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The structural and magnetic properties of the vortex matter in mesoscopic superconductors have been 
of great interest in the last decades. Recently, it has been found that vortex-vortex interaction, which 
is generally repulsive, can be non-monotonic under some special circumstances. Here, we have studied 
this issue by applying the three dimensional time dependent Ginzburg-Landau equations to a thin type-
I mesoscopic superconducting film under a thermal gradient. We find that this favors the formation 
of small clusters of vortices in some special domains of the superconductor. We also find that this is 
intimately related to the non-monotonic vortex-vortex interaction by investigating the behavior of two 
constrained vortices in the presence of a thermal gradient. We show that the vortex-vortex interaction 
alternates between short range attraction and long range repulsion. This study shows that the thermal 
gradient has the potential to be an important tool to manipulate the vortex matter.

© 2021 Elsevier B.V. All rights reserved.
1. Introduction

Perhaps one of the most important features of superconductors, 
both from the viewpoint of their fundamental properties as well 
as their possible applications, is the behavior of topological excita-
tions in the superconducting state. The most well known and long 
studied example of such excitations is the magnetic flux line (i.e.
vortex), at which center the phase of the superconducting order 
parameter ψ rotates by a multiple of 2π , consequently limiting 
the amount of flux carried by each vortex in integer multiples of 
the magnetic flux quanta �0 [1,2].

Vortices were first predicted to exist in the superconducting 
state within the framework of the Ginzburg-Landau (GL) theory 
by A. Abrikosov [3], who showed that, for type-II superconduc-
tors, vortices are thermodinamically stable above the first critical 
field Hc1. A superconductor is classified as type-II when its GL 
parameter κ is larger than 1/

√
2. Due to the negative surface 

energy between superconducting and normal regions for type-II 
superconductors, the flux lines tends to maximize their surface 
area, thus rendering the vortex-vortex interaction repulsive. On the 
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other hand, for type-I superconductors (κ < 1/
√

2) , although iso-
lated vortices are thermodinamically unstable, the surface energy 
between superconducting and normal regions is positive, which 
means that the vortex-vortex interaction is attractive and the mag-
netic flux lines merge into each other to form patterns highly 
dependent of the sample geometry.

At the special case κc = 1/
√

2, known as the Bogomolnyi point, 
it was shown that the two GL equations become self-dual and 
every vortex configuration has precisely the same energy, i.e., vor-
tices do not interact at κc [4]. Nevertheless, even slightly below 
the critical temperature Tc though, this simple textbook descrip-
tion ceases to be valid at the vicinity of κc [5], where non-local 
effects not present in the standard GL theory become important. In 
fact, it was shown that, upon extending the standard GL expansion 
in the parameter τ = 1 − T /Tc to the next-to-leading order, an in-
tertype domain in the κ − T space emerges, in which vortex-vortex 
interaction are now non-monotonic, namely, short-range repulsive 
and long-range attractive [6,7].

In addition to the aforementioned non-local effects, it is also 
known that geometrical effects are also able to break the Bogo-
molnyi self-duality below Tc , even in the standard GL picture, thus 
also giving rise to the intertype domain. In particular, it was shown 
[8–11] that thin-films of type-I superconductors move from a type-
I to a type-II behavior, passing by the intertype domain, as the 
film thickness is decreased. This occurs due to the stray field ef-
fects, which contributes to the vortex-vortex interaction with a 
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repulsive term. In the thickness region, where the intertype phase 
exists, the vortex-vortex attraction typical of type-I superconduc-
tors competes with the repulsion originated in the stray fields and 
a non-monotonic interaction results.

In this work, we propose a novel mechanism, based on thermal 
gradients, to the onset of a non-monotonic vortex-vortex interac-
tion. As in the case of the thin films described above, the non-
monotonic interaction reported here does not rely on non-local 
effects which have already been found in the standard GL formal-
ism. The effects of a thermal gradient on the vortex matter were 
previously studied [12,13] and shown to develop mainly from a 
pinning of the vortices in the hotter regions and from an asym-
metric penetration of vortices due to the lower penetration field in 
the sample side with higher temperature.

Here, we show that the presence of a thermal gradient induces 
the formation of vortex clusters, where vortices tend to agglomer-
ate in specific locations of the sample. Although the sole existence 
of these vortex clusters indicates that the vortex-vortex interaction 
is not monotonic, by making use of the constrained GL formal-
ism which fixes the vortex positions [14], we explicitly show that 
the thermal gradients give rise to a non-monotonic vortex-vortex 
interaction. The results of the present work are not only of funda-
mental interest, once it extends previous works on the properties 
of vortex interactions to systems with a non-homogeneous tem-
perature distributions, but may also be of practical interest, given 
that this type of thermal gradient could be used to control the 
vortex matter of superconducting samples [13]. Furthermore, local 
thermal gradients have already been suggested as a possible route 
for a series of applications, such as the induction of an open cir-
cuit voltage in the absence of an applied current [15] and vortex 
ratchet effect [16,17].

The outline of this paper is as follows. In Sec. 2 we introduce 
the theoretical formalism founding our work, which is composed 
by the time-dependent GL equations (TDGL) and the constrained 
TDGL equations. In Sec. 3 we present and discuss our main find-
ings, the results of the TDGL equations being reported at Sub-
sec. 3.1 and the those of constrained GL formalism at Subsec. 3.2. 
Finally, in Sec. 4 we present our final remarks.

2. Theoretical formalism

2.1. TDGL equations

The thermodynamic equilibrium of the superconductors is well 
described by the Ginzburg-Landau equations (see for instance [1]). 
Based on first principles, in 1996 Schmid [18] proposed a gener-
alization, commonly known as time dependent Ginzburg-Landau 
model. They describe the superconductivity in the non-equilibrium 
state. These equations consider the temporal evolution of the or-
der parameter ψ and of the vector potential A. In dimensionless 
units, the TDGL equations are given by

η

(
∂

∂t
+ iϕ

)
ψ = − 1

κ2(0)
(−i∇ − A)2 ψ

+ ψ

(1 + τ 2)2 (1 − τ 4 − |ψ |2), (1)

β
∂A

∂t
+ ∇ϕ = Js − ∇ × ∇ × A, (2)

where the superconductivity current density is given by

Js = Re

[
ψ̄

(
− i

κ(0)
∇ − A

)
ψ

]
. (3)

Here, τ = T /Tc is the temperature T in units of the critical 
temperature Tc .
2

In order to take into account the thermal gradient, we assume 
that the temperature has a dependency only along the x axis. We 
have

T (x, y, z) = (T R − T L)x/lx + (T R + T L)/2, (4)

where lx is the length of the superconductor along the x direc-
tion, T L and T R are the temperatures on the left and right-hand 
sides of the superconductor as shown in Fig. 1. It is important to 
note that our assumption of a linear temperature distribution does 
not qualitative alter our results if we also assume that the heat re-
moval from the superconductor to the substrate is not strong. This 
is shown in the Supplementary Material, where we show calcula-
tions performed considering the full heat diffusion equation with 
different heat transfer coefficients.

Once the systems achieves the stationary state, we evaluated 
the Gibbs free energy through the equation

E = −1

4

∫
�SC

1

(1 + τ 2)2
|ψ |4 d3r +

∫
�

(h − H)2 d3r, (5)

where �SC covers the superconducting domain and � the whole 
space, including the region occupied by the stray fields. Here, H is 
the external applied magnetic field.

In order to fulfill the requirement that the critical thermody-
namic field relationship, Hc(τ ) = Hc(0)(1 − τ 2) be valid, we have 
chosen the phenomenological constants accordingly, so that the 
coherence and London penetration lengths are given by ξ(τ ) =
ξ(0)

√
(1 − τ 2)/(1 + τ 2) and λ(τ ) = λ(0)/

√
1 − τ 4, respectively. 

Within this context, the Ginzburg-Landau parameter is tempera-
ture dependent, κ(τ ) = λ(τ )/ξ(τ ) = κ(0)/(1 + τ 2) (see References 
[1], page 106, and [19]).

Due to the temperature dependence of κ , it is important to bear 
in mind that the results presented below are strictly valid to the 
average temperature between T L and T R used in the calculations. 
In other words, even if the difference between T L and T R is the 
same, but their average temperature is not, the results would not 
be the same. As previously shown in Reference [10], this occurs 
because the crossover between type I and type II superconductivity 
(and thus from an attraction to a repulsive interaction between 
vortices) is temperature dependent. Once the intent of the present 
letter is to show the possibility of a non-monotonic vortex-vortex 
interaction emerging from a thermal gradient, we do not pursuit 
a more extensive study of the effects of the average temperature 
on this, which would also require a study with different values of 
κ(0) and different film thicknesses [10].

Dimensionless units were introduced in Eqs. (1)-(3) as follows: 
the order parameter ψ is in units of ψ∞ = √

α(0)/β(0), which is 
simply the order parameter in the Meissner state at zero temper-
ature, where α and β are two phenomenological constants; length 
is in units of λ(0); magnetic field is in units of 

√
2Hc(0); the 

vector potential A is in units of 
√

2λ(0)Hc(0); the scalar poten-
tial is units of Hc2(0)D/c, where D is the diffusion coefficient and 
Hc2(τ ) = √

2κ(τ )Hc(τ ) is the bulk upper critical field; finally, en-
ergy is in units of E0 = H2

c (0)λ3(0)/4π .
Since neither charges nor applied currents are taken into ac-

count, we are allowed to use the Coulomb gauge ϕ = 0. Thus, it is 
sufficient to use the following boundary conditions

n ·
(

− i

κ(0)
∇ − A

)
= 0, (6)

where n is the unit vector outward normal to the superconduc-
tor-vacuum interface, and

(∇ × A) × n = H × n, (7)
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Fig. 1. Sketch of a mesoscopic superconducting stripe. The right-hand side (x = lx/2) 
end of the sample is heated by a laser at a temperature T R while the left-hand side 
end (x = −lx/2) is at the thermal bath temperature T L < T R . Inside the supercon-
ductor, the local temperature varies as T (x, y, z) = (T R − T L)x/lx + (T R + T L)/2. A 
mask with a slit is positioned above the superconductor. The radiation produced by 
the laser passes through the slit with an optical lens which deviates the laser bean 
straight to the superconducting edge. For sufficiently thin films, the variation of the 
temperature, from the top to the bottom surface, is very small. Therefore, we can 
consider its temperature across the thickness film as constant, T L on the left and 
T R on the right-hand side. Notice also that, solely for illustration purposes, we have 
left a small distance on the right-hand side of laser; this distance is considered so 
small that the results for the vortex configurations should not be influenced by this 
approximation.

where n now represents the unit vector outward normal to the 
surface of the simulation box. Eq. (6) means n · Js is null at all 
points on the superconducting surface. On the other hand, Eq. (7)
means that the local field is equal to the external applied magnetic 
field, H, faraway from the superconductor.

In order to solve Eqs. (1) - (3) numerically, supplied by the 
boundary conditions (6) and (7) we have used the link-variable 
method according to References [20–22]. The superconductor of 
size (lx, l y, lz) is considered inside a simulation box of dimensions 
(Lx, L y, Lz) sufficiently large so that the local field becomes uni-
form on its borders; the simulation box is not shown in Fig. 1, 
for more details, see figure 1 of Reference [21]. Thus, the bound-
ary condition (7) is fully satisfied. We increase the external applied 
magnetic field in small steps, typically �H = 0.001

√
2Hc(0), from 

zero up to a value for which the superconductor goes to the nor-
mal state. During this process, the vortex configuration is arranged 
in order to minimize the Gibbs free energy so that no restriction 
is imposed either on ψ or A. It is in this sense that we will refer 
to equations ((1)-(3)) TDGL equations for unconstrained vortices.

As a final remark, we must emphasize that, although the TDGL 
equations are most appropriately applied to study the resistive 
state of superconductors, here we will use them as a relaxation 
method to obtain the steady state of the vortex state. This is a 
common practice in the numerical method to solve the standard 
Ginzburg-Landau equations. We have done this to a mesoscopic 
superconductor in the presence of thermal gradient which varies 
linearly from one side of the superconductor to the opposite one. 
The geometry of the system under investigation is illustrated in 
Fig. 1.

2.2. TDGL equations for constrained vortices

Now, by constrained vortices, such as in [14], we mean two vor-
tices at fixed positions. Let (lx/2 − d/2, 0, 0) and (lx + d/2, 0, 0) be 
the positions of the center of each vortex and d the distance be-
tween them. We consider the vortex core center as a straight line 
along the z direction, so that d is constant. Thus, the order param-
eter can be written as a superposition of the two vortices

ψ(r) = ein1θ1 ein2θ2 f (r), (8)

where n1 and n2 are the vorticity of both vortices, and
3

Fig. 2. (Color online.) Intensity of |ψ | for different values of the external magnetic 
field to T L = T R = 0.75TC . The order parameter grows from the dark-blue to the 
dark-red regions.

θk(r) =
(

xk + iyk

xk − iyk

)nk/2

, (9)

are the Cartesian form of the phase of each vortex, for {k = 1, 2}. 
Here, r1 = (x − lx/2 − d/2, y, 0) and r2 = (x − lx/2 + d/2, y, 0).

Next, by introducing equations (8) and (9) into equations (1)
and (2) we obtain

∂ f

∂t
= 1

κ2(0)
∇2 f

−
[

X
2 + Y

2 + 2(AxY − Ay X) + A2
]

f

+ f

(1 + τ 2)2
(1 − τ 4 − f 2), (10)

∂A

∂t
=

[
A − n1

r1
θ̂1 − n1

r2
θ̂2

]
f 2 − ∇ × ∇ × A, (11)

where

X = n1x1

r2
1

+ n2x2

r2
2

, (12)

Y = n1 y1

r2
1

+ n2 y2

r2
2

, (13)

θ̂k =
(

− yk

rk
,

xk

rk
,0

)
. (14)

In opposition to what has been considered in Reference [14], 
we will take into account the demagnetization effects by numeri-
cally solving the 3D TDGL equations for constrained vortices.

3. Results and discussion

As sketched in Fig. 1, the system studied here posses the 
following parameters: lx = 90λ(0), l y = 45λ(0), lz = 2λ(0), Lx =
120λ(0), L y = 75λ(0), Lz = 40λ(0), T R = 0.85Tc , T L = 0.75Tc and 
GL parameter κ(0) = 0.444. In order to carry out a compara-
tive study with the system under an applied thermal gradient, 
we have also investigated the same system, but with the homo-
geneous distribution of temperatures T = T R = T L = 0.75Tc , and 
T = T R = T L = 0.85Tc . In what follows, we present and discuss 
the results of the original TDGL equations and the constrained GL 
equations in Subsec. 3.1 and Subsec. 3.2, respectively.

3.1. Vortex configurations

We begin by presenting and discussing the results for the un-
constrained vortices within standard GL theory. In order to inves-
tigate how the presence of a thermal gradient affects the vortex 
configuration, we first present the results for a system with con-
stant temperature over its entire volume. This is done for two 
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Fig. 3. (Color online.) The same as Fig. 2 for T L = T R = 0.85Tc .

values of temperature T = 0.75Tc and T = 0.85Tc . We then in-
vestigate a system whose left side is maintained at a temper-
ature T L = 0.75Tc , while its right side temperature is fixed at 
T R = 0.85Tc . Fig. 2 shows the color plot of the order param-
eter for T L = T R = 0.75Tc and four different values of the ap-
plied field. Panel (a) of Fig. 2 shows the vortex configuration for 
H = 0.095

√
2Hc(0). As can be seen, a single row with four vor-

tices is formed along the x direction of the film. This occurs once 
the vortices repel each other, thus being energetically favorable a 
configuration with the largest possible inter-vortex distance. Note 
that, once the GL parameter κ(0) < 1/

√
2, the vortex-vortex repul-

sive interaction occurs due to the stray fields.
For a larger applied field H = 0.111

√
2Hc(0), shown in panel 

(b) of Fig. 2, six more vortices penetrate the sample, which now 
presents two parallel rows with five vortices each. At this field, the 
vortices can still organize themselves inside the superconductor in 
a regular pattern without deformation. Nevertheless, as the mag-
netic field is further increased, the number of vortices becomes 
larger and confinement effects become more visible, as in the case 
of panel (c), which presents the color plot for H = 0.117

√
2Hc(0), 

where two more vortices penetrate the sample and their arrange-
ment becomes distorted. For H = 0.122

√
2Hc(0) (panel (d)), as 

even more vortices are nucleated, this behavior is further enhanced 
mainly near the edges of the superconductor, where confinement 
effects caused by the screening currents are stronger.

Now, Fig. 3 shows the color plot for T L = T R = 0.85Tc , also for 
four different values of the applied field. For H = 0.065

√
2Hc(0)

(panel (a)), as in the case of panel (a) of Fig. 2, four vortices are 
displayed in a row inside the superconductor. Due to the higher 
temperature, the size of the vortex core now is larger, but the 
vortices are also organized in such a way to achieve maximum 
inter-vortex distance. However, this larger vortex size enhances the 
interaction of the vortices with surface currents, thus increasing 
the confinement effects. This is seen already in panel (b), which 
shows the color plot for H = 0.076

√
2Hc(0). As the magnetic field 

is further increased these confinement effects appear more clearly 
and the larger vortex size makes the cores of the vortices to over-
lap, creating a region of suppressed superconductivity in the center 
of the sample, as can be seen in panels (c) and (d).

Finally, we discuss the vortex configuration in the presence of a 
thermal gradient, where T L = 0.75Tc and T R = 0.85Tc (see Fig. 4). 
The major difference between this and the previous cases is al-
ready evident in panel (a), which shows the color plot of the 
order parameter for H = 0.076

√
2Hc(0). Here, as has been dis-

cussed previously, the four vortices are displayed in a row, but 
now the inter-vortex distances vary, being shorter in the hotter 
region than in the colder one. If the equal and maximum possible 
separation of the previous cases meant a repulsive vortex-vortex 
interaction, the distribution now encountered suggests that this 
interaction can also be attractive in the presence of a thermal gra-
dient. Panel (b), which represents the case of H = 0.079

√
2Hc(0), 

gives further evidence for this. As more vortices penetrate the sam-
4

Fig. 4. (Color online.) The same as Fig. 2 for T L = 0.75TC and T R = 0.85TC .

Fig. 5. (Color online.) Force (in units of F0 = H2
c (0)λ2(0)/4π ) as a function of the 

distance between two constrained vortices for homogeneous temperature, and for a 
thermal gradient as indicated in the legend of the figure. Inset: the energy of the 
respective configurations.

ple, the formation of vortex clusters gets more visible in the hotter 
region. For H = 0.084

√
2Hc(0) (panel (c)) the formation of vortex 

clusters can be seen also in the colder region and the emergence 
of a non-monotonic vortex-vortex interaction becomes clearer. For 
even higher values of the applied field (panel (d)) the vortex cores 
overlap in the hotter region (where the coherence length is larger) 
and the visualization of the vortex pattern becomes more difficult. 
To fully prove the non-monotonicity of the vortex-vortex interac-
tion indicated by the formation of vortex clusters discussed above, 
one needs to access the energy profile of the vortex configurations 
and study how it evolves as the inter-vortex distances are changed. 
Such an analysis is provided in the next section.

3.2. Vortex-vortex interaction

Let us now prove that the presence of a thermal gradient in-
deed induces a non-monotonic vortex-vortex interaction. To do 
this, we use the constrained GL formalism to calculate how the 
energy of a two-vortex configuration changes as we change the 
distance between them. As done in [14], in order to eliminate 
boundary effects in the vortex-vortex interaction, the calculations 
are realized in the absence of an applied field. The general proce-
dure is as follows. We start with two vortices at the center of the 
superconductor (i.e. (x, y, z) = (lx/2, l y/2, lz/2)) and then slowly 
move them apart along the x axis, by taking one towards the left 
and the another one in the opposite direction, keeping the y co-
ordinate constant. For each vortex-vortex distance d, the energy of 
the system is then calculated.
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The inset of Fig. 5 shows the energy as a function of d for 
the case without a thermal gradient (blue curve) with T L = T R =
0.75Tc and for the case with the presence of a thermal gradi-
ent (orange curve) with T L = 0.75Tc and T R = 0.85Tc . From these 
curves, the interaction force between the two vortices can be com-
puted. Both cases are displayed in Fig. 5. As we can see from the 
blue curve, the interaction between the vortices is always repul-
sive in absence of a thermal gradient. This is in accordance, for 
example, with panel (a) of Fig. 2, where the vortices organizes 
themselves in such a way as to achieve the greatest possible dis-
tance from each other.

On the other hand, the orange curve exhibits a more com-
plex behavior, with the emergence of a distance region where the 
vortex-vortex interaction is attractive. As we can see, the inter-
vortex interaction in this case is only repulsive for a vortex sepa-
ration d � 6λ(0), while for small inter-vortex distances (d � 6λ(0)) 
there is an attraction between the vortices. One can then immedi-
ately see that the asymmetry between the left and right sides of 
the sample induced by the thermal gradient causes the emergence 
of a short range attraction between two vortices being symmetri-
cally displaced from the center of the superconductor.

This confirms that, as suggested by the formation of vortex 
clusters discussed in the previous section, the thermal gradient in-
duces a non-monotonic vortex-vortex interaction in the direction 
of the thermal gradient. This occurs due to the fact that, in the 
presence of a thermal gradient, the system becomes inhomoge-
neous and the vortices prefer to be in the hotter region of the 
superconductor. Thus, the non-monotonic vortex-vortex interac-
tion arises as a competition between vortex-vortex repulsion that 
would exist without the thermal gradient and the tendency of the 
vortex to be on the hotter region. In the Supplementary Material 
we show the interaction profile for different thermal gradient in-
tensities, but maintaining the average temperature between T L and 
T R equals to T = 0.80Tc . As can be seen from this interaction, the 
non-monotonic behavior presented here persists for a wide range 
of gradient intensities.

Now, the above analysis holds only if the two vortices are dis-
placed symmetrically from the center of the superconductor (recall 
that our sample is inhomogeneous). Thus, to discuss the vortex 
clusters presented before, we need a more specific investigation. 
The results are shown in Fig. 6, where we now study the energy 
for three-vortex configuration. Here, the external field is taken as 
H = 0.73

√
2Hc and two vortices (the left and right ones) are fixed 

at the positions which come out from the unconstrained TDGL 
simulation for the same value of H . The position of the third vor-
tex in between is then varied and we search for the configuration 
of minimal energy.

Panel (a) of Fig. 6 shows the energy as a function of the third 
vortex position and panels (b) − (e) show the color plot of some 
special configurations. As one can see, as the vortex moves from 
the position of the left fixed vortex (panel (b)) the configuration 
energy decreases (panel (c)) until the system reaches its minimum 
energy value at x = 3.5λ(0) (panel (d)). If we now move the vortex 
closer to right fixed vortex, the energy starts increasing again.

As expected, the configuration with minimum energy (panel 
(d)) coincides exactly with the configuration encountered from the 
unconstrained TDGL simulations. This can be seen in the inset of 
panel (a) of Fig. 6, where we plot the modulus of the order pa-
rameter along the central line of the superconducting stripe as a 
function of the position x. The blue and orange curves correspond 
to the results for the unconstrained and constrained simulations, 
respectively. They coincide almost exactly with small deviation 
around the center of the sample.

Fig. 6(a) also confirms our previous analyses that the thermal 
gradient makes it energetically favorable for the vortex to be on 
the hotter region, once the optimal position of the free vortex is 
5

Fig. 6. (Color online.) a) Energy of a three-vortex system with the two ends being 
fixed and the middle one free to move. The energy is plotted as a function of the 
position of the middle vortex. The inset shows the order parameter along the line 
y = 0 for both the constrained vortices and those which come out from the con-
ventional TDGL equations of Section 2.2. a) − b) Four distinct configurations of the 
constrained three-vortex system.

closer to the right fixed vortex rather than to the left one. This can 
also be seen from the fact that the configuration energy is higher 
when the free vortex is closer to the left fixed vortex, reflecting 
once more the “attraction” exercised by the hotter region.

4. Concluding remarks

In summary, we have shown that the application of a thermal 
gradient in a superconducting film favors the formation of vor-
tex clusters. These clusters result from the competition between 
the inter-vortex repulsion due to the stray fields and the ten-
dency of the vortex to occupy the hotter region of the sample. 
Indeed, as shown by the analysis of the constrained Ginzburg-
Landau equations, this competition results in the emergence of a 
non-monotonic vortex-vortex interaction, which does not only de-
pend on the inter-vortex distances, as in films with uniform tem-
perature distribution, but also on the position of the vortex relative 
to the thermal gradient. This is to be expected, once the hotter re-
gion exerts the effect of a pinning center. The present preliminary 
investigation suggests that thermal gradients can be used to ma-
nipulate the vortex matter configurations, in particular to create a 
non-uniform vortex distribution.
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