
ar
X

iv
:1

50
7.

03
68

8v
2 

 [
co

nd
-m

at
.s

tr
-e

l]
  9

 D
ec

 2
01

5

Quantum phase transition triggering magnetic BICs in graphene
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Graphene hosting a pair of collinear adatoms in the phantom atom configuration has density of
states vanishing in the vicinity of the Dirac point which can be described in terms of the pseudogap
scaling as cube of the energy, ∆ ∝ |ε|3 which leads to the appearance of spin-degenerate bound
states in the continuum (BICs) [Phys. Rev. B 92, 045409 (2015)]. In the case when adatoms are
locally coupled to a single carbon atom the pseudogap scales linearly with energy, which prevents
the formation of BICs. Here, we explore the effects of non-local coupling characterized by the Fano
factor of interference q0, tunable by changing the slope of the Dirac cones in the graphene band-
structure. We demonstrate that three distinct regimes can be identified: i) for q0 < qc1 (critical
point) a mixed pseudogap ∆ ∝ |ε|, |ε|2 appears yielding a phase with spin-degenerate BICs; ii) near
q0 = qc1 when ∆ ∝ |ε|2 the system undergoes a quantum phase transition (QPT) in which the
new phase is characterized by magnetic BICs and iii) at a second critical value q0 > qc2 the cubic
scaling of the pseudogap with energy ∆ ∝ |ε|3 characteristic to the phantom atom configuration is
restored and the phase with non-magnetic BICs is recovered. The phase with magnetic BICs can
be described in terms of an effective intrinsic exchange field of ferromagnetic nature between the
adatoms mediated by graphene monolayer. We thus propose a new type of QPT resulting from the
competition between two ground states, respectively characterized by spin-degenerate and magnetic
BICs.

PACS numbers: 72.80.Vp, 07.79.Cz, 72.10.Fk

I. INTRODUCTION

Graphene-based systems are promising candidates for
the detection of the so-called bound states in the contin-
uum (BICs)1,2. BICs were first theoretically predicted
by von Neumann and Wigner in 19293 as quantum states
with localized square-integrable wave functions, but hav-
ing energies within the continuum of delocalized states.
The electrons within BICs do not decay into the system
continuum, thus these states should be invisible in trans-
port experiments.
The subject experienced revival after the work of Still-

inger and Herrick in 19754. Since then, BICs were pre-
dicted to appear in a variety of electronic, optical and
photonic systems1,5,6. In these systems, effects of Fano
interference7 were proposed as the underlying mechanism
for the emergence of BICs and their possible experimen-
tal observation. In particular, we recently proposed that
BICs can be observed in the system of graphene with two
collinear adatoms in the phantom atom configuration1.
In this work, we show that the setup outlined in Fig.1

for suspended graphene can undergo a quantum phase
transition (QPT) into the state with magnetic BICs if
non-local graphene-adatom couplings are taken into ac-
count. The phenomenon is a consequence of the partic-
ular scaling of the local density of states (LDOS) D0 on
energy ε in the vicinity of the Dirac point. The latter
is proportional to the quantity known as pseudogap ∆,
related to the intensity of the scattering near the Fermi

Figure 1. (Color online) (a) Side view: two adatoms labeled
by 1 (upper) and 2 (lower) placed collinear to a carbon atom
beneath an STM tip in suspended graphene (inset) (b) Top
view: the adatoms are coupled to the carbon atom beneath
them and its nearest neighbors. The relative strength of these
couplings define the Fano factor of interference q0 playing the
role of the natural control parameter of the system. It can be
tuned by varying the slope of the Dirac cones in the graphene
band-structure (inset).

energy8,9. Formation of the magnetic BICs becomes pos-
sible only if ∆ ∝ |ε|2 similar to the transition reported
in Ref. [8] for a pair of quantum dots coupled to metallic
leads.

The QPT reported here is driven by a Fano factor
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of interference q0 which can be thus considered as the
natural control parameter of the system. It can be
tuned by changing the slope of the Dirac cones in the
graphene band-structure (see Fig.1(b)). The magnetic
BICs appear within the region inside the critical bound-
aries qc1 < q0 < qc2, where the dominant scaling law
for the pseudogap is quadratic (∆ ∝ |ε|2). Outside this
region, the mixed scaling ∆ ∝ |ε|, |ε|2 for q0 < qc1 or
cubic scaling ∆ ∝ |ε|3 for q0 > qc2, leads to the forma-
tion of spin-degenerate BICs. The transition towards the
magnetic BIC state is triggered due to the onset of the
effective intrinsic ferromagnetic exchange field J exch be-
tween the adatoms mediated by the graphene monolayer.

II. THE MODEL

To give a theoretical description of the setup plot-
ted in Fig.1, we use the model based on the Anderson
Hamiltonian10,11:

H2D =
∑

sσ

ˆ

dk(~vFk)c
†
skσcskσ +

∑

jσ

εjdd
†
jσdjσ

+ U
∑

j

ndj↑ndj↓ +
∑

jsσ

ˆ

dkVk(c
†
skσdjσ +H.c.),

(1)

with vF being Fermi velocity. The graphene monolayer

is described by operators c†skσ (cskσ) for creation (anni-
hilation) of electrons in quantum states labeled by the
wave number k, spin σ and valley index s = 1, 2. For the

adatoms, d†jσ (djσ) creates (annihilates) an electron with
spin σ with energy εjd, where j = 1, 2 correspond to the
upper and lower adatoms, respectively. The third term
in Eq.(1) accounts for the on-site Coulomb interaction

U , with ndjσ = d†jσdjσ . Finally, the last term mixes the
graphene and the levels εjd, wherein H.c. gives the Her-
mitian conjugate of the first part. This mixing is charac-

terized by the coupling Vk = 1
2π

√

πΩ0

N

√

|k|v0(1−q0
~vF k
D ),

where N is the number of conduction states, Ω0 denotes
the unit cell area, and

q0 =
v1D

v0t
(2)

is the Fano factor of interference defined according to
the results of Ref. [12]. The parameter t stands for
the coupling strength between carbon atoms, while v0
and v1 represent the host-adatom hybridizations out-
lined in Fig. 1 and D = 7eV denotes the band-edge for
vF ∼ c/300. The Fano factor q0 can be tuned assisted by
a variation of vF , which enters into t = 2~

3avF
13 and v1D

v0
.

The experimental tuning of vF can be achieved, for in-
stance, by means of modifying the carrier concentration
in suspended graphene14 [inset of Fig. 1(a)].
The situation q0 = 0 corresponds to the scenario in

which collinear adatoms are locally side-coupled to a

single carbon atom (local coupling regime). Otherwise,
q0 6= 0 denotes the hybridization of the adatoms with the
three second neighbors of carbons as depicted in Fig. 1
(non-local coupling).
To analyze the transport properties of the geometry

we consider and look for the existence of the BICs, we
should focus on the local density of states of the host
(LDOS) and those corresponding for the adatoms (DOS).
The former defines the conductance of the device at zero
temperature T = 01:

G ∼
e2

h
ΓtipLDOS, (3)

with Γtip = πt2cρtip, ρtip as the STM tip density of states.
To obtain the value of LDOS probed by the STM tip

of Fig. 1, we should consider the tunneling Hamiltonian

Htun = tc
∑

σ

ψ†
tip,σΨσ +H.c., (4)

where ψtip,σ and Ψσ are respectively fermionic operators
for the edge site of the STM tip and

Ψσ =
1

2π

√

πΩ0

N

∑

s

ˆ

√

|k|(1 − q0
~vFk

D
)dkcskσ +

td1

tc
d1σ

(5)

is the field operator accounting for the quantum state
of the graphene site placed right beneath the tip with
hopping terms (td1

and tc), cf. Fig. 1. LDOS then can
be computed as

LDOS = −
1

π

∑

σ

Im[G̃σ(ε
+)] = 2D0 +

∑

σjl

∆LDOSjlσ,

(6)

where G̃σ(ε
+) is the time Fourier transform of the Green’s

function

Gσ = −
i

~
θ (τ) Tr{̺2D[Ψσ(τ),Ψ

†
σ(0)]+} (7)

and

D0 =
|ε|

D2
(1− q0

ε

D
)2 (8)

is the graphene DOS, ∆LDOSjlσ stands for the part in-
duced by the adatoms (see detailed derivation for it in
the Appendix).
It is worth mentioning that ∆LDOSjlσ for j 6= l repre-

sents electronic waves of a given spin σ that travel forth
and back between the upper and lower adatoms showed
in Fig. 1(a), which for a specific energy ε, become phase
shifted by π (Fano dip) with respect to the waves scat-
tered by the adatoms, which are described by ∆LDOSjjσ .
As discussed in Ref.[1], such scattering process then pro-
vides a mechanism of the emergence of BICs. This effect
can be captured in the detailed derivation of LDOS ap-
pearing in the Appendix.
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According to the Appendix, the evaluation of
∆LDOSjlσ depends on the Green’s functions G̃djσdlσ

(j = 1, 2 and l = 1, 2 ) for the adatoms. Additionally,
to perceive the BICs emergence in our system, we should
know the density of states DOSσ

jj of these adatoms, which
are determined as follows:

DOSσjj = −
1

π
Im(G̃djσdjσ

). (9)

Thus both ∆LDOSjlσ and DOSσjj can be found by em-

ploying the Hubbard I approach15 at T = 0, since
the determined Hubbard bands match with those ob-
tained via the Numerical Renormalization Group, in
particular, for graphene with a single adatom16. As
a result, we can safely extrapolate the Hubbard I
method to our graphene system. We start employing
the equation-of-motion method to a single particle re-
tarded Green’s function of an adatom in time domain
Gdlσdjσ

= − i
~
θ (τ) Tr{̺2D[dlσ (τ) , d

†
jσ (0)]+}, where θ (τ)

is the Heaviside function, ̺2D is the density matrix
of the system described by the Hamiltonian of Eq.(1)
and [· · · , · · · ]+ is the anticommutator between operators
taken in the Heisenberg picture. Performing elementary
algebra one obtains in the energy domain:

(ε+ − εld)G̃dlσdjσ
= δlj +Σ

∑

l̃

G̃d
l̃σ

djσ

+ UG̃dlσndlσ̄
,djσ

, (10)

where ε+ = ε+ i0+ and

Σ =
∑

s

ˆ

dk
VkVk

ε+ − ~vFk
= −

v20
D2

ε(1− q0
ε

D
)2ln

∣

∣

∣

∣

D2 − ε2

ε2

∣

∣

∣

∣

+
v20
D
q0(2− q0

ε

D
)− i∆ (11)

is the self-energy. Its imaginary part ∆ is proportional
to the scattering rate of the quasiparticles and is known
as pseudogap. The latter is proportional to the local
density of states of the host D0 given by Eq.(8), i.e.,
∆ = πv20D0

8,9. Thus

∆ =
πv20
D2

|ε| (1− q0
ε

D
)2, (12)

which depending on the value of the Fano parameter, the
main contribution to the pseudogap can be linear, cubic
or quadratic. As we will see in the discussion section, the
latter situation is of particular interest, since magnetic
BICs are formed in this case.
In Eq. (10) G̃dlσndlσ̄

,djσ
is a two particle Green’s func-

tion composed by four fermionic operators, obtained
from the time Fourier transform of Gdlσndlσ̄

,djσ
=

− i
~
θ(τ)Tr{̺2D[dlσ (τ)ndlσ̄ (τ) , d

†
jσ (0)]+}, with ndlσ̄ =

d†lσ̄dlσ̄ and spin σ̄ (opposite to σ). Thus we first calcu-
late the time derivative of Gdlσndlσ̄

,djσ
and then its time

Fourier transform, which leads to

(ε+ − εld − U)G̃dlσndlσ̄
,djσ

= δlj < ndlσ̄ >

+
∑

s

ˆ

dkVk(G̃cskσd
†

lσ̄
dlσ̄,djσ

−G̃c†
skσ̄

dlσ̄dlσ,djσ
+ G̃d†

lσ̄
cskσ̄dlσ,djσ

), (13)

expressed in terms of new Green’s functions of the same
order of G̃dlσndlσ̄

,djσ
and the occupation number < ndlσ̄ >

determined by

< ndlσ̄ >= −
1

π

ˆ εF=0

−D

Im(G̃dlσ̄dlσ̄
)dε. (14)

We highlight that for the quadratic pseudogap, the self-
consistent evaluation of the Eq. (14) reveals a range of
magnetic solutions with < ndl↑ > 6=< ndl↓ > for the val-
ues of q0, lying in the range between two critical points
qc1 and qc2. Outside the magnetic region, i.e., for differ-
ent scalings of the pseudogap (∆ ∝ |ε|, |ε|2 for q0 < qc1
and ∆ ∝ |ε|3 for q0 > qc2), Eq. (14) has non-magnetic
solutions with < ndl↑ >=< ndl↓ > only. This point will
be addressed in detail in Sec.III of the paper (see in par-
ticular Fig.2).
Furthermore, by employing the Hubbard I approxima-

tion, we decouple the Green’s functions in the right-hand
side of Eq. (13) as performed in Ref. [1]. This proce-
dure enables us to solve the system of Green’s functions

within Eq. (10), leading to G̃djσdjσ
=

λσ̄
j

ε−εjd−Σ̃σ̄
jj̄

, where

λσ̄j = (1 +
U<ndjσ̄

>

ε−εjd−U−Σ
), and:

Σ̃σ̄
jj̄ = Σ + λσ̄j λ

σ̄
j̄

Σ2

ε− εj̄d − Σ
(15)

is the total self-energy, with j̄ = 2, 1 respectively for j =
1, 2 in order to identify distinct adatoms and G̃djσdj̄σ

=
λσ̄
j ΣG̃d

j̄σ
d
j̄σ

ε−εjd−Σ
are mixed Green’s functions.

III. RESULTS AND DISCUSSION

In the simulations we adopt T = 0 and the set of
parameters1: εjd = εd = −0.07D, which is feasible in
suspended graphene (inset of Fig. 1(a))14 and U = v0 =
−2εd. Additionally, to avoid that BICs decay into the
continuum, we use td1

/tc = 0, otherwise it leads to ex-
perimental detection of BICs by means of the so-called
quasi-BICs1.
In Fig. 2 three distinct regions in the occupation num-

bers of Eq. (14) for j = 1, 2 appear identified by their cor-
responding pseudogaps ∆ [Eq. (12)]: the non-magnetic
regions corresponding to small or big Fano factors appear
to be divided by a magnetic central domain delimited by
the critical values qc1 and qc2. At critical values, abrupt
jumps in the occupation numbers point out the existence
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Figure 2. (Color online) Occupation numbers given by
Eq.(14) for spin-up and spin-down states of the adatoms as a
function of q0.

of a QPT connected with the spin degree of freedom.
Panel (a) of Fig. 3 presents the DOS corresponding to the
regime q0 = 0.8 < qc1 where one can clearly see resolved
and spin-degenerate peaks in Eq. (9) for the DOSσjj . In
Fig. 3(b) spin-polarized peaks emerge when the Fano fac-
tor is placed within the boundaries qc1 < q0 = 1.2 < qc2,
while in panel (c) the case of q0 = 2.0 corresponds to the
limit of the phantom atom considered in detail in Ref.[1]
for which spin degeneracy is recovered.

To demonstrate that the system possesses BICs, we
compare the density of states DOSσjj for adatoms shown
in Fig.3 with the host local density of states ∆LDOSjjσ
depicted at Fig.4. As one can see, both quantities reveal
pronounced peaks (resonant states) placed at the same
positions. Particularly in panels (a) and (b) of Fig. 4 with
q0 = 0.8, we observe as aftermath of Eq.(A.13), degen-
erate spin-up and down components for the Fano dips
of ∆LDOSjlσ (l 6= j) interfering destructively with the
peaks found in ∆LDOSjjσ . As this interference is com-
pletely perfect, BICs emerge at the positions marked by
vertical lines crossing panels (a), (b) and (c) of this figure.
In panel (c) of the same figure, the total LDOS of Eq. (6)
reveals absence of peaks at those places in which such a
destructive interference occurs within panels (a) and (b).
The aforementioned positions without peaks in Fig. 4(c)
thereby give rise to BICs: the total LDOS that deter-
mines the conductance does not catch the same peaks
found in Fig. 3(a) for the adatoms. Thus the aforemen-
tioned invisibility of such resonant states points out that
electrons with opposite spins stay equally trapped within
these adatoms when q0 < qc1 and the pseudogap scales
as ∆ ∝ |ε|, |ε|2.
Panels (a), (b) and (c) of Fig. 5 correspond to the case

qc1 < q0 = 1.2 < qc2 where magnetic solutions become
possible, since the pseudogap is ruled by ∆ ∝ |ε|2. The

Figure 3. (Color online) (a) DOS for the case q0 < qc1. Well
resolved spin degenerate peaks are clearly visible. (b) DOS
for the case qc1 < q0 < qc2 with break of spin degeneracy. (c)
DOS for the case q0 > qc2 when spin degeneracy is recovered.

position of magnetic BICs is denoted by vertical dashed
lines. Consequently, in the domain qc1 < q0 < qc2, the
novelty due to a non-local coupling between graphene and
collinear adatoms lies on the possibility of tuning the spin
of the electrons trapped in the BICs of the adatoms. Such
a feature yields an emerging based suspended graphene

spintronics, in which a spin-filter of BICs rises as a fea-
sible application. Outside the critical domain, just spin-
degenerate BICs exist.

Let us now present the physical arguments that eluci-
date the emergence of the reported magnetic BICs, which
is indeed triggered by a QPT. Similar QPT appearing due
to the quadratic scaling of the pseudogap ∆ ∝ |ε|2 and
related breaking of the spin-degeneracy was discussed in
Ref. [8], where a double dot system was explored. In re-
gard of this dot setup, we highlight that the pseudogap
∆ ∝ |ε|2 is only revealed to be present after performing
a mapping of the original Hamiltonian into an effective
model, in particular, under restricted constraints. On the
other hand, we demonstrate that graphene emerges as
the natural platform wherein the pseudogap of Eq.(12)
includes not only the regime |ε|2, but also |ε|, |ε|2 and
|ε|3, just due to the non-local adatom-graphene coupling.
These regimes are accessible by means of the tuning of
the Fano factor q0, which here is proposed to be prac-
ticable by developing the Fermi velocity engineering14.
Moreover, the non-local coupling assumption improves
the emulation of the experimental reality, since the stan-
dard case of local coupling regime, which is widely em-
ployed in the literature, is indeed ideal and hides com-
pletely the reported QPT.

Fig.6 illustrates how spin-resolved DOS of the adatoms
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Figure 4. (Color online) Host local density of states corre-
sponding to the cases of non-magnetic BICs (panels (a), (b),
and (c)). BICs appear when a peak in Σj∆LDOSjjσ is fully
compensated by a Fano dip in Σj 6=l∆LDOSjlσ. Positions of
BICs are marked by vertical dashed lines. Panels (a) and (b)
correspond to spin resolved ∆LDOS. Lower panel (c) corre-
sponds to total LDOS defining the conductance.

depend on the Fano parameter. The variation of q0 in the
wide range below the critical value qc1 ≈ 1.1766 shifts the
position of the peaks corresponding to opposite spin com-
ponents equally, as it is shown in the upper panel. How-
ever, above the critical value the spin splitting abruptly
appears as it is shown at the lower panel of the figure,
which clearly indicates that the system undergoes a QPT.
The abrupt appearance of the spin splitting is intimately
connected with the step-like behavior observed in the oc-
cupation numbers shown in Fig. 2. Note that the increase
of the Fano factor above the second critical value qc2 leads
to the recovering of the spin-degeneracy as the regime of
the phantom atom with cubic scaling of the pseudogap
∆ ∝ |ε|3 is achieved.

Within the critical boundaries qc1 < q0 < qc2, the
quantity Re(Σ̃σ̄

jj̄
− Σ) ≡ J exch from Eq. (15) plays the

role of a Zeeman-like splitting of the levels εd in the
adatoms. This splitting arises from an intrinsic exchange
field J exch between the adatoms intermediated by the
graphene monolayer. Its value is ruled by the system nat-
ural control parameter, namely the Fano factor q0, which
drives the graphene system towards a QPT. As the upper
and lower adatoms magnetize equally, cf. Fig. 2, the cou-
pling between them is revealed as ferromagnetic. Note
that the dependence of the effective field on the Fano
parameter is non-monotonous: it drops abruptly when
q0 = qc2 ≈ 1.3582.

Figure 5. (Color online) Host local density of states corre-
sponding to the cases of magnetic BICs (panels (a), (b), and
(c)).
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Figure 6. (Color online) (a) Spin-degenerate crossover from
merged peaks of Eq.(9) for the adatoms DOS towards to re-
solved peaks. (b) QPT due to an abrupt spin-splitting of the
peaks.

IV. CONCLUSIONS

In summary, we have proposed a setup based on
graphene-adatom system in which magnetic BICs are
triggered by a quantum phase transition in the region
of the quadratic scaling of the pseudogap with energy,
∆ ∝ |ε|2. The control parameter which drives this tran-
sition is a Fano factor of interference tunable by changing
the slope of the Dirac cones in graphene band-structure.
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Appendix: LDOS derivation

To obtain the analytical expressions of the LDOS
given by Eq.(6) appearing in the conductance of Eq.(3),
we begin by applying the equation-of-motion approach
to Gσ = − i

~
θ (τ) Tr{̺2D[Ψσ(τ),Ψ

†
σ(0)]+}, with Eq.(5)

rewritten as

Ψσ =
1

2π

√

πΩ0

N

∑

s

ˆ

√

|k|(1− q0
~vFk

D
)dkcskσ

+ (πD0v0)
∑

j

Cjdjσ, (A.1)

expressed in terms of Cj = (πD0v0)
−1(td1

/tc)δj1. Substi-
tuting Eq. (A.1) in Gσ, one finds

Gσ =

(

1

2π

√

πΩ0

N

)2
∑

ss̃

ˆ

√

|k|(1 − q0
~vFk

D
)dk

×
√

|q|(1− q0
~vF q

D
)dqGcskσcs̃qσ + (πD0v0)

∑

js

Cj

×

(

1

2π

√

πΩ0

N

)

ˆ

√

|k|(1− q0
~vFk

D
)dk

× (Gdjσcskσ
+ Gcskσdjσ

) + (πD0v0)
2
∑

jl

CjClGdjσdlσ,

(A.2)

with the new Green’s functions Gcskσcs̃qσ ,
Gdjσcskσ

, Gcskσdjσ
and Gdjσdlσ

to be deter-
mined. To this end, we first consider Gcskσcs̃qσ =

− i
~
θ (τ) Tr{̺2D[cskσ (τ) , c†s̃qσ (0)]+}, whose time deriva-

tive ∂τ ≡ ∂
∂τ gives

∂τGcskσcs̃qσ = −
i

~
δ (τ) Tr{̺2D[cskσ (τ) , c†s̃qσ (0)]+}

−
i

~
(~vF k)Gcskσcs̃qσ −

i

~

∑

j

VkGdjσcs̃qσ ,

(A.3)

where we have used

i~∂τcskσ (τ) = [cskσ ,H2D] = (~vFk)cskσ (τ)

+
∑

j

Vkdjσ (τ) . (A.4)

In the energy domain after performing the time Fourier
transform, we solve Eq. (A.3) for G̃cskσcs̃qσ and obtain

G̃cskσcs̃qσ =
δ (k − q) δss̃
ε+ − ~vFk

+
∑

j

Vk

ε+ − ~vFk
G̃djσcsqσ .

(A.5)

Notice that we also need to calculate the mixed Green’s
function G̃djσcsqσ . We then define the advanced Green’s

function Fdjσcsqσ = i
~
θ (−τ) Tr{̺2D[d

†
jσ (0) , csqσ (τ)]+},

whose equation-of-motion reads,

∂τFdjσcsqσ = −
i

~
δ (τ) Tr{̺2D[d

†
jσ (0) , csqσ (τ)]+}

−
i

~
(~vF q)Fdjσcsqσ −

i

~

∑

l

VqFdjσdlσ
, (A.6)

where we have used once again Eq. (A.4), interchanging
k ↔ q. The Fourier transform of Eq. (A.6) leads to

ε−F̃djσcsqσ = (~vF q)F̃djσcsqσ +
∑

l

VqF̃djσdlσ
, (A.7)

with ε− = ε − i0+. Applying the property G̃djσcsqσ =

(F̃djσcsqσ )
† on Eq. (A.7), we show that

ε+G̃djσcsqσ = (~vF q)G̃djσcsqσ +
∑

l

VqG̃djσdlσ
, (A.8)

G̃djσcsqσ =
∑

l

Vq

ε+ − ~vF q
G̃djσdlσ

(A.9)

and analogously,

G̃csqσdjσ
=
∑

l

Vq

ε+ − ~vF q
G̃dlσdjσ

. (A.10)

Now we substitute Eq. (A.9) into Eq. (A.5) and the
latter, together with Eqs. (A.10) and (11) for the self-
energy splitted as

Σ =
∑

s

ˆ

dk
VkVk

ε+ − ~vF k
= πv20D0(Ãj − iBj), (A.11)

into Eq. (A.2) in the energy domain, which results in

G̃σ =

(

1

2π

√

πΩ0

N

)2
∑

s

ˆ

(1− q0
~vF k

D
)2kdk

1

ε+ − εk

+ (πD0v0)
2
∑

jl

(Ãj − iBj)G̃djσdlσ
(Ãl − iBl)

+ (πD0v0)
2
∑

jl

Cj(Ãl − iBl)(G̃djσdlσ
+ G̃dlσdjσ

)

+ (πD0v0)
2
∑

jl

CjClG̃djσdlσ
. (A.12)



7

Thus after some algebra via the evaluation of
− 1

π

∑

σ Im(G̃σ), we determine Eq.(6) as the LDOS probed
by the STM tip, with ∆LDOSjlσ = −(πv20D

2
0)Im[(Al − iBl)G̃dlσdjσ

(Aj − iBj)],

(A.13)

with Aj =
1

πv2

0
D0

ReΣ+δj1(π
2v20D

2
0)

−1/2(td1/tc) and Bj =

− 1
πv2

0
D0

ImΣ.
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