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ABSTRACT 

 

Root system (RS) is important for anchorage and for up-taking water and 

nutrients. In eudicots, such as Arabidopsis, the primary root (PR) growth is 

affected by phytohormones, especially auxin controlling cell division and 

cytokinin mediating cell differentiation; also, microRNAs (miRNAs), a subset of 

small RNAs that post-transcriptionally regulate their targets, regulate the PR 

growth. The microRNA156 (miR156) and its targets, members of the 

SQUAMOSA Promoter-Binding Protein-Like (SPL) family, constitute a genetic 

pathway that regulates several developmental processes including root 

development; however, during PR growth it was not observed the effect of the 

miR156/SPL pathway, and the interplay with auxin/cytokinin; therefore, we 

evaluated this interaction during the root meristem size (RMS)-mediated PR 

growth in Arabidopsis. Using molecular and genetic tools, we analyzed the 

MIR156 and SPL gene expressions, the PR length, the RMS, the cell division 

rates, and the auxin/cytokinin responses during PR growth. MIR156 and SPLs 

genes have opposite expression patterns. High levels of mature miR156 (in 

p35S::MIR156A seedlings) lead to shorter PR, reduced RMS, lower rates of cell 

division, lower and higher auxin and cytokinin responses, respectively; 

conversely, reduce levels of the available mature miR156 (in MIM156 seedlings) 
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lead to opposite effects. De-regulation of the SPL10 (in miR156-resistant version 

of SPL10) promotes longer PR, larger RMS, higher CYCLIN G2-M-specific 

CYCLINB1;1 (CYCB1;1) expression, and reduce cytokinin responses evaluated 

by ARR1 expression, nTCS:GFP and pARR5:GUS reporters, than Col-0. Our data 

suggest that SPL10 de-regulation increases the cell division-mediated RMS and 

consequently promotes the PR growth by altering cytokinin responses in 

Arabidopsis. 

 

KEY WORDS: Arabidopsis, Root system, Primary root, phytohormones, 

MiRNAS, miR156, SPL. 
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RESUMO 

 

O sistema radicular (SR) é importante pela ancoragem e obtenção de água 

e nutrientes. Em eudicotiledôneas, como Arabidopsis, o crescimento da raiz 

primária (RP) é afetado por fitormônios, especialmente pelo balanço entre auxina 

que controla a divisão celular, e citocinina que modula a diferenciação celular; 

também, os microRNAs (miRNAs), um sub-conjunto de pequenos RNAs que 

regulam pós-transcricionalmente seus alvos, regulam o crescimento da RP. O 

microRNA156 (miR156) e seus alvos, membros da família SQUAMOSA 

Promoter-Binding Protein-Like (SPL), constituem uma via genética que regula 

vários processos do desenvolvimento, incluindo desenvolvimento da raíz; porém, 

durante o crescimento da RP, não foi observado o efeito da via miR156/SPL, e da 

interação com auxina e citocinina; assim, foi avaliada essa interação durante o 

crescimento da PR regulado pelo tamanho do meristema da raiz (TMR) em 

Arabidopsis. Usando ferramentas genéticas e moleculares foi analizada a 

expressão de genes MIR156 e SPLs, o comprimento da RP, o TMR, as taxas de 

divisão celular, e as respostas de auxina e citocinina durante o crescimento da 

RP. Os genes MIR156 e SPLs possuem padrões de expressão opostos. Níveis 

altos do miR156 (nas plântulas p35S :: MIR156A), leva a menor comprimento da 

RP, TMR reduzido, menores taxas de divisão celular, respostas mais baixas e 
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altas à auxina e citocinina respectivamente; em contraste, níveis severamente 

reduzidos do miR156 maduro disponível (nas plantas MIM156) conducem a 

efeitos opostos. Des-regulação da SPL10 (em plantas com a versão resistente ao 

miR156, rSPL10) promove crecimento da RP, maior TMR, maior expressão do 

gene CYCLINB1, redução da resposta à citocinina, avaliada pela expressão de 

ARR1, e dos genes repórteres  nTCS::GFP e pARR5::GUS,do que Col-0. Os 

nossos dados sugerem que a des-regulação da SPL10 incrementa o TMR pelo 

aumento nas taxas de divisão celular e, consequentemente,  aumentando o 

comprimento da RP, pela redução das respostas à citocinina em Arabidopsis. 

 

Palavras chave: Arabidopsis, Sistema radicular, Raíz primaria, Fitohormônios, 

MiRNAS, miR156, SPL. 
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1. INTRODUCTION 

 

The root is the organ of the plant's body that commonly lies below the 

surface of the soil. Its functions include, mainly, supply plants with micro and 

macronutrients, water, anchorage, and phytohormone biosynthesis; in addition, 

root functions may include energy storage organ and clonal propagation. Thus, 

the root has an important role in yield and overall plant productivity (Osmont et 

al., 2007; Lynch, 1995). In the model plant Arabidopsis thaliana, as in eudicots, 

the root system is composed by a primary root (PR), lateral roots (LR), and 

eventually adventitious roots (Figure 1A; Boyes et al., 2001). Along the 

longitudinal axis, the PR displays three developmental zones into a simple 

structure composed of the stele surrounded by four one-cell layers (Figure 1B-

D), and its growth is sustained by the activity of the root meristem, a sustainable 

and self-renewable system which activity depends on different factors, including 

phytohormones-controlled biochemical routes, and microRNAs-regulated genetic 

pathways (Xue et al., 2017; Dello Ioio et al., 2008).  

 

The phytohormones-controlled biochemical routes are essential for PR 

growth by controlling the root meristem size (RMS). The RMS is a critical factor 

to ensure the suitable PR growth, and it is specially affected by the antagonistic 
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effects of auxin and cytokinin (Dello Ioio et al., 2008). Auxin is important for 

plant patterning; in roots, it establishes positional information for cell fate 

decisions and maintains the root meristem activity (Blilou et al., 2005). The 

meristem activity is characterized by cell divisions, and it depends on cell cycle 

progression. The cell cycle has two important transition steps, the G1-S and the 

G2-M, which are modulated by members of the Cyclin-Dependent Serine-

Threonine protein kinase family, a family of proteins associated with cell cycle 

(Tank and Thaker, 2011). Among them, the CYCLIN G2-M-specific 

CYCLINB1;1 (CYCB1;1) expression was clearly identified into the root 

meristematic zone and directly associated with the RMS (Ferreira et al., 1994). 

 

The cell divisions on meristematic zone are modulated by an auxin 

gradient; while high levels of auxin are found in the proximal meristem low 

levels are found on the distal meristem (Petersson et al., 2009; Jurado et al., 

2010). These auxin gradients are partially generated by the PIN-FORMED (PIN) 

auxin-efflux carriers, which funnel auxin efflux across cells (Vieten et al, 2005; 

Wiśniewska et al, 2006); among them, the PIN1, PIN3, and PIN7 proteins have 

been shown to be essential for controlling the RMS (Figure 1B; Dello loio et al., 

2008). 

 

Besides auxin that promotes cell division, cytokinin mediates cell 

differentiation by antagonizing auxin on transition zone and, consequently, 
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contributes to establish the RMS. The cytokinin-controlled RMS involved the 

activation of the nucleus-localized type-B ARABIDOPSIS RESPONSE 

REGULATORS (ARRs) ARR1 and the ARR12 transcription factors with ARR1 

being a critical factor to determine the root meristem size. Both, ARR1 and 

ARR12 are expressed at transition zone, where they repress the expression of the 

PIN genes through SHY2/IAA3 (SHY2) protein; a negative regulator of PINs 

transporters by forming heterodimers with the auxin response factor (ARF) 

family of  transcription factors, preventing the activation of auxin-responsive 

genes (Tian et al., 2002). This model proposes that cytokinin and auxin 

antagonistically interact at the transition zone to balance cell differentiation with 

cell division (Figure 1B), which is essential to stabilize the RMS and to ensure 

continuous and proper root growth (Dello loio et al., 2007; 2008). 
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Figure 1. The root system in Arabidopsis thaliana. A.: representative picture of 
the root system in Col-0 at 12-days-post-germination (dpg), indicating the 
adventitious root (AR), lateral root (LR), and the primary root (PR); scale bar: 1 
cm. B.: Light microscope picture of  the longitudinal view of root meristem from 
Col-0 at 10-dpg, showing the elongation-differentiation zone (EDZ), transition 
zone (TZ) and the meristematic zone (MZ); red arrowhead indicates the TZ 
(highlighted in the upper small box), and black arrowhead indicates the quiescent 
center; on MZ is also indicated the proximal meristem (PM) and the distal 
meristem (DM), scale bar: 100 µm; the green-red scheme illustrates the auxin-
cytokinin gradients on MZ, being auxin promoting division (CDv) mainly 
through PIN1/3/7 proteins, and cytokinin mediating cell differentiation (CDf) by 
ARR1/12 genes. C-D: Cross-sectional and longitudinal illustration of the EDZ 
and the root tip respectively, showing the different one-cell layers. 

   

Other essential factors that contribute for the RMS and, consequently, a 

suitable PR growth are the genetic pathways controlled by microRNAs (Xue et 

al., 2017; Rodriguez et al., 2015). MicroRNAs (miRNAs) are an endogenous 

subset of hairpin-derived small RNA with 21-24 nucleotides long. They 

negatively regulate the gene expression of their targets by RNA cleavage, 

translational inhibition, or chromatin modifications, comprising one of the most 

abundant classes of gene regulatory molecules in multicellular organisms (Axtell, 

2013). In plants, this tiny regulatory RNAs are derived from the processing of 
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helical regions of RNA precursors; this process was previously described (Figure 

2A) but, in summary, the miRNA mature molecule is derived from one arm of 

fold-back precursor that comes from the RNA polymerase II-dependent 

transcription of MIR genes, which binds to the RNA-induced silencing complex 

(RISC), and will regulate the gene expression of its complementary RNA target 

mostly by the ARGONAUTE (AGO)-directed cleavage or the translational 

inhibition (Bartel, 2004; Kurihara and Watanabe, 2004).    

 

In plants, miRNAs are involved in different genetic pathways affecting 

many different processes as phase change, development of leaves and 

reproductive organs (Huijser and Schmid, 2011; Xie et al, 2012). In roots, 

especially in Arabidopsis, several miRNAs-controlled genetic pathways were 

reported modulating the root development (Figure 2 B). For instance, during the 

LR development it was observed that, while the miR160 and miR390 promote 

the LR production and elongation respectively, the miR164 and miR167 

negatively regulate the LR development. The miR160 regulates the AUXIN 

RESPONSE FACTOR10 (ARF10), ARF16, and ARF17 transcription factors 

(Rhoades et al., 2002). Among them, ARF17 seems to be involved in root 

development because disrupting in ARF17 mRNA levels leads to abnormalities 

in LR production (Mallory et al., 2005). The miR390 also regulates members of 

the ARF family through the trans-acting small-interference RNAs (tasiRNA). 

The miR390 cleaves the non-coding TAS3 precursor; the cleaved product is 

polymerized into RNA/RNA double-strand, and then cleavage by DICER-Like4 
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(DCL4), generating the tasiRNAs. This small interference RNAs will drive the 

cleavage of the ARF2, ARF3, and ARF4 transcripts through ARGONAUTE 7 

(AGO7). In transgenic plants that over express the TAS3 precursor (35S:TAS3a) 

the length of LRs was longer while in the tas3a-1 mutant was shorter than wild-

type controls, suggesting that the miR390 positively regulates the LR elongation 

(Marin et al., 2010). 

 

 

Figure 2. Biogenesis and miRNAs in Arabidopsis root growth and 
development. A.: the biogenesis of the miRNAs in plants. After the RNA 
polymerase II-mediated transcription of precursor (1), it is generated a single 
stranded precursor named pri-miRNA (2). In some cases, this precursor encodes 
a micro-peptide that enhance their own transcription (3; Lauressergues et al., 
2015); but in the canonical biogenesis, the pri-miRNA folds itself into a hairpin 
structure; this structure is cleaved in two-steps by the DICER-LIKE 1 (DCL1) 
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enzyme, producing a pre-miRNA (4) and then a duplex miRNA/miRNA (5). The 
duplex suffers a HUA ENHANCER 1 (HEN1)-mediated methylation (6), and a 
HASTY (HST)-mediated transportation from nucleus to cytoplasm (7). Into the 
cytoplasm, one of the mature RNA strands of this duplex is incorporated into the 
RNA-induced silencing complex or RISC (8), and it will regulate the gene 
expression of its target (9-10). B: representative scheme that illustrates the 
Arabidopsis root system showing the different miRNAs that positive (green 
arrows) or negatively (red arrows) regulate the growth and development of the 
adventitious roots (AR), lateral roots (LR) or primary root (PR).  

 

 

The miR164 negatively regulates the LR development by directing the 

cleavage of five members of the NAM/ATAF/CUC (NAC) transcription factor 

family, including NAC1 (Rhoades et al., 2002). The over-expression of the 

miR164 reduces LR number and, conversely, mutants with reduced miR164 

levels produce more LRs. This production is affected by the cleavage of NAC1, 

the miR164 directs the NAC1 cleavage to down-regulate auxin signals for LR 

development in Arabidopsis (Guo et al., 2005). The miR167 also negatively 

regulates the LR development in response to nitrogen through the regulation of 

ARF8. Both miR167 and ARF8 are specifically expressed in the pericycle and the 

LR cap; however, the miR167 is repressed in response to nitrogen, allowing the 

ARF8 transcripts accumulate in the pericycle. Thus, the miR167/ARF8 pathway 

controls nitrogen-mediated LR development (Giffor et al., 2008). 

 

Besides the effects on LR development, several miRNAs-controlled 

genetic pathways also participate in PR growth and development.  For instance, 

while the miR165 and miR166 participate in PR development, the miR159 and 
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miR396 regulate the meristem size-controlled PR growth. The miR165 and 

miR166 regulate the class III Homeodomain Zipper (HD-ZIP III) of transcription 

factors. The HD-ZIP III transcription factors are largely restricted to the vascular 

cylinder, and the MIRNA165/6 are produced into the endodermis. In root 

endodermis and stele periphery, the regulation of the HD-ZIP III genes by 

miR165/166 is crucial to determine xylem cell types (Carlsbecker et al., 2010).  

 

During the PR growth, the miR159 was identified as a key repressor. The 

miR159 regulates seven GAMYB-like genes, including the MYB65. Loss-of-

function of MIR159 genes leads to larger meristem size and consequently longer 

PR; and, plants expressing a miR159-resistant form of MYB65 display longer 

PRs and greater cell number by increasing the cell division rates in the root 

meristem trough CYCB1;1 transcription (Xue et al., 2017).  

 

The miR396 is also involved in PR growth by altering the cell division 

and cell expansion rates. The miR396 regulates seven members of the 

GROWTH-REGULATING FACTOR (GRF) family. In plants that over-express 

the MIR396B and in the grf1/grf2/grf3 triple mutant, the meristem size was larger 

compared with the wild type; on the other hand, plants harboring the resistant 

version to the miR396 cleavage for the GRF2 and GRF3 genes, as well as in the 

artificial miR396 target mimicry plants display reduction in the RMS. These 

changes occur by altering not only the gene expression of cell cycle-related 
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genes, including the CYCB1;1 and the CYCLIN DEPENDENT KINASE B2;1, but 

also by changing the speed of the cell cycle, leading to alterations in the 

transition of root stem cells into transit-amplifying cells (Rodriguez et al., 2015); 

moreover, plants that over-express the MIR396A display opposite phenotypes on 

cell expansion; while the mature cortical cells reduced the length by 50%, the 

meristematic cortex cells increase it, indicating that miR396 has opposite effects 

on PR growth (Ercoli et al., 2016). 

 

Another important miRNA involved in root development is the highly 

conserved miR156. The miR156 family, composed by eight members (MIR156A 

- MIR156H), regulates post-transcriptionally the gene expression of most 

members of the SQUAMOSA PROMOTER-BINDING PROTEIN-LIKE (SPL), a 

plant-specific family of transcription factors present in both monocots and 

eudicots (Morea et al., 2016). The key feature of this family is the 76-amino acid 

SBP (SQUAMOSA Binding Protein) domain, which is responsible for DNA 

binding ( Cardon et al., 1999). In the plant model Arabidopsis thaliana, there are 

16 SPL genes, of which 10 genes contain a miR156 responsive element and, 

therefore, they are post-transcriptionally regulated by this miRNA (Appendix 1 

A; Rhoades et al., 2002). The miR156-targeted SPL genes can be grouped into 

four functional clades (Appendix 1 B), being SPL3, SPL10 SPL6, and SPL9 

representative members of these clades (Guo et al., 2008). 
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The interaction between the miR156 and its targets defines a genetic 

regulatory pathway important for several processes as apical dominance, ovary 

and fruit development, male fertility, and phase transition mainly (Appendix 2; 

Xu et al., 2016; Silva et al., 2014; Xing et al., 2010; Chuck et al., 2007). In roots, 

it was reported the effect of the miR156/SPL pathway on lateral and adventitious 

root production. For instance, in Arabidopsis plants that over-express the 

MIR156A (p35S::MIR156A) the LR production is higher compared with the 

wild-type; while reduced miR156 levels lead to fewer lateral and adventitious 

roots (Yu et al., 2015; Xu et al., 2016).  

 

Among the Arabidopsis SPLs, the miR156-targeted SPL3, SPL9, and 

SPL10 seem to be involved in repressing LR growth because transgenic plants 

with separate resistant version for these SPL genes produced fewer LR than WT 

with the SPL10 playing a dominant role, and seedlings of spl3, spl10 and 

spl9/spl15 loss-of-function mutants all produced more lateral roots than WT 

under both long- and short-day conditions. These lateral root defects are 

attributed to LR primordia progression because rSPLs seedlings exhibited twice 

LR primordia than WT, whereas seedlings overexpressing the MIR156 the 

number was reduced by 50%; additionally, the number of emerged LR in plants 

overexpressing the MIR156 was higher while rSPLs roots showed significant 

lower number of emerged LR than WT (Yu et al., 2015). 
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The effect of the miR156/SPL pathway observed on lateral and 

adventitious root suggest that it also may have a possible role in PR during the 

progression of plant development; additionally, it is unknown whether this 

miR156-controlled pathway interplays with auxin and cytokinin to modulate the 

PR growth; thus, phenotypic, genetic and molecular mechanisms underlying the 

functions of miR156/SPL pathway in these processes deserve to be searched. For 

all this, we hypothesized that the miR156/SPL pathway regulates the PR growth 

by altering the root meristem size in A. thaliana. 
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6. CONCLUSIONS 

 

The mature miR156 is a master regulator of age-associated plant development 

throughout plant kingdom which is produced by independent MIR156 genes. In 

Arabidopsis, the MIR156 genes express and decrease through time in root tissues 

as in the aerial part of the plant, by which the mechanisms of the MIR156 genes 

regulation may be also conserved and therefore deserve to be explored in more 

depth. 

 

The reduction of miR156 levels overtime leads to the increase of SPL 

expression in the aerial part and, consequently, contributes to phase transition. In 

root tissues, the SPL expression helps to root growth, and the mechanisms of the 

SPL regulation in roots are also dependent, but probably not exclusive, to age-

associated miR156 reduction. 

 

Appropriate miR156 levels promote a suitable primary root growth. The 

disruption in the mi156/SPL pathway leads to phenotypic changes in root system. 

High levels of the miR156 repress the primary root growth, while low levels 

promote it; in this manner, it could be a powerful tool for exploring plant 
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productivity-related researches and directly dependent of primary root growth in 

agronomic importance species. 

 

The root meristem size-controlled primary root growth is directly associated 

with the balance between the antagonistic effects of auxin, controlling cell 

division, and cytokinin, controlling cell differentiation; besides that, miRNAs-

controlled genetic pathways also participate in the established of the root 

meristem size and in the suitable primary root growth.  

 

The miR156 is a small RNA molecule that participates in many different 

growth and developmental processes throughout the plant kingdom by regulating 

the expression of the SPL genes; in this way, the effects found in the root system 

of the model plant Arabidopsis could be found in other plant species and 

therefore are worthy of being studied. 

 

According to the available literature, our work constitutes the first study 

about the interplay between the miR156/SPL pathway and the phytohormones 

auxin and cytokinin during the root meristem size–associated primary root 

growth in Arabidopsis, and contributes to unravel the molecular mechanisms 

involved in the growth and development of the root system. 
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