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We propose an alternative fidelity measure �namely, a measure of the degree of similarity� between quantum
states and benchmark it against a number of properties of the standard Uhlmann-Jozsa fidelity. This measure is
a simple function of the linear entropy and the Hilbert-Schmidt inner product between the given states and is
thus, in comparison, not as computationally demanding. It also features several remarkable properties such as
being jointly concave and satisfying all of Jozsa’s axioms. The trade-off, however, is that it is supermultipli-
cative and does not behave monotonically under quantum operations. In addition, metrics for the space of
density matrices are identified and the joint concavity of the Uhlmann-Jozsa fidelity for qubit states is
established.

DOI: 10.1103/PhysRevA.78.052330 PACS number�s�: 03.67.�a, 89.70.Cf

I. INTRODUCTION

The understanding of the set of density matrices as a Rie-
mannian manifold �1� implies that a notion of distance can
be assigned to any pair of quantum states. In quantum infor-
mation science, for instance, distance measures between
quantum states have proved to be useful resources in ap-
proaching a number of fundamental problems such as quan-
tifying entanglement �2,3�, the design of optimized strategies
for quantum control �4,5�, and quantum error correction
�6–12�. In addition, the concept of distinguishability between
quantum states �13� can be made mathematically rigorous
and physically insightful thanks to the close relationship be-
tween certain metrics for the space of density matrices and
the error probability arising from various versions of the
quantum hypothesis-testing problem �14�. Distance measures
are also regularly used in the laboratory to verify the quality
of the produced quantum states.

A widely used distance measure in the current literature
�or, more precisely, a fidelity measure—that is, a measure of
the degree of similarity—between two general density matri-
ces�, is the so-called Uhlmann-Jozsa fidelity F. Historically,
this measure had its origins in the 1970s through a set of
works by Uhlmann and Alberti �15–18�, who studied the
problem of generalizing the quantum mechanical transition
probability to the broader context of *-algebras. The use of
the term fidelity to designate Uhlmann’s transition probabil-
ity formula is much more recent and initiated in the works of
Schumacher �19� and Jozsa �20�. Indeed, in an attempt to
quantify the degree of similarity between a certain mixed
state � and a pure state ���, Schumacher dubbed the transi-

tion probability �� �� ��� the fidelity between the two states.
In parallel, Jozsa recognized Uhlmann’s transition probabil-
ity formula as a sensible extension of Schumacher’s fidelity,
where now the measure of similarity is related to a pair of
mixed states � and �. Ever since, Uhlmann’s transition prob-
ability formula has been widely accepted as the generaliza-
tion of Schumacher’s fidelity.

The prevalence of this measure as one of the most used
notions of distance in quantum information is not accidental,
but largely supported on a number of required and desired
properties for the role. For example, F satisfies all of Jozsa’s
axioms; that is, besides recovering Schumacher’s fidelity in
the case where one of the states is pure, the following three
additional properties also hold: First, F equals unity if and
only if it is applied to two identical states; in other cases, it
lies between 0 and 1. Second, it is symmetric; i.e., the fidel-
ity between � and � is the same as that between � and �.
Third, it is invariant under any unitary transformation on the
state space. Nevertheless, F is not the unique measure satis-
fying these properties. A prominent alternative which also
complies with Jozsa’s axioms and shares many other proper-
ties of F is given by the nonlogarithmic variety of the quan-
tum Chernoff bound Q, recently determined in Ref. �21�. In
analogy with its classical counterpart �22�, the quantum
Chernoff bound determines—in the limit of asymptotically
many copies—the minimum error probability incurred in dis-
criminating between two quantum states �21,23�.

Despite fulfilling the properties listed above, both F and
Q are, in general, unsatisfying measures from a practical
computational viewpoint. Although F can be expressed in a
closed form in terms of � and �, it involves successive com-
putation of the square roots of Hermitian matrices, which
often compromises its use in analytical computations and
numerical experiments, especially when the fidelity measure
must be computed many times. Even more serious is the case
of Q, which to date has only been defined variationally as the
result of an optimization problem �23�. The question that
naturally arises is whether an easy-to-compute generalization
of Schumacher’s fidelity can be obtained. In this paper, we
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provide a positive answer to this question and a thorough
analysis of our proposed alternative fidelity measure FN.

Recently, we became aware of the very recent work of
Miszczak et al. �24� in which FN was introduced as an upper
bound to the Uhlmann-Jozsa fidelity. In many ways our
analysis of FN is complimentary to that provided in Ref.
�24�; results in common are noted in the corresponding sec-
tions of our paper.

Our paper is structured as follows. In order to provide a
concrete ground for our proposal of FN as an alternative
fidelity measure, we first reexamine, in Sec. II, a set of basic
properties of the Uhlmann-Jozsa fidelity. In Sec. III we for-
mally introduce FN and analyze it in the spirit of the prop-
erties reviewed in Sec. II. The computational efficiency of
FN is contrasted with a number of previously known distance
or fidelity measures in Sec. IV. We summarize our main re-
sults and discuss some possible avenues for future research
in Sec. V.

II. UHLMANN-JOZSA FIDELITY

In this section, we will briefly survey some physically
appealing features inherent to the Uhlmann-Jozsa fidelity F.
In Sec. III, these features will be used as a reference for
characterizing the proposed fidelity measure.

A. Preliminaries

The Uhlmann-Jozsa fidelity F was originally introduced
as a transition probability between two generic quantum
states � and � �15�:

F��,�� ª max
���,���

�������2 = �Tr�		��	���2. �1�

Here, ��� and ��� are restricted to be purifications of � and �,
while the second equality indicates that the maximization
procedure can be explicitly evaluated. At this stage, it is
worth noting that it is not uncommon to find 	F being re-
ferred to, instead, as the fidelity �see, for example, Ref. �22��.

In Ref. �20�, Jozsa conjectured that Eq. �1� was the unique
expression that satisfies a number of natural properties ex-
pected for any generalized notion of fidelity �25�. Through-
out, we shall refer to these as Jozsa’s axioms.

�1� Normalization—i.e., F�� ,��� �0,1� with the upper
bound attained if and only if �=� �the identity of indiscern-
ible property�.

�2� Symmetry under swapping of the two states—i.e.,
F�� ,��=F�� ,��.

�3� Invariance under any unitary transformation U of the
state space—i.e., F�U�U† ,U�U†�=F�� ,��.

�4� Consistency with Schumacher’s fidelity when one of
the states is pure—i.e.,

F��, ������� = ������� �2�

for arbitrary � and ���.
The proof that F satisfies all of Jozsa’s axioms follows

easily from the variational definition of Eq. �1� �see, e.g.,
Ref. �22� for technical details�. The remainder of this section
discusses a number of less immediate properties of F.

B. Concavity properties

The concavity property of quantities like entropy, mutual
information, and fidelity measure are often of theoretical in-
terest in the quantum information community �22�. In this
regard, it is worth noting that a useful feature of F is its
separate concavity in each of its arguments; i.e., for p1 , p2
�0, p1+ p2=1, and arbitrary density matrices �1, �2, �1, and
�2, we have

F�p1�1 + p2�2,�1� � p1F��1,�1� + p2F��2,�1� . �3�

By symmetry, concavity in the second argument follows
from Eq. �3�. Separate concavity can be proven �15,20� using
the variational definition of F from Eq. �1�.

While it is known that 	F is jointly concave �16,26�, i.e.,

	F�p1�1 + p2�2,p1�1 + p2�2�

� p1	F��1,�1� + p2	F��2,�2� , �4�

it is also known that the Uhlmann-Jozsa fidelity F does not,
in general, share the same enhanced concavity property �27�.

C. Multiplicativity under tensor products

Another neat mathematical property of F�� ,�� is that it is
multiplicative under tensor products: for any density matri-
ces �1, �2, �1, and �2:

F��1 � �2,�1 � �2� = F��1,�1�F��2,�2� . �5�

This identity follows easily from the following facts: for any
Hermitian matrices A and B, �i� Tr�A � B�=Tr�A�Tr�B� and
�ii� 	A � B=	A � 	B.

An immediate consequence of this result is that for two
physical systems, described by � and �, a measure of their
degree of similarity given by F remains unchanged even
after appending each of them with an uncorrelated ancillary
state �—i.e., F�� � � ,� � ��=F�� ,��.

D. Monotonicity under quantum operations

Given that F�� ,�� serves as a kind of measure for the
degree of similarity between two quantum states � and �,
one might expect that a general quantum operation E will
make them less distinguishable and, hence, more similar ac-
cording to F �22�:

F„E���,E���… � F��,�� . �6�

Indeed, it is now well known that Eq. �6� holds true �18� for
an arbitrary quantum operation described by a completely
positive trace-preserving �CPTP� map E :��E���. Inequal-
ity �6� qualifies F as a monotonically increasing measure
under CPTP maps and can be considered the quantum analog
of the classical information-processing inequality—which
expresses that the amount of information should not increase
via any information processing.

On a related note, it is worth noting that any measure M
which is �i� unitarily invariant, �ii� jointly concave �convex�,
and �iii� invariant under the addition of an ancillary system is
also monotonically increasing �decreasing� under CPTP
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maps �28�. Clearly, since 	F satisfies all the above-
mentioned conditions, Eq. �6� also follows by simply squar-
ing the corresponding monotonicity inequality for 	F.

E. Related metrics

The Uhlmann-Jozsa fidelity by itself is not a metric �for a
quick review of metrics, see Appendix A�. However, one
may well expect that a metric, which is a measure of dis-
tance, can be built up from a measure of similarity such as F.
Indeed, the functionals

A�F��,��� ª arccos�	F��,��� , �7�

B�F��,��� ª 	2 − 2	F��,�� , �8�

C�F��,��� ª 	1 − F��,�� �9�

exhibit such metric properties �see Refs. �22,31–35� and also
Appendix B 3 for more details�. In particular, these function-
als are now commonly known in the literature, respectively,
as the Bures angle �22�, the Bures distance �32,33�, and the
sine distance �35�.

F. Trace distance bounds

An important distance measure in quantum information is
the metric induced by the trace norm � · �tr, which is com-
monly referred to as the trace distance �22�:

D��,�� =
1

2
�� − ��tr. �10�

The trace distance is an exceedingly successful distance mea-
sure: it is a metric �as is any distance induced by norms�,
unitarily invariant �36�, jointly convex �22�, decreases under
CPTP maps �37�, and in the qubit case, is proportional to the
Euclidean distance between the Bloch vectors in the Bloch
ball. The trace distance is also closely related to the minimal
probability of error on attempts to distinguish between a
single copy of two nonorthogonal quantum states �38�. For
all of these reasons, one is generally interested to determine
how other distance measures relate with the trace distance.

The following functions of the Uhlmann-Jozsa fidelity
were shown in Ref. �39� to provide tight bounds for D �40�:

1 − 	F��,�� � D��,�� � 	1 − F��,�� . �11�

In fact, the stronger lower bound 1−F�D holds if � and �
have support on a common two-dimensional Hilbert space
�41� �e.g., any pair of qubit states� or if at least one of the
states is pure �22�.

From these inequalities, one can conclude a type of quali-
tative equivalence between the Uhlmann-Jozsa fidelity F and
the trace distance D: whenever F is small, D is large and
whenever F is large, D is small.

III. ALTERNATIVE FIDELITY MEASURE

A. Preliminaries

We shall now turn attention to our proposed measure of
the degree of similarity between two quantum states � and
�—namely,

FN��,�� = Tr���� + 	1 − Tr��2�	1 − Tr��2� . �12�

This is simply a sum of the Hilbert-Schmidt inner product
between � and � and the geometric mean between their lin-
ear entropies. It is worth noting that the same quantity—by
the name superfidelity—has been independently introduced
in Ref. �24� as an upper bound for F.

Remarkably, when applied to qubit states, FN is precisely
the same as F. This observation follows easily from the fact
that for density matrices of dimension d=2, it is valid to
write

�FN��,���d=2 = Tr���� + 2	det���	det��� , �13�

which is just an alternative expression of F for qubit states
�33,42�.

When d�2, however, FN no longer recovers F, but can
be seen as a simplified version of the fidelity measure pro-
posed by Chen and collaborators �43�, which reads as

FC��,�� =
1 − r

2
+

1 + r

2
FN��,�� , �14�

where r=1 / �d−1� and d is the dimension of the state space
of � and �. Moreover, it is straightforward to verify that
while FN reduces to the Schumacher’s fidelity �the right-
hand side of Eq. �2�� when one of the states is pure; the same
cannot be said for FC.

It is not difficult to see from Eq. �12� that FN satisfies
Jozsa’s axioms 2, 3, and 4 as enumerated in Sec. II A. The
non-negativity of FN required by axiom 1 is also immediate
from the definition. As a result, FN is an acceptable gener-
alization of Schumacher’s fidelity according to Jozsa’s axi-
oms if the following proposition is true.

Proposition III.1. FN�� ,���1 holds for arbitrary density
matrices � and �, with saturation if and only if �=�.

Proof. To begin with, recall that any d�d density matrix
can be expanded in terms of an orthonormal basis of Hermit-

ian matrices 
vk�k=0
d2−1 such that Tr�viv j�=	ij �see, for example,

Refs. �44,45��. In particular, if we let 
� ª �v0 , . . . ,vd2−1�,
then � and � admit the following decomposition:

� = r� · 
� and � = s� · 
� , �15�

where r� and s� are real vectors with d2 entries �corresponding
to the expansion coefficients which can be determined using
the orthonormality condition�. Since � and � are density
matrices, r� and s� satisfy 0�r� ·s��1 and r ,s�1, where r
= �r�� and s= �s��.

Using the expansion of Eq. �15� in Eq. �12�, we arrive at
the following alternative expression of FN,

fN�r�,s�� = r� · s� + 	1 − r2	1 − s2 �16�

=R� · S� , �17�

where, in the second line, we have defined two unit vectors
in Rd2+1, explicitly,
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R� ª �r�,	1 − r2� and S� ª �s�,	1 − s2� . �18�

The normalization of R� and S� implies that FN�� ,��=R� ·S�

�1, with saturation if and only if R� =S� , or equivalently �
=�. �

B. Concavity properties

As with 	F, the measure FN is jointly concave in its two
arguments; i.e., for p1 , p2�0, p1+ p2=1, and arbitrary den-
sity matrices �1, �2, �1, and �2, we have

FN�p1�1 + p2�2,p1�1 + p2�2�

� p1FN��1,�1� + p2FN��2,�2� . �19�

Since F fails to be jointly concave in general, FN has a
stronger concavity property. Remarkably, given the equiva-
lence between F and FN in the d=2 case, the result of this
section implies that F is jointly concave when restricted to
qubit states.

The rest of this section concerns a proof of this concavity
property of FN. We start by proving the following lemma,
which provides a useful alternative expression of inequality
�19�.

Lemma III.1. Define a function F : �0,1�→R by

F�x� ª �r� + xu�� · �s� + xv�� + 	1 − �r� + xu��2	1 − �s� + xv��2.

�20�

Given the density matrices �1, �2, �1, and �2, there exist
vectors r� ,s� ,u� ,v� �Rd2

and x� �0,1� such that the inequality

F�x� � �1 − x�F�0� + xF�1� �21�

is equivalent to Eq. �19�.
Proof. The proof is by construction. Using the parametri-

zation of Eq. �15� for the density matrices in inequality �19�,
we obtain the following equivalent inequality for the vectors
r�i and s�i:

fN�p1r�1 + p2r�2,p1s�1 + p2s�2� � p1fN�r�1,s�1� + p2fN�r�2,s�2� ,

�22�

where the function fN was defined in Eq. �16�.
A straightforward computation shows that inequality �21�

is identical to inequality �22� when we identify x� p2, 1−x
� p1, and set

r� = r�1, u� = r�2 − r�1,

s� = s�1, v� = s�2 − s�1. �23�

If F�x� has negative concavity in x� �0,1�, then inequal-
ity �21� is automatically satisfied as it establishes that the
straight line connecting the points (0,F�0�) and (1,F�1�) lies
below the curve 
(x ,F�x�) �x� �0,1��. As a result, the joint
concavity of FN is proved with the following proposition.

Proposition III.2. For x� �0,1�, and r� ,s� ,u� ,v� �Rd2
speci-

fied in Eq. �23�, the function F�x� �cf. Eq. �20�� satisfies

d2F�x�
dx2 � 0 �24�

and hence FN is jointly concave.
The proof of this proposition is given in Appendix B 1.

C. Multiplicativity under tensor products

In contrast with F, the measure FN is not multiplicative
under tensor products. In fact, it is generally not even invari-
ant under the addition of an uncorrelated ancilla prepared in
the state �. In this case, FN between the resulting states reads
as

FN�� � �,� � ��

= Tr����Tr��2� + 	1 − Tr��2�Tr��2�	1 − Tr��2�Tr��2� ,

where the left-hand side equals FN�� ,�� if and only if
Tr��2�=1 or, in other words, if and only if � is a pure state.
More generally, it can be shown that FN is supermultiplica-
tive, i.e.,

FN��1 � �2,�1 � �2� � FN��1,�1�FN��2,�2� . �25�

A proof of this property is given in Appendix B 2; a similar
proof was independently obtained in Ref. �24�.

D. Monotonicity under quantum operations

That FN is only supermultiplicative may be a first sign
that it may not behave monotonically under CPTP maps. In
fact, as we shall see below, Ozawa’s counterexample �46� to
the claimed monotonicity of the Hilbert-Schmidt distance
�47� can also be used to show that FN does not behave mono-
tonically under CPTP maps.

Let �̃ and �̃ be two two-qubit density matrices, written in
the product basis as

�̃ =
1

2

1 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0
� and �̃ =

1

2

0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 1
� ,

�26�

and consider the �trace-preserving� quantum operations of
tracing over the first or second qubit. A straightforward com-
putation shows that if the first qubit is traced over, then

FN„Tr1��̃�,Tr1��̃�… = 1 �
1

2
= FN��̃,�̃� , �27�

which satisfies the desired monotonicity property. However,
if instead the second subsystem is discarded, we find

FN„Tr2��̃�,Tr2��̃�… = 0 �
1

2
= FN��̃,�̃� . �28�

Together, Eqs. �27� and �28� show that FN is neither mono-
tonically increasing nor decreasing under general CPTP
maps.

A natural question that follows is whether FN features a
weaker form of monotonicity. For example, do arbitrary pro-
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jective measurements—with the measurement outcomes
forgotten—give rise to a higher value of FN for the resulting
pair of states? An affirmative answer would follow from a
proof of the inequality

FN��
i

Pi�Pi,�
i

Pi�Pi� � FN��,�� �29�

for any complete set of orthonormal projectors Pi and for
arbitrary density matrices � and �.

It is a simple exercise to prove Eq. �29� for the particular
case where either of the commutation rules �Pi ,��=0 or
�Pi ,��=0 is observed for all values of i. Whether the same
conclusion can be drawn for the more general, noncommu-
tative cases remains to be seen. In this regard, we note that a
preliminary numerical search favors the validity of Eq. �29�.

E. Related metrics

In parallel to the metrics A�F�, B�F�, and C�F� intro-
duced in Sec. II E, we define

A�FN��,��� ª arccos�	FN��,��� , �30�

B�FN��,��� ª 	2 − 2	FN��,�� , �31�

C�FN��,��� ª 	1 − FN��,�� , �32�

and prove that while C�FN� preserves the metric properties,
both A�FN� and B�FN� do not always obey the triangle in-
equality

X�FN��,��� � X�FN��,��� + X�FN��,��� , �33�

where X here refers to either A, B, or C. For example, con-
sider the qutrit density matrices, �=13 /3,

� = 
1 0 0

0 0 0

0 0 0
� and � = 
0.90 0.04 0.03

0.04 0.05 0.02

0.03 0.02 0.05
� . �34�

Numerical computation of the quantities appearing in the
triangle inequality gives rise to Table I. Note that for X
=A ,B, the first column dominates the second; i.e., the tri-
angle inequality is violated and therefore neither A�FN� nor
B�FN� is metrics. For X=C, no violation is observed for the
above density matrices. Next, we prove that this is the case
for any three density matrices �, �, and �; thus, C�FN� is a
metric.

Proposition III.3. The quantity C�FN�� ,��� is a metric
for the space of density matrices.

To prove this proposition, we will make use of the follow-
ing theorem due to Schoenberg �48� �see also �49�, Chap. 3,
Proposition 3.2�. We state here an abbreviated form of the
theorem sufficient for our present purposes.

Theorem III.1 (Schoenberg). Let X be a nonempty set and
K :X�X→R a function such that K�x ,y�=K�y ,x� and
K�x ,y��0 with saturation if and only if x=y, for all x ,y
�X. If the implication

�
i=1

n

ci = 0 ⇒ �
i,j=1

n

K�xi,xj�cicj � 0 �35�

holds for all n�2, 
x1 , . . . ,xn��X, and 
c1 , . . . ,cn��R, then
	K is a metric.

We make a small digression at this point to remark that, in
spite of its successful application on the grounds of classical
probability distance measures �50–52�, Schoenberg’s theo-
rem has received almost no attention by the quantum infor-
mation community. In this paper, besides proving the metric
properties of C�FN�, we will also make use of Schoenberg’s
theorem to provide independent proofs of the metric proper-
ties of B�F�� ,��� and C�F�� ,��� �see Appendix B 3�.

Proof of Proposition III.3. Clearly, from the definition of
C2�FN�� ,���, it is easy to see that it inherits from FN�� ,��
the property of being symmetric in its two arguments and
that C2�FN�� ,����0 with saturation if and only if �=�. So,
to apply Theorem III.1, we just have to show that for any set
of density matrices 
�i�i=1

n �n�2� and real numbers 
ci�i=1
n

such that �i=1
n ci=0, it is true that

�
i,j=1

n

C2�FN��i,� j��cicj � 0. �36�

This follows straightforwardly by exploiting the zero-sum
property of the �real� coefficients ci and the linearity of the
trace,

�
i,j=1

n

�1 − Tr��i� j� − 	1 − Tr��i
2�	1 − Tr�� j

2��cicj

= − Tr���
i=1

n

ci�i�2� − ��
i=1

n

ci
	1 − Tr��i

2��2

� 0,

�37�

which concludes the proof. �
We note that a proof of the metric property of

	2C�FN�� ,���—by the name modified Bures distance—was
independently provided by Ref. �24�. The proof provided
above is significantly shorter thanks to the power of Schoe-
nberg’s theorem.

F. Trace distance bounds

In Sec. II F, we have seen that a kind of qualitative
equivalence between D and F can be established through the
bounds on D given by functions of F; cf. Eq. �11�. Here, we
will provide similar bounds on D in terms of functions of
FN.

Proposition III.4. For any two density matrices � and � of

TABLE I. A numerical test of the triangle inequality for A�FN�,
B�FN�, and C�FN�.

X X�FN�� ,��� X�FN�� ,
��+X�FN�
 ,���

A 0.9553 0.9241

B 0.9194 0.9137

C 0.8165 0.8828
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dimension d, the trace distance D�� ,�� satisfies the follow-
ing upper bound:

D��,�� �	 r

2
	1 − FN��,�� , �38�

where rª rank��−��. Moreover, this upper bound on D can
be saturated with states of the form

� =
U diag��d�U†

Tr�diag��d��
and � =

U diag�P��d��U†

Tr�diag��d��
,

�39�

where U is an arbitrary unitary matrix of dimension d, �d is
an ordered list of d elements taking values in the set 
�1 ,�2�
��1 ,�2�0, but not simultaneously zero� and P��d� is the list
formed by some permutation of the elements in �d.

Proof. Note that the product of square roots in the expres-
sion of FN, Eq. �12�, is the geometric mean between the
linear entropies of � and �. It then follows from the inequal-
ity of arithmetic and geometric means that

1 − Tr��2�
2

+
1 − Tr��2�

2
� 	1 − Tr��2�	1 − Tr��2� ,

�40�

which can be reexpressed as the following inequality after
summation of Tr���� to both sides:

�� − ��HS � 	2�1 − FN��,��� . �41�

Here, �X�HSª
	Tr�X†X� is the Hilbert-Schmidt norm �also

known as Frobenius norm�, defined for an arbitrary matrix X.
The Hilbert-Schmidt norm and the trace norm �X�tr
ªTr�	X†X� are related according to �53�

�X�tr � 	x�X�HS, �42�

where xª rank�X�. Used in Eq. �41�, the above inequality
leads to the desired result

D��,�� =
1

2
�� − ��tr �	 r

2
	1 − FN��,�� . �43�

To prove that the states in Eq. �39� saturate this bound, we
first note that because those states are isospectral, their linear
entropies are identical and hence inequality �40� is saturated.
To prove saturation of inequality �42�, simply use Eq. �39� to
compute

�� − ��tr = Tr�	�� − ��2� =
r��1 − �2�

Tr�diag��d��
, �44�

�� − ��HS = 	Tr��� − ��2� =
	r��1 − �2�

Tr�diag��d��
, �45�

from which the identity ��−��tr=	r��−��HS is immedi-
ate. �

How good are these upper bounds? With some thought, it
is not difficult to conclude that the states arising from Eq.
�39� can only have even r and are thus unable to saturate the
upper bound of Eq. �38� for odd r. Nonetheless, from our

numerical studies, it seems like the absolute upper bound—
corresponding to the choice r=d on the right-hand side of
Eq. �38�—is actually unachievable by any states if d is odd.
An illustration of this peculiarity can be seen in Fig. 1�a�,
where the upper bound corresponding to r=3 is well sepa-
rated from the region attainable by physical states. In con-
trast, for every even d, the states given by Eq. �39� do trace
out a tight boundary for the region attainable with physical
states, as shown in Fig. 1�b� for d=6.

On the other hand, it can also be seen from Fig. 1 that no
points occur in the region where D�1−FN. Indeed, inten-
sive numerical studies for d=3,4 , . . . ,50 have not revealed a
single pair of density matrices which contributed to a point
in this region. This suggests that the following lower bound
on D, in terms of FN, may well be established.

Conjecture III.1. The trace distance D�� ,�� and the mea-
sure FN�� ,�� between two quantum states � and � satisfy

(a)

(b)

FIG. 1. �Color online� Plot of the trace distance D�� ,�� vs 1
−FN�� ,�� for 4�106 pairs of randomly generated � and � with
�a� d=3 and �b� d=6. The darker �blue� points are generated using
pairs of mixed states whereas the lighter �green� points are gener-
ated using at least one pure state. The antidiagonal solid line is the
conjectured lower bound, whereas the upper bounds given by Eq.
�38� are represented by the dashed curves �cyan�—one for each
integer value of r� �2,d�. A gap can be clearly noticed in plot �a�
between the distribution of states and the absolute upper bound—
i.e., the right-hand side of inequality �38� with r=d. Such a gap
occurs whenever d is odd. However, no gap is observed in plot �b�
between the bulk of randomly generated states and the absolute
upper bound. In fact, this bound can be saturated by density matri-
ces of the form given by Eq. �39� whenever d is even.
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D��,�� � 1 − FN��,�� . �46�

In relation to this, it is also worth noting that the following
�weaker� lower bound can readily be established via a recent
result given in Ref. �24�:

Proposition III.5. The trace distance D�� ,�� and the mea-
sure FN�� ,�� between two quantum states � and � satisfy
the inequality

D��,�� � 1 − 	FN��,�� . �47�

Proof. This lower bound on D follows immediately from
the lower bound on D given in inequality �11� and the in-
equality F�FN recently established in Ref. �24�. �

As with the Uhlmann-Jozsa fidelity F, we can thus infer
that whenever FN is large enough, D is close to zero and
whenever FN is close to zero, D is close to unity.
However—as should be clear from Fig. 1�b�—the converse
implication is not necessarily true.

IV. COMPUTATIONAL EFFICIENCY

For two general density matrices � and �, analytical
evaluation of the Uhlmann-Jozsa fidelity F�� ,�� can be a
formidable task. This is in sharp contrast with FN�� ,��,
which involves only products and traces of density matrices.
Even at the numerical level—due to the complication in-
volved in evaluating the square root of a Hermitian matrix—
the computation of F�� ,�� can be rather resource consum-
ing. For a quantitative understanding of the computational
efficiency, we have performed a numerical comparison of the
time required to calculate the fidelity measures F and FN, the
nonlogarithmic variety of the quantum Chernoff bound Q,
and the trace distance D. We have implemented the compu-
tations in both Matlab and C; we present the Matlab codes
for reasons of accessibility and succinctness, while the C
codes provide accurate timings without the overhead of the
Matlab interpreter.

The time required to evaluate each function was estimated
by averaging the times for 100 pairs of randomly generated
d-dimensional density matrices �54�. Results are shown in
Fig. 2 as a function of d. The Matlab codes are presented in
Appendix C; we attempted to make these codes as efficient
as possible within the constraints of the Matlab environment.
Corresponding C codes were implemented as Matlab MEX-
files for convenience and can be found online �56�. Our C
implementation directly calls the LAPACK and BLAS librar-
ies included in the Matlab distribution for eigenvalue decom-
positions and matrix operations. The minimization required
in the computation of Q was performed using the Brent mini-
mizer from the GNU Scientific Library �57�.

The results shown in Fig. 2 are consistent with the ex-
pected algorithmic complexity: Both F and Q require two
Hermitian diagonalizations, taking an expected O�d3� opera-
tions each �58�. Computing Q is the slowest since it requires
both sets of eigenvectors, while F requires only eigenvalues
from one of the diagonalizations. Next fastest is the compu-
tation of D which requires only eigenvalues from a single
diagonalization. All of F, Q, and D appear to require an
asymptotic O�d3� operation because of the necessity of di-

agonalization or some other method for computing functions
of the input matrices. On the other hand, our proposed fidel-
ity measure FN requires only three Hilbert-Schmidt inner
products, with asymptotic performance O�d2�. Figure 2
clearly shows that the practical numerical evaluation of FN is
dramatically faster than the evaluation of F, D, or Q. This
raises the prospect of using FN as a numerically efficient
estimate of distance measures such as F �24� and
D—particularly for small d where the bounds proven in Sec.
III F are tighter. As the dimension increases, the computa-
tional advantage of using FN becomes even greater, but the
quality of the estimate drops.

V. CONCLUDING REMARKS

In this paper, we have proposed the quantity FN as an
alternative fidelity measure �namely, a measure of the degree
of similarity� between an arbitrary pair of mixed quantum
states. This measure and the prevailing Uhlmann-Jozsa fidel-
ity F and the nonlogarithmic variety of the quantum Cher-
noff bound Q �21� are, to the best of our knowledge, the only
known fidelity measures between density matrices that com-
ply with Jozsa’s axioms �20�. That is, F, Q, and FN are the
only known measures that generalize to pairs of mixed states
the concept of fidelity introduced by Schumacher between a
pure and a mixed state �19�.

The simplicity of FN is in sharp contrast with F and Q
since it involves only products of density matrices. Numeri-
cally, this leads to significant reduction in computation time
for FN�� ,�� over F�� ,��, especially for higher-dimensional
systems.

Besides being easier to compute, FN has also been shown
to preserve �and even enhance� a number of the useful prop-
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FIG. 2. �Color online� A semilog plot of the average computa-
tion time in Matlab and C for the fidelity measures F ���, FN ���,
the nonlogarithmic variety of the quantum Chernoff bound Q ���,
and the trace distance D ��� as a function of the dimension d of the
state space. The smaller and larger markers correspond to timings
from Matlab and C, respectively. Computations were performed on
a 2.6-GHz Intel Pentium 4 CPU.
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erties of F and Q. For example, we have shown that FN is a
jointly concave measure, that it can be used to place upper
and lower bounds on the value of the trace distance, and that
it gives rise to a new metric for the space of density matrices.
A remarkable consequence of the joint concavity of FN is
that F is also jointly concave when restricted to a pair of
qubit states—an interesting problem which remained un-
solved thus far �59,60�.

Our measure, nevertheless, is not without its drawbacks.
To begin with, FN—unlike measures such as F or Q—does
not behave monotonically under CPTP maps. In addition, it
does not necessarily vanish when applied to any pair of
mixed states, which are otherwise recognized to be com-
pletely different according to F, Q, or their trace distance D.
In fact, the explicit dependence on the linear entropies of �
and � gives rise to the following undesirable feature: the
value of FN between two completely mixed states residing in
disjoint subspaces can get arbitrarily close to unity as the
dimension of the state space tends to infinity.

The undesirable features of FN provide a clue as to when
FN may not be the preferred measure of similarity between
two quantum states: We know that FN does not measure the
similarity between two high-dimensional, highly mixed
states �i.e., states having non-negligible linear entropy� in the
same way that measures like F, Q, or D would. In these
cases, the interpretation of FN as a measure of similarity
between quantum states must be carried out with extra cau-
tion.

With this in mind, we nevertheless see FN as an attractive
alternative to F. Even when out of its range of applicability,
it follows from a very recent result of Miszczak et al. �24�
that FN provides an upper bound on the Uhlmann-Jozsa fi-
delity F. Moreover, it seems promising that FN between any
two quantum states may be measured directly in the labora-
tory, without resorting to any state tomography protocol �24�.

Let us now briefly mention some possibilities for future
research that stem from the present work. To begin with, it
would be interesting to search for a quantitative relationship
between FN and Q analogous to that between FN and D
established in this paper or that between FN and F given in
Ref. �24�. An estimate of Q based on some function of FN
would be useful given that a closed form for Q is not cur-
rently known and that FN can be computed relatively easily.
In addition, assuming FN as an alternative to F, it seems
reasonable to reexamine some of the problems where F has
proven useful, but with FN playing its role. In particular, it
would be interesting to investigate whether the simplicity
associated with FN will offer some advantages over F.

As a first example, we recall from Refs. �2,3� that a stan-
dard measure for the amount of entanglement of a state � is
given by the shortest distance from � to the set of separable
density matrices. Given the relative simplicity of FN with
respect to F, it is not inconceivable that a distance measure
based on FN �such as C�FN�� may lead to a more efficient
determination of this quantity if compared, for example, to
C�F� or the Bures distance �3�. Of course, since C�FN� does
not satisfy all the sufficient conditions required to give rise to
a good entanglement measure �2�, any serious attempts in
this direction should be preceded by further investigation of
the impact of the nonmonotonicity of FN under CPTP maps.

For instance, the nonmonotonicity of FN might also imply
that the shortest distance from any given state � to the set of
separable states—as measured by C�FN�—does not satisfy
the necessary conditions stipulated in Ref. �61�, but this is
not clear to us at this stage.

As another example, FN can be used as a figure of merit
in designing optimized quantum control and/or quantum er-
ror correction strategies: One is typically interested in deter-
mining a quantum operation C that minimizes the averaged
distance between the elements of a set of noisy quantum
states �i and a predefined set of target quantum states �i. In
this context, it would be interesting to investigate if distance
measures based on FN would lead to any advantage in terms
of computation time. Clearly, this has potential applications
to the implementation of real-time quantum technologies.

Yet another possible direction of research consists of em-
ploying FN as a distance measure between quantum
operations—as opposed to quantum states—via the isomor-
phism between quantum states and CPTP maps �62,63�. In
this regard, it is worth investigating whether distance mea-
sures based on FN would satisfy the six criteria proposed in
Ref. �34�. Remarkably, from the results of the present work
and Ref. �24�, a few strengths of FN-based measures can
already be anticipated. Of special significance are the fulfill-
ment of the criteria “easy to calculate” and “easy to mea-
sure.” Along these lines, some operational meaning for FN
would also be highly desirable. Although we do not presently
have a compelling physical interpretation of FN, it is not
inconceivable that one can be found in an analogous way to
F �41�.
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APPENDIX A: METRICS

From a mathematically rigorous viewpoint, a distance
measure D on a set S is a function D :S�S→R such that for
every a ,b ,c�S the following properties hold.

�M1� D�a ,b��0 �non-negativity�,
�M2� D�a ,b�=0 if and only if a=b �identity of indiscern-

ible�,
�M3� D�a ,b�=D�b ,a� �symmetry�,
�M4� D�a ,c��D�a ,b�+D�b ,c� �triangle inequality�.
Any such function is called a metric.
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APPENDIX B: PROOFS

1. Proof of Proposition III.2

In this appendix the joint concavity of FN is established
via the proof of Proposition III.2.

Proof. Differentiating Eq. �20� twice with respect to x, we
obtain

d2F�x�
dx2 = 2u� · v� +

d2f�x�
dx2 g�x� + f�x�

d2g�x�
dx2 + 2

df�x�
dx

dg�x�
dx

,

�B1�

where, for convenience, we define the functions f�x�
ª

	1− �r�+xu��2 and g�x�ª	1− �s�+xv��2. After some compu-
tation we find that

d2F�x�
dx2 = F1�x� + F2�x� , �B2�

where

F1�x� ª 2u� · v� −
g�x�u2

f�x�
−

f�x�v2

g�x�
, �B3�

F2�x� ª 2
u� · �r� + xu��v� · �s� + xv��

f�x�g�x�
−

g�x��u� · �r� + xu���2

�f�x��3

−
f�x��v� · �s� + xv���2

�g�x��3 . �B4�

The negative semidefiniteness of d2F�x� /dx2 in the range x
� �0,1� can be observed if F1�x� and F2�x� are written in the
following alternative form:

F1�x� = − �	g�x�
f�x�

u� −	 f�x�
g�x�

v��2

,

F2�x� = −
1

f�x�g�x��g�x�
f�x�

u� · �r� + xu�� −
f�x�
g�x�

v� · �s� + xv���2

.

�

2. Proof of supermultiplicativity of FN

To prove that FN is supermultiplicative, we first define
riªTr��i

2� and siªTr��i
2�, such that 0�ri, si�1 �note that

here we use ri instead of ri
2 as the norm square of r�i, likewise

for si�. Straightforward algebra gives

FN��1 � �2,�1 � �2� − FN��1,�1�FN��2,�2�

= 	�1 − r1r2��1 − s1s2� − 	�1 − r1��1 − s1��1 − r2��1 − s2�

− Tr��1�1�	�1 − r2��1 − s2� − Tr��2�2�	�1 − r1��1 − s1� .

A direct application of Cauchy-Schwarz’s inequality
Tr��i�i��	risi gives

FN��1 � �2,�1 � �2� − FN��1,�1�FN��2,�2�

� 	�1 − r1r2��1 − s1s2� − 	�1 − r1��1 − s1��1 − r2��1 − s2�

− 	r1s1�1 − r2��1 − s2� − 	r2s2�1 − r1��1 − s1� .

The supermultiplicative property is obtained by showing
the positive semidefiniteness of the right-hand side of the
above expression. This is the content of the following propo-
sition.

Proposition B.1. For 0�a ,b ,c ,d�1, we have

	�1 − ab��1 − cd� � 	�1 − a��1 − b��1 − c��1 − d�

+ 	ac�1 − b��1 − d� + 	bd�1 − a��1 − c� .

�B5�

Proof. First note that if any of the variables equals 1, then
the validity of the inequality is immediate. For example, let
d=1 so that inequality �B5� reduces to

	�1 − ab��1 − c� � 	b�1 − a��1 − c� . �B6�

This is trivially satisfied for all 0�a ,b ,c�1. In what fol-
lows, we restrict ourselves to 0�a ,b ,c ,d�1 and show that
inequality �B5� is equivalent to the standard inequality of
arithmetic and geometric means �hereafter referred as the
AM-GM inequality�. This inequality is just an expression of
the fact that the geometric mean of a list of non-negative real
numbers is never larger than the corresponding arithmetic
mean.

Apply the substitution a�=1−a �similarly for b�, c�, and
d�; note that 0�a� ,b� ,c� ,d��1� to inequality �B5� and di-
vide the result by 	a�b�c�d� to get the equivalent inequality

	�1 + A + B��1 + C + D� � 1 + 	AC + 	BD , �B7�

where we have defined A=1 /a�−1 �similarly for B, C, and
D; note that 0�A ,B ,C ,D���. Squaring the inequality
above we find

A + C

2
+

B + D

2
+

AD + BC

2
� 	AC + 	BD + 	ABCD ,

�B8�

which is clearly a sum of three AM-GM inequalities. �

3. Proof of the metric property of B[F] and C[F]

In the following, we give an alternative demonstration of
the metric properties of B�F� and C�F� �see Refs. �32,34� for
the standard proofs�. Our proof consists of a simple applica-
tion of Theorem III.1 due to Schoenberg.

Proposition B2. The functionals B�F�� ,��� and
C�F�� ,���, defined in Eq. �8� and Eq. �9�, are metrics for
the space of density matrices.

Proof. Let K�F�� ,��� represent either B�F�� ,��� or
C�F�� ,��� for brevity. As with F, it is easy to check that
K2�F�� ,��� is symmetric in its two arguments and that
K2�F�� ,����0 with saturation if and only if �=�. So, ac-
cording to Theorem III.1, K�F�� ,��� is a metric if for any
set of density matrices 
�i�i=1

n �n�2� and real numbers 
ci�i=1
n

such that �i=1
n ci=0, it is true that
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�
i,j=1

n

K2�F��i,� j��cicj � 0. �B9�

To prove this, we derive an upper bound for K2�F��i ,� j��,
which can be easily seen to satisfy the condition above. First,
note that

F��i,� j� = �Tr��	�i
	� j���2 � �Tr�	�i

	� j��2

= �Tr�	�i
	� j��2

= Tr�	�i
	� j � 	�i

	� j�

= Tr��	�i � 	�i��	� j � 	� j��

� A��i,� j� , �B10�

where the first equality follows from the definition
�A�ª	A†A for every matrix A and the inequality from the
fact that Tr��A��=maxU �Tr�UA�� �the maximization runs
over unitary matrices U �20,64��. Then, it follows that

B2�F� = 2�1 − 	F� � 2�1 − F� � 2�1 − A� , �B11�

C2�F� = 1 − F � 1 − A � 2�1 − A� , �B12�

or, in our more compact notation, K2�F��2�1−A�.
Now, replacing K2�F��i ,� j�� with the above upper bound

in the left hand side of Eq. �B9�, it is easy to obtain the
desired inequality:

�
i,j=1

n


2 − 2Tr��	�i � 	�i��	� j � 	� j���cicj

= − 2Tr���
i=1

n

ci
	�i � 	�i�2� � 0, �B13�

where the equality is obtained by using the fact that �i=1
n ci

=0, the linearity of the trace operation, and the hermiticity of
ci

	�i � 	�i. �
Finally, let us just mention that besides establishing the

metric properties of B�F� and C�F�, the present proof also

establishes 	2−2�Tr�	�	���2 as a metric for the space of
density matrices. In fact, by a similar application of Schoe-

nberg’s theorem, the quantity H�� ,��ª	2−2 Tr�	�	�� can
also be shown to be a metric.

APPENDIX C: MATLAB CODES

In this appendix, we present the Matlab codes that we
have used to compute the various functions involved in the
numerical experiment presented in Sec. IV.

For rho and sigma density matrices,

• FN was computed using

Fn=real�rho�:� ’ �sigma�:� . . . �
+sqrt��1−rho�:� ’ � rho�:��� . . . �
���1−sigma�:� ’ �sigma�:����;

• F was computed using

�V,D�=eig�rho�;
sqrtRho=V�diag�sqrt�diag�D����V’;

F=sum�sqrt�eig�Hermitize�. . .����
����sqrtRho�sigma�sqrtRho����ˆ2;

Here sqrtRho�sigma�sqrtRho is not quite Hermitian due to
small numerical errors. We therefore employ the function
Hermitize �m�= �M+M�� /2 to turn the almost-Hermitian
matrix into a Hermitian one—this causes Matlab to select a
more efficient algorithm for the diagonalization.

• D was computed using

D=0.5�sum�abs�eig�rho-sigma���;

• Q was computed using

�Vr,Drho�=eig�rho�; Dr=diag�Drho�;

�Vs,Dsigma�=eig�sigma�;
Ds=diag�Dsigma�;

A=abs�Vr’ �Vs�.ˆ2;

�x,Q�=fminbnd�@�s� . . . �

��Dr. ’ .ˆs��A� �Ds.ˆ�1−s�� ,0 ,1�;

The algorithm used here follows from the formula for

Tr��s�1−s� given in the section entitled convexity in s of Ref.
�21�.
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