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Crossover between macroscopic and mesoscopic regimes of vortex interactions
in type-II superconductors
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In the present work we report the existence of a crossover between the macroscopic and mesoscopic regimes
of vortex interactions in type-II superconductors. Our findings rely on a systematic procedure to determine this
crossover, which is based on the influence of the surface on the vortex structure of small superconductors. An
adjacent result that we have found is that near this regime transformation, the vortex lattice develops a progressive
change of symmetry, from square to hexagonal, which is intimately related to the meso-to-macro crossover. Our
numerical simulations have been done for a long superconducting cylinder of square cross section for a wide
range of length scales and temperatures.
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I. INTRODUCTION

In condensed matter physics, samples are usually consid-
ered to be large enough that the influence of finite dimensions
on their properties is negligible; therefore, bulk behavior is
assumed. This is not the case, however, in many situations
of interest. Examples range from quantum size effects in
metallic nanoparticles1,2 and microfluidics,3 to cluster size
effects.4 Hallmark physical ingredients in these systems are
large surface-to-volume ratio and one or more dimensions of
the sample approaching a relevant fundamental scale.

Mesoscopic superconductors also constitute a class of mate-
rials where size effects can play a relevant role to determine the
vortex arrangement throughout the specimen.5–16 In fact, even
when only a few quanta of magnetic flux are nucleated into
a mesoscopic sample, vortex interactions with other vortices
and with the screening currents circulating around the edges
give rise to a variety of configurations, such as giant vortices,
multivortex states, or even hybrid states of both types. These
configurations are strongly influenced by both the geometry
and size of the sample. The occurrence of giant vortices in
coherence length-sized samples have been predicted by several
theoretical calculations,17–22 although in some exotic confined
geometries, such as a circular sector,23 they were not observed.

Several authors have tried to detect this state experimen-
tally. Kanda et al.9–11 used multiple small tunnel junction
measurements. They found that, by putting several small tunnel
junctions symmetrically distributed on the disk edge, for some
vorticities, they could not find any significant difference in
the voltages at the contacts. This is taken as an indication
of the occurrence of a giant vortex state. Some other authors
have attempted to observe giant vortices by direct imaging
technique. By using SQUID microscopy, in Refs. 14–16 they
could not find giant vortex states in mesoscopic superconduct-
ing square and triangle samples. However, on using the Bitter
pattern decoration technique in a niobium superconducting
disk, Grigorieva et al.13 observed clusters of multivortex states
coexisting with giant vortices. In another work, Cren et al.12

studied the vortex states in ultrathin single nanocrystals of Pb
with random geometries via scanning tunneling microscopy.
The images were taken under several values of applied field
and at very low temperature. They showed that under certain
conditions of magnetic field and sample size, a giant vortex is
formed and in the vicinity of the core center the order parameter
evolves as |ψ | ∝ rL where L is the vorticity.

In the present work we show strong evidence that there
exists a region of crossover between these vortex states in
mesoscopic superconductors and the Abrikosov hexagonal
vortex lattice in macroscopic superconductors. We have done
so by studying the influence of the surface on the vortex
configuration as a function of the sample size and tempera-
ture. Based on the physics governing the crossover between
the mesoscopic and macroscopic behavior, we developed a
criterion to determine a length scale that delineates the frontier
between those two regimes. One could speculate that this
crossover would occur for sample sizes of the order of the
penetration depth λ(T ). As our results will show later on, the
length scale that delimits the mesoscopic-macroscopic frontier
differs quite significantly from what one might suspect.

The problem treated here was investigated within the scope
of the Ginzburg-Landau theory. It is not uncommon to find
papers arguing whether the Ginzburg-Landau theory could
be applicable or not to the study of superconductivity at a
mesoscopic level. This relevant issue has been discussed in
detail in Refs. 17,24, and 25. In the latter, the authors have
made a comparative analysis between the phenomenological
Ginzburg-Landau theory and the microscopic Bogolyubov-De
Gennes theory, for a mesoscopic superconducting square. They
conclude that both theories produce very similar results.

The outline of this paper is as follows. First we provide
a brief overview of the theoretical model used to obtain
the equilibrium configurations of the superconducting state.
Then, we describe the numerical method employed to solve
the time-dependent Ginzbug-Landau (TDGL) equations for a
superconductor in the presence of an external applied magnetic
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field. The remainder of the paper is devoted to presentation
and discussion of the results that emerge from our numerical
simulations.

II. THEORETICAL FORMALISM

The superconducting state is usually described by the
complex order parameter ψ . The quantity |ψ |2 represents the
electronic density of Cooper pairs. In the regions where |ψ |2
is small, superconductivity is suppressed. At the center of
the vortex |ψ |2 = 0, whereas the local magnetic field h is
maximum. The order parameter and the local magnetic field
can be determined by the Ginzburg-Landau equations which,
in their time-dependent formalism, are expressed by26

(
∂

∂t
+ i�

)
ψ = −(−i∇ − A)2ψ + (1 − T )ψ(1 − |ψ |2) ,

(1)

β

(
∂A
∂t

+ ∇�

)
= Js − κ2∇ × h ,

where Js = (1 − T )�[ψ∗(−i∇ − A)ψ] is the supercurrent
density; ψ is the order parameter, A is the vector potential,
related to the local magnetic field as h = ∇ × A, and �

is the scalar potential. Here, the distances are measured in
units of the coherence length at zero temperature ξ (0); the
magnetic field is in units of the zero temperature upper critical
field Hc2(0); the temperature T is in units of the critical
temperature Tc; the time is in units of the characteristic time
t0 = πh̄/8kBTc; κ is the Ginzburg-Landau parameter; β is
the relaxation time of A, related to the conductivity. We
have adopted a linear dependence with respect to temperature
for the phenomenological parameters in the Ginzburg-Landau
theory [i.e., Hc2(T ) = Hc2(0)(1 − T )]. For small size super-
conductors this is also valid for temperatures well below Tc,
despite the microscopic derivation of the TDGL equations
being valid only for T very close to Tc.27 Notice that the TDGL
equations and their discretized form21,28 are gauge invariant
under the transformations ψ ′ = ψeiχ , A′ = A + ∇χ , �′ =
� − ∂χ/∂t . We chose the zero-scalar potential gauge, that is,
� = 0 at all times and positions.

In order to solve the TDGL equations, we have used the
link variables method as delineated in Ref. 28. There are
several extensions of this method. For instance, in Ref. 29
it has been adapted for very thin superconductors and in
Ref. 23 for circular geometries. The simulations were carried
out for samples with square geometry submitted to external
magnetic fields applied along the cylinder axis, which is
considered infinite. In principle, the TDGL equations can
provide all transient states for a fixed external applied magnetic
field. However, in this work we are only interested in the
stationary states. We solved these equations starting from zero
applied field, which was then increased adiabatically in small
steps, �H = 10−4, until superconductivity was completely
destroyed. At each step we let the system attain its equilibrium
configuration and use such state as the initial condition for the
next applied field.

III. RESULTS AND DISCUSSION

Let us now turn to the presentation of the results that arise
from the numerical solution of equations (1). Our simulations
have been carried out by using β = 1 and κ = 5 for a large
number of superconducting square samples of side L, given
in units of ξ (0). Since we are interested only in the stationary
states, this choice of β is adequate for the purposes. The lateral
dimensions of the sample were varied in steps of �L = 1 [also
expressed in units of ξ (0)] and the temperature of simulations
ranged from T = 0 to T = 0.9375 (in units of Tc).

The crucial issue here is to define a robust criterion
to determine the characteristic size regulating the threshold
among mesoscopic and macroscopic behavior. The following
discussion depicts the reasoning that led us to stipulate this
norm. It is well known that vortices nucleate at the central
portions of the surface (i.e., not at the corners). Their complete
development is preceded by a progressive deformation of
the screening current mainstream which, otherwise, while the
sample is in the Meissner phase, is parallel to the faces. As
the applied field H is raised, this deformation proliferates into
the sample until a vortex is completed. At this point, what
was just a twist at the inception of the penetration process,
becomes a curled screening current, enclosing the ingoing
vortex. Thus, the pursuit for the threshold of the genuine
mesoscopic behavior is equivalent to the search for the range
of the interaction among vortices, which are just nucleating
at the surfaces. Since this interaction is mediated by the
superconducting regions, it should be detectable through all
relevant superconducting properties (e.g., the order parameter,
the magnitude and shape of the screening currents, and even
the sample magnetization M).

Figure 1 illustrates this correlation for two samples of dif-
ferent sizes. As will become clear throughout this discussion,
the largest among them (L = 76) has a macroscopic behavior,
while the other (L = 26) exhibits mesoscopic superconductiv-
ity. The magnetization versus field curves shown in Fig. 1(a) for
both samples exhibit clear jumps at the field Hj , corresponding
to the first entrance of vortices into the sample. Noticeably,
M(H ) for sample L = 26 develops a local minimum at Hm,
nonexistent for sample L = 76. This minimum reflects a delay
(in field) of vortex invasion, due to the repulsive interaction
between the entities, which are nucleating at the borders [see
Fig. 1(b), upper L = 26 panel]. Differently from the case
for the larger sample [Fig. 1(b), upper L = 76 panel], the
excessive proximity of the surfaces in sample L = 26 causes a
strong repulsion between each vortex and its counterparts, even
while embryonic at the other surfaces, which causes a non-
negligible degradation on the screening capability, due to the
extra repulsive barrier. This degradation is clearly manifested
on M(H ) curves, whose deviation from the Meissner response
for a bulk sample (−4πM = H ) increases with decreasing
L. The upper L = 26 and L = 76 panels in Fig. 1(b) also
capture the situation, delineating the order parameter at the
field Hj . The color code is such that dark red regions are fully
screened, while dark blue tones represent strongly suppressed
superconductivity. While four vortices30 are being generated
at the surfaces of both samples, the order parameter at the very
center of the macroscopic sample (L = 76) is preserved, even
though vortices are just about to enter; contrarily, the tones
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FIG. 1. (Color online) (a) Magnetization versus field curves for
samples L = 26 and L = 76 at T = 0.875. As L increases, Hj

and Hm (seen for L = 26) tend to approach each other and the
minimum on the magnetization curve, coincident with Hj for L =
76, disappears for L > 76. on the magnetization curve disappears.
(b) Upper and lower L = 26 panels show the order parameter for this
sample, immediately before and after the first entrance of vortices
(Hj and Hj + 10−4, respectively). The same applies for the upper
and lower L = 76 panels. Noticeably, as discussed in the text, only
two vortices appear for L = 26. Notice also that the sample sizes are
represented as equal, although their side ratio is 76/26 ≈ 3.

at the central portion of the mesoscopic sample (L = 26)
are somewhat lighter, indicating that screening currents are
already circulating in that region, and the nucleating vortices
do interact with each other. The lower L = 26 and L = 76
panels in Fig. 1(b) depict the situation immediately after vortex
entrance (i.e., at H = Hj + 10−4) further emphasizing the
repulsion among the entities that are being formed. While
for the larger sample, all nucleating vortices manage to enter
at Hj , the mesoscopic sample is not able to host all four
at once and, as they would not fit along, only two vortices
enter.

Even though one can visualize such differences and,
accordingly, infer the existence of a limiting frontier among
both regimes, it is not an easy task to assign a specific value of L

for the threshold size. As will be further discussed in this paper,
the meso-to-macroscopic frontier separates a region of pure
macroscopic behavior from another where mesoscopic and
macroscopic characteristics coexist. Based on our simulations
for a large number of samples with different sizes, we came

FIG. 2. (Color online) Size dependence of Hj and Hm, indicating
that both superimpose (within the precision bar of the simulations)
above the threshold value Lc. The zoomed area highlights the
saturation point.

to the conclusion that the occurrence of local minima on the
magnetization curves is due solely to the additional repulsion
among vortices, which become important when the sample
dimensions are sufficiently small, a feature that we take as the
guiding line to quantify the meso-macro threshold criterion for
such a rather subtle crossover. Thus, for a fixed temperature,
we take the critical size Lc as that for which Hm = Hj . This
means that, for sizes greater than Lc, the sample behaves
as a macroscopic superconductor, in the sense that vortices
nucleating at opposite sides do not interact before entering;
below Lc, the mesoscopic regime dominates, as a consequence
of the size of the sample being smaller than the interaction
range. Figure 2 shows the size dependence of Hm and Hj for
T = 0.875. The zoomed up box emphasizes the difference
among both quantities; the vertical bars correspond to the
width of the field step in our simulations, �H = 10−4. Taking
the critical size as that above which the vertical bars start to
overlap, we determined Lc = 68 for this temperature.

We have also investigated the surface contribution to the
magnetic free energy of the system in the whole range of values
of L studied here. At the jump, this energy term is proportional
to the difference among two field integrals, between zero and
Hj , of the magnetization: the bulk (i.e., surface-free) case,
exhibiting a perfect Meissner response (−4πM = H ), and
the finite sample, for which the magnetization is affected by
repulsion among nucleating vortices. To illustrate this point,
the energy of the state of the sample immediately before the
first penetration is shown in Fig. 3, as a function of the sample
size. As can be seen, such energy decreases monotonically
with L and its derivative saturates, within a certain precision
indicated by the error bars, at a length scale that is quite close to
Lc(T ) found by the criterion described previously. Our search
for other evidences of this regime transformation included
the size dependence of the initial slope of M(H ), which also
exhibits a smooth variation with respect to L.

The following remarkable characteristics of this meso-to-
macroscopic crossover were observed: (i) for L > Lc, at any
temperature, the symmetry of the vortex lattice is hexagonal, as
shown in the upper L = 96 panel of Fig. 4, which also indicates
that it is destroyed upon increase of the field, from H = 0.126
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FIG. 3. (Color online) Black circles: energy as a function of L;
blue circles: derivative of the energy with respect to L. The energy
was calculated as

∫ Hj

0 B dH , where B is the induction, and Hj is the
field right before the first entrance of vortices; in this calculation, only
the magnetic field energy inside the superconductor is accounted for.
The temperature is T = 0.875.

to H = 0.127, and that superconductivity remains only at the
borders. Notice that there is a quite close coincidence between
this field and Hc2(T = 0.875) = 1 − 0.875 = 0.125, which
represents the applied field sufficient to destroy the vortex
lattice for a bulk superconductor. We will comment further
about it later on. (ii) For L � Lc the vortex lattice most
predominantly has square symmetry; depending on T and L,
one can also have giant vortex states coexisting with single
vortices.20,21 Such behavior can be seen in the lower L = 20
panel of Fig. 4; for H = 0.110, two vortices penetrate the
sample and a giant vortex with two flux quanta is formed at the
center. Nonetheless, for H = 0.126, two more vortices enter
into the sample and the giant vortex splits in four separate
entities, following the fourfold symmetry of the problem.
(iii) The most interesting characteristic of the meso-to-macro
occurs for L � Lc; for high external applied fields, that is,
close to the Abrikosov upper critical field Hc2(T ), when the
density of vortices is large, the lattice develops a progressive
crossover from hexagonal to square symmetry. We illustrate
this scenario in the L = 64 panels of Fig. 4 for T = 0.875. As
shown in this figure, for applied fields still low but sufficient to
form a vortex lattice (H = 0.110) the symmetry is hexagonal.
As we increase the field, the symmetry is somewhat mixed,
with hexagons at the central portions of the sample and
squares closer to the edges, as illustrated for H = 0.113 and
H = 0.123. For even higher fields (H = 0.127), the lattice is
eventually destroyed and surface superconductivity survives
only at the surface.

We have also studied the system for lower temperatures,
as exemplified in Fig. 5 for T = 0.3125, at which Lc =
38. To describe the vortex configurations around Lc, two
samples were chosen, one right below (L = 36) and the other
right above (L = 40) the crossover value. For H = 0.600,
vortices are displayed in hexagonal lattices for both samples.
However, at H = 0.620 and H = 0.694, triangular and square
vortex lattices coexist for sample L = 36, whereas for these
same values of the applied field, the vortex lattice remains
triangular for sample L = 40. Eventually, at sufficiently high
applied fields, the vortex lattice is entirely destroyed on
both samples; for T = 0.3125 the suppression of the vortex

FIG. 4. (Color online) Vortex lattice for samples L = 96, L = 64,

and L = 20 for several values of the external field at temperature
T = 0.8750. The upper panel shows that a hexagonal vortex lattice is
maintained until the suppression of superconductivity in the center of
the sample L = 96. In the middle panel, the crossover of the vortex
lattice, that takes place below the threshold line, is shown for sample
L = 64. The lower panel shows that, far below the threshold line Lc

(in this case L = 20), the vortices follow the symmetry of the sample
due to size effects.

lattice occurs at H = 0.695. Again, notice that this field, as
already seen for T = 0.875, is very close to the upper critical
field Hc2(T = 0.3125) = 1 − 0.3125 = 0.6875. We see thus
that, for different temperatures, the value of the applied field
sufficient to destroy the lattice, but not superconductivity at the
surface, is quite close to the Abrikosov field Hc2(T ) for bulk
samples. We take this as a robust evidence of the accuracy of
our simulations. At T = 0.875, only surface superconductivity
remains on sample L = 64 for H � 0.127 (Fig. 4); the same
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FIG. 5. (Color online) Vortex lattice for samples L = 36 and
L = 40 for several values of the external field, at T = 0.3125. Notice
that, for the macro sample (L = 40), vortices always form a hexagonal
lattice. A crossover between hexagonal and square lattices takes place
for the mesoscopic sample (L = 36). Right below Lc, the system
starts developing a hexagonal lattice for low densities of vortices,
but still carries vestiges of the mesoscopic regime as this density
increases, developing a mixture of square and hexagonal vortex
lattice.

at T = 0.3125 (Fig. 5) feature occurs for samples L = 36 and
L = 40 for H � 0.695.

As stressed before, the vortex lattice always displays
hexagonal symmetry for sample dimensions above Lc. A
quantitative evidence, that the picture that comes out from
the simulations indeed corresponds to a triangular lattice, can
be obtained from the structure factor of the system. Figure 6
shows contour plots of the order parameter [Figs. 6(a) and 6(c)]
and the corresponding structure factors of the vortex lattice for
sample L = 128 at H = 0.126 [Fig. 6(b)] and H = 0.127
[Fig. 6(d)]. Considering the peak values of the structure
factor in Fig. 6(b), we obtained the vector basis oriented

FIG. 6. (Color online) Topology of the superconducting density
of the Cooper pairs |ψ |2, and its corresponding structure factors,
for sample L = 128. Top: H = 0.126, bottom: H = 0.127. Notice
that the vortex lattice disappears abruptly at H = 0.127 [panels (c)
and (d)], close to the Abrikosov bulk upper critical field Hc2(T =
0.875) = 0.125. The structure factor was calculated as the absolute
value of the fast Fourier transform of |ψ |.

as approximately an equilateral triangle, as expected for an
Abrikosov type-II superconductor. Notice that just a small
increase in the applied field destroys the vortex lattice and the
peaks in the structure factor disappear [Figs. 6(c) and 6(d)]. It
is therefore clear that, for L = 128, the system is already in the
macroscopic regime, exhibiting a genuine Abrikosov lattice,
which disappears along with volume superconductivity.

In order to construct an L-T phase diagram, we repeated, for
several temperatures, the procedure employed to determine Lc ,
as discussed above and exemplified in Figs. 1 and 2. The result-
ing phase diagram is shown in Fig. 7. Such diagram separates
the region where the superconductor behaves predominantly as
a macroscopic sample from that where a mesoscopic behavior
takes place. We have used the expression Lc(T ) = L0(1 − T )n

to fit the data, considering L0 and n as free adjustable
parameters. The value of L0 corresponds to the length scale
for which the mesoscopic-macroscopic transformation occurs
at zero temperature; n is the critical exponent. The best fit,
shown in Fig. 7 along with the data, gives L0 = 36.5 and
n = −0.292 ≈ −2/7. Thus, it is clear that the length scale for
the crossover between both regimes is much larger than the
London penetration depth λ(T ) = κ/

√
1 − T . A comparison

between Lc(T ) and λ(T ) can be seen in Fig. 7. In real units, if
we take ξ (0) = 10 nm, which is a typical size of low Tc type-II
superconductors, then the value of Lc(T ) would range from
365 to 1150 nm as T varies from zero to 0.9375. This is of
the same order of magnitude where size effects disappear in
nanoparticle systems.31

The threshold line changes very little for different materials,
as one can infer from the two curves shown in Fig. 7, for
κ = 5 and κ = ∞. Not only the values for the infinity κ limit
of the TDGL equations differ only a few percent from those
obtained for κ = 5, but also the overall tendency of the two
curves is similar, to an extent that the fitting exponent for both
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FIG. 7. (Color online) The Lc-T phase diagram; above the critical
line the superconductor behaves as a macroscopic sample; below it, a
mesoscopic behavior takes place. The insets indicate that for L > Lc

the lattice is always hexagonal, whereas for L < Lc the system may
develop other types of symmetries (see text). λ(T ) for κ = 5 is also
shown for comparison.

is virtually the same (∼−2/7), as evidenced in Fig. 7. It is not
surprising that there is no significant differences between the
characteristics of the Lc(T ) curves, since the vortex states
are indistinguishable for κ � 5, as it was demonstrated in
Ref. 32. For low values of κ the Lc(T ) curve presents the
same dependence with T , however, if such curve is compared
with that one for κ = 5, significant changes can be observed
in the value of the n exponent, which is approximately −5/14,
and the value of L0.

Recently, Connolly et al.33 have made a similar study in or-
der to find the meso-to-macro crossover for a superconducting
disk. They used a criterion based in the competition between
Abrikosov vortex lattice and shell-like ordering. As a result,
they obtained that the crossover occurs in the diameter range of
[20λ(T ),40λ(T )] [in our units, (20κ/

√
1 − T ,40κ/

√
1 − T )],

which differs from our results for large κ .
As a final remark, we can surely say that our mapping of the

frontier between the mesoscopic and macroscopic length scale
could be an important guide for the fabrication of samples with
desirable dimensions for which one can observe mesoscopic
effects in superconductivity.

IV. CONCLUSION

In short, based on the physical evidence that, in the
mesoscopic regime, vortices nucleating at the sample surface
interact with each other even at the very early stages of
their inception, we have developed a systematic procedure
to determine the crossover between mesoscopic and macro-
scopic regimes of superconductivity in small samples. The
progressive change of symmetry of the vortex lattice, from
square to hexagonal, is intimately related to the meso-to-
macro crossover and further emphasizes the robustness of our
criterion.
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