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Thermal phase transitions for Dicke-type models in the ultrastrong-coupling limit
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We consider the Dicke model in the ultrastrong-coupling limit to investigate thermal phase transitions and their
precursors at finite particle numbers N for bosonic and fermionic systems. We derive partition functions with
degeneracy factors that account for the number of configurations and derive explicit expressions for the Landau
free energy. This allows us to discuss the difference between the original Dicke (fermionic) and the bosonic case.
We find a crossover between these two cases that shows up, for example, in the specific heat.
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The Dicke model, in its original weak-coupling and multi-
mode form [1] has a long history as a paradigm for collective
dissipation [2], and, in its single-mode form, as a test bed for
fundamental concepts such as the quantum-classical relation
[3,4], scaling [5], or entanglement [9] near quantum phase
transitions. Interest in the Dicke superradiance model has been
furthered by the recent discovery of the “Hepp-Lieb”-type
quantum phase transition [6,7] with Bose-Einstein condensates
in an optical cavity [8]. As a mean-field-type phase transition,
the full phase diagram in the temperature-coupling constant
plane was derived early [10–12] in the thermodynamic limit
of N → ∞ particles (cf. also [13]). In this Brief Report, we
re-examine the thermal properties of (a somewhat generalized
version of) this model with particular emphasis on the influ-
ence of the quantum statistics on the quantum phase transition.
We only consider the ultrastrong-coupling limit between the
atoms and the light (corresponding to the superradiant phase
at low temperatures), but we distinguish between various
cases of N bosons or N fermions distributed among Ns

two-level sites. In particular, we derive simple expressions for
the thermodynamic partition sums that can be used to easily
calculate thermodynamic quantities such as the specific heat at
finite particle number N , and to follow an interesting crossover
between the case of N bosons on one (Ns = 1) site and the
original Dicke case of N fermions on Ns = N sites.

As a starting point we use the Dicke Hamiltonian with
the single bosonic mode a,a† of frequency ω. The angular
momentum operators Jz,J

± describe an ensemble of N two-
level atoms with a level splitting ω0. The single-mode Dicke
Hamiltonian is

H = ωa†a + ω0Jz + g√
N

(a + a†)(J+ + J−). (1)

A unitary transformation with U = eσJzei π
2 Jy and σ ≡

2g√
Nω

(a† − a) rotates and polaron-transforms the Hamiltonian

into H′ ≡ UHU † with

H′ = −ω0

2
(J+eσ + J−e−σ ) + ωa†a − (2g)2

Nω
J 2

z . (2)

The Hamiltonian H′ can be used as a starting point for a
perturbation theory in ω0, that is, around the limit of very
large coupling g → ∞ between the angular momentum and
the photon mode. In this limit, the physics is then determined
by a (trivial) free photon Hamiltonian ωa†a and the angular
momentum part ∝ J 2

z . The analysis of the properties of the

thermodynamic partition sum,

ZN ≡ Tre−βHN , HN ≡ − (2g)2

Nω
J 2

z , (3)

for different physical realizations of Jz is the aim of this Brief
Report.

The role of particle statistics in ZN can be qualitatively
understood by considering the existence or otherwise of a
thermal phase transition for HN in the limit of N → ∞. To
this end, let us first recall that in the original Dicke model,
Jz = 1

2

∑N
n=1 σ z

n is the sum of N individual (pseudo)-spin- 1
2

operators. Superradiant states with maximal spin polarization
are then energetically favored by HN , but there are only two
configurations (all spins pointing either up or down) where
that is achieved. All other spin configurations have larger
(nonzero) entropy such that thermal fluctuations trigger a phase
transition to a thermally disordered (normal) phase above a
critical temperature.

On the other hand, if the state space is restricted to the
highly symmetric Dicke states |J,M〉, the configuration space
is much smaller and there is no gain in entropy for states
with higher energy. In this situation, which corresponds to N

bosons occupying either the upper or lower level of a two-level
system, a thermal phase transition does not occur.

The partition function and the number of configurations. We
start with discussing the degeneracy factors that appear when
evaluating the partition sum ZN . Let us assume a configuration
space with N particles distributed among Ns two-level “sites”
i, all of which have the same up-level ↑ and down-level
↓ energies. We write Jz ≡ 1

2

∑Ns

i=1(ni↑ − ni↓) with number
operators ni↑, ni↓ such that

ZN =
N∑

n=0

cne
β

g2

Nω
(N−2n)2

, (4)

where cn is the number of configurations with n particles in
the down-levels ↓ and N − n in the up-levels ↑.

Fermions. (i) For fermions, the number of configurations for
n particles in the down-levels is ( Ns

n ), and for the remaining

N − n particles in the up-levels it is ( Ns

N − n ); consequently,

cn = ( Ns

n )( Ns

N − n ). (ii) For fermions with no two particles on
the same site i, one has a restricted choice once all the ↑
(or the ↓) are occupied and thus cn = ( Ns

n )( Ns − n

N − n ). For the
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particular case Ns = N , this corresponds to the N localized
and distinguishable (pseudo)spins in the original Dicke model
discussed above and gives the partition sum,

ZD
N ≡

N∑
n=0

(
N

n

)
eβ

g2

Nω
(N−2n)2

, (5)

which corresponds to the partition sum of the Lipkin-Meskov-
Glick model at zero magnetic field [14].

Bosons. For N bosons in m single particle levels, there are
( N + m − 1

m − 1 ) configurations which in our case means

cn ≡
(

n + Ns − 1

Ns − 1

)(
N − n + Ns − 1

Ns − 1

)
. (6)

The particular case of a single site Ns = 1 yields cn = 1 and
thus

Zbos
N ≡

N∑
n=0

eβ
g2

Nω
(N−2n)2

, Ns = 1. (7)

We also obtain this result by representing Jz = 1
2 (2b†b − N )

via one Holstein-Primakoff boson b†, or, alternatively, by
writing Jz = 1

2 (b†↑b↑ − b
†
↓b↓) with two Schwinger boson

modes for ↑ and ↓ by using b
†
↑b↑ + b

†
↓b↓ = N and noticing

that the number n of ↓ bosons uniquely fixes a configuration
which means cn = 1.

Landau free energy function. The most transparent way
to discuss the difference between the two cases Eq. (5) and
Eq. (7) and generalizations thereof is by transforming the
partition sums into integrals over an order parameter y. As we
are dealing with a zero-dimensional field theory here, this is
particularly simple and is formally achieved by a Hubbard-
Stratonovich transformation which here is simply given
by the Gaussian integral identity, ex2 = 1√

π

∫ ∞
−∞ dye−y2+2xy ,

applied to the respective Boltzmann factors in ZN . For the
distinguishable (Dicke) case, we use the binomial formula as∑N

n=0 ( N

n )ez(N−2n) = (2 cosh z)N to obtain (after substituting

y → √
Ny)

ZD
N =

√
N

π

∫ ∞

−∞
dye−N�D(y),

(8)

�D(y) ≡ y2 − ln (2 cosh (2αy)) , α ≡ g

√
β

ω
,

where we introduced the dimensionless coupling parameter α.
Similarly, for the Ns = 1 boson case, we carry out

the geometric progression
∑N

n=0 ez(N−2n) = e−Nz(e2z(N+1) −
1)/(e2z − 1) to obtain

Zboson
N =

√
N

π

∫ ∞

−∞
dye−N�boson(y),

(9)

�boson
N (y) ≡ y2 + 2αy − 1

N
ln

e4α(N+1)y − 1

e4αy − 1
Ns = 1.

The so-defined Landau free energy functions �(y) now allow
us to elucidate the critical properties of the models.

First, we observe that in the (Dicke) case of distinguishable
particles, �D(y) in Eq. (8) is N independent, and �D(y) ≡ βf

is determined by the ω0 = 0 limit of the usual mean-field

(N → ∞) expression for the free energy f per particle
[10–12]. As expected, the term ln[2 cosh(2αy)] therefore is
the mean-field free energy of a single (pseudo)spin in the
fluctuating field y. The parameter α determines the shape
of �D(y) and, in the N → ∞ limit, the position yD of the
minimum of �D(y) relevant for the asymptotic expression of
the integral according to the Laplace method, as given by the
self-consistent equation,

yD = α tanh 2αyD. (10)

This has the unique solution yD = 0 when 2α2 < 1 corre-
sponding to temperatures T > Tc ≡ 2g2/ω larger than the
critical temperature Tc. This solution describes the normal
phase whereas for T < Tc there exist two minima in �D(y)
that describe the symmetry-broken superradiant phase.

This is in contrast to the bosonic case, where the Landau
free energy �boson

N (y) in Eq. (9) is N dependent but acquires a
simple form in the thermodynamic limit N → ∞,

�boson
∞ (y) = y2 − 2α|y|, (11)

which has two unique minima at y = ±α regardless of the
value of α. This means that in the bosonic case, one is always
in the superradiant, symmetry-broken phase and no thermal
phase transition into a normal phase occurs.

Thermodynamic behavior. In the following, we discuss the
specific heat C ≡ β2∂2

β log(ZN ) for both cases (we set kB = 1).
In the Dicke case [spin- 1

2 s corresponding to the fermionic
partition sum Eq. (5)], Fig. 1, the specific heat per particle
can be calculated from �D(y) ≡ βf in the thermodynamic
limit N → ∞ by eliminating derivatives of yD and solving
the self-consistent Eq. (10), leading to the expected singular
behavior at the transition point α∗ = 1/

√
2. A simple 1/N

expansion of ZD
N , Eq. (8), works only well not too close to the

critical point, as we have checked, whereas the asymptotics
in N at α∗ is more complicated as has been discussed in [14]
recently. Numerically, for finite N the peak height of C/N

and the shift of the peak from α∗ give, however, a very good
agreement with a 1/

√
N correction fit.
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FIG. 1. (Color online) The specific heat per particle (kB = 1) as
a function of α−2 ≡ ω/(g2β) (proportional to the temperature) in
the Dicke case of N localized spin- 1

2 s, [derived from the fermionic
partition sum Eq. (5)], for N = 20,75,400, and 1000 particles (dotted
line, N → ∞). (Upper inset) Shift of peak from critical point α∗ =
1/

√
2 for all N � 1000. (Lower inset) Peak height at maximum.

(Dashed lines) Fit of the numerical data with f 1
upper ≡ 1.64 − 3.9√

N
and

f 1
lower ≡ 1.98 − 3.1√

N
.
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FIG. 2. (Color online) The specific heat per particle as in Fig. 1
but for the bosonic partition sum Eq. (7), for N = 2,5,12,20, and 40
particles. (Dashed lines) Linear fit f 2

upper ≡ 0.6 + 0.2N for maximum
position (upper inset); f 2

lower ≡ 1.1
N

fit for maximum (lower inset).

In the bosonic case (Fig. 2), the specific heat per particle
shows a totally different behavior. For small numbers of bosons
(N = 2,3,4), C/N first increases with N and then (for N > 4)
decreases with 1

N
, as does its maximum. The position α−2 of

the maximum of C/N is linear for the particle number N . In
the limit N → ∞ the specific heat per particle is zero which
can be understood from Eq. (11) by using the above-mentioned
thermodynamic relations and considering that y = ±α.

Crossover between bosonic and Dicke case. We now discuss
an interesting crossover between the two cases obtained above
by regarding the bosonic case with Ns > 1. For Ns of the order
of the particle number N , we expect the bosons to spread over
many energetically equivalent configurations which, due to the
entropy argument given in the introduction, should re-establish
the thermal phase transition found in the Dicke (fermionic
spin- 1

2 ) case. We therefore generalize the Landau free energy
for the bosonic case Eq. (9) to arbitrary Ns ,

�boson
N,NS

(y) ≡ y2 − 1

N
ln

N∑
n=0

cne
2αy(N−2n), (12)

with cn given by Eq. (6). Figure 3 shows the crossover in
the free energy when passing from the bosonic case with
Ns = 1 (showing no phase transition when varying α) to larger
degeneracies, where for Ns � N , the free energy �boson

N,NS
(y)

becomes equivalent to the one of the Dicke case Eq. (8).
This can be understood by using Stirling’s formula to expand
the number of configurations cn [Eq. (6)], which leads to
cn ∼ (

N

n

)
(Ns/N )N and therefore the partition sum,

Zbos
N ∼

(
Ns

N

)N

ZD
N, Ns � N � 1. (13)

Correspondingly, in this limit the bosonic free energy per
particle differs from the Dicke free energy by −kBT ln(Ns/N)
which just describes an additional entropy term caused by
the enhanced “volume” of configurations. Thus for Ns � N ,
multiply occupied sites play no role any longer, nor does the
statistics of the particles (fermions or bosons), and the only
remaining relevant statistical information is the number of
occupied upper and lower levels as in the Dicke case. As the en-
tropy gain kB ln(Ns/N) is just a constant, the specific heat C/N

then has to coincide with the specific heat in the Dicke case.
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FIG. 3. (Color online) Crossover between bosonic and Dicke case
in the Landau free energy, Eq. (12), for N = 400 bosons and coupling
strengths α = 0.2,0.4,0.6,1.0 within each graph. (Upper left) Ns = 1
(Ns , number of two-level sites); this corresponds to the simple bosonic
case Eq. (9) [and Eq. (11) for N → ∞], that is, the absence of a phase
transition, since the number of minima remains two irrespective of
α. The phase transition is re-established for macroscopic degeneracy
(upper right, Ns = N/4; lower left, Ns = N ), since a transition from
a double- to single-minimum occurs. The lower right shows the
Dicke case �D(y), Eq. (8), with the phase transition occurring at
α∗ = 1/

√
2 ≈ 0.71.

This behavior of the specific heat C/N is shown in Fig. 4,
where we vary Ns from the bosonic case Ns = 1 over Ns = N

to finally higher values of Ns � N corresponding to the Dicke
(fermionic) form of C/N from Fig. 1. With N fixed, the C/N

curves have peaks that shift from larger to smaller values of α−2

with increasing Ns/N corresponding to a decreasing N/Ns in
the Ns = 1 bosonic case in Fig. 2. At even larger Ns/N � 1
the curves approach the Dicke form at the critical point α∗
of the Dicke thermal phase transition. Note that the peaks
approach α∗ from the right here, whereas in the Dicke case
(Fig. 1) Ns = N was fixed and the C/N peaks approached α∗
from smaller α−2 with increasing N .
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FIG. 4. (Color online) The specific heat per particle at fixed
particle number N = 400 for different number of two-level sites
Ns = 1 (bosonic case, almost coincides with x axis), Ns = 100,
Ns = 400 (Dicke case), and Ns = 600,5000 as obtained from Eqs. (4)
and (6). (Upper inset) With increasing Ns the peak position in C/N

shifts towards the critical point α−2 = 2 of the Dicke case. (Lower
inset) Increase of maximum of C/N with Ns . (Dashed lines) Fit of
the numerical data with f 4

upper ≡ 1.82 − 275
Ns

and f 4
lower ≡ 1.5Ns

458.6+Ns
.
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Conclusion and outlook. Our results indicate that the Dicke
model displays an interesting thermodynamic behavior if one
considers the possible configurations of N particles in Ns

two-level systems. In the ultrastrong-coupling limit, the model
reduces to an atomic self-interaction term for which we have
derived explicit expressions for the partition function, Landau
free energy, and specific heat. We find a crossover in the
specific heat from a bosonic form at small Ns (where no
thermal phase transition occurs) to the form following from
the (original) Dicke model for Ns � N � 1 that displays a
thermal phase transition at α−2 ≡ kBT ω/g2 = 2 between the
normal and the superradiant phase.

In our calculations, we regarded HN in Eq. (3) as an
effective Hamiltonian for the ultrastrong-coupling regime

between atoms and light of the Dicke model Eq. (1). In analogy
with the simulation of the Dicke model with Bose-Einstein
condensates [8], we suggest the various limits of HN to be
regarded as effective models to be simulated with, for example,
cold atoms. A further challenge would be an extension to
Dicke-type models with finite coupling strengths, multiple
levels [15], and degeneracies Ns in the bosonic case.
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