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Dimensional effects on the momentum distribution of bosonic trimer states
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The momentum distribution is a powerful probe of strongly interacting systems that are expected to display
universal behavior. This is contained in the contact parameters which relate few- and many-body properties. Here
we consider a Bose gas in two dimensions and explicitly show that the two-body contact parameter is universal
and then demonstrate that the momentum distribution at next-to-leading order has a logarithmic dependence on
momentum which is vastly different from the three-dimensional case. Based on this, we propose a scheme for
measuring the effective dimensionality of a quantum many-body system by exploiting the functional form of the
momentum distribution.
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I. INTRODUCTION

Strongly interacting quantum systems are ubiquitous in
nature and naturally at the forefront of physics research.
However, the theoretical study of strong interactions can be
very difficult since our usual and intuitively clear perturbative
methods can fail miserably when interparticle forces are
strong. A success of cold atomic gas physics is the ability to
create and manipulate strongly interacting gases in experiment
[1]. One particularly interesting aspect is the ability to change
the dimensionality by applied optical fields. This means
that low-dimensional dynamics which is typically found in
condensed-matter systems of great technological interest can
be addressed. The field thus provides a test bed for models of
strongly coupled dynamics that are used to describe interesting
materials.

A breakthrough in the study of strongly interacting quantum
systems with short-range interactions was the derivation of a
set of universal relations that relate the two-body correlations
to the many-body thermodynamics through the so-called
contact parameter C2 [2]. One way to define this quantity
is through the asymptotic behavior of the single-particle
momentum distribution n(k) of a few- or many-body system,
i.e., via n(k) → C2/k4 which is the leading-order behavior
when the momentum k goes to infinity (this fact had been
already derived for a one-dimensional Bose gas with zero-
range interactions, the Lieb-Liniger system [3]). The same C2

also appears in the total energy of the system and in response
functions. These relations were subsequently confirmed in
experiments on two-component Fermi gases [4,5]. They
also hold for bosonic gases [6–10] as confirmed by recent
experiments [11]. In the case of two-component fermions,
the Pauli principle suppresses correlations between three
particles. In contrast, for bosons three-body correlations are
very important and this implies that one must also consider
a three-body contact parameter C3 [8,9]. It is most simply
defined as the coefficient of the subleading large k limiting
term in n(k), but as we will show below, the form of this term
is highly sensitive to dimensionality.

A second avenue that is enjoying great success at the
moment, is the experimental study of two-dimensional (2D)

atomic Fermi gases [12–16]. Universal contact relations
should also hold in this case [6,17–20]. Interestingly, a recent
experiment [21] has found that the monopole breathing mode
is essentially undamped and has no interaction-dependent shift
[22–24]. This implies a scale invariance in the system [25] that
has also been observed in weakly interacting 2D Bose gases
[26]. However, this observation is hard to reconcile with the
fact that a scale is provided by the energy of the two-body dimer
which is always bound for attractive short-range interaction in
2D. One would naively expect modifications of both few- and
many-body dynamics in these systems.

From a few-body perspective, the special features of 2D
systems are manifest in the spectrum of three identical bosons
with attractive zero-range interactions (the so-called universal
limit), since no length scale is provided by the two-body
potential except for the one given by the two-body dimer
binding energy E2. Here one finds that there are exactly two
bound states which have energies E3 = 16.52E2 and E3 =
1.270E2 [27–30]. This is in sharp contrast to three-dimensional
(3D) systems, where an infinite set of geometrically separated
states appear at the threshold for two-body binding [31]. In
realistic systems, this scaling is broken by the finite range
of the interaction [32], and one obtains a normalization of
the spectrum since the range determines the lowest bound
universal bound state (there are deeply bound states that have
small radii and nonuniversal structure which are not of interest
here). Typically one parametrizes the short-range physics by
introducing the three-body parameter κ3D

∗ to get the correct
three-body energy [32]. However, in 2D such a procedure is
not needed for three particles, i.e., there is no need for a κ2D

∗ .
In the universal limit in 2D this implies that the three-body
energies must be proportional to the dimer energy.

In this paper, we study identical bosons in 2D with
attractive short-range interactions and use few-body methods
to determine C2 and C3. This is achieved by computing
the momentum distribution for three identical bosons, in
particular, its asymptotic behavior for large momenta. We
provide both analytical and numerical evidence that support
a universal tail behavior that is the same for both ground
and excited states. To the best of our knowledge, C3 has not
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been discussed in 2D before. Moreover, we show that the
subleading term has a novel behavior that is radically different
in 2D as compared to 3D. Based on this fact, we propose
to use the momentum distribution to measure the effective
dimensionality of a quantum system in the universal regime.
Our study is thus a first step in exploring effects of dimensional
crossover on higher-order correlations in many-body systems.

II. METHOD

We consider three identical bosons with mass m. We use at-
tractive two-body interactions of zero range and parametrized
by the dimer binding energy E2. The two-body T matrix for
energy E is thus τ (E) = (−2π ln

√−E/E2)−1 in units where
h̄ = m = 1 [28,33,34]. By using Faddeev decomposition and
bosonic symmetry, the three-body wave function � can be
written

� (q,p) = f (q) + f
(∣∣p − q

2

∣∣) + f
(∣∣p + q

2

∣∣)
E3 + p2 + 3

4 q2
, (1)

where p = 1
2 (k1 − k2) and q = 2

3 k3 − 1
3 (k1 + k2) are Jacobi

momenta, ki , i = 1,2,3 are the laboratory momenta, and E3

is the three-body energy. The spectator functions f (q) satisfy
the set of integral equations

f (q) = 2τ

(
−E3 − 3

4
q2

)∫
d2k

f (k)

−E3 − q2 − k2 − k · q
.

(2)

Armed with the solution to this equation, the momentum
distribution is

n(q) =
∫

d2p

∣∣∣∣∣f (q) + f
(∣∣p − q

2

∣∣) + f
(∣∣p + q

2

∣∣)
E3 + p2 + 3

4 q2

∣∣∣∣∣
2

. (3)

Following the discussion in Ref. [9], we define four compo-
nents nm(q) = ∑4

i=1 nm
i (q), where m = 0 denotes the ground

state and m = 1 the excited state. The individual components
are

nm
1 (q) = f 2

m(q)
∫

d2p
1(

Em
3 + p2 + 3

4 q2
)2 = πf 2

m(q)

Em
3 + 3

4 q2
, (4)

nm
2 (q) = 4fm(q)

∫
d2k

fm(k)(
Em

3 + k2 + q2 + k · q
)2 , (5)

nm
3 (q) = 2

∫
d2k

f 2
m(k)(

Em
3 + k2 + q2 + k · q

)2 , (6)

nm
4 (q) = 2

∫
d2k

fm(k)fm (|k − q|)(
Em

3 + k2 + q2 + k · q
)2 , (7)

where m on f (q) and E3 labels the state. Throughout,
we measure all momenta in units of

√
E2. Note that the

normalization we use is
∫

d2k n(k) = 1.

III. LARGE-MOMENTUM LIMIT

The leading-order (LO) behavior of the momentum distri-
bution exhibits the same C2k

−4 tail in 1D, 2D, and 3D since
it derives solely from two-body physics [35]. However, C2

depends on what system is addressed and whether few-body
bound states are present. For bosons in 3D, the tail is [8,9]

n3D(k) → 1

k4
C2 + cos[2s0ln(

√
3k/κ∗) + φ]

k5
C3, (8)

where s0 = 1.006 24 and φ = −0.872 80 are constants that can
be determined from a full solution of the three-bosons problem
in 3D at unitarity [9] with trimer energy E3 = κ2

∗ (using κ3D
∗ =

κ∗ for simplicity). The log-periodic three-body next-to-leading
order (NLO) term derives from the Efimov effect, whose
solution can be used to determine 3(2π )3C2 = 53.097/κ∗ and
3(2π )3C3 = −89.263/κ2

∗ [9]. The factor 3(2π )3 is due to a
difference in definition of n(k) in Eq. (3) in comparison to
Ref. [9]. As discussed above, in 2D there is no Efimov effect
for three bosons. The log-periodic behavior is therefore not
expected a priori. As we will now demonstrate, the distribution
in 2D is very different. It has the structure

n2D(k) → 1

k4
C2 + ln3(k)

k6
C3, (9)

and we see indeed a very different NLO term. We note that
the NLO term is different from the fermionic case discussed
in Ref. [17] where no ln(k) factors are present and implies that
quantum statistics plays a role in determining the functional
form of the NLO term. Furthermore, it implies that the NLO
term is in fact an effective measure of dimensionality of
bosonic systems in the universal regime. We will return to
this point below.

To derive the tail behavior in Eq. (9), one needs to determine
first the spectator function fm(q) in Eq. (2) for large q. This can
be done analytically and we provide the details in Appendix A.
The result is that fm(q) → Amln(q)/q2, where Am is a state-
dependent constant. This function can now be inserted into
Eqs. (4)–(7) and the momentum tail can be determined. The
technical details are given in Appendix B. After the dust settles,
the tail behaviors can be written

nm
1 (q) → 4π

3

A2
mln2(q)

q6
, nm

2 (q) → 4π
A2

mln3(q)

q6
,

nm
3 (q) → 4π

q4

∫ ∞

0
dk kf 2

m(k), nm
4 (q) → 2π

A2
mln3(q)

q6
.

The LO term clearly comes from nm
3 (q), while NLO has

contributions from nm
2 (q) and nm

4 (q). However, there is an
additional complication as NLO will also come from nm

3 at
the next order (not shown above). More precisely, we need to
determine

Dm = lim
q→∞

[
nm

3 − C2

q4

]
q6

ln3(q)
, (10)

where C2 = limq→∞ q4nm(q), which is independent of m as
we discuss below. We find that Dm is a nonzero constant that
depends on the state m, which means that C3 in 2D should
be denoted Cm

3 . Adding the NLO contributions from nm
2 (q),

nm
3 (q), and nm

4 (q), we find

C0
3 = 52.07 and C1

3 = 1.01. (11)

This m dependence is absent in 3D for κ∗ → 0 but at the cost
of the log-periodic term due to the Efimov effect [9]. That the
present 2D case has state dependence is a result of the lack of
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FIG. 1. (Color online) LO momentum distribution tail q4n(q)
for ground (upper solid black line) and excited (lower dashed red
line) three-body states. Note that the vertical axis is not uniform.
The asymptotic dashed lines are the analytical results discussed in
Appendix B.

geometric scaling symmetry in 2D. Note that the next order
comes from nm

1 (q) and differs by one power of ln(q) compared
to the NLO term.

A. Universal behavior

The LO behavior in 2D is characterized by C2. Explicitly,
we have

n0
3(q) → 3.71E2

q4
and n1

3(q) → 0.28E2

q4
. (12)

These results have been obtained analytically (see
Appendix B). We have also done a numerical check which is
shown in Fig. 1. The units in Eq. (12) are, however, not natural
in the same way that is seen in Eq. (8) where κ∗ provides
the overall scale. The natural scale is E3, and using this we
find 3.71E2/16.52E2 = 0.224 and 0.28E2/1.270E2 = 0.219
for the ground and the excited state, respectively. This is a
striking result that demonstrates the state independence of the
LO term in 2D to within our numerical accuracy of ∼2%. We
thus predict that the two-body contact for a bosonic system in
2D with short-range attractive interactions is

C2/E3 = 0.222 ± 0.003, (13)

where E3 is the trimer energy. This should be compared to the
relation dE

d ln a
= πNC2 derived on general grounds in Ref. [17].

Here the factor N appears due to our normalization which is
different from Ref. [17]. We find agreement with this result
within our numerical accuracy.

The universal tail behavior is far from trivial. In 3D and
at unitarity, the discrete scale invariance induced by the
divergence of the three-body problem, implies that the system
should behave similarly irrespective of which trimer state one
considers. This does not occur in 2D and the universal trimer
energies are in some sense magic numbers multiplying the
only scale available, E2. Our results show that in spite of this
major difference, the 2D momentum tail displays universal

FIG. 2. (Color online) NLO momentum distribution comparison
of 3D (upper panel) and 2D (lower panel). The 2D momentum
distribution is the one of the ground state, but the result is similar
for the excited state.

behavior, i.e., C2/E3 has the same value for both ground and
excited states.

IV. DIMENSIONAL CROSSOVER

Comparing the expressions in Eqs. (8) and (9), we see the
same LO behavior at large momenta, but a vastly different
NLO term. The oscillations seen in Eq. (8) can be traced
directly to the discrete scaling symmetry, or more precisely,
the breakdown of scale invariance in the system. It is known
that the condition on the dimension D for this behavior is 2.3 <

D < 3.8 [29,30]. If we imagine an interpolation between 2D
and 3D, we would expect to see log-periodic terms in this range
of D. The NLO term is therefore a telltale sign of effective
dimensionality of the system as we will now discuss.

In experiments that study cold 2D quantum gases, one
uses a tight transverse optical lattice potential to reduce
the motion in this direction [1]. As recent experiments
have beautifully demonstrated, the strength of the transverse
optical lattice can be used to interpolate between 2D and
3D behavior of fermionic two-component systems [14,16].
Here we are concerned with bosonic systems, and our results
above demonstrate how one can use the tail and, in particular,
the NLO part of the momentum distribution as a measure of the
effective dimensionality felt by the particles in the system by
identifying the presence of log-periodic behavior. In Fig. 2 we
show the extreme cases of 2D and 3D where the log-periodic
oscillations are clearly seen in the latter, while the former has
a smooth behavior.

A measurement of the overall functional form of the NLO
term is thus enough to determine the effective dimensionality
of the squeezed bosonic gas. In a real experiment, the motion in
the transverse dimension is of course quantized by the lattice,
and to get a full quantitative understanding this must be taken
into account (see, for instance, Ref. [36]). However, since
experiments have shown that it is possible to reach both the
extreme 2D and the 3D regimes, there must necessarily be a
dimensional crossover that can be seen in the NLO behavior.
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Of course, from a theoretical point of view it would be very
attractive to be able to map the strength of the transverse
confinement into some effective dimensionality Deff which
could be noninteger [35].

V. EXPERIMENTAL IMPLEMENTATION

As we have demonstrated, the NLO term in the momentum
distribution carries a telltale signature of the dimensionality
of the quantum system under study. The 2D-3D crossover
is of immense interest at the moment [14,16,36], and it has
been shown that both the 3D and the strict 2D limits are
accessible in experiment. Here we have discussed the crossover
by using formalism applicable to either pure 2D or pure 3D
without explicit consideration of the external confinement.
Our results predict that a proof-of-principle experiment is
possible by going to the two strict limits. However, the
full crossover including the intermediate regime (quasi-2D)
where the transverse confinement must be taken explicitly into
account is experimentally addressable and should be explored
theoretically in the future.

To connect our results directly to current experiments, we
need to consider our units, the dimer binding energy E2, and the
effects of the transverse confinement on this two-body bound
state. The interaction is controlled by Feshbach resonances
[37]. However, under the confinement, the dimer energy
is modified and becomes E2 = Bh̄ωz exp(−√

2πlz/|a|)/π
[38,39]. Here ωz is the transverse harmonic confinement
frequency, lz = √

h̄/mωz is the trapping length, a is the 3D
scattering length associated with the Feshbach resonance,
and B = 0.905 is a constant. This formula holds for a < 0
and |a| � lz, while on resonance, |a| → ∞, E2 = 0.244h̄ωz.
Corrections arise from the nonharmonic optical lattice [40],
but they are not essential for our purposes. The dimer energy
scale can be converted into a momentum scale k0 through E2 =
h̄2k2

0/2m. To access the tail behavior and the 2D-3D crossover,
we see from Figs. 1 and 2 that the range k ∼ 101–103k0

is sufficient. Recent 2D Bose gas experiments [26,41] use
lz ∼ 3800a0, where a0 is the Bohr radius, which implies that
k0 ∼ 10−4a−1

0 when |a| = ∞. For the momentum distribution
measurements [4,5], the maximum momentum reported is
about k ∼ 10−3a−1

0 . This implies that an order of magnitude
or two beyond the reported capabilities is necessary. However,
if a is tuned away from resonance to the a < 0 side, E2 will
decrease rapidly according to the formulas above, inducing a
corresponding rapid decrease of k0 which should render the
physics discussed here within reach of current experimental
setups. Notice that the van der Waals length scale of about
100a0 is in the deep tail, so there is no conflict with the
universal zero-range description employed here.

VI. SUMMARY AND OUTLOOK

We have taken a first step in the study of higher-order
correlations and dimensional crossover by demonstrating how
trimer observables in strongly interacting quantum gases can
be used to probe dimensionality. Specifically, we see the
breakdown of scale invariance directly in the functional form
of the tail of the momentum distribution.

A clear direction for future study is a full inclusion of the
transverse direction and the discrete spectrum it brings. We
have shown that a crossover with fundamental influence on
the momentum tail will happen, but mapping it out in a system
that is squeezed by optical lattice(s) is the next task. This
would also be interesting for the 1D-3D or 1D-2D crossovers.
Another venue to explore is mass imbalanced systems where
the spectrum is known to be richer in 2D than the equal mass
case [33,34].
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APPENDIX A: ASYMPTOTIC FORM OF f (q)

Here we give the technical details of the analytical and
numerical determination of the three-body wave function and
momentum distributions. We will use units h̄ = m = 1 and
all energies are given in units of the two-body dimer energy
E2 implying that all momenta are in units of

√
E2. In the

symmetric case, where the three masses and the three two-body
binding energies are set equal to one, the spectator function
fulfills the integral equation

f (q) = 1/π

ln(
√

E3 + 3/4q2)

∫
d2k

f (k)

E3 + q2 + k2 + k · q
.

(A1)

This can be cast into the useful form

f (q) = α(q,E3)

π

∫ ∞

0
dk

kf (k)

E3 + q2 + k2

∫ 2π

0

dθ

1 + a cos θ
,

(A2)

with a = kq/(E3 + q2 + k2) and where we have defined

α(q,E3) = 1

ln(
√

E3 + 3/4q2)
. (A3)

The angular integral is∫ 2π

0

dθ

1 + a cos θ
= 2π√

1 − a2
for 0 < a < 1 (A4)

and one obtains

f (q) = 2α(q,E3)
∫ ∞

0
dk

kf (k)

(E3 + q2 + k2)
√

1 − q2k2

(E3+q2+k2)2

,

(A5)

which can be rewritten as

f (q) = 2α(q,E3)

⎡
⎣∫ 


0
dk

kf (k)

(E3 + q2 + k2)
√

1 − q2k2

(E3+q2+k2)2

+
∫ ∞




dk
kf (k)

(E3 + q2 + k2)
√

1 − q2k2

(E3+q2+k2)2

⎤
⎦ , (A6)
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where 
 is a large-momentum cutoff that will be useful
below. Taking 
 � √

E3, the spectator function in Eq. (A6)
is approximately given by

f (q) ≈ 2α(q,E3)
∫ 


0
dk

kf (k)

(E3 + q2 + k2)
√

1 − q2k2

(E3+q2+k2)2

+ 2α(q,E3)
∫ ∞




dk
kf (k)

(q2 + k2)
√

1 − q2k2

(q2+k2)2

. (A7)

For q → ∞, the first term on the right-hand side of Eq. (A7)
tends to zero in the following manner:

f1(q) ≈ 2

q2 ln q

∫ 


0
dk

kf (k)√
1 − q2k2

(q2+k2)2

. (A8)

Now, we assume that

f (q) →
q→∞

ln q

q2
. (A9)

Inserting this ansatz and taking the limit q → ∞ in the second
term on the right-hand side of Eq. (A7) one finds

f2(q) ≈ 2

ln q

∫ ∞




dk
k ln k

k2(q2 + k2)
√

1 − q2k2

(q2+k2)2

→ 2

ln q

∫ ∞




dk
ln k

k(q2 + k2)
, (A10)

when q → ∞. Changing variables to y = k/q, the second
spectator function term becomes

f2(q) ≈ 2

q2 ln q

∫ ∞


/q

dy

y

ln y + ln q

(1 + y2)
, (A11)

which can be split into

f2(q) ≈ 2

q2 ln q

[∫ ∞


/q

dy

y

ln y

(1 + y2)

+ ln q

∫ ∞


/q

dy

y

1

(1 + y2)

]
. (A12)

The first integral term on the right-hand side of Eq. (A12) is

∫ ∞


/q

dy

y

ln y

(1 + y2)
= 1

2

ln2 y

1 + y2

∣∣∣∣
∞


/q

+
∫ ∞


/q

dy
y ln2 y

(1 + y2)2

→ −1

2
ln2 


q
= −1

2
ln2 q (A13)

for q → ∞. The second term on the right-hand side of
Eq. (A12) is

∫ ∞


/q

dy

y

1

(1 + y2)
= ln y

1 + y2

∣∣∣∣
∞


/q

+ 2
∫ ∞


/q

dy
y ln y

(1 + y2)2

→ − ln



q
= ln q (A14)

FIG. 3. (Color online) Spectator function f (q) for the ground
state calculated numerically (black solid line) and using the ansatz
f (q) = A0

ln q

q2 (red dashed line). The solid (black) line tends to
oscillate around the dashed (red) one as q → ∞ due to finite
numerical precision.

for q → ∞. Inserting the results of Eqs. (A13) and (A14) in
Eq. (A11) we arrive at

f2(q) ≈ 2

q2 ln q

(
ln2 q − 1

2
ln2 q

)
= ln q

q2
. (A15)

Collecting the results Eqs. (A8) and (A15) we conclude that
the ansatz in Eq. (A9) gives us the asymptotic behavior of the
exact spectator function.

In Fig. 3 both the spectator function obtained from the
numerical solution of the set of coupled integral equations and
the spectator function asymptotic behavior given in Eq. (A9)
for the ground state are shown. The log-log scale shows us that
both the magnitude and the line’s inclination are very close
in the region of q between 100 and 2000 for the numerical
and analytical calculations. For q > 2000, the curve which
represents the numerical solution of the integral equations
starts to oscillate around the analytical form.

APPENDIX B: MOMENTUM DENSITY ASYMPTOTIC
BEHAVIOR

The one-body momentum distribution is given by

n(q) =
∫

d2p

∣∣∣∣∣f (q) + f
(∣∣p − q

2

∣∣) + f
(∣∣p + q

2

∣∣)
E3 + p2 + 3

4 q2

∣∣∣∣∣
2

, (B1)

and can be split into four parts through

nm(q) =
4∑

l=1

nm
l (q), (B2)
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where superscript m distinguishes ground (m = 0) and excited
states (m > 0). The individual expressions are

nm
1 (q) = fm(q)2

∫
d2p

1(
Em

3 + p2 + 3
4 q2

)2 = πfm(q)2

Em
3 + 3

4 q2
,

(B3)

nm
2 (q) = 4fm(q)

∫
d2p

fm

(∣∣p + q
2

∣∣)(
Em

3 + p2 + 3
4 q2

)2

= 4fm(q)
∫

d2k
fm(k)

(Em
3 + k2 + q2 + k · q)2

, (B4)

nm
3 (q) = 2

∫
d2p

f 2
(∣∣p + q

2

∣∣)(
Em

3 + p2 + 3
4 q2

)2

= 2
∫

d2k
(fm(k))2

(Em
3 + k2 + q2 + k · q)2

, (B5)

nm
4 (q) = 2

∫
d2p

fm

(∣∣p + q
2

∣∣) fm

(∣∣p − q
2

∣∣)(
Em

3 + p2 + 3
4 q2

)2

= 2
∫

d2k
fm(k)fm (|k − q|)

(Em
3 + k2 + q2 + k · q)2

. (B6)

The subscript index on fm(q) indicates the state under
consideration. Here we are interested in the limit q → ∞,
where we find

nm
1 (q) ≈ 4π

3

(fm(q))2

q2
, (B7)

nm
2 (q) ≈ 4π

q2
(fm(q))2 ln

(√
Em

3 + 3

4
q2

)
≈ 4π

q2
(fm(q))2 ln(q),

(B8)

nm
3 (q) ≈ 4π

q4

∫ ∞

0
dk k(fm(k))2, (B9)

nm
4 (q) ≈ 2π

q2
(fm(q))2 ln

(√
Em

3 + 3

4
q2

)
≈ 2π

q2
(fm(q))2 ln(q).

(B10)

The asymptotic form of f (q) when q → ∞ is (see
derivation in Appendix A)

fm(q) →
q→∞ Am

ln q

q2
. (B11)

The functional form of asymptotic behavior is the same for
both ground and excited states. However, the normalization
constant

Am = lim
q→∞ fm(q)

q2

ln q
(B12)

is different. Since we are using the normalization
∫

d2k n(k) =
1, one finds

A0 ≈ 1.800 and A1 ≈ 0.251. (B13)

The numerical results for the asymptotics are shown in
Figs. 4 and 5.

FIG. 4. Asymptotic behavior of f (q) for the ground state.

Inserting Eq. (B11) in Eqs. (B7)–(B10) one obtains the
normalized asymptotic behavior

nm
1 (q) → A2

m

4π

3

ln2(q)

q6
, (B14)

nm
2 (q) → A2

m4π
ln3(q)

q6
, (B15)

nm
3 (q) → Cm

q4
with Cm =

∫ ∞

0
dk k(fm(k))2, (B16)

nm
4 (q) → A2

m2π
ln3(q)

q6
. (B17)

The normalization constants given in Eq. (B13) de-
termine the asymptotic values and behaviors of the
partial momentum density in Eqs. (B14)–(B17) when
q → ∞.

FIG. 5. Same as Fig. 4 for the first excited state.
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[13] B. Fröhlich, M. Feld, E. Vogt, M. Koschorreck, W. Zwerger, and

M. Kohl, Phys. Rev. Lett. 106, 105301 (2011).
[14] P. Dyke, E. D. Kuhnle, S. Whitlock, H. Hu, M. Mark, S. Hoinka,

M. Lingham, P. Hannaford, and C. J. Vale, Phys. Rev. Lett. 106,
105304 (2011).
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