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Resumo

Usamos métodos de aprendizagem supervisionada para estudar a decodificação de

erros em códigos tóricos de diferentes tamanhos. Estudamos múltiplos modelos de erro,

e obtemos figuras da eficácia de decodificação como uma função da taxa de erro de um

único qubit. Também comentamos como o tamanho das redes neurais decodificadoras e

seu tempo de treinamento aumentam com o tamanho do código tórico.

Palavras Chaves: Código Tórico; Correção de Erros Quãnticos; Aprendizado de

Máquina

Áreas do conhecimento: Informação Quãntica ; Aprendizado de Máquina
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Abstract

We use supervised learning methods to study the error decoding in toric codes of

different sizes. We study multiple error models, and obtain figures of the decoding efficacy

as a function of the single qubit error rate. We also comment on how the size of the

decoding neural networks and their training time scales with the size of the toric code.

Keywords: Toric Code; Quantum Error Correction ; Machine Learning

Area of knowledge: Quantum Information; Machine Learning
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Chapter 1

Introduction

The machine learning genie is out of the bottle1. These methods are useful for a diverse

range of tasks: whether it’s beating the top Go player in the world or automatically

tagging gigabytes of videos every hour [1, 2], machine learning algorithms are fit for

the job. Of course, many recent developments have conspired to the proliferation of

machine learning in our daily life. Several new algorithmic techniques – many of them

due to Geoffrey Hinton2 – and technological developments have happened on par. More

importantly, the sheer amount of data available nowadays have allowed for the training

of machine learning models of scales never seen before. Of course, unless you are working

for Google or Facebook, you might not have access to such data caches.

As physicists, we try to use every tool available to us to solve problems. And machine

learning seems like the most beautiful and perfect hammer – at least, as long as you

have sufficient data to train your modes! Well, data is the name of the game when

you’re doing measurements or simulations in many-body physics, and since Melko’s 2016

paper [5], a lot of condensed matter and quantum physicists have jumped on the machine

learning bandwagon. These last two years we’ve seen everything from learning to predict

phase boundaries, to using neural network ansätze states, to turning full circle and using

machine learning methods to make faster algorithms for Monte Carlo sampling [6, 7, 8].

Physicists have also studied machine learning techniques for decoding surface codes, a

family of quantum error correction codes. These have been studied with both unsupervised

[9] and supervised learning [10, 11, 12]. Quantum error correction codes are becoming

1As remarked by Roger Melko.
2Deep convolutional neural networks and restricted Boltzmann machines, just to name two, would be

impractical without his contributions [3, 4].
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more relevant as some near-term quantum devices are in development from many different

companies. Moreover, these neural network decoders have a good flexibility to model

many different kinds of errors – including correlated errors. This might might turn out

crucial when the complete characterization of the error rate of the physical qubits is not

feasible. In the present work, we expand on some of the results of [11] and [10] , utilizing

architectures and methods inspired by [12].
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Chapter 2

Brief review of supervised learning

In this essay we will focus on supervised learning, a subset of machine learning. The

content of this section is mainly based on [13]. In supervised learning, we give the machine

some training data, or a training set D = {{xi,yi}}|D|i=1 . Each pair {xi,yi} consists of

an input configuration, xi ∈ X , and its corresponding label, yi ∈ Y . For example, each

xi could be (the RGB pixels of) a picture of a pet, and the yi could be the species

of the pet: yi ∈ {cat, dog, pangolin}. The training set is used to train the supervised

learning algorithm to obtain good estimates of the labels, given the input data. That is, a

supervised learning algorithm tries to obtain a function f that maps input configurations

xi into estimates of their labels, ŷi:

f : X → Y , such that f(xi) = ŷi ≈ yi for all i = 1, ..., |D|, (2.1)

This equation holds for both regression and classification problems, but it is only

schematic. We need to do two things to properly define this learning problem. First, we’ll

give some structure to our label estimating function f . We will parametrize f by a set of

parameters θ:

f(xi; θ) = ŷi. (2.2)

The learning problem will then become finding the proper parameters θ that makes

this labeling function f work the best. Now, we will also need to define some metric-like

function acting on the label space, D, that satisfies:

D : Y × Y → R,

3



D(y,y′) ≥ 0 for all y,y′ ∈ Y , and

D(y,y′) = 0 if and only if y = y′.

Note that we don’t demand D to be symmetric nor to obey the triangle inequality.

Our metric-like function D allows us to define a cost function, C:

C (θ;D) =

|D|∑
i=1

D (ŷi,yi) . (2.3)

An example of such a cost function is the cross entropy, which is used in classification

problems.

With all these definitions in mind, the “ ≈ ” of Equation (2.1) refers to finding a set

of parameters θ that minimize this cost function. When we do this minimization, we say

we train the parameters θ :

θtrained = arg min
θ

C (θ;D) . (2.4)

However, this is not the whole story, as we’ve only seen what we do with the training

set, D. We also need a testing set, Dtest, to verify that we are not overfitting the data in

the training set. The theory we’ve described works for both discrete labels (classification

problems: is this image a cat or a dog?) or continuous labels (regression problems: what

is the cost of this house?). For classification problems, we can readily define the training

and testing accuracy of our classifying function f :

Accuracy =
# of correct classifications

# of total classifications
. (2.5)

No matter how good the training accuracy is, we only really care about high testing

accurazy, as that’s the only way of knowing that a network has really “learned” the actual

features of the data instead of just what each label of the training set is. The process of

avoiding this overfitting – regularization – can be done in multiple ways. A prime example

is adding a term to the cost function proportional to the sum of squares of some of the

parameters of the network:

C(θ,D) =

|D|∑
i=1

D (ŷi,yi) + α
∑
j

θ2
j .
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The art and craft of supervised machine learning is to find f , C and a method to

train the parameters θ such that one can learn to label the data points while avoiding

overfitting. We will see in the next section one of the most important parametrizations

of f : the feed-forward neural network.

2.1 (Almost) the simplest neural networks:feed-forward

neural networks for classification problems

To understand neural networks, we need to define their building blocks: layers, neurons,

weights, biases and activation functions.

First, we will start with the very basic units of our neural networks, the neurons.

Neurons map vectors x ∈ Rn, to real numbers:

a(x; w, b, g) = g
(
wTx + b

)
, (2.6)

where w ∈ Rn and b are called the weights and biases of a neuron, respectively, and

are the equivalent of the parameters θ that we mentioned in the previous section .g, the

activation function, is some nonlinear real-valued function1. This single neuron is actually

good enough of a classifier! If we choose g(z) = Θ(z), the Heaviside step function, this

single neuron can actually work already as a fully-fledged classifying function f(x, θ) to

classify between two different labels. Such classifier is called a perceptron. Nowadays,

people would use other activation functions, such as tanh(z), the sigmoid function, given

by

g(z) =
1

1 + exp(z)
,

or the rectified linear unit:

g(z) = ReLU(z) = max (0, z) .

These activation functions differ from Θ(z) in that they have non-vanishing derivatives

(almost) everywhere, and allow for easier learning through gradient descent2. At the

output layer of the network, it’s common to use a softmax nonlinearity, defined as:

1We need nonlinearities because we will later on use outputs of previous neurons as inputs of new

neurons. Without nonlinearities, all of this would just be a linear transformation of the input data.
2Gradient descent is a minimization algorithm for the cost function. We’ll see more on this topic in

Section 2.3.
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g(zi) =
exp(zi)∑
i exp(zi)

.

This softmax nonlinearity is used in classification problems, to have an output normalized

to 1.

A single neuron is good enough to be a classifier by itself, so surely multiple neurons

can do better!3 A neural network is a classifier composed of many of these neurons

stacked together. Among such neural networks, we’ll describe the ones in which the flow

of information is in one way only, and in which the neurons themselves are neatly stacked

in layers.

We will consider neural networks made out of L layers of neurons. The l−th layer

will have nl neurons, which we’ll denote
{
a

(l)
i

}nl

i=1
, or more compactly in vector notation

as a(l). Each neuron has a properly-sized vector of weights and a bias. Thus, the layer of

neurons a(l) has a weight matrix W(l) and a vector bias b(l). If we furthermore define a

g(l)(z) that acts component-wise on vectors4,

g(l) : Rn → Rn, where

g(l) ({x1, x2, ..., xn}) =
{
g(l)(x1), g(l)(x2), ..., g(l)(xn)

}
,

we can define the output of each layer of neurons as follows:

a(l) = g(l)
(

W(l)a(l−1) + b(l)
)
, for l = 1, 2, ..., L, (2.7)

and where we have used the convention that a(0) := xi, the 0-th layer of our neural

network will be the input data, xi.

Thus, we have defined our feedforward, fully-connected neural network5, in which the

classification function f(x, θ) is given by the output of the last layer, and by Equation

(2.7):

f(x, θ) = a(L) = ŷ, (2.8)

3We say this only partly in jest.
4We are assuming here that all the neurons in the same same layer use the same activation function.

In practice, this is usually the case, and it certainly makes writing these equation an easier task.
5Feedforward because the “information” flows only in one direction, as the outputs of one layer become

the inputs of the next layer. Fully connected because the weight matrices relate all the neurons of one

layer to the next one (i.e. the weight matrices are not sparse by construction).
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and the parameters θ are given by the set of weights and biases:

θ =

{{
W(l)

}L
l=1

,
{
b(l)
}L
l=1

}
.

This is shown diagramatically in Figure 2.1. We now note that the minimization (or

learning) procedure of Equation (2.4) will only optimize the parameters θ of the above

equation. There are of course some other parameters that we’ve used to define our neural

network: the number of layers L, the number of nodes per layer {nl}Ll=1, and the activation

functions, {g(l)}Ll=1. This is the first example of the so-called hyperparameters, which are

parameters that certainly define our network, but which are not minimized directly in the

learning procedure described by Equation (2.4).

x 2 R
4 = a

(0)

neuron inputs x

a(x;w; b; g)

(a) (b)

a
(1)

a
(2)

a
(3) = f(x; θ) = ŷ

Figure 2.1: Diagrammatic notation for neurons and feed-forward neural networks. (a)

A single neuron accepts inputs x and outputs a value a(x,w, b, g). (b) Several neurons

stacked together for a classifying function, f(x, θ).

2.2 Neural networks that exploit locality: Convolu-

tional neural networks

Fully-connected neural networks seem a bit wasteful, especially if the input data is from

pixels or spins in a lattice. If you want your network to recognize faces (or learn a local

Hamiltonian) then it doesn’t make much sense to consider pixels from different corners
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of an image (or spins that are not neighboring each other) to be input of a single neuron.

If we want to exploit this locality (say, in a system of spins on a 2d lattice), it helps to

represent the layers of the network to be themselves 2−dimensional, and for the neurons

in one layer to only obtain as inputs the layers or previous neurons. These local weights

are the first ingredients of convolutional neural networks.

Convolutional neural networks go a step further, with the concept of shared local

weights. Thus, a small block of local weights, say, a 3×3 matrix of weights Wconv, is used

by all the neurons in a convolutional layer to obtain the input of the previous layer. It

turns out that this is the discretized version of a convolution, which is where the name

of the convolutional layers and convolutional networks come from. The details of how

each convolution layer is created depeds heavily on the dimensions of these shared local

weight matrices (also called the kernels or filters of the convolution). See Figure 2.2 for

an example of a convolution layer employing a 3× 3 filter.

Computing the convolutions with bigger filters also allows for strides – skipping over

the input layer to obtain a convolution layer smaller than the input layer. Finally, we

notice that one such filter Wconv outputs a whole new layer of comparable size to the input

layer. In practice, multiple such filters are used for one convolutional layer, so complete

convolutional layer preserves both the (say) 2d structure of the input data, but now also

has several channels of data in each lattice point - one for each filter. Suddenly the amount

of data we have explodes! To handle this, there is a last ingredient of some convolutional

neural networks: pooling. Pooling keeps the increasing amount of data of the convolution

layers in control, by reducing the size of the layers. For example, max-pooling applied on

a 10 × 10 layer might return a 5 × 5 layer, where every pixel of the pooled layer is the

maximum of a 2× 2 block of pixels of the input layer.

Convolutional neural networks usually have two parts: a series of convolution layers,

each possibly followed by a pooling layer, and some fully-connected layers at the end.

Introducing the convolution layers means that now there are new parameters to be trained:

the convolution filters Tconv. The usual expectation is that training these filters will allow

the network to do feature detection on the input data. For example, there are some image

convolutions that allow for edge detection on pictures. Note, however, that employing

convolutional layers also brings yet more hyperparameters to take into account: number

of filters, their size, their strides, among others.

8



Figure 2.2: Input layer (blue) for a convolutional layer (green). Inputs and outputs are

represented as squares. Each neuron of the convolutional layer is computed from acting

a filter on 3 × 3 patches of the input layer. The dashed lines represent padding – data

points added on the borders of the input layer to preserve the size of the layer after the

convolution. In this essay, we will use padding that obeys periodic boundary conditions.

Image taken from Figure 2.3 of [14].

2.3 Learning revisited: Training the networks and

training the trainers

We have seen many ways to parametrize f(x, θ) using neural networks. Now we should

go back to Equation (2.4), which defines how we train our neural network via the mini-

mization of a cost function, C(θ,D) with respect to the parameters θ. The simplest way

to do this would be to use gradient descent. This is an iterative method that requires an

initial set of parameters, θ0, and tries to find a local minimum of C(θ,D) . Because the

gradient of a scalar function points towards the direction in which the function increases

the fastest, the gradient descent method proposes the following updates to the parameters

θ:

θi+1 = θi − α∇θC(θ,D), (2.9)

where θi is the set of hyperparameters in the i-th step of the algorithm, and α is the

learning rate. Too small of a training rate and the training will be too slow, too fast of

a training rate and the algorithm will jump around minima without converging. This

learning rate is yet another example of a hyperparameter6. Algorithms like the Adam

6We’ll find ways of dealing with this and other hyperparameters in the last part of this section.
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optimizer [15] use versions of gradient descent with extra terms added to take into account

moving-averages of gradients (i.e. a notion of momentum in the minimization). Of course,

another good reason to use methods based on gradient descent is that our parametrization

of f(x, θ) allows for an efficient, analytical computation of the gradient.

We are now going to address again the problem of overfitting. We should intuitively

expect that having all the θ parameters in our neural networks will make them very prone

to overfit data. We have more tools to prevent overfitting than simply adding terms into

the cost function. We will consider two stochastic methods to deal with overfitting, in a

sort of implicit regularization: stochastic gradient descent (SGD) and dropout7. In SGD,

every training step we randomly partition our training set into batches :

D =

nbatches⋃
i=1

Di. (2.10)

Then, for every single step of gradient descent (2.9) we iterate over all batches:

θ
(1)
i+1 = θi − α∇θC(θi,D1),

θ
(2)
i+1 = θ

(1)
i+1 − α∇θC(θ

(1)
i+1,D2),

...

θi+1 = θ
(nbatches−1)
i+1 − α∇θC(θ

(nbatches−1)
i+1 ,Dnbatches

).

Dropout is even simpler to describe than SGD. When using dropout, for every batch in

the training procedure, we define f(x, θ) as before, but we randomly set to some neurons

in the fully-connected layers to output zero (with probability pdropout). This deceptively

simple procedure, proposed by Hinton in 2014 [4], made the training of convolutional

neural networks with several fully connected layers viable in the first place.

Now that we know most of the secrets of training a model, there’s only one thing we

have avoided talking about: choosing the optimal hyperparameters. The hyperparameters

(as opposed to the parameters, θ) are not directly optimized by all the routines based

on gradient descent we have talked about, because they either define the model itself, or

the optimization procedure we use. For example, when using gradient descent, we need a

7Consensus on SGD being a form of implicit regularization is still uncertain. See [16, 17] for a

discussion of SGD as implicit regularization. However, SGD has a very important role other than implicit

regularization: dealing with training sets that are too big to be loaded on memory.
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hyperparameter, α, that itself isn’t chaned while the gradient descent routine runs. We

can still, however, try to create an even “higher-order” cost function that depends on

the hyperparameters Θ = {pdropout, α, ...}, that we’ll try to optimize to find a good set of

hyperparameters. This cost function will simply be the testing accuracy of our trained

f(x, θtrained) , which we introduced in Equation (2.5). That is, we measure the Accuracy

in our testing set, Dtest. The process of obtaining optimal hyperparameters can then be

defined as follows:

Θoptimal = arg min
Θ

[Testing accuracy (Θ)] . (2.11)

This optimization problem is quite different from the one we described in Equation

(2.4), for two main reasons: There is no efficient way of computing gradients (and they

wouldn’t mean much, because many of the hyperparameters are integer-valued), and the

function we are trying to minimize, Test accuracy (Θ), takes an enormous amount of

time to evaluate compared to C(x,D). It turns out that for optimization problems like

this, where the target function is costly to evaluate, and when there is no practical way

to compute gradients, we can still use a method called Bayesian optimization [18].

The main idea of Bayesian optimization is to relate the evaluations of the costly

function as data points taken from a gaussian process model with parameters given by

the hyperparametrs, Θ. A fitting of the gaussian process to all the data points seen so

far is performed in every step of Bayesian optimiza tion, and the current best-fit of the

gaussian process is then used to select a new data point, according to an acquisition

function. With a gaussian optimization routine, we can do the minimzation of Equation

(2.11), although, ironically, the Bayesian optimization algorithms themselves have their

own hyperparameters. We will ignore the precise optimization of these.
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Chapter 3

Brief review of quantum error

correction

The following discussion is based on [19], although the same information can be found in

other sources, such as [20]. Before talking about quantum error correction, let’s review

one of the simplest classical error correction codes: repetition codes. If we want to send a

string of (classical) bits through a noisy classical channel that causes a bit-flip error with

probability p, a simple way to handle the error is by repeting the information. Instead of

sending the bit 1, send 111. Instead of sending the bit 0, send 000. That’s the encoding –

to decode back to the original bit string, we just take a majority vote. Thus, for example, if

the encoded string 111 got one bit-flip while transported through the channel, it changes

to 110, but the a’re mostly 1, so they are decoded back to 1. By implementing this

repetition protocol (where error decoding is done through majority), then the effective

error probability of the channel becomes O(p2) instead of O(p), for p < 1/2.

Quantum information is weird, fragile and hard to correct. Consider a two-level quan-

tum system (say, a spin−1/2 particle), or qubit:

|Ψ〉 = α |0〉+ β |1〉 .

This qubit has two complex numbers encoded in it, α and β, which are encoded

in the overall phase of the qubit and the relative phase between the basis vectors. A

quantum error correction algorithm should protect this quantum information against the

environment. This becomes extra hard when we also consider that making projective

measurements on the qubit (to see if the environment has changed it) also destroys the

12



quantum information in it. Moreover, quantum information is special in that it can

not simply be copied (remember the no-cloning theorem!) – so classical quantum error

correction codes like repetition codes don’t seem to be straightforwardly applicable here

either.

The secret to making quantum error correction codes lies in encoding the information

of the qubits you want to protect in a subspace of a higher-dimensional Hilbert space. In

a way analogous to the repetition code above, it turns out that there exists a quantum

error correction code appropriately called the 3-qubit code, that encodes the quantum

information with an unitary operation defined as:

|0〉 → |0〉 ⊗ |0〉 ⊗ |0〉 and

|1〉 → |1〉 ⊗ |1〉 ⊗ |1〉 .

Just like the bit-flip code, this code can correct a single σx error in the encoded qubits1.

As we will be using Pauli operators a lot in this essay, we’ll condense the notation:

σx → X, σy → Y, σz → Z.

Also, as exemplified by this 3-qubit code, any (classical or quantum) error correction

code is designed with a specific set of errors in mind. An example that we’ll make use of

in the following section is the spin-flip error: with probability p, apply an X operators to

the state, and with probability (1−p), do nothing. It is described by the following CPTP

map:

C(ρ̂) = (1− p)Iρ̂I + pXρ̂X (3.1)

In this essay we will consider only error models with Pauli errors, that is, errors

described by CPTP maps in which the Kraus operators are Pauli operators. A more

precise definition of Pauli operators will be given in the next section.

1Using the notation and formalism of the next section, the stabilizer generators for this code are Z1Z2

and Z2Z3.
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3.1 Stabilizer code formalism

So far, we have mentioned that the main idea behind quantum error correction consistits

of encoding quantum information into the subspace of large Hilbert spaces. The qubits

belonging to this large Hilbert space are called the physical qubits. Meanwhile, the qubits

encoded in the subspaces of this Hilbert space (and which form the quantum information

we want to transport across a noisy quantum channel) are called the logical qubits. We

will denote the basis elements of the logical qubits by overbars. Moreover, e.g.
∣∣0〉 and∣∣1〉. Moreover, we will call the Hilbert space spanned by these logical qubits, the code

space. The quantum states in this code space will be called codewords.

A systematic way of encoding logical qubits into a larger set of physical qubits is

through the stabilizer code formalism. The stabilizer codes are a family of quantum error

correction codes that we can define on a Hilbert space of n physical qubits, C2⊗n. To

better understand what we will do on this larger Hilbert space, we will first consider

the Pauli group of one qubit, P1, which is a group of operators (under multiplication)

generated by {X, Y, Z}. From these, we can form Pn, the Pauli group for n qubits, by

looking at the group of operators that can be obtained by tensor products of n copies of

P1. The operators in these groups will be called “Pauli operators” or simply “Paulis” in

the rest of this work.

Now, let us take some commuting operators {si}ri=1 from the Pauli group of n qubits,

and generate from them an abelian subgroup of Pn, S. Furthermore, we are going to

do this so that the abelian group S does not contain the operator −I. If we have done

everything correctly so far, we should end up with a stabilizer group S. We will call the si

the generators of the stabilizer group, or simply generators if the meaning is clear enough

from the context. Of course, to make things interesting we will demand 1 < r < n, and

that each generator of the stabilizer group has non-trivial support on at least 2 qubits (if

they act on only one qubit, then that qubit will not contribute to error correction at all).

We mentioned before that quantum error correction works by encoding the information

of some amount of logical qubits into subspaces of the physical qubits. If we go back to

the definition of our stabilizer group, S, we will notice something pretty interesting: all

the generators square to the identity, and have eigenvalues ±1. Our subspace of interest

will then be the space in which all the generators of the stabilizer group have eigenvalue
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+1. Demanding this from each of the independent2 generators si halves the size of the

Hilbert space, and thus this subspace will be isomorphic to C2⊗(n−r). In other words,

we will be able to encode a total of l = n − r logical qubits in our n physical qubits,

when using r independent generators for the stabilizer code. Moreover, we can find logical

Pauli operators acting on these logical qubits – these are operators in Pn that commute

with the generators, but are not themselves in S. As an example, we can consider the

3-qubit code, which encodes one qubit into the subspace generated by Z1Z2 and Z2Z3.

For this quantum error correction code there is just one encoded qubit, with logical Pauli

operators Z = Z1Z2Z3 and X = X1X2X3. With this selection of logical operators, then

we would define the logical qubits, of the 3−qubit code as:

∣∣0〉 = |0〉 ⊗ |0〉 ⊗ |0〉 ,∣∣1〉 = |1〉 ⊗ |1〉 ⊗ |1〉 .

A systematic way of finding the logical qubits is straightforward: just start from an

orthornormal basis in C⊗n and project this basis over the +1 eigenvalue subspace of the

stabilizer generators with projectors of the form (1 + si)/2. After this is done, some of

the elements of the basis will be projected to zero, so we just take the ones that survive

this projection to span our code space.

Now that we have the logical qubits, we can look at the codewords spanned by them,

|Ψ〉. Because each logical qubit lies in the +1− eigenspace of the {si}ri=1 , then the

following relation holds for all codewords:

si |Ψ〉 = + |Ψ〉 , i = 1, ..., r. (3.2)

Equation (3.2) encompasses the idea behind the use stabilizer codes for quantum error

correction. If we encode information in a codeword |Ψ〉 and let some noisy quantum

channel act upon it, we can use the stabilizer operators, {si}ri=1 , to check whether we are

still in the +1 eigenspace of these. Detectable quantum errors will be those that moves

our original state |Ψ〉 outside of the code space. That is, there will be a set of si that,

upon checking, will return a −1 eigenvalue.

2We want the generators si to be independent in the sense that each generator si can not be written

as the product of some other generators.
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Of course, not all operators (or errors!) acting on |Ψ〉 will take it away from the code

space. There are two kinds of operators that will not take |Ψ〉 away from the code space:

operators belonging to the stabilizer group, S (i.e. products of the generators si), and

operators that commute with the generators si, but don’t themselves belong to S. This

second kind of operators, in the language of group theory, belong to the quotient group

N(S)/S . This second kind of operators act non-trivially on the codewords themselves,

while keeping them inside the wordspace. Thus, they furnish the logical operators.

There is another property of Pn we have not explicitly mentioned yet, but that will

prove to be indispensable: elements of the Pauli group either commute or anticommute.

Thus, we can readily check that if we start from a codeword |Ψ〉, and a Pauli error E that

anticommutes with at least one si, we have:

siE |Ψ〉 = −Esi |Ψ〉 = −E |Ψ〉 . (3.3)

This means that for any codeword Ψ, the Pauli errors E just defined will be detectable

by looking at the eigenvalues that E |Ψ〉 has with the stabilizer generators. In order to

detect the errors, we look at the eigenvalues of the stabilizer operators. We will call these

values the error syndromes. The (classical) information of the syndromes can be then

used to correct the errors in the encoded qubit, as long as we can detect the error that

caused the specific syndromes. It turns out that if we want our stabilizer code defined by

S to correct a set of errors E , then we should demand that

E†F 6∈ N(S)/S for all E,F ∈ E , (3.4)

where we disregard any overall phases. The appearance of two errors in Equation (3.4

) suggests that we need not only to detect our error, but to reverse it in a non-ambiguous

way. In spoken English, Equation (3.4) states that the quantum error, followed by its

correction procedure, should not apply a logical operation on the original codeword.

Before ending the discussion on stabilizer codes, we will need to define the weight of

a Pauli error E ∈ Pn: the number of qubits E acts non-trivially on. We can define the

distance d of a quantum error correction code as the minimum weight of a Pauli error

that causes Equation (3.4) to fail. In terms of usefulness, this means that a distance

d code can perfectly correct any bd−1
2
c single-qubit Pauli errors. Conversely, to correct

any t single-qubit Pauli errors, we need a code of distance d = 2t + 1. Finally, stabilizer

codes usually use a compact notation, [[n, k, d]]. In this notation, n is the number of
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physical qubits the code employs, k is the number of logical qubits the code has,and d is

the distance of the code.

Now let us see an example of quantum error correction. We’ll consider the 3-qubit

code, in which a codeword goes through a spin-flip channel. A single X1 error will make

the syndrome data read {−1,+1}. A single X2 error will instead make the syndrome

data read {−1,−1}, and a single X3 error will make the syndrome data read {+1,−1}.
Thus, as long as we are dealing with single bit-flip errors, the 3-qubit code can recover

the information from the syndrome data: simply reapply the Xi operator that caused the

error syndromes.

3.2 Local stabilizers on a torus: Introducing the toric

code

Some quantum error correction codes include stabilizers operators that act on many qubits

at once, and these qubits might be physically apart. However, there is a family of stabilizer

codes that employ stabilizers that only act on a small, local set of qubits. A particular

kind of these codes are the so-called surface codes, in which the logical qubit are encoded

in some non-trivial topological quantity. The first surface code ever proposed is the toric

code, which was discovered by Kitaev [21].

Consider an L × L square lattice of dimensions with periodic boundary conditions.

Now place qubits in every edge of the lattice, for a total of N = 2L2 qubits. You can see

this configuration in Figure 3.1 for a 4 × 4 toric code. We can define a stabilizer code

on this arrangement of qubits with two different types of stabilizer generators for the

stabilizer group. First, we will have the plaquette operators {Bp}L
2

p=1 , which will consist

of products of the Pauli operators Z applied on the 4 qubits around each plaquette, or

face, of the lattice:

Bp =
∏

e∈ plaquette p

Ze. (3.5)

There will also be node operators, {An}L
2

n=1, which will be given by the products of the

Pauli operators X applied to each qubit adjacent to each node, or lattice point:
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Figure 3.1: Spins on a 4× 4 toric code. Notice that in an L× L toric code there are 2L2

spins sitting on the edges. There are two kinds of stabilzer operators on a toric code. The

node operators, An, are the product of the Xe Paulis taken along the 4 edges around the

node n. The plaquette operators, Bp, are the product of the Ze Paulis taken along the 4

edges surrounding the plaquette p.

An =
∏

e∈ node n

Xe. (3.6)

These two kinds of stabilizer operators can be seen on Figure 3.1. One can easily check

that the two different kinds of stabilizers commute with each other. Now, we have been

a bit too generous with the stabilizers listed here. Because Z2 = X2 = I, we have the

following relations:

L2∏
n=1

An =
L2∏
p=1

Bp = I. (3.7)

This last equation makes the total number of independent3 stabilizer generators equal

3Remember, having a set of independent generators means that no generator can be written as a
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Figure 3.2: Action of Bp and Bp′ on an existing Z−loop. The action of Bp expands

the uppermost loop. The action of Bp′ contracts the lowermost loop. Thus, the action

of general plaquette operators contract or expand Z − loops. Note that the single Bp

operators themselves are small Z−loops.

to 2L2 − 2, so out of the original 2L2 qubits, we are left with 2 logical qubits!

Before we go to describe the logical Pauli operators, consider the product of two adja-

cent plaquette operators: each Bp is like a small “loop” of Z Paulis acting on individual

spins. Their product, however, is just a bigger loop, as Z2 = 1. Thus, all such closed

loops of Z operators are part of the stabilizer code, and bigger loops can be acted by the

Bp operators until they contract and, eventually, disappear. An example of this is shown

in Figure 3.2. This means that the products of Bp operators are (possibly disjoint) con-

tractible loops of Z Paulis. However, the torus is famous for allowing for non-contractible

loops! These correspond precisely to a couple of logical Pauli operators, Z1 and Z2. An

analogous argument work for An operators, except that the natural chains of Xs looks

different than the natural chains of Zs. 4

The logical Pauli operators for the toric code correspond to the non-contractible loops

of individual Pauli Xs and Pauli Zs on the torus. We can define logical Pauli operators

X1 and Z1 acting on the first logical qubit, and Pauli operators X2 and Z2 acting on

the second logical qubit. In Figure 3.3 we can see the logical Pauli operators on the toric

code. Now, let’s look a bit into the logical codewords of the toric code.

product of the others.
4To understand why this is the case, we should check the dual lattice, obtained by doing An ↔ Bp.
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Figure 3.3: Logical operators on the toric code. Z1 is a vertical non-contractible loop of

Z Paulis, and X1 is a horizontal non-contractible loop of X Paulis. This pair of operators

act on the same logical qubit (as can be seen from the fact that they don’t commute). Of

course, we can easily define the corresponding Z2 and X2 operators.

3.3 Logical codewords of the toric code

We remember that the codewords of the toric code live in the subspace that has +1

eigenvalues with the generators of the stabilizer code. It will suffice to find one member

of the basis of the logical qubits, as we can obtain the rest from logical Pauli operators.

For this section only, we will use the X basis:

Xi |→〉 = |→〉i , and

Xi |←〉 = − |←〉i .

So let us find this subspace! First, we define the following state:

|→〉 =
L2⊗
i=1

|→〉i .

By construction, we have that
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Figure 3.4: An error syndromes mark the end-points of Z error chains. This is a many-

to-one map, so multiple inequivalent error chains can have the same error syndromes.

An |→〉 = |→〉 , ∀n. (3.8)

For the next step, we just note that the operator (Bp + 1)/2 projects into the +1

subspace of Bp. Thus, we can obtain, modulo normalization, our |0, 0〉 logical qubit by

first projecting our previous state into the code space (i.e., into the subspace which has

+1 eigenvalues for all the generators of the stabilizer code):

|0, 0〉 ∝ P 0,0

L2−1∏
p=1

(1 +Bp) |→〉 = P 0,0

(
1 +

∑
p

Bp +
∑
p 6=p′

BpBp′ + ...

)
|→〉 . (3.9)

In the equation above, after projecting our state into the code space, we apply the

further apply the projector P 0,0 = 1
4
(1 + Z1)(1 + Z2). This is the logical operator that

projects states of the code space into the |0, 0〉 state. There is something very interesting

going on in that last term. It turns out that the logical qubit states form an entangled

state that is the sum of states with all the possible loops of Z operators acting on |→〉.

3.4 Error correction in the toric code

When considering error correction in the toric code the notion of chains of Z’s and X’s is

crucial. These are just adjacent products of Z or X operators that, if continued along a

closed cycle, then become the loops which we talked about before (of both the contractible
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and non-contractible kind). With this in mind, we can organize Pauli errors as chains

of errors. Then, it turns out that there’s a very nice geometric meaning to the position

of error syndromes of the toric code: the error syndromes mark the end-points of chains

of errors. An error syndromes mark the end-pont of Z error chains, Bp error syndromes

mark the end-point of X error chains. See figure 3.4 for two examples of this.

Small enough error chains can thus be corrected by applying some extra chains of X

and Z operators to turn the error chains into loops of Z and X operators, which, we

recall, are part of the stabilizer group of the toric code. Of course, experimentally we’d

only have access to the error syndromes - which themselves can be moved5 by applying

the corresponding Pauli operators. Error correction then becomes a process of bringing

error syndromes of the same class together, which annihilates them. An example of this

can be seen in Figure 3.5.

Figure 3.5 also shows how decoding in the toric code can fail. When dealing with

homogeneous error models, an effective rule of thumb for decoding is maximum likelihood

decoding. In the case of the toric code, this means that the proposed correction most

likely to be correct is the one that introduces the least amount of Z or X chains in order

to connect the syndromes. Keeping this in mind, it’s clear why the decoding on the right-

hand side of Figure 3.5 failed: it involved twice as many Z operators than the option on

the left.

3.5 When decoding fails: Distance and error thresh-

old of the toric code

Let us now discuss what the distance of the toric code is. If we have one short chain of,

say, Z errors, then they can be readily corrected as there is a well-defined shortest-distance

chain that joins the error syndromes. However, once a straight chain of errors has a length

of bL/2c qubits, there is a problem. In this scenario, there is no way of knowing for sure

if the correction procedure would should change the logical qubit – see Figure 3.6. From

this heuristic argument, we can see why the toric code is a distance L code. Thus, the

toric code is a [[2L2, 2, L]] code: it is a quantum error correction code employs L2 physical

qubits to encode 2 logical qubits, and is a distance L code.. We remember that this means

5One can think of a syndrome as a particle, and applying the corresponding X or Z operator extends

or contracts the error chain so that the syndrome – the end=point of the error chain – moves.
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Figure 3.5: Error correction in a toric code. We show two ways of joining together the

An syndromes. On the left, we see a correction that joins the syndromes using a total of

2 Z Paulis. On the right, we see a correction that joins the syndromes using a total of 4

Z Paulis. The correction on the left reverses the error correctly. The correction on the

right introduces a logical operation on the original codeword.

that the toric code can decode arbitrary individual Pauli error affecting bL−1
2
c qubits.As a

particular example, a 2× 2 toric code is a terrible quantum error correction code: it can’t

correct any erorr – it can only detect them. Fortunately, the formation of such long error

chains is exponentially supressed in local, homogeneous error models. The toric code is

particularly good in those local, homogeneous erorr models: it turns out that if the error
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Figure 3.6: Simple example of error correction failing in a 4×4 toric code. The dots mark

the position of An error syndromes. There is no way to decide among the 2 possible ways

of joining the error syndromes with Z operators: inside the square or going around the

periodic boundary. Thus, there is a 50% chance that decoding will fail against the error

syndrome shown here.

rate is smaller than a certain threshold error rate, pth, then a toric code can correct the

typical errors as L→∞. This means that the toric code code is capable of correcting an

infinite amount of errors, although while only encoding 2 logical qubits.

For some simple error models6, this pth ≈ 0.11 can be obtained from the probability at

the Nishimori point of the two-dimensional random-bond Ising model [22]. However, for

more interesting7 error models (and fault-tolerance scenarios - which we won’t describe

in this essay) the only way to estimate pth is through direct simulation, which will be the

topic of next section.

6In this case, perfect syndrome measurement and state preparation, and using the spin-phase error

we’ll describe in the next section.
7Any model that is not just a spin-phase error model. This includes some models studied in this work,

but also might include some non-homogeneous error models.
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Chapter 4

Simulating and learning error

correction on the toric code

This section constitutes the main scientific contribution of the present work. To the

author’s knowledge, this is the first time that the simulation for the decoding of surface

codes has been described in this level of detail in the existing literature. However, this

is not new knowledge in the field – this is already part of the know-how of other workers

in this field. The author is just writing down here what was, until now, mainly passed

via word of mouth. The following simulation techniques were described to the author by

[23]. These techniques have been alluded to before in [10, 12, 11], and are thus, not new

in this field. In this work, we want to employ supervised learning on decoding errors with

the toric code. First, we need to describe the labels we are going to use for the learning

process. In order to do this, we will consider the following factorization of a Pauli error

ε [10]:

ε = s c l, (4.1)

where s is simply a member of the stabilizer group, c is a pure error – it’s any operator

that produces the measured syndrome –, and l is a logical Pauli operator. Similarly to

Equation (4.1), we can use a factorization for the correction procedure we’d apply to the

error: ε′ = s′ c′ l′, in which the factorization is done in an analogous way. Of course, if

we want this action on the physical qubits to apply a correciton, we should demand that

c′ = c, l′ = l.

The trick for simulating the correction of the toric code relies on using the freedom of
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Figure 4.1: First step of the decoding: naive decoding under with uncrossable lines. In

this example, the naive error correction creates an Z2 logical error on the codeword, when

the initial Z error chain is considered. The next step in the decoding is continued in

Figure 4.2.

choosing the s and s′. We use this “gauge freedom” to fix the position of the logical Paulis

to fixed lines, which we’ll call gauge lines, or uncrossable lines. Moreover, the algorithmic

recovery of the errors will be done in two steps (shown in Figures 4.1 and 4.1):

1. Bring together all pairs of error syndromes at a single fixed point, while avoiding

touching the corresponding gauge lines. First, we annihilate the An error syndromes,

employing X Paulis to move them. Then, we annihilate the Bp error syndromes,

employing Z Paulis to move them. An example of this step is shown in Figure 4.1.

2. Apply the necessary l logical operator to correct the error. First we apply the

26



Figure 4.2: Second step of the decoding: neural decoding. In this step, we correct any

logical operation introduced during the naive decoding. The choice of logical operation,

l, needed to succesful do the error decoding is the label that is learned. In this example

the final result includes a closed Z loop, which does not affect the original codeword.

neccesary Z1 and/or Z2 logical Paulis. Then we apply the neccesary X1 and/or X2

logical Paulis. An example of this step is shown in Figure 4.1.

The first of these steps requires no special computation, and while it might seem

especially wasteful in the number of single-qubit quantum gates used (∼ L per pair of

syndromes), because X2 = Z2 = I, one can do a simple classical computation to count

how many quantum gates are actually needed. It is a bit wasteful in single-qubit gates,

but that’s the price to pay for using our gauge-fixing. It is the second of these steps, the

determination of l, that will be the focus of our study. This will be the label that we will

use in our supervised learning. Our input data will be the syndromes of the errors, and

the label will be one of the 4 × 4 = 16 possible values of l: the possible logical Paulis

acting on the codewords.
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4.1 Simulating the toric code: Conventions and tricks

for efficient error simulation

Simulating error correction on the toric code turns out to be a simple task once we have

fixed a convention for error recovery. So far, it seems that we still have a quantum system

that we’d need to simulate, and that sounds awfully hard, especially after looking at the

form of the logical qubit states in Equation(3.9). However, it turns out that we can just

simulate everything as if we were dealing with a classical spin system. How so? Well,

we only need to keep track of what syndromes the errors will change. Moreover, we will

ignore the total phase of the qubits, so we will do all our multiplications modulo factors

of −1 or i.

Let us consider the An generators. The corresponding syndromes only change sign

under the effect of an Z or Y Pauli acting on any one of the 4 qubits of An. Similarly, the

syndromes corresponding to the Bp stabilizers only change sign if one of the 4 qubits of Bp

is acted on by a X or Y Pauli. Thus, noting that Y = XZ in our convention, we only need

to keep track of how many times X and Z operators have acted on the qubits starting

from an error-free configuration in the wordspace. In practice, we can even pretend that

the individual qubits in a codeword have simulatenous eigenvalues +1 for both X and Z

operators, and according to this make all the corresponding calculations1.

With this in mind, we will simulate our toric code as just a set of classical spins on the

edges of a lattice with periodic boundary conditions, but each spin will have two numbers

assigned to them, sx and sz, both of which can take values in {+1,−1}. With this in

mind, we could readily assign eigenvalues to all the single-qubit Pauli operators, while

simultaneously describing their action on flipping the spins: X flips sz, Y flips both sx

and sz and Z flips sx. However, we can make our lives easier by only considering the

spin-flipping aspects of these operators when simulating errors, and only considering the

“having eigenvalues” aspect of them when obtaining the syndromes and when measuring

the change of topological qubits on the gauge lines.

Thus, we can do our error simulations as follows:

1. We initialize all sx and sy to +1.

1We are going to simulate clasically the CPTP maps of the form of Equation (3.1), like coin flips,

instead of quantum-mechanically, which would require keeping an overhead of some very big density

matrices.
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2. We simulate the Pauli errors, flipping the values of sx and sz.

3. After the errors have been simulated, we obtain the syndrome measurements by

reading off the values of the stabilizer generators, treating sx and sy as eigenvalues

of X and Y , respectively, but not flipping any spins with them (flipping would make

no difference because of a gauge invariance that exists). We store these values of

the syndromes for both An and Bp. The syndromes stored here are equivalent to

the big dots in Figure 4.1 (big dots = −1 syndromes).

4. We measure the values of sx and sz along the logical operators in the gauge lines,

without flipping any spins, and only reading the eigenvalues. From this, we can

readily recover l, the logical error of Equation (4.1). It is a bit non-trivial, but the

correspondence of this step with Figures 4.1 and 4.2 is that the initial error chains

in the example shown the gauge lines an odd number of times. Thus, the naive

decoding protocol has to introduce a logical Z2 error. That is, there is a direct

correspodence between what is measured here and l.

Thus, at the end of the i-th classical simulation, we would obtain a pair of data points

{xi,yi} for our supervised learning algorithm, where xi is the syndrome data, and yi is

the logical Pauli l which corresponds to the error that causes the syndrome. We have

thus defined our supervised learning problem. In the following sections we explain the

different error models we have used, as well as the specific neural network architectures

we have employed.

4.2 Error models in the simulation

In the model we will study, we will assume that there are no errors due to measurement

or state preparation. That is, all errors happen during the storage of the quantum in-

formation, and are caused by the environment2. The simplest example of such error is

applying independent spin-flip errors of probability p on each spin. We described this

error for a single spin in Equation (3.1). The classical version of this CPTP map3 is the

2Errors in the preparation and in measurement can also be described, but we would need to look at

the quantum circuits that define the projective measurements to describe “realistic” measurement error

models.
3Meaning: instead of keeping track of the whole density matrix ρ after applying the CPTP map, we

just flip coins according to the probabilities p.
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simplest imaginable: we just move on every qubit in the simulation and act with X with

probability p on each of them. We can similarly define a phase-flip error, which is like

the spin-flip error, but using Z instead. Following the convention of [11], we can define a

spin-/phase-flip error by combining these two error models - every qubit is affected by X

with probability p, and independently by Z with probability p, following the CPTP map:

Cspin-phase(ρ) = (1− p)2IρI + p(1− p)XρX + p2Y ρY + p(1− p)ZρZ. (4.2)

We can also define a depolarizing error model, which with probability p applies one of

the 3 non-trivial Pauli operators to a qubit, each selected with same probability:

Cdepolarizing(ρ) = (1− p)IρI +
p

3
XρX +

p

3
ρY +

p

3
ZρZ. (4.3)

A final error model we will consider is the nearest-neighbor depolarizing error. In thhis

error model, every neighboring pairs of qubits will have an error with probability p, given

by one of the 15 non-trivial product of Paulis:

CNN-depolarizing(ρ) = (1− p) (I1 ⊗ I2) ρ (I1 ⊗ I2) +
p

15
(I1 ⊗X2) ρ (I1 ⊗X2)

+
p

15
(I1 ⊗ Y2) ρ (I1 ⊗ Y2) +

p

15
(I1 ⊗ Z2) ρ (I1 ⊗ Z2) + ...

(4.4)

We will compare all these error models in this essay (extending the work of [11]), but

before doing that, we need to standardize a definition of an effective error rate per qubit,

peff . In short, peff (p) will be the probability that a single qubit will change when the

error model is used, given that the error model is defined by p as above. We have:

pdepolarizing
eff (p) = p,

pspin-phase
eff (p) = 2p− p2, and

pNN-dep
eff (p) =

24

5
p− 27

52
p2 +

212

3252
p3 − 214

3354
p4.

pNN-dep
eff (p) is non-trivial: it is obtained from the recursion relation in equation (8) of [11]4.
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Figure 4.3: Architecture for the double convolutional neural network. ReLU nonlinear-

ities are utilized after each convolution. Softmax nonlinearities are used in the output

layers.The output from the last convolutional layer is the one that experieces dropout.

Each of the two networks have its own cost function, and the total cost functio is the

sum of the two cost functions. The Testing Accuracy of the network is measured in an

all-or-nothing basis.

4.3 Convolutional neural networks for the toric code

A very important property of the toric code is that all the stabilizers are local. We

exploit this locality by making manifest use of it in a convolutional neural network. The

architecture of the convolutional neural network we’ll use is the following: we’ll use two

different convolutional neural networks, one for each kind of stabilizer code. Thus, the An

CNN determines the Z1 and Z2 part of the logical error, l, and the Bp CNN determines

the X1 and X2 part of the logical error, l. Previous studies have used separations like

these for the error syndromes [12] The architecture of this double CNN is shown in Figure

4.3.

4This recursion relation is obtained by taking into account how adding new nearest-neighbor might

correct an existing error, or add a non-existing error.
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Hyperparameter Min. value Max. value

Learning rate, α 10−7 10−1

Dropout probability 0.01 0.99

Number of neurons in fully connected layer 5 100

Number of filters in convolutional layers 5 50

Table 4.1: List of parameters that were optimized in the Bayesian optimization procedure.

Optimization was done for each L separately, with the Depolarizing noise model, using

peff = 0.10, 1.1 million data points. Adam optimizer was used, with default parameters

except for the learning rate. A mini-batch size of 2000 was utilized throughout.

4.4 One trick for faster training and hyperparameter

search

Because the toric code is self-dual (symmetric under An ↔ Bp), we can expect the weights

in the An and the Bp networks to be interchangeable in some way5. By itself, this hints at

a possible method for faster training of the CNNs: train only on one group of syndromes

first for some iterations, copy the weights to the other network, and then train the joint

network. We won’t end up implementing this trick, but we’ll do something similar for a

really expensive aspect of training: hyperparameter search. The hyperparameter search

we’ll do will work on only one set of syndromes, and the optimized hyperparameters will

be used on both the An and the Bp networks.

For hyperparameter search, we use the skopt package from the Scikit-Optimize Python

library. This package employs Bayesian optimization for the hyperparameter search. The

hyperparameters that we optimize for are given in Table 4.1, with the range of values

taken. The values of hyperparameter that were not optimized over were not seen to have

a big impact in the Testing Accuracy.

4.5 Estimating pth via finite scaling

In the present work, we want to characterize the performance of our neural decoding

algorithm working for different lattice sizes and error models. In order to achieve this, we

define plogical, the probability that a (logical) quantum error still exists after the decoding

5Under two caveats: (1) care in the implementation numbering, and (2) uncorrelated X and Z errors

independent in each qubit.
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Figure 4.4: Expected finite scaling behavior of plogical(peff ). This is inset (c) of FIG 6. of

[11]. In this figure, pfail is what we denote as plogical, and d is an increasing function of

L. From this figure, we can estimate pth ≈ 0.15 .

has been applied. We can define plogical directly from the Testing Accuracy of our

trained neural networks:

plogical = 1−Testing Accuracy, (4.5)

In our study, we train the neural networks from scratch, at values of peff = {0.01, 0.02, ..., 0.15},
and for each error model and lattice size (L = 3, 4, ..., 8), a total of 3 times each. We

use training sets of 1000000 data points, and Testing sets of 100000 testing points. After

training the networks, we want to obtain plots of plogical as a function of peff in order

to estimate pth. We remember now that the threshold probability, pth, has the following

definition: in the limit L→∞, the folowing relation holds6 :

plogical|L→∞ (peff ) = Θ(peff − pth), (4.6)

where Θ is the Heaviside step function. Of course, we won’t have access to trained neural

networks at large values of L that this limit becomes apparent. Instead, we will plot,

6Assuming that this limit exists, of course.
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on the same graph, curves plogical(peff ) for different values of L, and use the value of

peff at which the curves intersect. Additionally, for increasing values of L, the curves

plogical(peff ) should be approaching the Heaviside step function. In particular, this means

that for peff < pth, we have that pLlogical(peff ) < pL
′

logical(peff ) for L > L′. Alternatively,

for peff > pth we have that pLlogical(peff ) > pL
′

logical(peff ) for L > L′ . An example of this

expected finite scaling behavior can be seen in Figure 4.4, reproduced from [11].
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Chapter 5

Results and Discussion

We used our neural decoding on toric codes of different lattice sizes (L = 3, 4, ..., 8) and

with different error models. The plots of the probability of an uncorrected logical error

as a function of the effective single-qubit error, plogical(peff ), are shown in Figures 5.1 to

5.3. To understand the use of these plots, the reader should check Section 4.5. On the

captions of these figures, we write the estimates of pth obtained from the intersection of the

plogical(peff ) curves. Of course, if the limit indeed exists, this value should be independent

of the parity of L. However, there might be a difference in the finite scaling of odd vs

even lattice size L. This is why, for example, the authors of [9] use only even values of L

for the unsupervised neural decoding of the toric code1. In all these Figures, we see an

expected power law behavior for small peff
2, and we get an estimate of pth ∼ 0.10.

Two features that can be clearly seen from Figures 5.1 to 5.3 are: the very noisy

behavior of the neural decoding (i.e. of the training of the neural networks) on small

lattice sizes (L = 3, 4), and the suboptimal plogical(peff ) achieved for large lattice sizes

(L = 7, 8). The first of this problems happens around low values of peff , and does

not prevent us from estimating pth from the intersection of plogical(peff ) curves with the

two smallest lattice sizes. However, the suboptimal estimation of plogical(peff ) for large

lattice sizes means that these curves are useless for the estimation of peff . We expect the

plogical(peff ) curves with the largest lattice size to be consistently below the other curves,

when peff < pth, but this pL=7,8
logical(peff ) curve is consistently above the other curves after

peff ≈ 0.05. This can be explained by the use of a dataset not large enough to ensure the

1This statement comes from personal communication with the authors of [9]
2This is expected! For small p, quantum error correction tries to make the error probability go from

O(p) to O(p2).
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proper learning of the neural network employed. More concretely, the Testing Accuracy

achieved in the training of the neural decoders for L = 7, 8 is not sufficiently high to work

as good neural decoders.

To study this last claim, we also performed an explicit check on how Testing Accuracy

scales with the size of the training set, |Dtraining|. This relationship is shown in Figure 5.4.

This makes sense, because when learning to decode the toric code both the possible error

syndromes and the number of possible error chains they correspond to, scale exponentially

with the number of qubits. As seen in Figure 5.4, there is indeed a regime of |Dtraining| in
which there is a linear relation between Testing Accuracy and log/, |Dtraining|. In the

particular case of L = 8, this regime seems to hold up to at least |Dtraining| ≈ 500000.

Only when these curves flatten, can we be certain that the model is, in some qualitatively

sense, optimal.

Figure 5.1: plogical(peff ) using the spin-phase error model for (a) even lattice sizes and (b)

odd lattice sizes. The curves corresponding to L = 7, 8 are suboptimal for estimating pth

– see discussion. From the intersection of the two curves remaining curves, we estimate

(a) pth ≈ 0.15 and (b) pth ' 0.15. See the discussion to see why this estimates here are

not neccesarily the same. Keep in mind that this is a very rough estimates, as we only

employ two curves for the finite scaling estimation.

For surface codes in 2d, the question of scaling of the neural network has been addressed

before in the literature. The authors of [11] implied that in neural decoders of surface

codes using fully-connected neural networks, the following quantities scales exponentially

with L: the number of layers, the number of neurons per layers, and the number of

data used to train the networks. In the present work, we tried to avoid the exponential
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Figure 5.2: plogical(peff ) using the depolarizing error model for (a) even lattice sizes and

(b) odd lattice sizes. The curves corresponding to L = 7, 8 are suboptimal for estimating

pth – see discussion. From the intersection of the two curves remaining curves, we estimate

(a) pth ≈ 0.12 and (b) pth ≈ 0.12. Keep in mind that this is a very rough estimates, as

we only employ two curves for the finite scaling estimation.

scaling of number of layers and number of neurons by using some convolutional layers.

However, the neural networks still appear to need an amount of training data that grows

exponentially with L, as can be seen from Figure 5.4. This means that neural decoding as

described in this work would be extremely inefficient methods to decode 2d toric codes of

large L. However, a key advantage of neural decoders lies in their generality with respect

to error models. Had we used some position-dependent error models for the qubits, then

neural decoding still works, while methods that assume homogeneity, such as MWPM

[9] would not work. We expect that this versatility of neural decoders might transfer

to some practical use when dealing with actual quantum devices, where variation in the

fabrication of the qubits might lead to a wide variety of errors beyond the homogeneous

ones.
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Figure 5.3: plogical(peff ) using the nearest-neighbor depolarizing error model for (a) even

lattice sizes and (b) odd lattice sizes. The curves corresponding to L = 7, 8 are suboptimal

for estimating pth – see discussion. From the intersection of the two curves remaining

curves, we estimate (a) pth ≈ 0.12 and (b) pth ≈ 0.10. See the discussion to see why

this estimates here are not neccesarily the same. Keep in mind that this is a very rough

estimates, as we only employ two curves for the finite scaling estimation.
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Figure 5.4: Testing Accuracy as a function the of size of the training set, |Dtraining|,
for neural decoding of nearest-neighbor depolarizing error model on an L = 8 toric code,

for peff = 0.05. The main takeaway from this curve is that it has a nearly constant

slope in a log-graph. More concretely, the Testing Accuracy increases linearly with

log/, |Dtraining|. Of course, this does not go on forever, and this curve should flatten

at some point. However, this flattening does not seem to be happening anywhere near

1000000 million data points, and a much bigger quantity should be necessary for an

optimal training of the neural decoder.
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Chapter 6

Conclusions

We have described the process of simulating errors in the toric code, and how to transform

the decoding of those errors into a supervised learning problem. Because the toric code

is self-dual and local, we were able to use a neural network that uses two convolutional

neural networks to learn the decoding of the toric code – one for each syndrome type.

Moreover, we use a clever error factorization technique to separate decoding into a naive

step, which can be automated easily, and a step that requires learning on 16 different

labels. After these simplificaitons, the decoding of the toric code is turned into a machine

learning problem.

We managed to obtain an acceptable neural decoders for toric codes of length L = 3

to L = 6 for a first estimation pth. We could not manage to obtain satisfactory neural

decoders for L = 7, 8, as the training data sets used in this work were too small to ensure

the required training accuracy. Having satisfactory neural decoders for these larger toric

codes would allow us to have better finite-scaling estimates for pth.

There are many topics which we could not cover in this work, but might be fruitful

to consider in future work. For example, the features learned by the trained filters of the

convolutional layers might give some interesting information on the process of decoding.

In a surface code as symmetric as the toric code, maybe some of these trained weights

might be reused for the training of larger toric codes. If that were the case, it could be

an essential to study the neural decoding of larger surface codes, which was one of the

biggest hurdles found in this work. Also, in a more forward-looking manner, it would be

interesting to study the neural decoding of even more complex quantum error correction

codes.
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