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Some dynamical properties for a dissipative kicked rotator are studied. Our results show that when

dissipation is taken into account a drastic change happens in the structure of the phase space in the

sense that the mixed structure is modified and attracting fixed points and chaotic attractors are

observed. A detailed numerical investigation in a two-dimensional parameter space based on

the behavior of the Lyapunov exponent is considered. Our results show the existence of infinite

self-similar shrimp-shaped structures corresponding to periodic attractors, embedded in a large

region corresponding to the chaotic regime. VC 2011 American Institute of Physics.

[doi:10.1063/1.3657917]

A strongly dissipative kicked rotator is studied. The

investigation is based mainly on the asymptotic behavior

of the Lyapunov exponents. Our results show that by

reducing the two-dimensional map to a one-dimensional

map in the limit of infinite kicks, the Feigenbaum’s d is

recovered. An investigation in the parameter space (the

dissipation parameter and the kicking parameter) reveals

the existence of infinite families of self-similar structures

of shrimp-shape embedded in a large region correspond-

ing to the chaotic regime. The organization of stability

shrimps reported here for the discrete-time kicked rota-

tor agrees well with the parameter space organization

reported recently in the literature for several flows (con-

tinuous-time systems).

I. INTRODUCTION

Studies in dissipative systems have attracted much atten-

tion during the last decades, and it has been used in various

fields of science including optics,1,2 turbulence and fluid dy-

namics,3,4 nanotechnology,5,6 atomic and molecular

physics,7,8 and quantum and relativistic systems.9,10 One sys-

tem of special importance for its large applicability, which

has been the subject of extensive research, is the standard

map. Proposed originally by Chirikov11,12 in 1969, the stand-

ard map is a dynamical system which describes the motion

of a kicked rotator. Since the pioneering paper of 1969, the

standard map has been applied in many different fields of

science including solid state physics,13 statistical mechan-

ics,14 accelerator physics,15 problems of quantum mechanics

and quantum chaos,16,17 plasma physics,18 ratchet trans-

port,19 and many others.

The dynamics of the kicked rotator is controlled by the

kicking parameter K and in the absence of dissipative

forces; if K is small enough, the structure of the phase space

is mixed20–34 in the sense that Kolmogorov-Arnold-Moser

(KAM) invariant tori and regular islands are observed coex-

isting with chaotic seas. As the parameter K increases and

becomes larger than Kc� 0.971635..., the last invariant

spanning curve disappears and the system presents a glob-

ally chaotic component in the sense that a chaotic orbit can

spread over the phase space. However, the introduction of

dissipation in the model changes completely the mixed

structure and the system exhibits attractors.35–37 In the

regime of strong dissipation, the model exhibits a period

doubling bifurcation cascade, and the so called Feigen-

baum’s d, which is the rate of the bifurcations, can be

obtained numerically. On the other hand, when weak dissi-

pation is taken into account, a drastic change occurs in the

behavior of the average energy. The unlimited energy

growth present in the Hamiltonian case38 for the case

K�Kc is no longer observed. The average action exhibits a

characteristic saturation value which can be described using

scaling arguments. Additionally, such a behavior can be

described remarkably well by an empirical universal func-

tion of the type f(x)¼ xb/(1þ x)b, where b is the acceleration

exponent. Such a function can also be applied to many dissi-

pative systems.39–42

In this paper, we will explore some properties of a dis-

sipative standard map seeking to understand and describe

its parameter space. We specifically take into account its

two-dimensional parameter space, namely, the dissipation

parameter c and the amplitude of the kicks K. We revisit

the parameter space of the dissipative standard map where

the existence of self-similar structures called shrimps was

shown.44 According to Ref. 43, “Shrimps are formed by a
regular set of adjacent windows centered around the main
pair of intersecting superstable parabolic arcs. A shrimp is
a doubly infinite mosaic of stability domains composed by
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an innermost main domain plus all the adjacent stability
domains arising from two period-doubling cascades to-
gether with their corresponding domains of chaos. Shrimps
should not be confused with their innermost main domain
of periodicity.” Results by Gaspard et al.45 in 1984, Rössler

et al.46 in 1989, and Komuro et al.47 in 1991 already dem-

onstrated the existence of self-similar periodic structures in

a 2D-mapping of the Chua’s system, the logistic map, and

the mapping of the double scroll circuit, respectively. How-

ever, it was after the pioneering paper of Gallas48 in 1993

studying the parameter space of the Hénon map that the pa-

rameter space attracted much attention, and since then, it

has already been shown that such shrimp-shaped domains

can be found in many theoretical models.49–58 Very

recently, they were also observed experimentally in a cir-

cuit of the Nishio-Inaba family.59 A recent result from one

of the pioneers of chaos theory,60 was also devoted to this

intriguing and rich parameter space structures. Here, in

order to classify regions in the parameter space with regular

or chaotic behavior, we use as a tool the Lyapunov expo-

nent. We adopt the following procedure: starting with a

fixed initial condition, after a long transient, the Lyapunov

exponent is obtained and, for each combination of (K, c), a

color is attributed. After that we give an increment in the

parameters. We use the last value obtained for the dynami-

cal variables (I, h) before the increment, as the new initial

condition after the increment. This ensures that we are

always in the basin of the same attractor. These self-similar

very well organized structures of shrimp-shape are shown

embedded into a large region corresponding to chaotic

attractors.

The paper is organized as follows. In Sec. II, we describe

all the necessary details to obtain the two-dimensional map

that describes the dynamics of the system and also we present

and discuss our numerical results. Conclusions are drawn in

Sec. III.

II. THE MODEL AND THE NUMERICAL RESULTS

The Hamiltonian that describes the dynamics of the

kicked rotator has the following form:61,62

HðI; h; tÞ ¼ I2

2
þ K cosðhÞ

X1
n¼�1

d t� nð Þ; (1)

where I and h are the action and angle variables, respec-

tively. K is the amplitude of the delta-function pulses (kicks),

the kicking parameter. The equations of motion can be easily

found and are given by

_I ¼ K sinðhÞ
X1

n¼�1
d t� nð Þ; _h ¼ I: (2)

Assuming that (In, hn) are the values of the variables just

before the (nþ 1)th kick, (Inþ1, hnþ1) represent their values

just before the (nþ 2)th kick, and introducing a dissipative

parameter63 c, the dynamics of a dissipative kicked rotator

is described by the following two-dimensional nonlinear

map:

S :
Inþ1 ¼ ð1� cÞIn þ K sinðhnÞ
hnþ1 ¼ ½hn þ Inþ1�modð2pÞ ;

�
(3)

where c 2 0; 1½ � is the dissipation parameter. When dissipa-

tion is taken into account the structure of the phase space

is changed. Then, an elliptical fixed point (generally sur-

rounded by KAM islands) turns into a sink. Regions of

the chaotic sea might be replaced by chaotic attractors. Figure

1(a) shows the structure of the phase space for the conserva-

tive dynamics (c¼ 0) with K¼ 1. As it is well known for such

a value of the kicking parameter K, the last invariant torus is

destroyed and the phase space has one large chaotic sea, the

nested structures of thin chaotic layers, and KAM islands.

Figure 1(b) shows the basin of attraction where the main fixed

points are of period 1 (red and black), 2 (cyan), 3 (maroon),

and 4 (green). The dissipation parameter considered is

c¼ 10�2. The procedure used to construct the basin of attrac-

tion is to divide both I 2 0; 2p½ � and h 2 0; 2p½ � into grids of

1000 parts each, thus leading to a total of 106 different initial

conditions. Each initial condition is iterated up to n¼ 5� 105.

One can see that many periodic attractors emerge for such a

choice of control parameters. It is important to stress that

other attractors could in principle exist. If they exist, however,

their basins of attraction are too small to be observed.

We now consider the regime of strong dissipation. It

corresponds to the case where the action I loses more than

70% of its value upon a kick. We considered the case of

FIG. 1. (Color online) (a) Phase space for the conservative standard map

(c¼ 0) with K¼ 1. (b) Basin of attraction for the attracting fixed points

(sinks) of period 1 (red and black), 2 (cyan), 3 (maroon), and 4 (green). The

control parameters used to construct the basin of attraction were K¼ 1 and

c¼ 10�2.
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c¼ 0.80. To explore some typical behavior, we have used

the initial conditions (h0, I0)¼ (3, 5.53) and investigated its

attraction to periodic orbits, and looked at the bifurcations as

K varies in the range where global chaos is observed in the

non-dissipative regime, i.e., c¼ 0. Figure 2(a) shows the

behavior of the asymptotic action plotted against the control

parameter K, where a sequence of period doubling bifurca-

tions is evident.65–67 The bifurcations observed in (a) are

marked by the vanishing Lyapunov exponent at the same

control parameter K as shown in Fig. 2(b). As discussed

by Eckmann and Ruelle,64 the Lyapunov exponents are

defined as

kj ¼ lim
n!1

1

n
ln jKjj; j ¼ 1; 2; (4)

where Kj are the eigenvalues of M ¼
Qn
i¼1

Jiðhi; IiÞ and Ji is the

Jacobian matrix evaluated over the orbit (hi, Ii). However, a

direct implementation of a computational algorithm to evalu-

ate Eq. (4) has a severe limitation to obtain M. For the limit

of short n, the components of M can assume different orders

of magnitude for chaotic orbits and periodic attractors, mak-

ing the implementation of the algorithm impracticable. To

avoid such a problem, J can be written as J¼HT, where

H is an orthogonal matrix and T is a right up triangular

matrix. M is rewritten as M ¼ JnJn�1 … J2H1H
�1
1 J1, where

T1 ¼ H�1
1 J1. A product of J2H1 defines a new J02. In a next

step, one can show that M ¼ JnJn�1 … J3H2H
�1
2 J02T1. The

same procedure can be used to obtain T2 ¼ H�1
2 J02 and so on.

Using this procedure, the problem is reduced to evaluate the

diagonal elements of Ti : Ti
11; T

i
22. Finally, the Lyapunov

exponents are given by

kj ¼ lim
n!1

1

n

Xn

i¼1

lnjTi
jjj; j ¼ 1; 2: (5)

If at least one of the kj is positive then the orbit is said to be

chaotic. Figure 2(b) shows the behavior of the Lyapunov

exponents corresponding to Fig. 2(a). One can see also that

FIG. 2. Bifurcation cascade for (a) I�K; (b) the Lyapunov exponent associ-

ated to (a). The damping coefficient used was c¼ 0.80.

TABLE I. The value of n, the period of the bifurcation, the values of the

parameter K where the bifurcation happen, and the convergence of the

Feigenbaum’s d considering bifurcations up to the eleventh order.

n Period K d

1 2 5.57011554475050 —

2 4 5.75421890196820 4.66723703234012

3 8 5.79366480024635 4.60078306721265

4 16 5.80223853600000 4.65331150449313

5 32 5.80408103800000 4.66432491229193

6 64 5.80447605808000 4.66821746028430

7 128 5.80456067712000 4.66893856195158

8 256 5.80457880094812 4.66910749234449

9 512 5.80458268259534 4.66917075858837

10 1024 5.80458351393080 4.66920050635855

11 2048 5.80458369197744 —

FIG. 3. (Color online) (a) Phase diagram of K vs. c where the regular struc-

ture of shrimp-shape is shown. The color scale corresponds to the Lyapunov

exponent for a given combination of (K, c). Regular regions are shown in a

red-yellow scale, while chaotic behavior is shown in a green-blue scale. (b)

Magnification of the main structure in (a) where white indicates chaos (posi-

tive Lyapunov exponent) and periodic solution (negative Lyapunov expo-

nent) is shown in colors, each color indicates a given period, namely, red

correspond to period 4, green period 8, and blue period 16 and larger periods

are no longer visible. The color coding runs between the maximum and min-

imum values of the entire plot and its numerical value is indicated.
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when the bifurcations occur, the exponent k vanishes. The

Lyapunov exponents between 5.66<K< 5.69 correspond to

the small sequence of bifurcations observed in Fig. 2(a) for

the same range of the control parameter K. Feigenbaum68,69

observed that there is an universal feature along the bifurca-

tions. The period doubling bifurcations converge geometri-

cally to the chaos border at a constant rate d. The procedure

used to obtain the Feigenbaum constant d is as follows: let

K1 represent the control parameter value at which period-1

gives birth to a period-2 orbit, K2 is the value where period-2

changes to period-4, and so on. In general, the parameter

Kn corresponds to the control parameter value at which

a period-2n orbit is born. Thus, the Feigenbaum’s d is

written as

d ¼ lim
n!1

Kn � Kn�1

Knþ1 � Kn
: (6)

The theoretical value for the Feigenbaum constant d is

d¼ 4.669201609.... Considering the numerical data obtained

through the Lyapunov exponents calculation, the Feigen-

baum’s d obtained for the dissipative standard map is

d¼ 4.66920050635855... considering bifurcations up to 11th

order (see Table I). Here, it is important to emphasize that

such a constant is obtained for dissipative systems where the

two-dimensional model is reduced to a one-dimensional as

n ! 1. Such a universal constant has been found numeri-

cally in other systems, namely, the logistic map70 and the

dissipative Fermi-Ulam model71 just to mention two of

them. On the other hand, if this “two-dimensional character

is preserved,” the universal constant may be different.72,73

To investigate the parameter space, we may change both

the dissipation parameter c and the intensity of the nonlinear-

ity K (the kicking parameter) of the system (3). For each

combination of them and after a long transient, the Lyapunov

exponent is computed. Based on its value, a color is attrib-

uted to each combination of (K,c). Figure 3 shows the struc-

ture of the parameter space for the dissipative standard map

where a shrimp shaped structure is evident. Such a region of

the parameter space indeed agrees with Ref. 44. The proce-

dure used to construct the figure was to divide both

K 2 7:4; 9:45½ � and c 2 0:68; 0:97½ � into windows of 2000

parts each, thus leading to a total of 4� 106 different initial

FIG. 4. (Color online) (a) Magnification of the box in Fig. 3(a); (b) magnification of the box A in Fig. 4(a); (c) and (d) are magnification of the boxes B and C

in Fig. 4(b); and (e) and (f) are magnification of the boxes D and E in Fig. 4(d). Numbers represent the period of the main structure of each shrimp. The color

coding runs between the maximum and minimum value of the entire plot, and its numerical value is indicated, which changes from plot to plot.
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conditions. Starting with I0¼ 5.53 and h0¼ 3 as initial condi-

tion, for each increment in K and c, we follow the attractor.

This means that we have used the last value obtained for

(h, I) before the increment, as the new initial condition after

the increment. Using this approach, we lose the information

about many other attractors, because it can happen that the

chosen initial condition belongs to the basin of attraction of

another attractor. In our simulations, we considered a tran-

sient of n¼ 1� 107 iterations, and the Lyapunov exponent

was computed for the next n¼ 1� 106 iterations. The expo-

nents are coded with a continuous color scale ranging from

green-blue (positive exponents) to red-yellow (negative

exponents). It is important to emphasize that the color

scaling was changed from plot to plot. Figure 3(b) shows a

magnification of the main structure in Fig. 3(a), and colors

indicate the period. Each shrimp consists of a main body

followed by an infinite sequence of bifurcations following

the rule k� 2n, where k is the period of the main body. In

the case of Fig. 3(b), k¼ 4 which is shown in red, green

corresponds to period 8, blue denotes period 16, and so on.

Figure 4 shows several figures with magnification of

regions in the parameter space. Figure 4(a) shows an enlarge-

ment of the region inside the box of Fig. 3(a). As one can

see, there are two small shrimps of period 12. Another mag-

nification (inside the box A in Fig. 4(a)) reveals the existence

of many other shrimps in Fig. 4(b). An enlargement of the

region inside box B in Fig. 4(b) reveals the same structure

observed in Fig. 4(a), which indicates that if infinite enlarge-

ments are made, such structures will have essentially the

same shape, however, with different periods. Additionally,

these structures seem to be organized in a very specific direc-

tion in the parameter space [see Fig. 4(d)], which can be

approximated by the equation

K ¼ 19:660� 13:801c: (7)

Figure 5 shows a bifurcation diagram obtained by turning K
and c simultaneously according to Eq. (7). As one can see,

the diagram reflects very well the information obtained from

Fig. 4(d) (alternation between chaotic behavior and regular

regions) where Eq. (7) is fitted. Numbers represent the period

(12! 28! 20! 28! 16). However, an infinite family of

shrimps of higher order does exist as can be seen in Figs.

4(e) and 4(f). The results presented here agree well with the

results which have been recently presented in the literature

for flows, i.e., for systems described by systems of differen-

tial equations.52–58

III. CONCLUSIONS

Some results for a dissipative standard map have been

addressed. When dissipation is taken into account, the mixed

structure of the phase space is changed, the elliptic fixed points

are replaced by attracting fixed points. For the regime of strong

dissipation, the model exhibits a period doubling bifurcation

cascade, where the Feigenbaum d¼ 4.66920050635855... was

numerically obtained. Based on the Lyapunov exponent, we

show that the parameter space (K, c), where c is the dissipation

parameter and K the kicking parameter, is very rich and exhib-

its infinite families of self-similar shrimp-shape structures,

corresponding to periodic attractors, embedded in a large

region corresponding to chaotic attractors. We observe that

they are organized in a particular way described along the

straight line according to K¼ 19.660� 13.801c, where the

alternation between regular behavior and chaos has been

shown in period-doubling bifurcation cascades.
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Physica D 129, 35 (1999).
52C. Bonatto, J. C. Garreau, and J. A. C. Gallas, Phys. Rev. Lett. 95, 143905

(2005).
53C. Bonatto and J. A. C. Gallas, Phys. Rev. Lett. 107, 054101 (2008).
54H. A. Albuquerque, R. M. Rubinger, and P. C. Rech, Phys. Lett. A 372,

4793 (2008).
55J. C. D. Cardoso, H. A. Albuquerque, and R. M. Rubinger, Phys. Lett. A

373, 2050 (2009).
56E. V. Viana, R. M. Rubinger, H. A. Albuquerque, A. G. de Oliveira, and

G. M. Ribeiro, Chaos 20, 023110 (2010).
57C. Stegemann, H. A. Albuquerque, and P. C. Rech, Chaos 20, 023103

(2010).
58C. Stegemann, H. A. Albuquerque, R. M. Rubinger, and P. C. Rech, Chaos

21, 033105 (2011).
59R. Stoop, P. Benner, and Y. Uwate, Phys. Rev. Lett. 105, 074102 (2010).
60E. N. Lorenz, Physica D 237, 1689 (2008).
61G. M. Zaslavsky, Hamiltonian Chaos and Fractional Dynamics (Oxford

University Press, Oxford, 2006).
62G. M. Zaslavsky, The Physics of Chaos in Hamiltonian Systems (Imperial

College, London, 2007).
63G. M. Zaslavsky, Phys. Lett. A 69A, 145 (1978).
64J. P. Eckmann and D. Ruelle, Rev. Mod. Phys. 57, 617 (1985).
65R. M. May, Nature 261, 459 (1976).
66S. Grossmann and S. Thomae, Z. Naturforsch. 32a, 1353 (1977).
67M. W. Beims and J. A. C. Gallas, Physica A 238, 225 (1997).
68M. Feigenbaum, J. Stat. Phys. 19, 25 (1978).
69M. Feigenbaum, J. Stat. Phys. 21, 669 (1979).
70J. A. C. Gallas, Int. J. Mod. Phys. C 3, 553 (1992).
71D. F. M. Oliveira and E. D. Leonel, Braz. J. Phys. 38, 62 (2008).
72T. C. Bountis, Physics D 3, 577 (1981)
73M. Feigenbaum, L. P. Kadanoff, and S. J. Shenker, Physica D 5, 370

(1982).

043122-6 Oliveira, Robnik, and Leonel Chaos 21, 043122 (2011)

Downloaded 12 Jul 2013 to 186.217.234.17. This article is copyrighted as indicated in the abstract. Reuse of AIP content is subject to the terms at: http://chaos.aip.org/about/rights_and_permissions

http://dx.doi.org/10.1103/PhysRevLett.36.521
http://dx.doi.org/10.1103/PhysRevA.34.1413
http://dx.doi.org/10.1103/PhysRevLett.75.4598
http://dx.doi.org/10.1016/0167-2789(83)90129-X
http://dx.doi.org/10.1103/PhysRevLett.106.234101
http://dx.doi.org/10.1103/PhysRevLett.106.234101
http://dx.doi.org/10.1088/0951-7715/12/5/310
http://dx.doi.org/10.1016/j.physd.2006.03.014
http://dx.doi.org/10.1016/j.cnsns.2009.05.044
http://dx.doi.org/10.1016/j.cnsns.2009.05.044
http://dx.doi.org/10.1088/0143-0807/2/2/006
http://dx.doi.org/10.1088/0305-4470/16/17/014
http://dx.doi.org/10.1088/0305-4470/17/12/013
http://dx.doi.org/10.1088/0305-4470/18/9/019
http://dx.doi.org/10.1088/0305-4470/26/10/010
http://dx.doi.org/10.1088/0305-4470/27/24/017
http://dx.doi.org/10.1088/0305-4470/32/10/006
http://dx.doi.org/10.1007/BF02101531
http://dx.doi.org/10.1007/BF02101531
http://dx.doi.org/10.1088/0305-4470/32/36/306
http://dx.doi.org/10.1103/PhysRevE.66.036202
http://dx.doi.org/10.1088/0305-4470/38/4/004
http://dx.doi.org/10.1016/j.physa.2007.10.037
http://dx.doi.org/10.1103/PhysRevE.78.056205
http://dx.doi.org/10.1016/j.physleta.2010.05.038
http://dx.doi.org/10.1088/1751-8113/40/38/003
http://dx.doi.org/10.1103/PhysRevE.83.026202
http://dx.doi.org/10.1016/j.physd.2010.09.015
http://dx.doi.org/10.1016/j.physa.2009.10.036
http://dx.doi.org/10.1103/PhysRevE.84.016216
http://dx.doi.org/10.1142/S0218127408021294
http://dx.doi.org/10.1007/BF01010829
http://dx.doi.org/10.1103/PhysRevA.39.5954
http://dx.doi.org/10.1142/S0218127491000105
http://dx.doi.org/10.1142/S0218127491000105
http://dx.doi.org/10.1103/PhysRevLett.70.2714
http://www.if.ufrgs.br/~jgallas/OFICINA/BNK/jg_festschrift01.pdf
http://www.if.ufrgs.br/~jgallas/OFICINA/BNK/jg_festschrift01.pdf
http://dx.doi.org/10.1016/0378-4371(94)90174-0
http://dx.doi.org/10.1016/S0167-2789(98)00201-2
http://dx.doi.org/10.1103/PhysRevLett.95.143905
http://dx.doi.org/10.1103/PhysRevLett.101.054101
http://dx.doi.org/10.1016/j.physleta.2008.05.036
http://dx.doi.org/10.1016/j.physleta.2009.04.024
http://dx.doi.org/10.1063/1.3407482
http://dx.doi.org/10.1063/1.3374677
http://dx.doi.org/10.1063/1.3615232
http://dx.doi.org/10.1103/PhysRevLett.105.074102
http://dx.doi.org/10.1016/j.physd.2007.11.014
http://dx.doi.org/10.1016/0375-9601(78)90195-0
http://dx.doi.org/10.1103/RevModPhys.57.617
http://dx.doi.org/10.1038/261459a0
http://dx.doi.org/10.1016/S0378-4371(96)00451-7
http://dx.doi.org/10.1007/BF01020332
http://dx.doi.org/10.1007/BF01107909
http://dx.doi.org/10.1142/S012918319200035X
http://dx.doi.org/10.1590/S0103-97332008000100012
http://dx.doi.org/10.1016/0167-2789(81)90041-5
http://dx.doi.org/10.1016/0167-2789(82)90030-6

