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Resumo

DALALANA, G. J. P.. Autonomous Mobile Robot Navigation Based On Omnidirectional Voice
Commands. 2023. 47f. TCC UNESP 2023.

Atualmente, existe uma falta de pesquisas que envolvam o emprego da lı́ngua portuguesa como

mecanismo de controle de robôs móveis. Aplicando os conceitos de energia, entropia e zero

crossing rate, foi possı́vel extrair as caracterı́sticas principais contidas em cada uma das qua-

tro classes de comandos de voz reconhecidas pelo dispositivo: frente, trás, direita e esquerda.

Obtidas as informações que melhor separam as classes, um classificador do tipo support vec-

tor machine foi implementado, visando classificar corretamente comandos de voz, da categoria

speaker-dependent, externos ao conjunto de treinamento da rede neural artificial. Por fim, o

classificador foi embarcado em um robô móvel, permitindo a navegação baseada em lı́ngua

portuguesa.

Palavras-chave: Reconhecimento de voz. Inteligência Artificial. Robótica.



Abstract

DALALANA, G. J. P.. Autonomous Mobile Robot Navigation Based On Omnidirectional Voice
Commands. 2023. 47f. TCC UNESP 2023.

Nowadays, there is a lack of research involving the use of the Portuguese language as a control

mechanism for mobile robots. Applying the concepts of energy, entropy and zero crossing rate,

it was possible to extract the main characteristics contained in each of the four classes of voice

commands recognized by the device: front, back, right and left. Obtaining the information that

best separates the classes, a support vector machine classifier was implemented, aiming to cor-

rectly classify voice commands, from the speaker-dependent category, external to the training

set of the artificial neural network. Finally, the classifier was embedded in a mobile robot, al-

lowing navigation based on the Portuguese language.

Keywords: Speech Recognition. Artificial Intelligence. Robotics.
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Chapter 1

Introduction

1.1 Initial considerations

Since ancient times, the idea of creating beings/machines endowed with intelligence, which

could coexist in the physical world with human beings, was already something envisioned by

engineers and thinkers. One can easily find descriptions of theatrical mechanisms implemented

in Ancient Greece, in which actors imitated gods who intervened in conflicting situations during

the plot of the play, making use of extraordinary mechanisms that caused great impact on the

listening public, to the point that such a climax received the Latin term Deus-Ex-Machina,

which means “god of the machine” [1]. Moving forward into the Modern Era, Leonardo da

Vinci envisioned what would become Leonardo’s Mechanical Knight, a humanoid automaton

(a type of mechanism that can mimic characteristic human movements) that drew on da Vinci’s

anatomy studies, applying it to in medieval armor in order to perform moves that would make

him comparable to a person [2]. Finally, moving forward to the Contemporary Era, Czech

author Karel Čapek, through the elaboration of his play Rossum’s Universal Robots, for creating

the term “robot”, which is the fusion of the words “compulsory work” and “servant” [3]. From

Čapek’s definition, it is possible to define the main applications and motivations that are studied

within the robotics area.

Thanks to the great scientific and technological advances that have taken place, especially
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during the 20th century, such mechanisms were not restricted to mere puppets with their move-

ments dictated by human beings, which ends up leading to the need for a definition of what such

machines, now called robots, are: an autonomous system existing in the physical world, which

can feel and act on the environment in which it finds itself in order to achieve certain goals [3].

Such a definition will mark the entire execution of the project, since most of the research in the

field of robotics currently launched does not focus exclusively on purely industrial applications

(here, thinking and feeling your environment is practically unnecessary, as the entire assembly

line has already been inserted in the control system; therefore, by the definition above, such a

mechanism is not a real robot), but in machines capable of interacting autonomously (without

external control) and routinely with people and objects in the most efficient way (less move-

ments needed) possible. The robot idealized for this work will follow these principles.

1.2 Objectives

Motivated by the above considerations, this work seeks to generate a robotic device that

can be inserted in the last definition. In addition, after an in-depth research using the Web of

Science tool, we found few articles that proposed the use of the Portuguese language applied in

the context of robotics, more specifically in speech recognition. Therefore, this work also seeks

to integrate voice commands, in Portuguese, as the main form of interaction between humans

and the robot, aiming to correct this scenario, and be a reference for future research.

1.3 Computational motivation

A computational motivation for carrying out this project is the implementation of a classi-

fier that, through certain characteristics extracted from voice signals given as input to the robot,
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can predict which command is ordered in Portuguese. As discussed in the previous section,

the use of Portuguese as a language to control mobile robots is still scarce, so inserting such a

classifier in this context will help to advance, even in small steps, a little in this area.

1.4 Work organization

In order to achieve the proposed goals and for a better understanding, this work is organized

as follows:

• Chapter 2 will present the main topics to be addressed for the development of the proposed

robot and, at the end, some related works involving the topics described will also be

discussed.

• Chapter 3 presents, in detail, all the study carried out in the proposed work and what were

the components applied in order to achieve the objectives proposed in this work.

• Chapter 4: all the results obtained in the work are reported, from the recognition tests that

were carried out.

• Chapter 5: conclusions about the work are presented, as well as proposals for future

research.
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Chapter 2

Literature Review

In this section, the fundamental points for the structuring of the work will be presented. In the

first three sections, the theoretical foundations required for the feasibility of this work will be

presented and detailed. Following this introduction, some of the most recent research involving

the previously discussed fundamentals will be presented.

2.1 Locomotion

Since the idealized robot needs to be included in the definition presented in Section 1.1, a di-

rect approach is to choose the field of mobile robots, more specifically the means of locomotion,

as a starting point for the elaboration of this project. As stated in [4] and [5], there are several

ways to implement mobility in robots, but in order to maintain the simplicity and feasibility of

this work, two main categories of wheel-based locomotion will have a deeper focus:
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Figure 2.1 – An example of four-wheel independent drive robot. Adapted from http://www.ambot.com/ip-
wheel.shtml

2.1.1 Wheeled locomotion

The most popular locomotion mechanism in mobile robots, the wheel offers a simple me-

chanical implementation and, as reinforced in [3], static stability (the robot does not need to

spend work to maintain its balance in the ground, the wheel contact on the floor occurs all the

time). An example of a mobile robot with wheels is shown in Figure 2.1. Some problems

arise, mainly in traction, control and maneuverability, when this type of mechanism is inserted

in unstructured environments (for example, an external area of a building, where human infras-

tructure tends to be non-existent).

2.1.2 Tracked locomotion

This design was created with a focus on use on uneven terrain, the track implies greater

contact with the ground compared to simple wheels, a fact that significantly improves its ma-

neuverability in such a scenario. An example of a crawler mobile robot is shown in Figure 2.2.

Due to the slip/skid format of this type of locomotion mechanism, dead reckoning (a spatio-

temporal analysis that tries to predict the real position of the robot) is considerably impaired
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Figure 2.2 – An example of tracked robot. Adapted from https://research.csiro.au/robotics/our-work/darpa-subt-
challenge-2018/

Figure 2.3 – Assembly model of the adopted robot basis for this work. Adapted from https://s3-sa-east-
1.amazonaws.com/robocore-lojavirtual/1172/manual expansao rocket.pdf

due to the increase in system error. Thus, a more complex positioning mechanism needs to be

implemented for this type of locomotion. Also, considering the energy efficiency, this mecha-

nism can only work well on loose terrain, being significantly inefficient otherwise. In the end,

this mechanism proves to be ideal in unstructured environments (where the proposed robot tends

to be applied), when the advantages outweigh the disadvantages, so this is the type of locomo-

tion mechanism that this work will adopt. Figure 2.3 shows the chosen robot base assembly

model.
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2.2 Navigation

Navigation can be defined as the way a robot finds its way in the [3] environment. This is

an essential question for most robots that can move anyway, being one of the oldest and most

research-intensive areas within mobile robots. For navigation to occur, some steps need to be

defined and entered, being then:

2.2.1 Localization

In the words of [3], localization is the process of figuring out where the robot is relative to

some model of the environment, using whatever sensor measurements are available. With this

definition, the robot can find itself using several methods, such as vision, GPS measurements

or odometry (the process of measuring physical distances using, for example, the number of

rotations of a motor), the latter being one of the most used to solve the localization problem.

For this work, in addition to knowing the disadvantages imposed in the use of techniques based

on odometry, e.g., the inherent uncertainty present in physical measurements (in [6], a deep

analysis of the propensity to odometry errors is presented), something that can cause serious

errors if not handled correctly, the proposed robot will apply this technique as the first way to

implement the localization.

2.2.2 Mapping

After defining the localization mechanism to be implemented, the next step is to define how

the robot will build its environment map (an information structure that contains a considerable
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Figure 2.4 – An example of, in left, a discrete map and, in right, of a continuous map. Adapted from [6]

range of data related to the location where the robot is). To store a map, two methods, as

indicated in [6], can be used: discrete maps and continuous maps. The first is the most common

way of representing information from the environment, which is also adopted in this work. In

Figure 2.4, there is an example of a discrete map and a continuous map.

With the information storage chosen, now we need to define how this map will be created.

Considering a consecrated technique for this question, this work will use the Frontier Algorithm

to address this question. This algorithm was proposed in 1997 by Brian Yamauchi, making

use of discrete maps (here, Yamauchi used a grid map, a type of discrete map proposed by

[8] that uses the probability concept of a grid [a region] is occupied) to start exploring a new

place. The idea of this algorithm, in the words of [7], is: To gain the most new information

about the world, move to the boundary between open space and uncharted territory. Thus, this

mapping algorithm ensures that the robot discovers all reachable spaces by moving the robot to

the regions of the map that are on the boundary of known and unknown spaces.

In Figure 2.5, we can see an iteration, and the main idea, of the Frontier Algorithm: the

robot (represented by the blue arrow) moves to the nearest frontier (the boundary region) on

the grid map. After arriving (represented by the blue square) at the border, it uses its sensors to

map this unmapped location. For example, in Figure 2.6 we can see that the robot discovered

new free and occupied regions (a free region is represented by the probability of 0.1-0.2, and a

region occupied by the probability of 0.9-1.0 [this range is due to the uncertainty of the sensor

measurements]), as well as a new frontier to be explored.
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Figure 2.5 – The movement of a robot to a frontier. Adapted from [6]

Figure 2.6 – An iteration of the Frontier Algorithm. Adapted from [6]
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Figure 2.7 – An example of Dijkstra’s Algorithm for a grid map. In left, the grid map obtained by the robot; in
right, the shortest path found by the algorithm. Black cells represent occupied cells. Adapted from
[6]

This algorithm was chosen because, as demonstrated by [7], it can map open and closed

places. Here, a closed location might be an office (the first location where Yamauchi ran the

program), a warehouse; and a open place a park, a plantation. Considering that the proposed

robot can be used in both scenarios above, this algorithm fits perfectly for our purposes. Also,

as stated by [4], this algorithm is very popular in the field of mobile robotics.

2.2.3 Path planning

The final big question related to robot navigation, path planning is how the robot will go

from an arbitrary point A to a point B, with A , B. As shown in [6], there are two main

approaches to dealing with this issue:

Dijkstra’s Algorithm for a Grid Map

Let cell S be the starting point of the robot’s movement, and cell G the objective of this move-

ment. With this approach, the robot detects and moves to a neighboring cell, aiming to reach

the shortest possible path. In Figure 2.7, we can see the behavior of the algorithm.
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A∗ Algorithm

Instead of searching for the objective cell in all directions, as in Dijkstra’s Algorithm, the A∗

Algorithm iterates its search only in the cells that tend to be closer to the objective cell. This

approach can be useful in relatively simple environment maps, saving considerable runtime.

2.3 Voice Commands Recognition

The last major pillar to be addressed by this work, the recognition of voice commands by the

desired robot will follow a restricted-vocabulary speech recognition approach proposed in [9].

In this work, the author used a handcrafted feature extraction based on entropy (here, entropy

can be understood as a measure of unpredictability of the information content of any entity) on

raw variable-length data in wave format [10] , more specifically, in the pronunciation data of

Portuguese words, such as “esquerda”, “direita”. With the method described in [9], these words

can be grouped together, making it easier to differentiate between such words. This work will

apply the above method as a way for the robot to recognize voice commands in Portuguese.

Furthermore, in order to increase the quality of feature extraction for each voice signal, other

digital signal processing techniques will also be applied. In this context, feature extraction based

on energy and zero-crossing rate (ZCR) will be performed, following the description presented

in [19] and [20]. Applying an energy analysis, it may be possible to identify ranges that differ

from the ambient noise, focusing on the signal points that contain the most relevant information.

This specific technique was inserted as a filter for the voice signal captured by the robot’s

microphone, and also as a data pre-processing tool, as described in Section 4.1. Now, a ZCR

analysis considers the rate of change from positive-to-zero-to-negative or vice versa of a signal,

something particularly useful for detecting when speech is present in the voice command.

In addition to using entropy-based handcrafted feature extraction, this work will also imple-

ment an omnidirectional wave format data input. This choice is made with the aim of expanding
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Figure 2.8 – Differences between an omnidirectional (in left) and more focused microphones (in center and in
right). Adapted from https://myelearningworld.com/what-is-an-omnidirectional-microphone/

the capabilities for the robot to understand voice commands in multiple directions, rather than

focusing on just one audio direction. An illustration of an omnidirectional microphone can be

found in Figure 2.8.

2.4 Related Work

Starting with the Frontier Algorithm concept, its popularity still persists today. Aiming

to integrate this approach in the Robot Operating System, a consolidated tool-based robotic

software development [11], [12] created a package for this tool that inserted this algorithm,

making it easier for many researchers to add the Frontier approach in their works. Despite the

openness made possible by this last work, one of the most challenging problems related to this

algorithm is the correct detection of a boundary, and how to deal with the growing demand

for computational resources proportional to more detailed maps. Considering the first factor,

[13] proposed an algorithm called Frontier-Tracing Frontier Detection that uses the perimeter

of the sensor’s current observation in combination with the laser scan endpoints and previously

known boundaries to perform the frontier detection, this approach, as concluded by the article,

is best suited for applications that require boundary detection to be implemented after each
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observation. Now, with respect to the last factor, [14] investigates the implementation of this

algorithm using the idea behind a randomly exploring random tree. With this approach, after

the robot passes through a boundary area, all tree branches in that area are removed to free up

memory and speed up the calculation process.

Now, taking the concept of odometry, [15] proposed a way to use odometry, in this work

it is a visual odometry, to facilitate the process of locating and mapping a mobile robot. Its

approach can overcome internally based odometric measurements (as the proposed robot will

adopt), enabling real-time oriented images for decision making, being a possible new feature to

be inserted in a new version of this work. Moving forward, in [16] the authors also applied a

visual odometry approach to complement the classical odometry measurement in robotics, such

as the engine rotation counter, described in Section 2.2.1. They obtained considerable results

by merging this approach with deep learning models, more specifically in an edge-oriented

environment (the proposed robots are also inserted in this type of environment).

In the end, considering the interpretation of voice commands, [17] encountered the same

problems as this work, the scarcity of speech recognition systems applied in robotics in its na-

tive language, in this case Indonesian. The authors implemented a Deep Neural Network to

train and deploy a classifier to handle speech recognition, achieving good results in the real

world scenario. With this last work, the justification of this intended project is reinforced. Fur-

thermore, in [18] the authors also deal with the same kind of space destined for our proposed

robot, an environment with possible multiple speakers. They proposed a Neural Network for

simultaneous detection and localization of speakers, with the interesting point being the possi-

bility of applying a previous feature extraction step in the network, such as one based on entropy

(described in Section 4.1).
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Chapter 3

The Proposed Work

As stated in the last sections, this work proposes the creation of an autonomous mobile robot

that can interpret voice commands, obtained through an omnidirectional microphone, to per-

form tasks related to the principles of navigation.

This work was carried out by the author, with the supervision of the guiding professor, so

that periodic meetings for guidance were made possible. Initially, a review of the elementary

physical concepts applied in this work involving the voice signal processing area was carried

out, based on the references [19], [20] and [9]. Based on the tools that such works proposed for

extracting features from the analyzed signals, it was possible, as described in the next section,

to recognize restricted vocabulary voice commands, that is, the recognition of a few words [9].

3.0.1 Initial Studies and Chosen Materials

After such a review, studies were also carried out involving the fundamentals of the field

of robotics relevant to the applicability of what this project proposed to accomplish. Initially,

the studies focused on two main works, [3] and [6], given their introductory character, but

complete, on all the topics necessary for the feasibility of the mobile robot, such as kinematics

and control theory. After this step, and realizing the need to review the concepts of electrical
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and electronics, especially those of immediate insertion during the structural construction phase

of the robotic mechanism, the work [5] was also used. Finally, after studying the fundamentals

necessary for building the robot, there was one last topic to be reviewed: mobility. As much as

previous works routinely mention this feature, the great importance of choosing the locomotion

mechanism to define what the device can or cannot accomplish led to an in-depth study on

locomotion, marked by the use of the work [4].

Having carried out the conceptual review of the areas of knowledge linked to the project,

the next step was the choice of the required materials, namely:

1. 1x Raspberry Pi 4 Single Board Computer, model with 8 GB of RAM memory;

2. 1x Multilaser Industrial SA PH361 Omnidirectional Microphone; and

3. 1x Robot Explorer Kit, with expansion, by Robocore Tecnologia LTDA.

As described in [30], choosing the Raspberry Pi board, illustrated by Figure 3.1 brings

numerous advantages:

• Speed and computational power: the board has a microprocessor capable of supporting

the full execution of an operating system, specifically versions of Linux. Added to this

fact, and as its name indicates, this small computer allows the use of the Python program-

ming language (considerably slower and computationally more expensive than C/C++),

ideal for tasks that involve the application of functionalities contained in libraries on the

processed data, such as image processing and, within the scope of this project, voice

signal processing; and

• Connectivity and network: as it has four USB-type inputs, HDMI input, Wifi and Blue-

tooth already integrated into the hardware, and dozens of General Purpose Input/Output

connections (GPIO), the board provides several possibilities for integration of sensors

and external equipment. Taking as an example what was witnessed in the execution of

this project, the USB port was used to easily integrate the microphone directly into the

operating system, while the HDMI input and two more USB ports were used to connect

an external monitor, keyboard and mouse in the board configuration step. In addition,
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GPIOs pins were intensively used to connect ultrasound sensors, used to allow navigation

in the robot’s work environment.

Figure 3.1 – Image of the Raspberry Pi 4 board. Adapted from https://www.robocore.net/placa-raspberry-
pi/raspberry-pi-4-8gb

Moving now to the reason for choosing an omnidirectional microphone as the main way

of capturing voice commands by the robot, an explanation is facilitated by the illustration in

Figure 2.8. As you can see, when choosing an omnidirectional microphone, it becomes feasible

to capture sound signals, here characterized by voice commands, in multiple directions, a clear

advantage compared to configurations that deal with obtaining sounds in different directions.

Specifically, such as coming from a source located in only one or two locations. Even more,

considering that the robot will be, during its operation, inserted in unstructured environments,

[3] and [6], sources of voice commands can change constantly while the robot moves. This

operating scenario illustrates why an omnidirectional microphone was chosen.

Finally, for the issue of robot assembly, a pre-assembled robotic platform was chosen, re-

sulting in the design shown in Figure 2.3. The final version of the mechanism, including the

installation of the microphone, the Raspberry Pi 4, and the ultrasonic sensors, can be seen in

Figure 4.9. The reasons for choosing this particular platform are as follows:

1. The modular design, based on floors, allows the attachment of multiple sensors and boards

of different sizes and complexities;
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Figure 3.2 – The algorithm proposed in this work. Source: author.

2. Inclusion, together with the structural parts, of all the components necessary for the cor-

rect operation of the robot, such as batteries, motors and a microcontroller board to do

the “low-level” work of the platform, that is, if the program contained in the Raspberry

Pi identify, for example, the word “esquerda”, it will communicate this microcontroller

board, which in turn will carry out the maneuver, via pulse modulation to the motors; and

3. Because it has a locomotion system based on treadmills, it makes the mechanism ideal

for operations in unstructured environments, such as external environments with a lack of

basic infrastructure [4].

In short, the design proposed by the kit fit perfectly with the scope of the project, and its

acquisition allowed the concentration of research efforts on the project’s central intelligence

issue, that is, the recognition of voice commands with restricted vocabulary and subsequent

decision making.

3.0.2 The Proposed Algorithm

In Figure 3.2, the proposed algorithm to meet the Objectives section in Chapter 1 is illus-

trated. For each of the development steps, we have:

• Step 1 (START): in contrast to common workplaces where sorters are tested, which have

normally constant power supply, for mobile robots this is not true. In order to avoid



32

doing the same training twice, the Joblib [26] library was applied to first save the state

of the model in the permanent memory of the Raspberry Pi board and, considering the

developed algorithm, reload it for use. This particular library was chosen because it is

optimized to deal specifically with numpy arrays [27], the type of data structure adopted

to store the main characteristics of the training dataset, discussed in the next section.

• Step 2: after restoring the state of the classifier in the runtime memory, the next step is

to “listen” to the voice commands. After pressing a physical button on the robot’s chas-

sis, a slice lasting 3 seconds was recorded using Linux ALSA(Advanced Linux Sound

Architecture). The main reason for implementing forced speech recognition instead of

real-time recognition is the computational constraints of the robot.

With the possible recorded voice command, an energy-based cut is inserted into the algo-

rithm design. Applying this digital signal processing technique, the environmental noise

recorded before and/or after a noticeable energy change occurs (for the robot’s work-

place, this probably indicates a voice command) is removed to cut the extra computation

of the robots. entropy and ZCR calculations, speeding up these calculations six times

on average. This technique starts by calculating the total energy of the signal, using the

following mathematical expression: E(s[.]) =
∑M−1

i=0 (si)2 , where M represents the length

of the signal s[.] [19].

It is important to note that s[.] was obtained using Python’s SoundFile library [21] applied

to the record. Furthermore, while the main code, that is, the program that runs until the

robot is turned off, is in Python language, energy, entropy and ZCR calculations are coded

in C++ language, aiming to speed up these costly techniques. Therefore, when one of

these methods is needed, the main code executes a system call to the required C++ code.

Once the total energy is found, a control variable is declared containing 95% (tends to be

less aggressive when removing information, smaller values can significantly modify the

signal format) of the total energy of the signal. This is the core of this type of cut. At

the end, two pointers are declared at the beginning and at the end of the original signal,

moving forward and backward, respectively, until they find the signal point (both in the
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initial and final part) that contains this energy, and saving the signal without the other

analyzed points.

• Step 3: with the filtered signal, the concepts of entropy (amount of information required

to specify the system microstate), defined as H = −
∑K−1

i=0 pi · logβ(pi) [9], and ZCR

(rate of change from positive-to-zero-to-negative or vice-versa of a signal), expressed

as ZCR(s[.]) = 1
2

∑M−2
j=0 |sign(s j) − sign(s j+1)| [20], are calculated, since, together in the

same data structure, they reach the best accuracy of the classifier, as shown in the next

section.

• Step 4: with all pre-processing steps completed, the data extract from Step 3 is inserted

into a Support Vector Machine (SVM) instantiated from Python’s scikit-learn library [28],

retrained in Step 1, and using predict method, the classifier’s prediction is used to move

the robot, via serial communication between the Raspberry Pi board and the robot’s mi-

crocontroller, to the desired state.

• Step 5 (END): this final step uses the classifier response to bring the robot to the desired

state. For example, if the command “frente” is recognized, the robot will move forward

until it encounters an obstacle, an occupied grid in the context of the Frontier Algorithm.
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Chapter 4

Tests and Results

4.1 Voice Data Pre-Processing

Several tests and experiments were performed in order to prepare the data for a further

classification step. This primary data preparation step aims to extract a set of characteristics

that facilitate the distinction of the worked information, eliminating an additional workload that

the classifier would have to deal with. Taking as an example the extraction of features based on

the entropy of the input signal [9], the total process to obtain the expected result, considering

the preparation step discussed above, can be seen in Figure 4.1. It is worth mentioning that this

process also has the same structure when working with the energy [19] and the ZCRs [20] of

the input signal.

To obtain information regarding the voice signal worked on, the SoundFile [21] library,

Figure 4.1 – A combination of the features obtained by calculating Entropy with the knowledge-based classifier.
Adapted from [9]
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Figure 4.2 – An example of a discretized signal [29] for the “direita” command. Source: author.

present in the Python language, was used. The database used was presented in the article [9],

containing 80 voice commands distributed in four classes: Right, Left, Up and Down, digitized

at 16000 Hz, 16 bits, single channel. For this work, the Right and Left classes were used to

represent the above digital speech processing techniques. Graphs that contain the behaviors

present for a given command “direita” and “esquerda” are shown, respectively, in Figures 4.2

and 4.3.

After obtaining the information present in each of the samples present for these two classes,

the next step was to apply the concepts of energy, entropy and ZCR on the data obtained, in

order to obtain the characteristics that best define and differentiate each class. Both for energy

and for ZCR, a characteristic vector of dimension 19 was obtained, while for entropy, this vector

had a total dimension of 70. Following the standardization present in the figures that contain

the information of the voice commands, the class Right is represented by the blue color, while

the Left by red color. Starting with energy, the result obtained is represented in Figure 4.4.

Returning now to entropy, the result obtained can be seen in Figure 4.5. Ending with the ZCR,

the experimental result obtained is illustrated in Figure 4.6. Visually, it can be seen that the data

can be separated in a binary way. Therefore, as a final step in the classification process, a binary

classifier was applied, more specifically a support vector machine (SVM) [22].
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Figure 4.3 – An example of a discretized signal [29] for the “esquerda” command. Source: author.

Figure 4.4 – The signal energy distribution obtained for the “direita” and “esquerda” commands. Source: author.
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Figure 4.5 – The signal entropy distribution obtained for the “direita” and “esquerda” commands. Source: author.

Figure 4.6 – The signal ZCR distribution obtained for the “direita” and “esquerda” commands. Source: author.
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4.2 Classifier Training and Hyper-parameter Tuning

The SVM applied in this project has x inputs, where x is the dimension of each feature

vector obtained in the previous step, with y active and non-linear processing elements in the

hidden layer, where y is the number of training cases, and finally , containing 4 outputs, 4 being

the number of words to be recognized.

However, as the microprocessor used to analyze the voice commands has considerably lim-

ited computational capacity, a pre-processing of the voice signals detected by the microphone

was necessary. Taking a slice with a duration of 3 seconds that contains a movement command,

represented here by Figure 4.7, which illustrates the four possible classes to be recognized by

the classifier, a energy-based cut was necessary.

Two pointers were generated, one pointing to the beginning of the signal, and the other

to the end of it. After that, the total energy of the voice command was calculated, using the

concepts present in [19], and a variable that contains 95% of the total energy found was started.

This value is essential, since signal portions that exceed this threshold will be discarded by

increasing and decreasing the pointers. The effect of such preprocessing is illustrated in Figure

4.8. Notably, when comparing this figure with the previous one, it can be seen that the signal

size was considerably reduced, making the subsequent calculation of energy, entropy and ZCR

easier and more agile, ideal for the computational environment contained in the robot.

With the pre-processed data, the next step was to perform the adjustment of the SVM hy-

perparameters [22]. For that, three methodologies were used to adjust the separator plane: grid

and random search, and Bayesian optimization. The initial method, that is, the grid search is an

exhaustive search method that aims to find the best kernel and values of C and gamma [22] that

can correctly separate the classes of the problem [23]. On the other hand, the random search

makes use of the same essence as the grid, except that it places the probabilistic element to ran-

domly choose a subgroup of the possible combinations of such hyperparameters and test them,

making use of a minimal fraction of computational effort, compared to the grid search [24].

Finally, Bayesian optimization was also tested, a model that tends to be more efficient than the
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Figure 4.7 – The format of the signal obtained for the “direita”, “esquerda”, “frente” and “trás” commands.
Source: author.

Figure 4.8 – The format of the signal obtained after energy-based filtering for the “direita”, “esquerda”, “frente”
and “trás” commands. Source: author.
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random search, as it makes use of pre-existing information from the tested models to choose the

hyperparameters for the next attempt [25].

The results of accuracy and total time spent for training and running the classifier can be

found in Table 4.1. It is emphasized that the results shown are the average of five consecutive

executions, 10000 iterations of each algorithm, of the previously discussed adjustment methods,

counting on a space of possible values of C and gamma of dimension 100, obtained through the

function logspace, present in the NumPy library [27]. The training set consisted of 80 voice

commands, distributed among the 4 possible classes, while the test set consisted of 20 voice

commands, also distributed among the classes. From the table, it can be seen that the best “cost

x benefit” was due to the use of entropy and ZCR data as a discriminating factor between the

four possible classes to be recognized, this being the training data chosen for the final training

of the classifier. For this reason, the following hyperparameters were obtained:

• Chosen kernel: polynomial;

• Optimal value of C found: 0.019179102616724848; and

• Optimal value of gamma found: 6280291441.834272.

Such values were defined as definitive hyperparameters of the network.

Just for comparison, Table 4.2 shows the same calculation results, but with a restriction on

the number of iterations, now set to 1000. The space of possible values of C and gamma it still

has a dimension value of 100. Analyzing these results, we can see that other kernel types may

appear, such as Radial Basis Function (RBF) and Sigmoid and, consequently, new values for

C and gamma will arise, with the disadvantage of loss of model accuracy. So, as a final note,

it is crucial to set a large margin to scan the entire search space in order to find the best SVM

hyperparameters using the analyzed data type.

With the results obtained by the classifier, it can be inferred whether a given voice command

given by a speaker is or not a command present in the robot’s vocabulary, and if so, which class

it belongs to. With this distinction, the Raspberry Pi board (where the entire acquisition, ex-

traction and classification process took place) communicates to the microcontroller responsible
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Techniques Best Accuracy (%) Time Spent (ms)
Energy 90.00 72.00
Entropy 85.00 76.00

ZCR 95.00 68.00
Energy+Entropy 98.75 74.50

Energy+ZCR 97.50 71.98
Entropy+ZCR 99.07 71.36

Energy+Entropy+ZCR 99.34 91.98

Table 4.1 – Average of the results obtained from the parameters found by the adjustment methods applied in this
work. Source: author.

Techniques Best Accuracy (%) Kernel
Energy 90.00 RBF
Entropy 90.00 RBF

ZCR 93.75 RBF
Energy+Entropy 90.00 Sigmoid

Energy+ZCR 95.00 Polynomial
Entropy+ZCR 97.50 RBF

Energy+Entropy+ZCR 95.00 Polynomial

Table 4.2 – Average of the results obtained from the parameters found by the adjustment methods applied in this
work, with restriction of iterations. Source: author.

for controlling the robot’s motors whether it should, for example, turn left or right. Even more,

the control of the motors was given by throwing maximum voltage on them, that is, 5 Volts.

The final shape of the robot can be seen in Figure 4.9, and a practical example of navigation

movements in Figure 4.10.
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Figure 4.9 – The final shape of the robot. Source: author.
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Figure 4.10 – An example of execution of “direita”, “esquerda”, “frente” and “trás” commands. Source: author.
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Chapter 5

Conclusions and Future Work

As previously described in the Justification section of this report, the control of a mobile robot

based on voice interaction in Portuguese is an area with very scarce resources. For this reason,

this work was designed to serve as an initial tool to solve this issue. Even more, even with

a considerably restricted vocabulary of voice commands, that is, few commands are actually

recognized by the robotic mechanism, the results obtained corroborate to justify the possibility

of, in future projects, carrying out an extension to increasingly larger vocabularies, making

human-robot interaction increasingly natural and commonplace.

At the end of this work, I would very much like to emphasize that gaining experience,

whether working with digital speech processing or in the area of mobile robotics, will probably

be with me for the rest of my professional career as a computer scientist. Here, I was able to

understand in depth how the scientific method works in the real world, solving applied projects.
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