95,0%
						(α=0,05)		
Interseção	#N/D	#N/D	#N/D			#N/D	#N/D	#N/D
nU (CPM)	1,0092E+01	2,2777E-16	4,4309E+16	-2,1098E+00	2,1098E+00	5,6074E-274	1,0092E+01	1,0092E+01
nTh (CPM)	-8,9293E+00	8,9170E-16	-1,0014E+16	-2,1098E+00	2,1098E+00	5,3577E-263	-8,9293E+00	-8,9293E+00

2.2. Calibração da Concentração eU (ppm) (modelo aceito)

2.3. Calibração da concentração eTh (ppm) (modelo aceito)

Estatística de regressão								
R múltiplo	100,00%							
R-Quadrado	1,00							
R-quadrado ajustado	0,94							
Erro padrão	0,00							
Observações	19,00							
ANOVA								
	gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	2,00E+00	1,07E+08	5,36E+07	2,12E+32	4,09E-252	3,59E+00		
Resíduo	1,70E+01	4,30E-24	2,53E-25					
Total	1,90E+01	1,07E+08						
						valor-P		
	Confinination	Free nadrão	Charte	t oriting informer	t oriting our origin	(Probabilidade	Informer OF ON	Cuparian OF 0%
	coeficientes	Erro paarao	Statt	t critico injerior	t critico superior	tcrítico > t)	injenor 95,0%	Superior 95,0%
						(α=0,05)		
Interseção	0,00	#N/D	#N/D	-	-	#N/D	#N/D	#N/D
nU (CPM)	-1,3329	5,07E-16	-2,63E+15	-2,11E+00	2,11E+00	4,05E-253	-1,33	-1,33
nTh (CPM)	39,4867	1,99E-15	1,99E+16	-2,11E+00	2,11E+00	4,63E-268	39,49	39,49

3. MODELO DE CALIBRAÇÃO PARA TAXA DE EXPOSIÇÃO (X' – AR, TECIDO) E TAXA DE DOSE ABSORVIDA (D' – Ar), BASEADO NO NÚMERO DE CONTAGENS INTEGRADAS DE CADA UM DOS 3 RADIONUCLÍDEOS DE INTERESSE

3.1. Calibração da Taxa de Exposição no Ar (X') (modelo aceito)

3.2. Calibração da Taxa de Exposição no Tecido (X') (modelo aceito)

Estatistica de regressão Inferior 95,0% Inferior 9									
R múltiplo99,97% R-Quadrado	Estatística de regressão								
R-Quadrado 0,9994 Image: constraint of the sector of the	R múltiplo	99,97%							
R-quadrado ajustado 0,9369 Image: mail of the sector of	R-Quadrado	0,9994							
Erro padrão $0,7194$ Image: construções 19 100 00001 $3,4540$ $-2,1199$ $2,1199$ $0,0033$ $0,0041$ $0,0172$	R-quadrado ajustado	0,9369							
Observações19Index	Erro padrão	0,7194							
ANOVAImage: constraint of the second state of the second sta	Observações	19							
Interview gl SQ MQ F F de significação ($\alpha=0,05$) F crítico Regressão 3 14933,1476 4977,7159 9618,8785 7,55E-25 3,2389 Residuo 16 8,2799 0,5175 Total 19 14941,4275 Coeficientes Erro padrão Stat t t crítico inferior t crítico superior (Probabilidade tcrítico > t) ($\alpha=0,05$) Inferior 95,0% Superior 95,0%	ΑΝΟΥΑ								
Regressão314933,14764977,71599618,87857,55E-253,2389(1)Resíduo168,27990,5175(1)(1)(1)(1)Total1914941,4275(1)(1)(1)(1)(1)InterseçãoCoeficientesErro padrãoStat ttrítico inferiortrítico superior $valor-P$ (Probabilidade trítico > t) ($\alpha = 0.05$)(1)Superior 95,0%Superior 95,0%Interseção0#N/D#N/D(1)(1)(1)(1)(1)NK0,02760,00803,4354-2,11992,11990,00340,01060,0446NU0,01060,00313,4540-2,11992,11990,00330,00410,0172		gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	Regressão	3	14933,1476	4977,7159	9618,8785	7,55E-25	3,2389		
Total 19 14941,4275 Image: Constraint of the state of the st	Resíduo	16	8,2799	0,5175					
Image: constraint of the section of the se	Total	19	14941,4275						
Log Coeficientes Erro padrão Stat t t crítico inferior t crítico superior valor-P (Probabilidade tcrítico > t) (α=0,05) Inferior 95,0% Superior 95,0% Interseção 0 #N/D #N/									
Interseção 0 #N/D #N/D #N/D #N/D #N/D #N/D nK 0,0276 0,0080 3,4354 -2,1199 2,1199 0,0034 0,0106 0,0446 nU 0,0819 0,0091 8,9600 -2,1199 2,1199 1,24E-07 0,0625 0,1013 nTh 0,0106 0,0031 3,4540 -2,1199 2,1199 0,0033 0,0041 0,0172		Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilidade tcrítico > t) (α=0,05)	Inferior 95,0%	Superior 95,0%
nK 0,0276 0,0080 3,4354 -2,1199 2,1199 0,0034 0,0106 0,0446 nU 0,0819 0,0091 8,9600 -2,1199 2,1199 1,24E-07 0,0625 0,1013 nTh 0,0106 0,0031 3,4540 -2,1199 2,1199 0,0033 0,0041 0,0172	Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
nU 0,0819 0,0091 8,9600 -2,1199 2,1199 1,24E-07 0,0625 0,1013 nTh 0,0106 0,0031 3,4540 -2,1199 2,1199 0,0033 0,0041 0,0172	nK	0,0276	0,0080	3,4354	-2,1199	2,1199	0,0034	0,0106	0,0446
nTh 0,0106 0,0031 3,4540 -2,1199 2,1199 0,0033 0,0041 0,0172	nU	0,0819	0,0091	8,9600	-2,1199	2,1199	1,24E-07	0,0625	0,1013
	nTh	0,0106	0,0031	3,4540	-2,1199	2,1199	0,0033	0,0041	0,0172

Estatística de regressão								
R múltiplo	99,97%							
R-Quadrado	0,9994							
R-quadrado ajustado	0,9369							
Erro padrão	6,2513							
Observações	19							
ANOVA								
	gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	3	1127693,0642	375897,6881	9618,8785	7,55E-25	3,2389		
Resíduo	16	625,2666	39,0792					
Total	19	1128318,3307						
	Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilida de tcrítico > t) (α=0,05)	Inferior 95,0%	Superior 95,0%
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
nK	0,2395	0,0697	3,4354	-2,1199	2,1199	3,40E-03	0,0917	0,3873
nU	nU 0,7120		8,9600	-2,1199	2,1199	1,24E-07	0,5435	0,8804
nTh	0,0925	0,0268	3,4540	-2,1199	2,1199	3,27E-03	0,0357	0,1493

4. MODELO DE CALIBRAÇÃO PARA TAXA DE EXPOSIÇÃO (X' – AR, TECIDO) E TAXA DE DOSE ABSORVIDA (D'), BASEADO NO NÚMERO DE CONTAGEM TOTAL

4.1. Calibração da Taxa de Exposição no Ar (X') (modelo aceito)

								1
Estatística de regressão								
R múltiplo	99,67%							
R-Quadrado	0,9933							
R-quadrado ajustado	0,9378							
Erro padrão	2,1209							
Observações	19							
ANOVA								
	gl	sQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	1	12037,1501	12037,1501	2675,9053	3,83E-20	4,4139		
Resíduo	18	80,9702	4,4983					
Total	19	12118,1204						
	Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilidade tcrítico > t) (α=0,05)	Inferior 95,0%	Superior 95,0%
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
ntotal (CPM)	0,0459	0,0009	51,7292	-2,1009	2,1009	4,94E-21	0,0440	0,0477

Estatística de regressão								
R múltiplo	99,66%							
R-Quadrado	0,9933							
R-quadrado ajustado	0,9377							
Erro padrão	2,3614							
Observações	19							
ANOVA								
	gl	SQ	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	1	14841,0557	14841,0557	2661,4966	4,01E-20	4,4139		
Resíduo	18	100,3717	5,5762					
Total	19	14941,4275						
						valor-P		
		~	<i>c</i>			(Probabilidade		c : 05.00/
	Coeficientes	Erro paarao	Stat t	t critico inferior	t critico superior	tcrítico > t)	Inferior 95,0%	Superior 95,0%
						(α <i>=0,05</i>)		
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
ntotal (CPM)	0,0509	0,0010	51,5897	-2,1009	2,1009	5,18E-21	0,0489	0,0530

4.2. Calibração da Taxa de Exposição no Tecido (X') (modelo aceito)

4.3. Calibração da Taxa de Dose Absorvida no Ar (D') (modelo aceito)

Estatística de regressão								
R múltiplo	99,66%							
R-Quadrado	0,9933							
R-quadrado ajustado	0,9377							
Erro padrão	20,5206							
Observações	19							
ANOVA								
	al	50	мо	F	F de significação	E crítico		
	9,	54	mq	,	(α=0,05)	i citico		
Regressão	1	1120738,6497	1120738,6497	2661,4966	4,01E-20	4,4139		
Resíduo	18	7579,6811	421,0934					
Total	19	1128318,3307						
						valor-P		
	Confinientes	Free nadrão	Ctat t	t orition informer	t orition cumprior	(Probabilidade	Informer OF ON	Superior OF Of
	coeficientes	Erro paarao	Statt	t critico injerior	t critico superior	tcrítico > t)	IIIJenor 95,0%	Superior 95,0%
						(α=0,05)		
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
ntotal (CPM)	0,4426	0,0086	51,58969508	-2,1009	2,1009	5,18E-21	0,4245	0,4606

5. MODELO DE CALIBRAÇÃO PARA DOSE EFETIVA (E), BASEADO NO NÚMERO DE CONTAGENS INTEGRADAS DE CADA UM DOS 3 RADIONUCLÍDEOS DE INTERESSE

Estatística do regressão								
Estatistica de regressão								
R multiplo	99,97%							
R-Quadrado	0,9994							
R-quadrado ajustado	0,9369							
Erro padrão	0,0405							
Observações	19							
ANOVA								
	gl	sq	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	3	47,3874	15,7958	9618,8785	7,55E-25	3,2389		
Resíduo	16	0,0263	0,0016					
Total	19	47,4136						
						valor-P		
						(Probabilidad		
	Coeficientes	Erro padrao	Stat t	t critico inferior	t critico superior	e tcrítico > t)	Inferior 95,0%	Superior 95,0%
						(α=0,05)		
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
nK	0,0016	0,0005	3,4354	-2,1199	2,1199	0,0034	0,0006	0,0025
nU	nU 0,0046 0		8,9600	-2,1199	2,1199	1,24E-07	0,0035	0,0057
nTh	0,0006	0,0002	3,4540	-2,1199	2,1199	0,0033	0,0002	0,0010

6. MODELO DE CALIBRAÇÃO PARA DOSE EFETIVA (E), BASEADO NO NÚMERO DE CONTAGEM TOTAL

Estatística de regressão								
R múltiplo	99,66%							
R-Quadrado	0,9933							
R-quadrado ajustado	0,9377							
Erro padrão	0,1330							
Observações	19							
ANOVA								
	gl	sq	MQ	F	F de significação (α=0,05)	F crítico		
Regressão	1	47,0951	47,0951	2661,4966	4,01E-20	4,4139		
Resíduo	18	0,3185	0,0177					
Total	19	47,4136						
	Coeficientes	Erro padrão	Stat t	t crítico inferior	t crítico superior	valor-P (Probabilidade tcrítico > t) (α=0,05)	Inferior 95,0%	Superior 95,0%
Interseção	0	#N/D	#N/D			#N/D	#N/D	#N/D
ntotal (CPM)	0,0029	0,0001	51,5897	-2,1009	2,1009	5,18E-21	0,0028	0,0030

Limites Críticos e Limites de Detecção para diferentes tempos de análise da radiação de fundo baseados nos dados do padrão branco (BKG) do Anexo 5.

Tempo	Limite crítico (Lc)												Limite Detecção (LD)											
(min)	K	Média	σ	eU	Média	σ	eTh	Média	σ	C. Total	Média	σ	К	Média	σ	eU	Média	σ	eTh	Média	σ	C. Total	Média	σ
	43,6052			16,7085			8,9906			94,4825			46,3576			18,4144			10,2438			125,8550		
30	47,1488	45,0488	1,8608	19,1297	17,9749	1,2145	10,1071	9,8733	0,7921	74,0885	79,7671	12,8540	50,0106	47,8459	1,9181	20,9545	19,7433	1,2742	11,4354	11,1855	0,8449	77,6748	92,5882	28,8612
	44,3924			18,0864			10,5222			70,7304			47,1695			19,8610			11,8774			74,2347		
	44,3067			17,0278			9,2731			67,5798			48,2327			19,4670			11,0781			72,4261		
15	49,3418	46,1775	2,7555	19,8690	18,1472	1,5134	10,7992	10,2427	0,8427	76,7412	71,4278	4,7533	53,4861	50,1784	2,8794	22,5037	20,6597	1,6198	12,7463	12,1346	0,9188	81,9071	76,4007	4,9226
	44,8841			17,5448			10,6557			69,9624			48,8162			20,0083			12,5796			74,8690		
	44,9638			18,4085			10,5949			70,1540			49,8093			21,5175			12,9612			76,2019		
10	50,2487	47,4919	2,6499	20,2128	19,1069	0,9688	10,6145	10,4147	0,3292	77,1278	72,6707	3,8706	55,3692	52,4699	2,7876	23,4689	22,2732	1,0475	12,9826	12,7609	0,3656	83,4674	79,3305	3,7362
	47,2631			18,6993			10,0347			70,7304			52,2313			21,8331			12,3390			78,3222		
	46,8312			18,7492			11,2427			71,5126			53,8288			23,1997			14,7077			80,1486		
5	50,1342	48,5810	1,6602	21,7724	19,9162	1,6252	11,4100	11,5009	0,3137	77,7572	73,0774	4,1263	57,3809	55,7137	1,7860	26,5683	24,5031	1,8089	14,9041	15,0079	0,3633	86,7709	83,3875	3,3135
	48,7777			19,2269			11,8501			69,9624			55,9314			23,7413			15,4117			83,2430		
	49,0339			19,8819			10,7941			73,7894			57,0511			25,0174			14,6081			83,6100		
4	51,6679	50,3464	1,3170	22,9007	20,5735	2,0700	14,1549	12,7326	1,7389	82,2249	76,0670	5,3929	59,8847	58,4592	1,4169	28,3978	25,7855	2,3254	18,4989	16,8529	2,0133	92,5745	87,5178	4,5914
	50,3374			18,9378			13,2489			72,1865			58,4417			23,9412			17,4517			86,3687		
	51,9340			20,3736			12,9904			78,2431			61,4628			26,3880			17,8259			89,9180		
3	52,0043	51,6896	0,4855	22,7305	21,2893	1,2633	13,4956	12,7227	0,9359	80,9382	77,8664	3,2765	61,5459	61,1983	0,5317	29,0797	27,4340	1,4426	18,4243	17,5092	1,1080	92,8192	90,3198	2,3246
	51,1305			20,7637			11,6821			74,4179			60,5862			26,8342			16,2773			88,2223		
	48,5481			20,6867			12,9998			74,7962			59,8658			28,1493			18,9780			88,7996		
2	53,0359	50,8520	2,2463	22,6000	21,1617	1,2693	14,5419	13,4144	0,9878	79,0162	76,7371	2,1302	64,8176	62,4095	2,4787	30,3646	28,6912	1,4788	20,8147	19,4656	1,1833	93,3391	90,6717	2,3720
	50,9721			20,1984			12,7014			76,3989			62,5451			27,5598			18,6041			89,8763		
	46,3411			22,0185			13,9999			72,7693			59,1305			30,9375			21,1979			88,7319		
1,5	57,1369	51,2392	5,4669	25,1629	23,7803	1,6061	17,0022	14,1710	2,7496	88,7787	79,4042	8,3489	71,3486	64,6778	6,1861	34,6857	33,0388	1,9150	24,9035	21,3957	3,4133	106,4337	96,4986	9,0479
	50,2397			24,1593			11,5110			76,6646			63,5543			33,4932			18,0856			94,3300		
	54,6127			21,9122			13,9113			77,1272			71,4718			32,7544			22,7378			97,0103		
1	55,1981	56,0450	1,9953	27,5793	23,6380	3,4221	16,6345	15,6347	1,4989	90,9076	81,2812	8,3626	72,2379	73,1998	2,3609	39,7683	34,9386	4,1890	26,2381	24,9753	1,9431	112,6202	104,9522	7,8086
L	58,3241			21,4225			16,3583			75,8090			75,8899			32,2930			25,9499			105,2260		
	65,9226			23,6842			14,9782			91,2488			92,4109			40,1798			28,5457			122,3458		
0,5	64,7636	64,1799	2,0963	30,6501	29,1169	4,8513	18,4638	17,6964	2,4273	-	84,5454	9,4801	91,1266	90,3029	2,6188	49,2505	47,1693	6,2160	33,2200	32,1462	3,2016	-	124,1004	2,4814
	61,8536			33,0163			19,6473			77,8420			87,3713			52,0777			34,6728			125,8550		

Dados Radiométricos dos diferentes compartimentos do DPM e UNESPetro (UNESP Campus de Rio Claro – SP) tomados no ar entre 0,75 – 1,8 m de altura.

	Dados gamaespectrométricos tomados no ar (entre 0,75 - 1,8 m) para al												entos da	a UNESF	P Campus	de Rio C	Claro, SP (DPM e U	nesPetro)		
ID	X (m)	Y (m)	t (min)	K (CPM)	eU	eTh	X' Tecido	X' Ar	D' Ar	D' Ar	ID	X (m)	Y (m)	t (min)	к (СРМ)	eU	eTh	X' Tecido	X' Ar	D' Ar	D' Ar
							(μκ/n)	(μκ/n)	(nGy/n)	(msv/ano)							(CPIVI)	(μκ/n)	(μκ/n)	(nGy/n)	(mSv/ano)
D1	0.25	2.07	20.20	126.06	IVIUS		6.20	E 76	EE E2	0.26	D1	20.00	1 7 2	20 27	02.00	Patio U	17 49	4 74	4 27	41 17	0.27
P1 D2	0.25	3,07	30,29		28,92	23,05	0,39	5,70	55,53 61.65	0,30	P1 D2	30,99	1,72	20,37	93,90 61.42	16 19	17,48	4,74	4,27	41,17	0,27
P2	0,25	0,09	20,45	122.06	24,57	20,12	7,09	6,00	01,05 E0 70	0,40	P2	4,02	4,22	20.44	01,42 E0.14	10,40	12,01	2.24	2,00	27,50	0,10
P3	6.87	7,02	30,5	198.33	85 38	20,01	12 78	11 51	111.05	0,38	P3 P4	38.99	18.76	30,44	65.41	20.69	14.95	3,24	3 29	31 78	0,18
P5	10.85	7 02	30.46	176 58	60.99	69 50	10.60	9.56	92 14	0,72	14	30,55	Sala (de docen	te do DPN	/ respons	ável nela c	liscinlina d	e Mineralo	gia	0,21
P6	10,85	6.07	48 98	169.25	54 29	42 91	9.57	8.62	83.16	0.54	P1	0 32	1 47	36.23	120 41	27.65	21 33	5 81	5 24	50 50	0.33
P7	6.87	6.07	36.82	258.58	150.68	38.57	19.88	17.91	172.78	1.12	P2	3.08	3.79	30.10	114.86	27.18	21.43	5.62	5.06	48.84	0.32
P8	2.84	6.07	30.41	135.57	33.83	28.44	6.81	6.14	59.19	0.38	P3	1.02	4.46	30.23	145.30	39.03	24.87	7.47	6.73	64.89	0.42
P9	2,84	3,72	54,94	137,19	28,21	22,92	6,34	5,71	55,06	0,36	P4	2,47	0,93	30,99	124,55	36,53	28,98	6,73	6,07	58,52	0,38
P10	6,87	3,72	30,53	133,70	35,54	22,60	6,84	6,16	59,41	0,39	P5	1,65	4,46	30,96	137,55	30,23	24,09	6,52	5,88	56,70	0,37
P11	10,85	3,72	30,68	130,55	30,71	25,49	6,39	5,75	55,49	0,36						Litoteca	Unespetro		-	-	
P12	10,85	2,76	30,52	126,01	29,91	23,10	6,17	5,56	53,61	0,35	P1	12,49	1,67	30,44	97,81	22,64	16,39	4,72	4,26	41,06	0,27
P13	6,87	2,76	30,76	124,99	27,70	21,88	5,95	5,36	51,68	0,33	P2	6,52	4,80	30,38	99,29	27,16	19,85	5,17	4,66	44,95	0,29
P14	2,84	2,76	30,3	127,48	30,37	22,38	6,24	5,62	54,22	0,35	Р3	23,56	2,18	30,60	66,86	19,90	11,60	3,60	3,24	31,26	0,20
P15	2,01	6,55	30,75	136,66	32,52	24,94	6,70	6,03	58,19	0,38	P4	22,27	4,56	30,47	77,27	20,84	13,13	3,98	3,58	34,56	0,22
P16	3,69	6,55	30,5	144,32	35,81	28,66	7,22	6,50	62,71	0,41	Р5	25,89	3,71	31,12	80,01	20,15	14,91	4,01	3,62	34,88	0,23
P17	6,05	6,55	30,61	198,77	88,01	27,67	12,98	11,69	112,83	0,73						Litoteca	Geologia				
P18	7,72	6,55	30,69	163,06	60,48	28,35	9,75	8,78	84,73	0,55	P1	9,19	3,05	30,16	1358,58	905,99	850,07	120,72	108,79	1049,06	6,80
P19	10,01	6,55	30,37	183,27	67,61	71,10	11,35	10,23	98,61	0,64	P2	16,23	3,05	30,66	134,33	27,07	19,96	6,13	5,52	53,29	0,35
P20	12,86	8,13	30,84	166,47	41,73	38,85	8,42	7,59	73,18	0,47	P3	16,23	1,08	30,64	133,44	32,35	21,81	6,56	5,91	57,01	0,37
P21	11,7	3,25	69,56	182,35	36,79	39,74	8,46	7,62	73,54	0,48	P4	16,23	4,96	30,74	114,04	24,33	20,88	5,36	4,83	46,57	0,30
P22	10,01	3,25	30,51	128,55	30,81	22,03	6,30	5,68	54,76	0,35	P5	-3,07	5,57	69,69	112,92	27,08	18,84	5,53	4,98	48,07	0,31
P23	7,72	3,25	30,6	130,07	29,58	22,71	6,25	5,63	54,31	0,35	P6	2,05	3,05	30,74	164,60	37,64	33,67	7,98	7,19	69,34	0,45
P24	6,05	3,25	30,19	130,96	29,81	19,18	6,26	5,64	54,36	0,35	P7	2,05	1,08	30,44	135,61	46,88	35,71	7,96	7,17	69,16	0,45
P25	3,69	3,25	30,31	135,05	31,02	22,77	6,51	5,86	56,53	0,37	P8	2,05	4,96	31,36	125,35	29,85	23,82	6,15	5,54	53,47	0,35
P26	2,84	0,42	30,17	121,10	27,61	20,75	5,82	5,24	50,58	0,33											
P27	2,84	9,43	30,41	115,60	31,67	22,86	6,02	5,43	52,35	0,34											
P28	10,85	9,43	29,95	127,05	33,39	27,75	6,53	5,89	56,77	0,37											
P29	10,47	0,42	31,02	116,23	28,14	24,75	5,77	5,20	50,16	0,33											
P30	6,87	0,42	33,99	118,55	27,06	21,74	5,72	5,15	49,67	0,32											
P31	6,87	9,43	30,68	129,29	43,35	24,12	7,37	6,64	64,06	0,42											