GEOTERMOBAROMETRIA DE GRANULITOS ASSOCIADOS À SUPRACRUSTAIS NA PORÇÃO NORTE DO COMPLEXO GUAXUPÉ - REGIÃO DE ARCEBURGO -SANTA CRUZ DO PRATA, MG

Magnólia Barbosa do NASCIMENTO ^{1, 2} & Marcos Aurélio Farias de OLIVEIRA ¹

 (1) Departamento de Petrologia e Metalogenia, Instituto de Geociências e Ciências Exatas, Universidade Estadual Paulista / UNESP. Avenida 24-A, 1515 – Bela Vista. CEP 13506-900. Rio Claro, SP. Endereços eletrônicos: magbnascimento@yahoo.com.br; maurelio@rc.unesp.br
(2) Departamento de Construção Civil, Instituto Federal de Educação, Ciência e Tecnologia do Ceará / IFCE. Avenida 13 de Maio, 2081 – Benfica. CEP 60040-531. Fortaleza, CE. Endereço eletrônico: magnoliab@ifce.edu.br

> Introdução Contexto Geológico Características Petrográficas Química Mineral Termobarometria Metamorfismo Considerações Finais Agradecimentos Referências Bibliográficas

RESUMO – O trabalho proposto visa contribuir para o entendimento da evolução geológica do Complexo Guaxupé com novos dados a cerca da petrografia e da química mineral, além de proceder às estimativas das condições metamórficas de litotipos na região de Arceburgo – Santa Cruz do Prata (MG), dentro da porção sul da Faixa Brasília e, mais especificamente, do Complexo (Domínio) Guaxupé. Os litotipos encontrados são rochas metamórficas de alto grau subdivididas em dois grupos: rochas metassedimentares e granulitos (ortoderivadas). As análises químicas dos minerais foram executadas em três etapas incluindo centro e borda de anfibólios, piroxênios, feldspatos, biotita e granada das amostras dos seguintes litotipos: enderbitos, granulitos máficos, charnockitos e álcali feldspato charnockitos. Resultados obtidos nos cálculos geotermobarométricos indicam pico metamórfico em torno de 900°C para T e 10 kbar para P. Enderbitos e granulitos tonalitos (máficos) apresentam os maiores valores de temperatura e pressão, enquanto que charnockitos e álcali feldspato charnockitos e máficos (enderbitos e granulitos tonalitos-máficos). A análise do metamórfico dessas rochas ter ocorrido a mais de 900°C de temperatura e em torno de 10 kbar de pressão, dentro de um regime de descompressão isotérmica (ITD).

Palavras-chave: Complexo (Domínio) Guaxupé, Granulitos, Termobarometria, Metamorfismo de alto grau.

ABSTRACT – *M.B. do Nascimento & M.A.F. de Oliveira - Geothermobarometry of granulites associated with supracrustal in the northern portion of the Guaxupé Complex – Arceburgo – Santa Cruz do Prata, MG. This paper is a contribution for the understanding of the geological evolution of Guaxupé Complex. New data on petrography and mineral chemistry as well as estimates of metamorphic (P-T) conditions in the region of Arceburgo - Santa Cruz do Prata (MG) Brazil, at the southern portion of the Brasilia Belt, more specifically at the Guaxupé Complex (Domain) are now presented. The lithotypes are high-grade metamorphic rocks subdivided into two groups: metasediments and granulites (orthoderivates). Chemical analysis of minerals was performed in three steps including core and rim of amphibole, pyroxene, feldspar, biotite, and garnet from samples of the following rock types: enderbites, mafic granulites, charnockites, and alkali feldspar charnockites. Results obtained with geothermobarometric calculations show metamorphic peak around 900°C of T and 10 kbar of P. Enderbites and tonalite granulites (mafic) show the highest values of temperature and pressure, while alkali feldspar charnockites and tonalite granulites (mafic) show the highest values of temperature and pressure, while alkali feldspar charnockites and tonalite granulites (mafic) show the highest values of temperature and pressure, while alkali feldspar charnockites and tonalite granulites (mafic) show the highest values of temperature and pressure, while alkali feldspar charnockites and tonalite granulites (mafic) show the highest values of temperature and pressure, while alkali feldspar charnockites and around 10 kbar of pressure, within a isothermal decompression (ITD) regime. Keywords: Guaxupé Complex (Domain), Granulites, Thermobarometry, High grade metamorphism.*

INTRODUÇÃO

Nos últimos anos, foram realizados diversos estudos nos granulitos do Complexo Guaxupé, mas a evolução destes terrenos de alto grau ainda tem muitos pontos a esclarecer. O trabalho proposto visa contribuir para o entendimento da evolução geológica do Complexo Guaxupé com novos dados a cerca da composição petrográfica, geoquímica e de química mineral e, a partir daí proceder às estimativas das condições metamórficas de litotipos na região de Arceburgo – Santa Cruz do Prata (MG), dentro da Faixa Brasília e mais especificamente do Complexo Guaxupé. A referida região possui uma elevada complexidade em termos de unidades litoestratigráficas. Os litotipos existentes na área de estudo são rochas metamórficas de alto grau subdivididas em dois grupos: rochas metassedimentares (quartzitos, biotita gnaisse com granada e biotita muscovita gnaisse) e granulitos (ortoderivadas), porém o presente trabalho trata mais especificamente das rochas de alto grau encontrados na área.

CONTEXTO GEOLÓGICO

As rochas presentes no Complexo Guaxupé, de modo geral, podem ser agrupadas em ortoderivadas e paraderivadas (Grupo Caconde, Hasui et al., 1988), que foram submetidas a metamorfismo de alto grau, em fácies granulito e anfibolito. As ortoderivadas podem ser subdivididas em três conjuntos ou associações: charnockítica/mangerítica, migmatítica e gnáissico/ granítica.

A associação charnockítica/mangerítica está representada por anfibólio gnaisses, com ou sem clinopiroxênio, e hiperstênio gnaisses, ocorrendo porções subordinadas de gnaisses alasckíticos e raras intercalações metassedimentares (em especial calcisilicáticas). A composição das ortoderivadas varia de sienogranítica a granodiorítica e de quartzo sienítica a monzonítica, surgindo ainda composições noríticas, tonalíticas, raramente gabróides e ultramáficas, e álcaligraníticas em alguns remobilizados tardios. Esse material, em especial o que aparece próximo e ao sul do Rio Pardo, corresponde em parte, ao da suíte granítica-mangerítica São José do Rio Pardo (Oliveira, 1973; Campos Neto & Figueiredo, 1988; Janasi, 2002).

Os gnaisses granulíticos mostram-se bandados a fitados ou homogêneos e constituem corpos tabulares a lenticulares, com contatos nítidos a gradacionais, possuem composições charnockíticas, com intercalações ou bandas centimétricas a decamétricas mangeríticas, charno-enderbíticas, enderbíticas, jotuníticas e quartzo sieníticas, noríticas e sieníticas, podendo ocorrer localmente com amplo predomínio de um ou outro tipo sobre os gnaisses charnockíticos e mangeríticos. Esse conjunto exibe intercalações de gnaisses quartzofeldspáticos ou está incluso nestes, sendo os corpos maiores, mais homogêneos, menos foliados e com granulação mais grossa. São observados ainda termos sieníticos a quartzo sieníticos em associação com rochas calcisilicáticas. Nos termos mais básicos são comuns texturas indicando a entrada de material alcalino, de forma intersticial, controlada pelos planos de foliação, transformando os termos mais básicos e homogêneos em opdalitos (charno-enderbitos), charnockitos, mangeritos e hiperstênio sienitos. Esses litótipos a norte-nordeste de Monte Belo são anormalmente ricos em granada (Del Lama et al., 2000).

Gnaisses alaskíticos, hololeucocráticos, formam

corpos tabulares e lenticulares, métricos e decamétricos, que ocorrem em direção ao vale do Rio Pardo. Mostram bandamento composicional difuso ou granulométrico e, às vezes, possuem reliquias de texturas gráficas. A composição é sienogranítica, com termos álcali-graníticos a granodioríticos.

Os granulitos básicos a ultrabásicos são meso a ultramelanocráticos e em geral constituem corpos lenticulares. Aparecem dispersos por quase todo o complexo incluso em unidades para e ortoderivadas, sendo mais frequentes na porção norte. Exibem granulação média a grossa, estrutura isotrópica a anisotrópica (gnáissica a xistosa) e coloração preta a cinza escuro, com tonalidades esverdeadas. Essas rochas podem ter sofrido processo de migmatização e transicionar para tipos de composição de noritos, jotunitos e opdalitos, e são constituídas por diferentes porcentagens de anfibólio, clino e/ou ortopiroxênios e plagioclásio, podendo também constituir rochas com mais de 90% de ortopiroxênio, ou sem este mineral. Os termos mais básicos chegam a ter olivina como mineral essencial.

A associação migmatítica ocorre de maneira expressiva na porção meridional e é constituída por gnaisses bandados a homogêneos, infiltrados e assimilados em grau variável por material neossomático. As rochas que constituem o paleossoma são de natureza bastante diversificada (orto e paraderivada) e, localmente exibem feições típicas de anatexia e/ou injeção. O neossoma exibe composição monzogranítica, podendo aparecer domínios sienograníticos, granodioríticos e veios tardios álcali-graníticos.

O metamorfismo do Complexo Guaxupé, em seu ápice, atingiu a fácies granulito, como mostrado por diversos pesquisadores (Oliveira, 1973; Oliveira & Alves, 1976; Oliveira & Hypólito, 1978; Oliveira & Ruberti, 1979; Choudhuri, 1984; Santos, 1987; Morales, 1988; Oliveira et al., 1989; Choudhuri & Carvalho, 1991; Zanardo et al., 1990a; Janasi, 1992; Zanardo, 1992; Del Lama, 1993, 1998; Del Lama et al., 1992, 1994, 1995, 1997, 1998, 1999, 2000; Campos Neto & Caby, 1999 e outros).

Nessa unidade geológica são observados o aparecimento de paragêneses e associações minerais características da fácies granulítica, sendo substituídas, em maior ou menor intensidade, por associação da fácies anfibolito e xisto verde, sendo que as paragêneses típicas da fáceis granulito são encontradas com maior frequência para norte. No extremo sul e sudoeste do Complexo Guaxupé foram encontradas paragêneses típicas da fáceis granulito, formando uma faixa de alguns quilômetros de espessura, que se estrangula para leste. De sul para norte, no setor oeste e centro oeste, as primeiras associações de fácies granulito foram observadas em bandas paleossomáticas, nas proximidades de São João da Boa Vista, e em um pequeno corpo de charnockito/mangerito (intrusivo), que aflora imediatamente a sul do Complexo Alcalino de Poços de Caldas (Del Lama et al., 2000).

No Complexo Guaxupé regimes de alta P são registrados na porção norte com valores máximos entre 13 e 14 kbar e médios entre 11 e 12 kbar, conforme Del Lama, (1998), Del Lama et al., 2000 e Campos Neto & Cabi (1999). Para essas pressões as T atingidas são da ordem de 800 a 850°C. Esses valores caem bastante em direção ao sul, onde associações com granada-biotita-cordierita indicam P entre 7 e 8 kbar e T em torno de 800°C (Oliveira & Ruberti, 1979; Campos Neto & Cabi, 1999) (Figura 1).

FIGURA 1. Mapa geológico da região nordeste do Estado de São Paulo e sul/sudeste do Estado de Minas Gerais, mostrando as diversas unidades litoestratigráficas, bem como a divisão da Nappe Socorro-Guaxupé em dois Domínios: Socorro a sul e Guaxupé a norte (Fonseca et al., 1979, adaptado por Zanardo, 2003).

CARACTERÍSTICAS PETROGRÁFICAS

Os charnockitos ocorrem mais expressivamente na região central e sul da área. Apresentam granulação de fina a média, cor variando de verde escuro a acinzentado. As variedades mais escuras mostram bandamento composicional mais leve em relação às de tonalidade mais claras, que exibem um bandamento composicional mais marcante. Litotipos de coloração mais acinzentada exibem em lâmina, no geral, uma textura granoblástica inequigranular com intensa deformação marcada no quartzo (ribbons-flaser) (Figura 2 A). Biotitas são observadas em tons castanho avermelhados, associadas à hornblenda em grãos prismáticos de coloração verde oliva. Pertitas tipo agulha são comuns além de mirmequitas. O ortopiroxênio (hiperstênio) exibe cristais subeuedrais com tamanhos médios em torno de 0,03 mm, associados ao plagioclásio e hornblenda. O plagioclásio subeuedral exibe geminação polissintética sendo comum pequenos cristais inclusos em antipertitas. Quartzo anedral mostra-se recristalizado em conjunto com plagioclásio formando matriz quartzo-feldspática compondo o bandamento. Minerais acessórios estão representados por opacos (magnetita/ilmenita) em cristais irregulares observados como inclusões e/ou junto à borda de piroxênios e hornblenda. Variedades verde oliva da rocha apresentam textura granoblástica inequigranular com quartzo, anfibólio e piroxênio deformados. Feldspato potássico ocorre como porfiroblastos subeuedrais e pertitas associadas a pequenos cristais de quartzo formando uma matriz quartzo-feldspática. Orto e clinopiroxênio são observados em associação com ortopiroxênio, sendo estes por vezes substituídos pela hornblenda. Clinopiroxênio por sua vez pode ser observado associado a opacos e hornblenda, exibindo pequenos cristais (0,02 mm em média).

Charnockitos e alaskitos distribuem-se a sul da área e se caracterizam pelo aspecto granitóide e ausência ou pouca quantidade de máficos, sua granulação é variada indo de fina a grossa, coloração rosada em função da presença de grande quantidade de feldspato potássico, porém variedades acinzentadas são encontradas. Apresentam textura granítica e apenas algumas amostras coletadas exibem leve bandamento. Em lâmina exibem textura granoblástica inequigranular com porfiroclastos exibindo deformação, principalmente o quartzo (flaser). A proporção modal é representada por: quartzo (30 a 35%), plagioclásio (3 a 7%), feldspato potássico - pertitas (45 a 48%), biotita (1 a 3%), anfibólio (2 a 3%), ortopiroxênio (1 a 2%) e acessórios (1 a 2%). O quartzo apresenta-se anedral e de tamanhos variados (10 mm em média), os grãos menores são recristalizados com extinção ondulante formando uma matriz com plagioclásio e feldspato

potássico circundando porfiroblastos de pertitas deformados. Plagioclásio subeuedral, deformado exibe geminação polissintética, além de antipertitas e mirmequitas. A biotita exibe tons acastanhados e por vezes avermelhados, é comum encontrá-la em associação com a hornblenda, sendo observada como restos nas bordas e fraturas da mesma. O anfibólio (hornblenda) ocorre como porfiroblastos amarronzados em associação com biotita e ortopiroxênio, sendo sua relação com a biotita dada por reações de substituição (Figura 2 B). Ortopiroxênio (hiperstênio) exibe prismas subeuedrais associados à hornblenda, biotita e pertitas. Como acessórios destacam-se zircão e apatita além de opacos (magnetita/ilmenita) em cristais bem formados ocorrendo como inclusões no feldspato potássico, plagioclásio e quartzo.

Álcali feldspato charnockito ocorre na porção centro-oeste da área em blocos dispersos (matacões) e lajedos. Apresenta coloração cinza escuro esverdeado, por vezes rosada, e uma granulação variando de fina a média e um leve bandamento marcado por cristais de quartzo e feldspato estirados. Microscopicamente exibem textura granoblástica inequigranular e suas proporções modais apresentam quartzo (10 a 15%), feldspato potássico - pertitas (50 a 55%), plagioclásio (3 a 7%) e acessórios (1 a 3%). Cristais de quartzo apresentam-se anedrais com pequenos grãos recristalizados, extinção ondulante e forte deformação. As pertitas representam grande parte da composição modal da rocha, exibem cristais deformados, subeuedrais chegando a mesopertitas, que em geral estão associadas ao anfibólio, piroxênios e plagioclásio. Mirmequitas são comuns e em grande quantidade. O plagioclásio é observado em associação mais íntima com antipertitas e mirmequitas em grãos subeuedrais. Hiperstênio apresenta-se em cristais anedrais, fraturados e com preenchimento das fraturas por óxido de ferro, bordas corroídas e, associado ao anfibólio, pertitas e clinopiroxênio. O anfibólio exibe grãos anedrais verde oliva e por vezes tons amarronzados, contatos retos a irregulares em associação com os piroxênios. Clinopiroxênio ocorre em proporção quase igual ao ortopiroxênio, por vezes ocorrendo em associação a este, juntamente com opacos, hornblenda e pertitas (Figura 2 C). Minerais acessórios estão representados por opacos (magnetita/ilmenita) com cristais irregulares em geral junto às bordas dos piroxênios e anfibólios. Apatitas e zircões bem formados ocorrem como inclusões em pertitas e ortopiroxênios.

Granada gnaisse charnockito é encontrado na porção norte da área, próximo à Zona de Cisalhamento Varginha (ZCV). Exibe como característica principal a presença de granada característica dos litotipos próximos à ZCV. Sua granulação varia de fina a média com leve orientação marcada pela deformação do plagioclásio (sigmóides de movimentação destral) e coloração cinza esbranquiçado. Em lâmina apresenta textura granoblástica e, por vezes, poiquiloblástica com quartzo (20 a 25%), plagioclásio (15 a 20%), feldspato potássico (25 a 28%), biotita (3 a 7%), anfibólio (5 a 7%), granada (5 a 7%), ortopiroxênio (2 a 3%) e acessórios (1 a 3%). O quartzo em grãos anedrais exibe tamanhos variados com os maiores em torno de 8mm, além de pequenos grãos recristalizados que se mostram deformados (ribbons) com extinção ondulante. Plagioclásio ocorre associado ao feldspato potássico (pertitas), formando uma fina matriz e em grãos subeuedrais fraturados exibindo geminação polissintética, antipertitas também são observadas em porfiroblastos. Pertitas e microclínio subeuedrais são observados em conjunto com contatos retos a irregulares. Microclínio em cristais menores exibe geminação em grade. As pertitas em grãos maiores (porfiroblastos) apresentam manchas e formato em agulhas. Biotita, localmente presente, mostra grãos subeuedrais de tamanho submilimétrico, cor acastanhada, variando por vezes para vermelho, associada e próxima às bordas da hornblenda e piroxênio. A hornblenda ocorre como cristais subeuedrais, contatos retos a irregulares associados a granada (maioria das vezes), biotita e feldspato potássico. Ortopiroxênio é representado pelo hiperstênio que ocorre em pequena quantidade e em pequenos cristais corroídos geralmente associados ao anfibólio e biotita. A granada exibe grãos subarredondados de tamanhos variados (poiquiloblastos a pequenos cristais (entre 0,5 e 2.0 mm), contatos retos a lobulados, fraturados e com preenchimento por óxido de ferro, além de inclusões de quartzo e hornblenda (Figura 2 D). Minerais opacos (magnetita/ilmenita) ocorrem como acessórios e exibem cristais irregulares presentes como inclusões e/ou junto às bordas dos piroxênios, hornblenda e granadas.

Enderbitos distribuem-se por toda a área pesquisada. Apresentam cor que varia de cinza esbranquiçado a cinza esverdeado, granulação fina a média. Algumas amostras exibem leve bandamento enquanto outras mostram gnaissificação bem marcada. Microscopicamente possuem textura granoblástica inequigranular com orientação de quartzo, plagioclásio, piroxênios e anfibólio (Figura 2 E). Apresentam proporções modais representadas por quartzo (15 a 20%), plagioclásio (45 a 53%), anfibólio (5 a 10%), ortopiroxênio (5 a 7%), clinopiroxênio (3 a 7%) e acessórios (1 a 3%). Quartzo ocorre em geral como cristais anedrais de contatos irregulares exibindo forte deformação (ribbons), além de pequenos grãos recristalizados associados ao plagioclásio. Plagioclásio exibe cristais suebeuedrais a anedrais, geminados e com contatos retos a lobulados com anfibólio e piroxênio. O anfibólio apresenta cristais subeuedrais com contatos retos a irregulares, pleocrísmo variando de marrom a verde escuro e variações para verde claro podendo indicar que os últimos podem se relacionar a cristais retrometamórficos, substituindo bordas e/ou interior do piroxênio. Hiperstênio subeuedral a euedral apresenta cristais equigranulares a poiquiloblastos alongados, prismáticos com inclusões de opacos, quartzo e plagioclásio; localmente são observados em reações envolvendo clinopiroxênio e anfibólio. Clinopiroxênio exibe cristais subeuedrais a anedrais de contatos retos a irregulares, em geral associado à hornblenda, opacos e ortopiroxênio; pode ser observado por vezes sendo substituído pela hornblenda. Minerais opacos (ilmenita/magnetita) ocorrem como cristais irregulares que em geral se apresentam em inclusões e junto às bordas do piroxênio e anfibólio. A apatita, observada em cristais arredondados, ocorre principalmente como inclusões.

Granulito tonalito (máfico) é encontrado a leste e sul da área, possui coloração variando de cinza escuro esbranquiçado a cinza esverdeado, granulação variada (fina a grossa), exibe bandamento de leve a bem marcado em algumas amostras (gnaissificação). Em lâmina apresenta textura predominantemente granonematoblástica com anfibólio e piroxênio bastante deformado. Sua proporção modal está assim distribuída: quartzo (5 a 10%), plagioclásio (30 a 35%), anfibólio (20 a 25%), ortopiroxênio (5 a 7%), biotita (1 a 2%), clinopiroxênio (10 a 15%), acessórios (1 a 3%). Esses litotipos podem ainda conter granada na sua composição (próximo a ZCV) e nesse caso mostram textura granoblástica (poiquiloblástica) com mineralogia que inclui quartzo (7 a 10%), plagioclásio (5 a 7%), feldspato potássico (1 a 2%), anfibólio (30 a 35%), ortopiroxênio (10 a 15%), granada (15 a 20%), clinopiroxênio (7 a 10%), acessórios (1 a 3%). Quartzo apresenta-se anedral, fraturado, deformado (ribbons), ou ainda ocorre como pequenos grãos recristalizados exibindo extinção ondulante. Plagioclásio ocorre em geral associado ao quartzo formando uma matriz quartzo feldspática, que se alterna com minerais máficos; grãos subeuedrais geminados são comuns. Os litotipos com granada por vezes exibem coroas de reação com o plagioclásio e quartzo. Feldspato potássico ocorre em pequena quantidade associado ao plagioclásio (pertitas) e quartzo (mirmequitas). Hornblenda subeuedral (0,3 a 1,5 mm em média), com contatos irregulares e tonalidade variando de verde oliva a acastanhado, geralmente associado ao plagioclásio, piroxênio e granada. Ortopiroxênio exibe cristais subeuedrais, além de poiquiloblastos alongados; localmente apresentam intima associação com clinopiroxênio e por vezes com anfibólio e granada. Clinopiroxênio presente em pequena quantidade tem tamanho variado indo de pequenos cristais associados ao ortopiroxênio e anfibólio a poiquiloblastos. Litotipos que apresentam granada exibem reações de descompressão com plagioclásio e quartzo (Figura 2 F). Biotita pode ser observada localmente em litotipos com ausência de granada, onde esses cristais exibem cores acastanhadas e por vezes avermelhada associados ao anfibólio e opacos podendo os mesmos ser provenientes de final de cristalização. A granada, característica apenas nas rochas próximas a ZCV, exibe cristais poiquiloblásticos com intenso fraturamento e preenchimento dessas fraturas por óxido de ferro. Quartzo e plagioclásio são encontrados inclusos. Os cristais menores de granada ocorrem arredondados e são encontrados em associação com plagioclásio, quartzo, clino e ortopiroxênio além de hornblenda, podem ainda ser observados em coroas de reação, envolvendo minerais quartzo-feldspáticos, indicando descompressão com consumo de granada. Os acessórios comumente encontrados estão representados por opacos (ilmenita/magnetita) em cristais irregulares em geral presentes como inclusões e junto às bordas de piroxênios, anfibólios e plagioclásio. São encontrados ainda apatita e zircão como inclusões em granada, anfibólio e plagioclásio.

FIGURA 2. A) Textura granoblástica inequigranular, onde se observa a intensa deformação e orientação dos minerais (Nicol cruzado - MAG 50). B) Biotita e hornblenda em associação com pertitas, mirmequitas, quartzo e opacos (Nicol cruzado - MAG 39). C) Ortopiroxênio em associação com clinopiroxênio, anfibólio e feldspato potássico (Nicol cruzado - MAG 24). D) Cristais de granada com fraturas preenchidas por óxido de ferro em associação com hornblenda, plagioclásio e quartzo (Nicol cruzado - MAG 58). E: Textura granoblástica inequigranular dos gnaisses enderbíticos (Nicol cruzado - MAG 05). F: Cristal de granada (textura poiquiloblástica) em matriz composta por quartzo, plagioclásio, ortopiroxênio e hornblenda (Nicol cruzado - MAG 55).

QUÍMICA MINERAL

As análises químicas dos minerais foram executadas em três etapas no Laboratório de Microssonda Eletrônica do Instituto de Geociências da Universidade de São Paulo - USP, em equipamento marca JEOL, modelo JXA 8600, com cinco canais, com as seguintes condições de análise: corrente de aceleração do feixe de elétrons de $20 \pm 0.1 \ \eta A$, tensão de 15 kV e feixe de elétrons de 5 µm (de diâmetro), exceto para feldspatos, para os quais foi utilizado um feixe de 10 µm. Silicatos naturais foram usados como padrão para todos os elementos. Na primeira etapa foram analisadas 6 amostras de diferentes tipos litológicos, num total de cento e trinta e sete pontos. Na segunda foram analisadas mais três amostras seguindo o mesmo procedimento descrito acima com o total de cento e dezoito pontos. A terceira etapa foi marcada pela verificação de algumas análises já feitas e complemento das análises já realizadas nas etapas anteriores. Para o tratamento dos dados e elaboração dos diagramas de classificação dos minerais, foi utilizado o programa MINPET, L. R. Richard (1988 - 1995). As referidas análises foram realizadas no centro e borda de cristais como nos anfibólios, piroxênios, feldspatos, biotita e granada das amostras que incluíram os seguintes litotipos: enderbitos, granulitos máficos, charnockitos e álcali feldspato charnockitos.

A composição química dos anfibólios cálcicos (MAG 05, 06, 11, 14, 21, 50 e 55) na sua maioria está representada no campo da magnésio hastingsita, à exceção dos litotipos representados pelo álcali feldspato charnockito (MAG 24), que tem sua composição variando entre magnésio hastingsita e ferro pargasita. (Figura 3; Tabela 1).

Análises petrográficas dos piroxênios mostram que os enderbitos apresentam os dois tipos de piroxênios, o ortopiroxênio com coloração marrom exibindo pleocroísmo rosa e o clinopiroxênio que se desenvolve associado ou no interior do ortopiroxênio. O ortopiroxênio das amostras de enderbitos analisadas foi classificado como enstatita-ferrossilita e o clinopiroxênio plota nos campos do diopsídio e da augita. Granulito tonalito (máfico) exibe piroxênios com comportamento semelhante aos enderbitos, onde ortopiroxênio e clinopiroxênio são encontrados em associação como lamelas de intercrescimento entre ambos. O ortopiroxênio é classificado como enstatita e o clinopiroxênio como diopsídio. A amostra MAG 06 possui apenas o ortopiroxênio com composição de enstatita e as amostras MAG 55 e MAG 60, clinopiroxênio plotando no campo do diopsídio. Alcali feldspato charnockito apresenta orto e clinopiroxênio que petrograficamente encontra-se em associação com bordas de reação formadas por ortopiroxênio em torno de clinopiroxênio. O ortopiroxênio enquadra-se no campo da ferrosilita e o clinopiroxênio apresenta composição do diopsídioaugita. Os charnockitos exibem piroxênio (ortopiroxênio) de cor marrom claro e pleocroísmo rosa e composição da ferrosilita (Figura 4; Tabela 2).

A granada foi analisada em duas amostras: MAG 55 e MAG 60 – granulito tonalito (máfico). Os cristais de granada analisados correspondem a porfiroblastos circundados por uma matriz composta por quartzo, plagioclásio, hornblenda, ortopiroxênio e clinopiroxênio. No diagrama triangular com as proporções de almandina-grossulária-piropo, a granada tem uma tendência ao termo almandina e no gráfico com as proporções de espessartita-grossulária-piropo, esse mineral se posiciona na porção intermediária, mas ainda com tendência ao termo almandina (ferro magnesiana). Os membros finais de sua composição são os seguintes: almandina (45,621 - 48,374) – grossulária (27,207 - 30,621) – piropo – (21,137 - 24,565) – espessartita (1,256 - 1,769) – uvarovita (0,067 - 0,418) (Figura 5; Tabela 3).

Feldspato potássico ocorre principalmente como pertitas ricas em K e com muito pouco Na, sendo que alguns dos cristais chegam a formar mesopertitas. As fórmulas químicas foram calculadas com base em 32 oxigênios. Conforme as proporções de albita-ortoclásio no feldspato potássico, as análises mostram a seguinte composição: álcali feldspato charnockito - Ab (17,80 – 33,50) Or (61,60 – 81,8) e charnockitos - Ab (16,80 – 53,00) Or (33,70 – 82,6). O diagrama mostrado na Figura 06 apresenta a classificação do feldspato potássico com base em Ortoclásio-Albita-Anortita. As amostras analisadas (MAG 24 – álcali feldspato charnockito e 50 - charnockito) são muito ricas em K e plotam no campo do ortoclásio, ricos em Na na composição (Tabela 4).

Plagioclásio apresenta-se quase sempre em associação com o feldspato potássico formando antipertitas Esse comportamento é observado nas amostras (MAG 24 – álcali feldspato charnockito e MAG 50 – charnockito). Nas amostras de enderbitos (MAG 05 e MAG 21) e granulito tonalito (máficos) (MAG 06 e 55) o plagioclásio apresenta-se exibindo geminação polissintética e não se observa a presença de antipertitas. Conforme as proporções de albita-anortita para os plagioclásios as análises mostram que os termos dominantes são oligoclásio e andesina. Considerando as proporções entre albita-anortita o plagioclásio analisado está situado no campo do oligoclásio e andesina, de acordo com cada amostra analisada (Figura 6; Tabela 5).

Biotita foi analisada apenas na amostra MAG 60 e os cálculos dessa análise foram feitos com base em 32 oxigênios. Os cristais de biotita ocorrem em associação com a hornblenda, podendo ser oriundos de final de cristalização. Possuem cor acastanhada e por vezes avermelhada. A Figura 7 A mostra a distribuição das análises segundo a quantidade de Fe/(Fe + Mg) versus Al na posição IV. De acordo com o diagrama observase que a amostra concentra-se na parte inferior do diagrama, entre os termos flogopita-anita. A coexistência da biotita com outros minerais, para fins de avaliação do efeito de compatibilidade petrogenética, pode ser observada através do diagrama FeO-MgO-Al₂O₃ (Nockolds, 1974), que delimita quatro campos distintos para a coexistência da biotita (Figura 7 B). Para a amostra analisada, a biotita situa-se no campo onde ela coexiste com hornblenda (H+B) (Tabela 6).

FIGURA3. Diagrama de classificação do anfibólio cálcico (Mg/(Mg+Fe+2) X TSi (ANa+AK)>0.5) e (Mg/(Mg+Fe+2) X TSi (ANa+AK)<0.5; (A-AlIV<Fe3+) (B-AlVI>Fe3+). (Leake et al., 1997).

FIGURA 4. Diagrama de classificação de ortopiroxênio e de clinopiroxênio das amostras analisadas.

Amostras MAG 05		MAG 06		MAG 11		MAG 14		
Análise	P4-B	P2-B	P1-C	P6-B	P3-B	P6-C	P4-B	P3-C
SiO ₂	39.842	39.642	40.226	40.232	49.978	40.632	43.410	43.265
TiO ₂	2.038	1.958	2.385	2.258	0.418	2.227	2.055	2.194
Al ₂ O ₃	12.768	13.063	12.641	12.148	5.229	13.647	10.694	10.544
FeO	18.025	16.543	17.163	16.993	8.372	14.601	15.579	15.821
Cr ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MnO	0.145	0.240	0.244	0.167	0.213	0.139	0.192	0.194
MgO	9.337	10.580	10.175	10.447	13.153	11.983	12.754	12.830
CaO	11.645	10.918	11.493	11.350	21.659	11.643	11.473	11.672
Na ₂ O	1.386	1.262	1.502	1.522	0.844	2.281	1.670	1.619
K ₂ O	2.167	2.218	2.002	2.014	0.032	1.221	1.677	1.734
F	0.305	0.657	0.298	0.303	0.000	0.000	0.973	0.732
CI	0.875	0.424	0.713	0.611	0.003	0.638	0.241	0.230
Total	98.530	97.510	98.840	98.050	99.970	99.01	100.72	100.84
O_F_CI	0.330	0.370	0.290	0.270	0.000	0.140	0.46	0.36
O_F	0.130	0.280	0.130	0.130	0.000	0.000	0.41	0.31
O_CI	0.200	0.100	0.160	0.140	0.000	0.140	0.05	0.05
CTotal	98.000	97.000	98.000	98.000	99.970	98.870	100.26	100.48
TSi	6.077	6.019	6.067	6.104	7.417	5.998	6.334	6.300
TAI	1.923	1.981	1.933	1.896	0.541	2.002	1.666	1.700
TFe ³	0.000	0.000	0.000	0.000	0.042	0.000	0.000	0.000
Sum_T	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
CAI	0.370	0.355	0.312	0.274	0.386	0.370	0.172	0.108
CFe ³	0.357	0.616	0.407	0.434	0.319	0.424	0.478	0.523
СТі	0.234	0.224	0.271	0.258	0.047	0.247	0.226	0.240
CMg	2.123	2.395	2.288	2.363	2.910	2.637	2.774	2.785
CFe ²	1.906	1.396	1.707	1.660	0.678	1.313	1.339	1.332
CMn	0.009	0.015	0.016	0.011	0.027	0.009	0.012	0.012
CCa	0.000	0.000	0.000	0.000	0.634	0.000	0.000	0.000
Sum_C	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
BFe ²	0.036	0.089	0.051	0.062	0.000	0.065	0.085	0.072
BMn	0.009	0.016	0.016	0.011	0.000	0.009	0.012	0.012
BCa	1.903	1.776	1.857	1.845	2.000	1.841	1.794	1.821
BNa	0.052	0.119	0.076	0.083	0.000	0.085	0.110	0.095
Sum_B	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
ACa	0.000	0.000	0.000	0.000	0.810	0.000	0.000	0.000
ANa	0.358	0.253	0.363	0.365	0.243	0.568	0.363	0.362
AK	0.422	0.430	0.385	0.390	0.006	0.230	0.312	0.322
Sum_A	0.780	0.682	0.748	0.755	1.059	0.798	0.675	0.684
Sum_Ca	15.780	15.682	15.748	15.755	16.059	15.798	15.675	15.684
CCI	0.226	0.109	0.182	0.157	0.001	0.160	0.060	0.057
CF	0.147	0.315	0.142	0.145	0.000	0.000	0.449	0.337
Sum_oxy	23.000	23.000	23.000	23.000	24.042	23.000	23.000	23.000

TABELA 1. Análises químicas de anfibólio das rochas granulíticas.

continua...

continuação...

Amostras	MAG 21		MAG 24		MAG 50		MAG 55	
Análise	P5-B	P3-C	Р7-В	P4-C	P4-B	P3-C	P2-B	P1-C
SiO ₂	40.285	40.145	41.186	41.206	40.807	41.083	40.856	41.154
TiO ₂	1.893	1.848	2.340	1.849	2.039	2.077	2.398	2.540
Al ₂ O ₃	12.891	13.091	11.632	11.494	11.254	11.369	14.631	15.394
FeO	15.851	15.951	19.754	20.513	19.606	19.220	14.268	13.873
Cr ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
MnO	0.224	0.222	0.435	0.429	0.323	0.265	0.103	0.100
MgO	11.097	10.926	8.513	8.999	9.449	9.279	10.977	10.970
CaO	11.655	11.437	10.653	10.972	10.608	10.698	11.203	11.191
Na ₂ O	1.301	1.328	1.863	1.948	1.831	2.035	2.774	2.479
K ₂ O	2.174	2.286	1.702	1.707	1.708	1.794	0.865	0.941
F	0.299	0.754	0.642	0.104	0.591	0.438	0.105	0.105
CI	0.376	0.360	0.370	0.325	0.424	0.399	0.117	0.112
Total	98.050	98.380	99.090	99.550	98.640	98.660	98.300	98.860
O_F_CI	0.210	0.400	0.350	0.120	0.340	0.270	0.070	0.070
0_F	0.130	0.320	0.270	0.040	0.250	0.180	0.040	0.040
O_CI	0.080	0.080	0.080	0.070	0.100	0.090	0.030	0.030
CTotal	98.000	98.000	99.000	99.000	98.000	98.000	98.000	98.000
TSi	6.055	6.047	6.268	6.204	6.204	6.255	6.064	6.047
TAI	1.945	1.953	1.732	1.796	1.796	1.745	1.936	1.953
TFe ³	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sum_T	8.000	8.000	8.000	8.000	8.000	8.000	8.000	8.000
CAI	0.336	0.369	0.353	0.241	0.219	0.294	0.622	0.711
CFe ³	0.517	0.497	0.335	0.485	0.529	0.356	0.204	0.221
СТі	0.214	0.209	0.268	0.209	0.233	0.238	0.268	0.281
CMg	2.486	2.453	1.932	2.020	2.142	2.106	2.429	2.403
CFe ²	1.433	1.458	2.084	2.018	1.857	1.989	1.472	1.378
CMn	0.014	0.014	0.028	0.027	0.021	0.017	0.006	0.006
CCa	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
Sum_C	5.000	5.000	5.000	5.000	5.000	5.000	5.000	5.000
BFe ²	0.043	0.055	0.095	0.080	0.107	0.102	0.096	0.105
BMn	0.014	0.014	0.028	0.028	0.021	0.017	0.007	0.006
BCa	1.877	1.852	1.737	1.770	1.728	1.745	1.782	1.762
BNa	0.066	0.079	0.140	0.122	0.144	0.135	0.116	0.127
Sum_B	2.000	2.000	2.000	2.000	2.000	2.000	2.000	2.000
ACa	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000
ANa	0.313	0.309	0.410	0.446	0.395	0.465	0.682	0.580
AK	0.417	0.439	0.330	0.328	0.331	0.348	0.164	0.176
Sum_A	0.730	0.748	0.741	0.774	0.727	0.814	0.846	0.756
Sum_Ca	15.730	15.748	15.741	15.774	15.727	15.814	15.846	15.756
CCI	0.096	0.092	0.095	0.083	0.109	0.103	0.029	0.028
CF	0.142	0.359	0.309	0.050	0.284	0.211	0.049	0.049
Sum_oxy	23.000	23.000	23.047	23.000	23.000	23.030	23.077	23.085

Amostras	Amostras MAG 05		MAG	MAG 06		MAG 11		MAG 14	
Análise	P8-C	P4-B	P5-B	P3-C	P12-C	P16-C	P12-C	Р7-В	
SiO ₂	51.545	51.901	51.259	51.813	50.888	50.720	51.976	52.547	
TiO ₂	0.147	0.094	0.030	0.082	0.329	0.354	0.097	0.182	
Al ₂ O ₃	1.235	1.179	2.998	1.592	4.493	4.677	1.203	1.112	
FeO	26.755	25.244	12.290	26.030	9.604	9.304	25.303	24.397	
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Cr ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
MnO	0.573	0.602	0.398	0.698	0.239	0.213	0.918	0.814	
MgO	19.293	19.848	12.666	19.783	13.242	13.008	20.629	20.886	
CaO	0.765	0.667	19.883	0.918	21.002	21.713	0.599	0.740	
Na ₂ O	0.039	0.031	0.725	0.038	0.867	0.812	0.051	0.001	
K ₂ O	0.000	0.001	0.010	0.001	0.000	0.000	0.000	0.000	
Total	100.93	99.57	100.26	100.96	100.66	100.80	100.78	100.68	
TSi	1.944	1.971	1.916	1.943	1.875	1.867	1.945	1.964	
TAI	0.055	0.029	0.084	0.057	0.125	0.133	0.053	0.036	
TFe ³	0.001	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M1AI	0.000	0.023	0.048	0.013	0.070	0.069	0.000	0.013	
M1Ti	0.004	0.003	0.001	0.002	0.009	0.010	0.003	0.005	
M1Fe ³	0.015	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M1Fe ²	0.000	0.000	0.246	0.000	0.194	0.207	0.000	0.000	
M1Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M1Mg	0.981	0.974	0.706	0.984	0.727	0.714	0.997	0.982	
M1Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M2Mg	0.104	0.150	0.000	0.122	0.000	0.000	0.153	0.182	
M2Fe2	0.844	0.802	0.138	0.816	0.102	0.079	0.792	0.763	
M2Mn	0.018	0.019	0.013	0.022	0.007	0.007	0.029	0.026	
M2Ca	0.031	0.027	0.796	0.037	0.829	0.856	0.024	0.030	
M2Na	0.003	0.002	0.053	0.003	0.062	0.058	0.004	0.000	
M2K	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Sum_cat	4.000	4.000	4.000	4.000	4.000	4.000	4.000	4.000	
Са	1.563	1.376	41.935	1.862	44.579	45.960	1.203	1.495	
Mg	54.845	56.984	37.169	55.818	39.108	38.311	57.662	58.724	
Fe2_Mn	43.592	41.640	20.896	42.320	16.313	15.729	41.135	39.781	
 JD1	0.000	0.119	2.456	0.143	3.236	3.027	0.000	0.004	
AE1	0.145	0.000	0.279	0.000	0.000	0.000	0.188	0.000	
CFTS1	0.626	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
CTTS1	0.213	0.137	0.043	0.118	0.476	0.512	0.139	0.262	
CATS1	0.000	1.078	0.000	0.541	0.396	0.597	0.000	0.661	
W01	0.737	0.173	41.017	1.221	42.438	43.620	1.080	0.592	
EN1	55.277	57.480	36.394	56.369	37.995	37.284	58.405	59.495	
FS1	43.003	41.012	19.811	41.608	15.459	14.960	40.188	38.986	
Q	1.960	1.952	1.886	1.959	1.852	1.856	1.967	1.956	
J	0.006	0.005	0.105	0.006	0.124	0.116	0.007	0.000	
WO	1.550	1.376	41.935	1.862	44.579	45.960	1.203	1.495	
EN	54.398	56.984	37.169	55.818	39.108	38.311	57.662	58.724	
FS	44.052	41.640	20.896	42.320	16.313	15.729	41.135	39.781	
WEF	99.71	99.77	94,756	99.72	93,755	94,143	99,631	99,993	
JD	0.000	0.231	5.244	0.278	6.245	5.857	0.000	0.007	
AE	0.288	0.000	0.000	0.000	0.000	0.000	0.004	0.000	

TABELA 2. Análises químicas de piroxênio das rochas granulíticas.

continua...

Amostras	tras MAG 21		MA	MAG 24		MAG 50		MAG 55	
Análise	P5-C	P3-C	P2-B	P7-C	P2-B	P1-C	P11-B	P3-C	
SiO ₂	51.221	50.677	51.291	51.764	50.887	50.586	49.305	51.330	
TiO ₂	0.316	0.383	0.256	0.170	0.112	0.036	0.434	0.496	
Al ₂ O ₃	3.245	4.020	2.297	1.521	0.734	0.716	9.373	6.656	
FeO	11.368	11.980	14.948	15.089	31.990	32.740	8.025	8.125	
Fe ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
Cr ₂ O ₃	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
MnO	0.483	0.516	0.829	0.806	1.256	1.296	0.177	0.068	
MgO	12.242	11.851	10.031	10.635	14.550	14.503	11.522	11.689	
CaO	21.566	20.499	20.008	19.938	0.821	0.942	20.290	21.985	
Na ₂ O	0.522	0.635	0.801	0.705	0.000	0.004	1.525	1.435	
K ₂ O	0.000	0.000	0.002	0.018	0.000	0.021	0.062	0.014	
Total	100.96	100.56	100.46	100.65	100.35	100.84	100.71	100.81	
TSi	1.905	1.894	1.948	1.961	1.991	1.972	1.801	1.882	
TAI	0.095	0.106	0.052	0.039	0.009	0.028	0.199	0.118	
TFe ³	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M1AI	0.047	0.071	0.050	0.029	0.025	0.005	0.205	0.165	
M1 Ti	0.009	0.011	0.007	0.005	0.003	0.001	0.012	0.014	
M1Fe ³	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M1Fe ²	0.266	0.258	0.374	0.366	0.123	0.151	0.156	0.182	
M1Cr	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M1Mg	0.679	0.660	0.568	0.601	0.849	0.843	0.628	0.639	
M1Ni	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M2Mg	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
M2Fe2	0.088	0.117	0.100	0.112	0.924	0.917	0.089	0.067	
M2Mn	0.015	0.016	0.027	0.026	0.042	0.043	0.005	0.002	
M2Ca	0.859	0.821	0.814	0.809	0.034	0.039	0.794	0.828	
M2Na	0.038	0.046	0.059	0.052	0.000	0.000	0.108	0.102	
M2K	0.000	0.000	0.000	0.001	0.000	0.001	0.003	0.001	
Sum_cat	4.000	4.000	4.000	3.999	4.000	3.999	3.997	3.999	
Са	45.066	43.851	43.225	42.286	1.746	1.975	47.489	48.200	
Mg	35.594	35.273	30.153	31.384	43.048	42.304	37.522	37.179	
Fe2_Mn	19.340	20.876	26.622	26.330	55.206	55.721	14.988	14.621	
JD1	1.951	2.420	2.630	1.483	0.000	0.069	6.239	5.644	
AE1	0.000	0.000	0.454	1.230	0.000	0.000	0.000	0.000	
CFTS1	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	
CTTS1	0.458	0.566	0.382	0.250	0.171	0.054	0.671	0.752	
CATS1	0.478	1.320	0.000	0.000	0.284	0.190	5.272	3.445	
W01	43.606	41.280	42.112	41.453	1.328	1.772	38.730	41.339	
EN1	35.180	34.723	29.642	30.950	43.976	43.203	35.297	35.124	
FS1	18.327	19.691	24.780	24.634	54.240	54.712	13.791	13.696	
Q	1.891	1.856	1.857	1.888	1.930	1.950	1.667	1.716	
J	0.075	0.092	0.118	0.104	0.000	0.001	0.216	0.204	
WO	45.066	43.851	43.225	42.286	1.746	1.975	47.489	48.200	
EN	35.594	35.273	30.153	31.384	43.048	42.304	37.522	37.179	
FS	19.340	20.876	26.622	26.330	55.206	55.721	14.988	14.621	
WEF	96.20	95.31	94.11	94.87	100.00	99.970	88.559	89.387	
JD	3.798	4.686	5.894	5.134	0.000	0.030	11.441	10.610	
AE	0.000	0.000	0.000	0.000	0.000	0.000	0.000	0.000	

FIGURA 5. Proporções dos membros finais de almandina-grossulária-piropo e espessartita-grossulária-piropo.

FIGURA 6. Diagrama Ab-An-Or, mostrando a classificação do plagioclásio e feldspato potássico das amostras analisadas.

Amostras	MAG	G 55	MAG 60			
Análise	P6-B	P3-C	P1-B	P3-C		
SiO ₂	38.503	38.623	37.701	39.543		
TiO ₂	0.062	0.047	0.036	0.000		
Al ₂ O ₃	22.492	22.482	22.675	21.619		
Cr ₂ O ₃	0.048	0.077	0.000	0.010		
FeO	21.877	22.155	28.936	27.661		
MnO	0.589	0.601	1.124	1.020		
MgO	6.147	6.047	3.799	3.754		
CaO	11.006	10.752	6.629	7.014		
Total	100.72	100.78	100.90	100.62		
TSi	5.878	5.897	2.956	3.098		
Tal	0.122	0.103	0.044	0.000		
SumT	6.000	6.000	3.000	3.098		
AI ^{VI}	3.922	3.939	2.050	1.995		
Fe ³	0.000	0.000	0.000	0.000		
Ti	0.007	0.005	0.002	0.000		
Cr	0.006	0.009	0.001	0.001		
SumA	3.935	3.953	2.052	1.995		
Fe ²	2.790	2.834	1.872	1.812		
MG	1.399	1.376	0.444	0.438		
Mn	0.076	0.078	0.075	0.068		
Ca	1.800	1.759	0.557	0.589		
Na	0.000	0.000	0.000	0.000		
SumB	6.065	6.047	2.948	2.907		
SumCat	16.000	16.000	8.000	8.000		
0	24.000	24.000	12.000	12.000		
CF	0.000	0.000	0.000	0.000		
CCI	0.000	0.000	0.000	0.000		
Alm	46.000	46.865	63.510	62.615		
And	0.000	0.000	0.000	0.000		
Gross	29.532	28.853	18.861	20.222		
Pyrope	23.064	22.762	15.065	15.083		
Spess	1.256	1.285	2.532	2.328		
Uvaro	0.147	0.235	0.032	0.032		
XCagnt	0.250	0.250	0.189	0.203		
XFegnt	0.500	0.500	0.635	0.623		
XMggnt	0.250	0.250	0.151	0.151		
Fe_Mggnt	2.000	2.000	4.216	4.137		

TABELA3. Análises químicas de granada das rochas granulíticas.

Amostras	MA	G 24	MAG 50		
Análise	P2-C	P4-C	P5-B	P2-C	
SiO ₂	65.267	64.320	62.653	64.156	
TiO ₂	0.000	0.000	0.010	0.319	
Al ₂ O ₃	19.067	18.846	23.639	19.151	
Fe ₂ O ₃	0.133	0.115	0.092	0.055	
FeO	0.000	0.000	0.000	0.000	
MnO	0.000	0.000	0.006	0.013	
MgO	0.000	0.013	0.009	0.001	
BaO	0.542	0.765	0.000	0.968	
CaO	0.213	0.127	4.789	0.216	
Na ₂ O	2.805	2.262	8.599	2.971	
K ₂ O	12.450	13.548	0.501	12.496	
Total	100.54	100.220	100.30	100.510	
SrO	0.061	0.220	0.000	0.166	
Si	11.898	11.862	11.075	11.779	
AI	4.093	4.093	4.921	4.141	
Fe ₃	0.018	0.016	0.012	0.008	
Ti	0.000	0.000	0.001	0.004	
Fe ₂	0.000	0.000	0.000	0.000	
Mn	0.000	0.000	0.001	0.002	
Mg	0.000	0.004	0.002	0.000	
Ва	0.039	0.055	0.000	0.070	
Са	0.042	0.025	0.907	0.042	
Na	0.992	0.809	2.947	1.058	
K	2.895	3.188	0.113	2.927	
Cátions	20.016	20.107	19.979	20.141	
Х	16.009	15.971	16.009	15.972	
Z	3.968	4.081	3.970	4.099	
Ab	25.200	20.100	74.300	26.300	
An	1.100	0.600	22.900	1.000	
Or	73.700	79.300	2.800	72.700	
Sr	0.000	0.000	0.000	0.000	

TABELA 4. Análises químicas de feldspato potássico das rochas granulíticas.

Amostras	MAG 05		MAG	G 06	MAG 21	
Análise	P5-C	P2-B	P2-B	P3-C	P6-B	P12-C
SiO ₂	61.121	59.903	60.767	59.668	56.962	57.488
TiO ₂	0.008	0.023	0.010	0.000	0.018	0.005
Al ₂ O ₃	25.092	25.036	25.838	25.552	27.480	27.007
Fe ₂ O ₃	0.174	0.122	0.269	0.231	0.252	0.100
FeO	0.000	0.000	0.000	0.000	0.000	0.000
MnO	0.008	0.000	0.053	0.000	0.000	0.007
MgO	0.000	0.010	0.000	0.023	0.013	0.002
BaO	0.000	0.000	0.000	0.000	0.000	0.000
Cão	6.678	6.686	7.401	7.477	9.394	9.236
Na ₂ O	7.606	7.349	6.909	7.417	5.627	5.761
K ₂ O	0.487	0.463	0.267	0.181	0.488	0.569
Total	101.170	99.590	101.510	100.550	100.230	100.180
SrO	0.000	0.000	0.000	0.000	0.000	0.000
Si	10.766	10.718	10.662	10.600	10.201	10.294
AI	5.205	5.275	5.339	5.346	5.796	5.695
Fe ³	0.023	0.016	0.035	0.031	0.034	0.013
Ti	0.001	0.003	0.001	0.000	0.002	0.001
Fe ₂	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.001	0.000	0.008	0.000	0.000	0.001
MG	0.000	0.003	0.000	0.006	0.003	0.001
BA	0.000	0.000	0.000	0.000	0.000	0.000
Са	1.260	1.282	1.391	1.423	1.803	1.722
Na	2.598	2.550	2.350	2.555	1.954	2.000
K	0.109	0.106	0.060	0.041	0.111	0.130
Cátions	19.963	19.953	19.846	20.002	19.904	19.907
X	15.995	16.012	16.037	15.977	16.033	16.003
Z	3.968	3.941	3.809	4.025	3.871	3.904
Ab	65.500	64.800	61.800	63.600	50.500	51.300
An	31.800	32.600	36.600	35.400	46.600	45.400
Or	2.700	2.700	1.600	1.000	2.900	3.300
Sr	0.000	0.000	0.000	0.000	0.000	0.000

TABELA 5. Análises químicas de plagioclásio das rochas granulíticas.

continua...

continuação...

Amostras	MAG 24		MAG	G 50	MAG 55	
Análise	P2-B	P5-C	P3-B	P1-C	P6-B	P1-C
SiO ₂	62.817	63.068	63.269	64.169	64.366	61.849
TiO ₂	0.000	0.015	0.031	0.000	0.039	0.000
Al ₂ O ₃	23.755	23.802	23.556	19.300	22.695	24.960
Fe ₂ O ₃	0.166	0.082	0.168	0.092	0.062	0.008
FeO	0.000	0.000	0.000	0.000	0.000	0.000
MnO	0.000	0.019	0.000	0.011	0.009	0.000
MgO	0.000	0.003	0.001	0.000	0.002	0.000
BaO	0.000	0.000	0.000	1.268	0.000	0.000
Cão	4.719	4.736	4.501	0.130	3.612	5.886
Na ₂ O	8.835	8.571	8.693	1.839	9.390	8.119
K ₂ O	0.293	0.517	0.400	13.745	0.448	0.115
Total	100.590	100.810	100.62	100.69	100.620	100.940
SrO	0.000	0.000	0.000	0.131	0.000	0.000
Si	11.067	11.084	11.128	11.812	11.301	10.869
AI	4.929	4.926	4.879	4.184	4.693	5.166
Fe ³	0.022	0.011	0.022	0.013	0.008	0.001
Ti	0.000	0.002	0.004	0.000	0.005	0.000
Fe ₂	0.000	0.000	0.000	0.000	0.000	0.000
Mn	0.000	0.003	0.000	0.002	0.001	0.000
MG	0.000	0.001	0.000	0.000	0.001	0.000
BA	0.000	0.000	0.000	0.091	0.000	0.000
Са	0.891	0.892	0.848	0.026	0.679	1.108
Na	3.018	2.921	2.965	0.656	3.197	2.767
К	0.066	0.116	0.090	3.228	0.100	0.026
Cátions	19.993	19.956	19.936	20.103	19.985	19.937
Х	16.018	16.023	16.033	16.009	16.007	16.036
Z	3.975	3.933	3.903	4.003	3.978	3.901
Ab	75.900	74.300	76.000	16.800	80.400	70.900
An	22.400	22.700	21.700	0.700	17.100	28.400
Or	1.700	3.000	2.300	82.600	2.500	0.700
Sr	0.000	0.000	0.000	0.000	0.000	0.000

Amostras		MAG 60				
Análise	P4-B	P6-B	Р7-В	P1-C		
SiO ₂	36.519	36.150	36.732	35.194		
TiO ₂	4.440	4.393	4.752	4.834		
Al ₂ O ₃	14.466	14.848	15.013	14.732		
Cr ₂ O ₃	0.000	0.000	0.000	0.000		
FeO	19.706	19.464	19.784	18.836		
Fe ₂ O ₃	0.000	0.000	0.000	0.000		
MnO	0.053	0.020	0.016	0.037		
MgO	11.515	11.113	10.619	10.814		
BaO	0.497	0.600	0.593	0.000		
CaO	0.052	0.043	0.045	0.049		
Na ₂ O	0.087	0.088	0.113	0.087		
K ₂ O	9.909	9.833	9.903	9.716		
F	0.770	0.416	0.340	0.477		
CI	0.057	0.059	0.046	0.035		
H ₂ O	0.000	0.000	0.000	0.000		
Total	98.07	97.03	97.96	94.81		
O_F_CI	0.34	0.19	0.15	0.21		
CTotal	97.73	96.84	97.81	94.60		
Si	5.767	5.747	5.776	5.702		
AI ^{IV}	2.233	2.253	2.224	2.298		
AI ^{VI}	0.457	0.527	0.556	0.513		
Ti	0.527	0.525	0.562	0.589		
Fe ³	0.000	0.000	0.000	0.000		
Fe ²	2.603	2.588	2.602	2.552		
Cr	0.000	0.000	0.000	0.000		
Mn	0.007	0.003	0.002	0.005		
Mg	2.711	2.634	2.489	2.612		
Ba	0.031	0.037	0.037	0.000		
Ca	0.009	0.007	0.008	0.009		
Na	0.027	0.027	0.034	0.027		
K	1.996	1.994	1.987	2.008		
Cátions	16.368	16.342	16.277	16.315		
CF	0.769	0.418	0.338	0.489		
CCI	0.031	0.032	0.025	0.019		
ОН	0.000	0.000	0.000	0.000		
0	24.000	24.000	24.000	24.000		
Fe_FeMg	0.49	0.50	0.51	0.49		
Mg_FeMg	0.51	0.50	0.49	0.51		

TABELA 6. Análises químicas de biotita das rochas granulíticas.

TERMOBAROMETRIA

Os cálculos de termobarometria foram realizados utilizando-se o software PT Máfic, versão 2.0 de Soto & Soto, 1995 e, quando a associação mineral permitia o *software* THERMOCALC, versão 3.21 (Powel & Holand, 1988). Na execução dos cálculos geotermobarométricos com o THERMOCALC, os valores de atividade da água (a_{H2O}) e os valores de atividade do gás carbônico (a_{CO2}), interferem nos cálculos executados e, no caso das rochas ora estudadas, por serem de alto grau metamórfico, procurou-se utilizar valores para a atividade da água, quando possível, sempre bastante baixos, em torno de 0,1 a 0,3.

Nos charnockitos com associação mineral composta por: plagioclásio + hornblenda + feldspato potássico + hiperstênio + diopsídio + quartzo, foram utilizados os geotermômetros Al-Hbl e Ortopiroxênio (Opx) e o geobarômetro Al-Hbl. Os valores de temperatura encontrados são da ordem de 768°C. O geobarômetro Al-hornblenda mostrou valores entre 6.26 - 6.74 kbar, um pouco abaixo da média para a associação presente, podendo caracterizar um processo de retrometamorfismo nesses litotipos.

O álcali feldspato charnockito apresenta associação que inclui: plagioclásio + hornblenda + feldspato potássico + hiperstênio + diopsídio-augita ± biotita. Os resultados da temperatura, obtidos com o geotermômetro Al-hornblenda ficaram na média torno de 760°C, compatíveis com a associação de alto grau presente, podendo ser interpretados como temperatura de pico metamórfico desses litotipos. O geobarômetro apresentou valor abaixo do esperado para a associação mineralógica presente nessas rochas, com uma média de 6.45 kbar.

Nos enderbitos com associação mineral composta por: plagioclásio + hiperstênio + diopsídio + hornblenda + quartzo ± biotita os resultados encontrados apresentaram uma variação de temperatura da ordem de aproximadamente 79°C com maior valor em torno de 900°C, próximo e coerente com a associação mineral de alto grau apresentada por essas rochas. Os valores de pressão encontrados mostraram significativa diferença entre os resultados e valor médio em torno de 7.5 kbar.

Para os granulitos máficos, com associação mineral composta por: plagioclásio + hornblenda + ortopiroxênio + clinopiroxênio + quartzo ± feldspato potássico, o geotermômetro Al-hornblenda mostrou valor médio de temperatura em torno de 837°C, compatível com as associações encontradas com pressão na ordem de 7.2 kbar.

Cálculos realizados com o programa THERMOCALC para a amostra MAG 11 (granulito tonalito máfico) mostraram que o valor da pressão e temperatura nesse litotipo gira em torno de 9,5 kbar e 921°C, respectivamente. Comparando-se esses resultados com os encontrados através dos cálculos com o programa PT Máfic nota-se uma pequena diferença na temperatura de aproximadamente 84°C e na pressão de 2,3 Kbar, sendo, portanto os valores de pressão e temperatura calculados pelos programas PT Máfic e THERMOCALC coerentes para esse litotipo e sua associação.

Os granulitos tonalitos (máficos), localizados próximos à Zona de Cisalhamento Varginha, mostram variação na composição mineralógica, com a presença de granada. Para esses litotipos a associação mineral é a seguinte: plagioclásio + hornblenda + granada + clinopiroxênio + quartzo \pm ortopiroxênio \pm biotita. Com o geotermômetro Al-Hornblenda foram obtidos valores com média de 795°C que pode ser considerada como temperatura de pico metamórfico para essas rochas. Os valores de pressão encontrados foram calculados através do geobarômetro Al-Hornblenda que apresentou resultados de pressão com uma média de 8 kbar. Granulitos tonalitos (máficos) com granada tiveram seus dados de temperatura e pressão calculados pelo programa THERMOCALC e como resultado obteve-se os valores de 740°C e 9,1 kbar, respectivamente (MAG 60). Comparando os valores encontrados pelos dois programas observa-se que os mesmos estão próximos e coerentes com a associação mineral dessas rochas.

Os resultados obtidos nos cálculos geotermobarométricos indicam, para a região estudada, pico metamórfico em torno de 900°C e 10 kbar. Os enderbitos e granulitos tonalitos (máficos) apresentam os maiores valores de temperatura e pressão. Os charnockitos e álcali feldspato charnockitos apresentam temperaturas e pressões mais baixas, provavelmente em função de sua geração tardia em relação aos litotipos máficos (enderbitos e granulitos tonalitos-máficos).

METAMORFISMO

A associação mineral característica das rochas encontradas na área de pesquisa é representada por plagioclásio-ortopiroxênio-clinopiroxênio-granadaquartzo, associação essa relacionada à fácies granulito. Dentro dessa associação, orto e clinopiroxênio podem ser gerados em altas temperaturas e a granada associada é indicativa de média a alta pressão. É preciso destacar também a presença de hornblenda e biotita com cores amarronzadas (acastanhadas) que são comuns em rochas de alto grau metamórfico indicando a recristalização desses minerais em altas temperaturas no caso das paragêneses com ortopiroxênio e clinopiroxênio, já que hornblenda e biotita de cor marrom/avermelhada ocorrem em temperaturas acima de 700°C. De acordo com os resultados obtidos na geotermobarometria, nem sempre esses dois minerais estão em equilíbrio com a associação de alto grau e podem indicar condições mais brandas de metamorfismo, ressaltando, muitas vezes, características retrometamórficas observadas na análise petrográfica.

Charnockitos e álcali feldspato charnockitos mostram evidências de arrefecimento das temperaturas pela presença de feições em lâmina, que de certa forma estão associadas a processos metamórficos, como pertitização e mirmequitização, feições essas que ocorrem principalmente em rochas de composição mais ácida. As pertitas encontradas nas rochas charnockíticas da área são do tipo agulhas e podem indicar crescente resfriamento evidenciado pelos valores de temperatura mais baixa encontrada nesses litotipos. Já as mirmequitas são as feições de intercrescimento mais comuns encontradas nas rochas charnockíticas e ocorrem a partir da reação entre feldspatos, gerando quartzo vermicular, feição também indicativa de equilíbrio em temperaturas mais baixas que variam entre 430° C e 450° C.

O metamorfismo da área no geral é da fácies granulito, com aumento de temperatura e pressão para norte, na medida em que as rochas se aproximam da Zona de Cisalhamento Varginha, registrado nos enderbitos e granulitos tonalitos (máficos) principalmente. Indo em direção ao sul da área observa-se que a pressão torna-se um pouco mais baixa com valores de temperatura com certa constância.

A partir da análise do metamorfismo pelas paragêneses minerais exibidas pelas rochas e, dos cálculos geotermobarométricos é possível dizer que o pico metamórfico dessas rochas ocorreu a mais de 900°C de temperatura e em torno de 10 kbar (associação mineral granada + clinopiroxênio). O metamorfismo foi progressivo por certo tempo. O retrometamorfismo ficou registrado nas associações minerais presentes nas rochas da área, sugerindo uma evolução por descompressão isotérmica com posterior redução da temperatura e pressão. Valores de pressão e temperatura das amostras projetados no diagrama Pressão x Temperatura mostram que os pontos obtidos parecem formar um alinhamento em uma trajetória metamórfica com sentido horário partindo dos valores de pressão e temperatura mais elevados para os mais baixos, ou seja, do pico metamórfico para os valores indicativos de retrometamorfismo (Figura 8).

FIGURA 8. Diagrama P-T mostrando a distribuição geral das principais fácies metamórficas com os valores de T e P das amostras da área (Vernon & Clarke, 2008).

Os valores encontrados na literatura mostram regimes de alta P registrados, com valores máximos entre 13 e 14 kbar e médios entre 11 e 12 kbar, conforme Del Lama, 1998 e Del Lama et al., 2000. Para essas pressões as T atingidas são da ordem de 800 a 850°C em associações de fácies granulito na porção norte do Complexo Guaxupé. Campos Neto & Caby (1999) encontraram valores de P e T (12 kbar e 900°C, respectivamente) em granada granulitos próximo ao Guaxupé (Varginha). Dados apresentados por Melo (2009), para rochas da porção sul do Complexo Guaxupé, na região de São João da Boa Vista, registram pico metamórfico acima de 820°C e 11.5 kbar.

CONSIDERAÇÕES FINAIS

As ocorrências granulíticas encontradas na região de Arceburgo-Santa Cruz do Prata, sul do Complexo Guaxupé, apresentam características petrográficas comuns como a presença de orto e clinopiroxênios e anfibólios, em geral associados, além de intensa deformação. Litotipos mais ácidos exibem comumente a presença de plagioclásio e feldapto potássico (pertitas), ocorrendo em conjunto. A norte da área observa-se surgimento de granada nesses litotipos, nas proximidades da Zona de Cisalhamento Varginha.

Os cálculos geotermobarométricos indicam que os termos mais básicos (enderbitos e granulitos tonalitos (máficos) apresentam maiores valores de temperatura e pressão em relação aos termos mais ácidos (charnockitos e álcali charnockitos), sendo considerada a temperatura e pressão de pico metamórfico marcada nos litotipos básicos (900°C de T e 10 kbar de P).

Tendo em vista as associações minerais, bem como os valores de T e P, confirma-se que o metamorfismo na área é predominantemente na fácies granulito. Temperatura e pressão mais elevadas foram observadas nas proximidades da ZCV em litotipos básicos (enderbitos e granulitos (máficos) com presença da associação granada + clinopiroxênio encontrada nas suas proximidades. O retrometamorfismo, observado na área, está marcado em associações que incluem biotita e hornblenda, com presença de pertitas tipo agulha e mirmequitas, sugerindo assim uma evolução do conjunto através de descompressão isotérmica com redução da pressão, indicando uma trajetória metamórfica em sentido horário.

AGRADECIMENTOS

A realização desse estudo foi possível graças aos auxílios do CNPq/PIBIC e FAPESP (processo 06/58128-9) aos quais os autores expressam sua gratidão.

REFERÊNCIAS BIBLIOGRÁFICAS

- CAMPOS NETO, M.C. & CABY, R. Neoproterozoic high pressure metamorphism and tectonic constraint from the nappe system of the São Francisco Cráton, southeast Brazil. Precambrian Research, v. 97, p. 3-26, 1999.
- CAMPOS NETO, M.C.; FIGUEIREDO, M.C.H.; JANASI, V.A.; BASEI, M.A.S.; FRYER, B.J. The São José do Rio Pardo mangeritic-granitic suíte, southeastern Brazil. Geochimica Brasiliense, v. 2, n. 2, p. 185-199, 1988.
- CHOUDHURI, A. Paragenesis and stability of hornblende in charnockitic gneiss and mafic granulite-examples from Minas Gerais. Anais da Academia Brasileira de Ciências, v. 56, p. 155-161, 1984.
- CHOUDHURI, A. & CARVALHO, E.D.R. Varyng fluid regimes in Guaxupé Granulites, SW Minas Gerais. Cadernos IG/UNICAMP, v. 2, p. 109-119, 1991.
- DEL LAMA, E.A. Petrologia das rochas metamórficas de alto grau do complexo Campos Gerais e correlação com as do Complexo Varginha-Guaxupé – estudos termobarométricos. Rio Claro, 1993. 132 p. Dissertação (de Mestrado) – Instituto de Geociências e Ciências Exatas, UNESP.

- DEL LAMA, E.A. Terrenos granulíticos de Guaxupé: Evolução petrológica de um segmento da crosta inferior. Rio Claro, 1998. 188 p. Tese (Doutorado) – Instituto de Geociências e Ciências Exatas, UNESP.
- DEL LAMA, E.A.; OLIVEIRA, M.A.F. DE; ZANARDO, A. Geotermobarometria em rochas do Complexo Campos Gerais ao norte da Zona de Cisalhamento Varginha. Revista Brasileira de Geociências, v. 24, n. 4, p. 1-7, 1994.
- DEL LAMA, E.A.; OLIVEIRA, M.A.F. DE; ZANARDO, A. Considerações sobre o metamorfismo do Grupo Caconde na região de Guaxupé – MG. Revista Universidade de Guarulhos – Geociências, v. 4, n. 6, p. 50-57, 1999.
- DEL LAMA, E.A.; ZANARDO, A.; MORALES, N.; OLIVEIRA, MA.F. DE. Metamorfismo da porção sul do Complexo Campos Gerais. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 37, 1992, São Paulo. Boletim... São Paulo: SBG, 1992, v. 1, p. 407-408.
- DEL LAMA, E.A.; ZANARDO, A.; OLIVEIRA, M.A.F. DE. Escapolitas do extremo norte do complexo Varginha-Guaxupé. In: SIMPÓSIO DE GEOLOGIA DO SUDESTE,

4, 1995, Águas de São Pedro. **Boletim de Resumos...** São Paulo: SBG, 1995, p. 127.

- DEL LAMA, E.A.; ZANARDO, A.; OLIVEIRA, M.A.F. DE. Estimativas P-T nos granada granulitos de Guaxupé. In: SIMPÓSIO DE GEOLOGIA DO SUDESTE, 5, 1997, Penedo. Atas... Rio de Janeiro: SBG/UERJ, 1997, p. 136-137.
- DEL LAMA, E.A.; ZANARDO, A.; OLIVEIRA, M.A.F. DE; MORALES, N. Exhumation of high pressure granulite of Guaxupé Complex, Southeastern Brazil. Geological Journal, v. 35, p. 231-249, 2000.
- FONSECA, M.J.G.; SILVA, Z.C.G.; CAMPOS, D. DE A.; TOSATTO, P. Carta geológica do Brasil ao Milonésimo – Folhas Rio de Janeiro, Vitória e Iguape. Texto Explicativo. Brasília: MME/DNPM, 240 p., 1979.
- HASUI, Y.; RODRIGUES, E.P.; OLIVEIRA, M.C.B.; ENS, H.J.; MORALES, N.; ZANARDO, A.; QUADE, H.N.; KÜLLER, M.L.; FRASCÁ, M.H.B.O. Deformação por cisalhamento dúctil: modelo de transformação de rochas précambrianas antigas do leste de São Paulo. Fase I. São Paulo: IPT, 3 v. (Relatório IPT nº 25908), 1988.
- JANASI, V.A. Rochas sieníticas e mangerítico-charnockíticas neoproterozóicas da região entre Caldas e Campestre, MG: Aspectos petrológicos. São Paulo, 198 p. 1992. Tese (Doutorado) – Instituto de Geociências, Universidade de São Paulo.
- JANASI, V.A. Elemental and Sr-Nd isotope geochemistry of two Neoproterozoic mangerite suites in SE Brazil: implications for the origin of the mangerite-charnockite-granite series. Precambrian Research, v. 119, p. 301-327, 2002.
- LEAKE, B.E.; WOOLEY, A.R.; ARPS, C.E.S.; BIRCH, W.D.; GILBERT, M.C.; GRICE, J.D.; HAWTHORNE, F.C.; KATO, A.; KISCH, H.J.; KRIVOVICHEV, V.G.; LINTHOUT, K.; LAIRD, J.; MANDARINO, J.A.; MARESCH, W.V.; NICKEL, E.H.; ROCK, N.M.S.; SCHUMACHER, J.C.; SMITH, D.C.; STEPHENSON, N.C.N.; UNGARETTI, L.; WHITTAKER, E.J.W.; YOZHI, G. Nomenclature of amphiboles: Report of Subcommittee on Amphiboles of the International Mineralogical Association, Commission on New Minerals and Mineral Name. Canadian Mineralogist, v. 35, p. 219-246, 1997.
- MELO, R.P. Evolução metamórfica (P-T-t) de granulitos e migmatitos do complexo Guaxupé na região de São João da Boa Vista, SP. Rio Claro, 2009. 114 p. Dissertação (Mestrado) – Instituto de Geociências e Ciências Exatas, UNESP.
- MORALES, N. Evolução lito-estrutural das rochas précambrianas da região de São João da Boa Vista. São Paulo, 1988. 157 p. Dissertação (Mestrado) – Instituto de Geociências, Universidade de São Paulo.
- NOCKOLDS, S.R. The relation between chemical composition and paragenesis in the biotite of igneous rocks. American Journal Science, v. 245, p. 401-420, 1974.
- OLIVEIRA, M.A.F. DE. Petrologia das rochas metamórficas da região de São José do Rio Pardo, SP. Revista Brasileira de Geociências, v. 3, n. 4, p. 257-278, 1973.
- OLIVEIRA, M.A.F. DE & ALVES, F.R. Wollastonita em associações cálcicas de fácies granulito, Caconde, SP. Revista Brasileira de Geociências, v. 6, n. 1, p. 43-52, 1976.
- OLIVEIRA, M.A.F. DE & HYPÓLITO, R. Ortopiroxênios e clinopiroxênios coexistentes nos granulitos de São José do Rio Pardo, SP. Revista Brasileira de Geociências, v. 8, p. 249-261, 1978.
- OLIVEIRA, M.A.F. DE & RUBERTI, E. Granada-cordierita gnaisses do complexo migmatítico de São José do Rio Pardo -Caconde, SP. Recife: Boletim de Mineralogia, v. 6, p. 15-29, 1979.

- OLIVEIRA, M.A.F. DE; MORALES, N.; ZANARDO, A.; CARVALHO, S.G. DE. Mapeamento Geológico em 1:25.000 do quadrante NE da folha de Caconde (SF-23-V-C-VI-2-NO). UNESP - PRÓ-MINÉRIO, Projeto Caconde, 1989.
- PASSCHIER, C.W., BRINK, C.E., BONS, P.D.; SOKOUTIS, D. Delta-objects as a guage for stress sensitivity of strain rate in mylonites. Earth and Planetary Science Letters, v. 120, p. 239-245, 1993.
- POWELL, R. & HOLLAND, T.J.B. An internally consistent dataset with uncertainties and correlations, Applications to geobarometry, worked examples and a computer program. Journal of Metamorphic Geology, v. 6, p. 173-204, 1988.
- SANTOS, A.M.M.M. DOS. Caracterização Petrográfica dos Granulitos Básicos da Folha de Guaranésia (MG).
 São Paulo, 1987. 106 p. Dissertação (Mestrado em Mineralogia e Petrologia) – Instituto de Geociências, Universidade de São Paulo.
- 29. RICHARD L.R. **Minpet Software**. Mineralogical and Petrological data processing system. Versão 2.02, 1995.
- SOTO, J.I, & SOTO, V.M. Ptmafic: software package for thermometry, barometry, and activity calculations in mafic rocks using an IBM-compatible computer. Computers & Geosciences, v. 21, n. 5, p. 619-652, 1995.
- VERNON, R.H. & CLARKE, G.L. Principles of Metamorphic Petrology. Nova York: Cambridge University Press, 446 p., 2008.
- 32. ZANARDO, A. Análise petrográfica, estratigráfica e microestrutural da região de Guaxupé-Passos-Delfinópolis (MG). Rio Claro, 288 p. 1992. Tese (Doutorado) – Instituto de Geociências e Ciências Exatas, UNESP.
- 33. ZANARDO, A. Pesquisa geológica e de matérias-primas cerâmicas do centro nordeste do Estado de São Paulo e vizinhanças. Sistematização crítica da produção técnicocientífica. Rio Claro, 2003. 283 p. Tese (Livre Docência) – Instituto de Geociências e Ciências Exatas, UNESP.
- ZANARDO, A. & OLIVEIRA, M.A.F. DE. Aspectos microestruturais e texturas dos metassedimentos da Formação Eleutério. Geociências, Número Especial, p. 317-330, 1990.
- 35. ZANARDO, A.; SZABÓ, G.A.J.; CÂNDIA, M.A.F.; OLIVEIRA, M.A.F. DE. Os corpos metaultramáficos da Serra das Águas Claras, Município de Itapira. In: CONGRESSO BRASILEIRO DE GEOLOGIA, 37, 1992, São Paulo. Boletim de Resumos Expandidos... São Paulo: SBG, 1992, v. 1, p. 460.
- WINCHESTER, J.A. & FLOYD, P.A. Geochemical discrimination of different magma series and their differentiation products using immobile elements. Chemical Geology, v. 20, p. 325-343, 1977.

Manuscrito Recebido em: 18 de agosto de 2011 Revisado e Aceito em: 4 de abril de 2012