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• Predator odour induce anti-predator behaviour.
• Predator odour induce an increase in ventilation rate.
• Increasing of ventilation rate to predator odour prepare Nile tilapia for ‘fight or flight’.
• Predator odour did not activate the hypothalamic-pituitary-interrenal axis.
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Several fish species exhibit antipredator responses when exposed to chemicals which indicate risk of predation.
One such substance is the scent of a predator (a kairomone) that may induce defensive responses in a potential
prey. In the present study,we show that chemical cues (odour) from predator fish induce antipredator and stress
responses in Nile tilapia. When exposed to predator odour, Nile tilapia decreased activity and increased ventila-
tion rate (VR), but no increase in plasma levels of cortisol and glucose was found. Although the hypothalamic-
pituitary-interrenal axis (HPI axis) was not activated, an increase in ventilation is a fast response which can pro-
vide the fish enough oxygen for a ‘fight or flight’ event when facing a predator. Thus, this respiratory response
suggests an anticipated adjustment in order to prepare the body for a defensive response, such as escaping,
irrespective of HPI axis activation.

© 2016 Elsevier Inc. All rights reserved.
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1. Introduction

In predator-prey interactions, the ability to recognize in advance the
threat of a potential predator plays a key role in the survival of prey for
any animal species [1]. Several fishes exhibit defensive responses when
exposed to chemical cues that indicate predation risk [2]. These cues are
well-documented as perceived stressors in fish [2–5] and can evoke a
coordinated set of behavioural and physiological responses to cope
with the threat, enabling the animal to maintain its homeostasis [5].
These cues can be derived from injured conspecifics, (alarm cues [2,6]
conspecific blood [7]), dead conspecifics [8], disturbed and non-injured
conspecifics [9], injured heterospecific sympatric species [3] or predator
odours (kairomones [10,11]). In the case of predator chemical cues, diet
may interfere with detection of predators; for instance, preymay detect
a predator's odour more easily, as evidenced by most drastic antipreda-
tor responses after a predator has fed on conspecific prey [12,13].

To avoid predation, fish have evolved many strategies to deal with
such pressures [14]. In these strategies, prey may elicit behavioural
responses, reducing the risk of detection by decreasing locomotor activ-
ity [15] or being immobile [16,17]. Further, to escape from a predator
after being detected, prey may migrate [18], flee [19] or seek refuge
[20–22]. One common antipredator fish behaviour in response to pred-
ator chemical cues is a decrease in swimming activity [6,15,21,23]. Min-
imizing locomotor activity can reducewater vibrations and detection by
predators, increasing prey survival chances [3,15].

Although behavioural responses in fish are generally observed
when predator odour is present, physiological responses are also re-
quired to overcome the threat of predation [24]. These responses have
been broadly described as primary, secondary, or tertiary [5]. Primary
responses involve some initial neuroendocrine feedbacks after sympa-
thetic autonomic nervous system activation, resulting in catecholamine
release from the chromaffin tissue (hypothalamic–sympathetic–
chromaffin axis; HSC) [25], and/or the hypothalamic-pituitary-
interrenal (HPI) axis stimulation, culminating in discharge of corticoste-
roid hormones (e.g. cortisol) into the circulation [26,27]. This is accom-
panied by rapid cardiorespiratory adjustments [5,28] as VR increases
[5,6,29]. Secondary responses occurwhen stressors related to predation
risk persist and are characterized by metabolic changes, such as in-
creased plasma glucose levels [5,26,30]. Additionally, tertiary responses
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may occur in chronic stress situations, constricting the animal's well-
being, affecting growth, resistance to disease and reproductive capacity
[5,31]. In this context, previous studies have reported antipredator be-
haviour [9,11,19,20], VR increase [29,32,33], cortisol release [27,34,35]
and enhancedmetabolic response [36–38] in fish exposed to a predator
cue. However, none of these provide a link between primary (antipred-
ator behaviour, and increase of VR and plasma cortisol) and secondary
responses (increase of plasma glucose).

We selected the Nile tilapia Oreochromis niloticus (Linnaeus, 1758; -
Acanthopterygii; Perciformes; Cichlidae) as our experimental model, a
cichlid fish species that visually recognizes and executes antipredator
behaviour in the presence of predator fish [39,40] and responds to
chemical alarm cues [6,41]. Furthermore, this species also exhibits var-
ied responses to different stressors, such as increasing VR, plasma corti-
sol and glucose levels [6,42,43]. Thus, we performed three experiments
to further investigate the hypothesis that Nile tilapia submitted to the
odour of a natural predator which had been fed tilapia, the African
catfish Clarias gariepinus (Burchell, 1822; Ostariophysi; Siluriformes;
Clariidae), could detect and recognize these chemical cues as a preda-
tion risk and respond accordingly both behavioural and physiologically.

2. Material and methods

2.1. Fish and stock conditions

Juvenile Nile tilapiaswere provided by a commercial fish farmer and
were kept in three distinct 310 L tanks. Fishwere immature,without sex
differentiation, with a (mean ± SD) standard length of 6.37 ± 0.21 cm
and a mass of 8.60 ± 1.06 g. We used as a natural predator the African
catfish, kept in a separate 310 L tank, without sex differentiation. As
non-predator control, we used the common carp (Cyprinus carpio;
Linnaeus, 1758; Ostariophysi; Cypriniformes; Cyprinidae), kept in a
separate 310-L tank), also without sex differentiation. Predator and
non-predator specimens were obtained from a commercial fish farmer.
All fishes were maintained in indoor tanks in appropriate stock density
(0.5 g/L) for at least 30 days prior to experimentation and fed commer-
cial fish food to satiation once a day (Guabi - Pira 32% protein). Temper-
ature in all tanks was 26 ± 1.5 °C, in which ammonia (b0.5 ppm) and
nitrite (b0.05 ppm) levels were controlled by biological filtration and
constant water changes (dechlorinated tap water). The photoperiod
was kept constant (12L:12D). None of Nile tilapia had previous contact
with either African catfish or common carp.

2.2. Experimental design

In experiment 1, we tested the effect of predator odour on prey
swimming activity. For such purpose, Nile tilapia were exposed to
50mL of natural predator odour (African catfish) that had been fed tila-
pia, 50mL of non-predator odour (common carp, used as control for the
predator odour), or 50 mL of water control. Based on similar studies
conducted in other fish species that considered changes in swimming
activity as an antipredator response [6,15,21,23], locomotion decrease
due to African catfish odour indicated that Nile tilapia recognized this
chemical as a predation risk, inducing a typical behavioural response.
Thereafter, we conducted a second experiment, to investigate the effect
of predator odour on VR as an indicator of physiological responses. We
exposed Nile tilapia to either 50mL of predator odour or 50mL of water
control. A rapid VR response to predator odour indicated the Nile tilapia
sympathetic autonomic nervous system had been activated and the pri-
mary responses (catecholamine and corticosteroid hormones release)
had occurred. Results from experiments 1 and 2 provide evidence to hy-
pothesize that predator odour might have stimulated the Nile tilapia
HPI axis, thus causing the release of corticosteroid hormones and in-
creased plasma glucose levels. In light of this, we carried out a third ex-
periment in order to evaluate the effect of predator odour on plasma
levels of cortisol and glucose over time, in which Nile tilapia were
exposed to 50 mL of predator odour or 50 mL of water control at
0 min, 15 min, 30 min, 60 min, 120 min and 240 min after initial expo-
sure. An increase in cortisol and glucose plasma levels would indicate
the HPI axis activation and metabolic responses, respectively.

2.3. Predator and non-predator odour collection

Two African Catfish (standard length: 16.20 cm and 16.60 cm;
weight: 35.93 g and 43.75 g, respectively) were individually housed
for six days in 42 L aquaria (40 × 30 × 35 cm)with temperature, photo-
period andwater conditions similar to those in the stock. African catfish
are active, piscivorous and natural predators of Nile tilapia [44–47] and,
to ensure that all predators had been fed and subjected to a standard-
ized procedure, fish were fed twice during this period (second and
fourth day) with Nile tilapia fresh fillets (with skin, but scaleless; 3% of
African catfish weight per feeding). African catfish necessitate 40 h at
a temperature of 30 °C to completely evacuate their gut [48], so on the
sixth day (i.e. 48 h after the catfish were last fed, to ensure stomachs
were empty), fish were rinsed, transferred and individually housed in
22 L aquaria (40 × 24 × 23 cm; stocking density 2 g/L) containing
fresh dechlorinated tap water and an air stone, but no filter, and kept
for 24 h, without food. After this period, each fish was removed and
the water was filtered (to avoid any visible particles), stored into
50 mL aliquots and frozen at −20 °C until required for testing. Non-
predator odour was obtained from two common carp (standard length:
15.40 cm and 14.20 cm; weight: 88.43 g and 77.45 g, respectively;
stocking density 4 g/L), kept under the same conditions used to collect
predator odour. Carp odour was diluted in fresh dechlorinated tap
water to attain the catfish odour concentration. Instead of Nile tilapia fil-
lets, carp were fed with the same commercial fish food used in stock
conditions (second and fourth day; 3% of carp weight per feeding;
Guabi - Pira 32% protein). Procedures were adapted from Ferrari et al.
[11].

2.4. Experiment 1

We evaluated the effect of predator odour on Nile tilapia behaviour.
Fishwere exposed to 50mL of oneof the following chemical cues: odour
of predator fed on tilapia (n= 10); odour of non-predator, used as con-
trol for predator odour (n=12); or deionizedwater (n=9) as a control
for presence/absence of chemical cues and lab conditions, totalling 31
individuals. Fish from the stock populationwere randomly chosen, indi-
vidually housed and acclimated in glass tanks (40 × 24 × 23 cm; 22 L)
for 60 h prior to experimentation. Each aquarium was supplied with
constant aeration and water temperature was maintained at 26 ±
1.5 °C. Ammonia (b0.5 ppm) and nitrite (b0.05 ppm) levels were con-
trolled by water changes and the photoperiod was kept constant
(12 L:12D). Food was offered once a day, but not on the day of the ex-
periment. After the acclimation period, baseline of behaviour was re-
corded during 5 min and for another 5 min after inserting one of the
stimuli into the experimental aquaria. The assessed behavioural re-
sponse was locomotion, measured by the number of quadrant changes.
Each aquariumhad on its back a polystyrene plate divided in nine quad-
rants (13.3 × 8.0 cm). A quadrant change was considered when at least
75% of the fish's body crossed the line [7]. Locomotion values were con-
sidered as the deviation from the initial condition (post-stimulus minus
baseline). All movements were quantified using camcorders, set up
1.5 m in front of the experimental aquaria.

2.5. Experiment 2

In experiment 1, we found evidence to support the hypothesis that
Nile tilapia recognize predator odour as a predation risk by decreasing
their swimming activity. Therefore, we conducted a second experiment
to investigate whether Nile tilapia VR would increase in response to
predator odour. Fish were individually housed and acclimated in the



Fig. 1. Behavioural response (locomotion) of Nile tilapia to chemical cues. Number of
quadrants changes in fish exposed to non-predator odour compared to deionized water
(Mann-Whitney U test, p = 0.862), non-predator odour compared to predator odour
(Mann-Whitney U test, p = 0.149) and predator odour compared to deionized water
(Mann-Whitney U test, p = 0.027). Locomotion values were considered as the deviation
from the initial condition (post-stimulus minus baseline). Data represent mean ± SE
and different letters indicate significant difference at p b 0.033 (see text for details).
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same setup as described in the previous experiment. We exposed Nile
tilapia to 50 mL of odour from a predator fed on tilapia or 50 mL of de-
ionizedwater. Baseline VRwasmeasured for 5min before stimuli inser-
tion, and then for another 5min after stimulus introduction (n= 14 for
predator odour; n= 16 for deionized water; 30 fish total). VR was esti-
mated by counting opercular beats (OB) for 15 s andmultiplying by 4 to
obtain OB per minute (ob/min). Five observations were made over
5 min for each period (baseline and post-stimulus), and then averaged.
Values were considered as the deviation from the initial condition
(post-stimulus minus baseline).

2.6. Experiment 3

Well-established indicators of fish stress responses to predator cues
include increase in VR, cortisol and glucose plasma levels. From results
obtained in experiments 1 and 2, we hypothesize that predator odour
caused primary stress responses by release of corticosteroid hormones,
thus leading to increased plasmaglucose level.We then tested the effect
of predator odour on plasma levels of cortisol and glucose over time.
Fish were kept and acclimated in the same experimental aquarium
setup as described for experiment 1. Two chemical cues were used
here, either odour of a predator fed on tilapia or deionized water. Corti-
sol and glucose levels were measured at 0 min, 15min, 30 min, 60min,
120min and 240min after initial exposure (n=10 independentfish for
each stimulus and each interval; 120 fish total). Plasma levels of cortisol
and glucosewere analysed from blood samples. Each fishwas gently re-
moved from the experimental aquaria and placed in a container of ben-
zocaine solution (80 mg/L). After partial anaesthesia [49], blood was
sampled by cardiac puncture using heparinized insulin syringes
(1 mL) to prevent blood clotting. Blood was centrifuged at 754.65 RCF
(g) for 10 min and plasma was collected and frozen at −20 °C until
required for analysis. Plasma cortisol levels were determined with a
commercial enzyme-linked immunosorbent assay ELISA kit (DRG®, In-
ternational Inc., Cortisol Enzyme Immunoassay Kit) specific for cortisol
testing. The Elisa assay has been validated and considered a precise
and accurate procedure to assess cortisol in teleost fish [50–52], includ-
ing Nile tilapia [53]. Plasma glucose levels were assessed by the colori-
metric method of Trinder [54].

2.7. Data analyses

Data were tested for homoscedasticity by Levene's test and for nor-
mality by Shapiro-Wilk's W test. Locomotion values were considered
heteroscedastic and not normally distributed even after transformation.
We calculated deviation from the initial condition (post-stimulusminus
baseline) and the difference in changes between pairs of treatments
(three comparisons: predator odour × water control; predator
odour × non-predator odour; water control × non-predator) were
analysed by separate Mann–Whitney U test [55]. We used the modified
Bonferroni procedure [56] to control the false positive error rate (type 1
error) when multiple significant comparisons are performed. The mod-
ified Bonferroni procedure [(alpha ∗ treatments− 1) / number of com-
parisons] attests that corrections to the family-wise error rate can be
done when the number of comparisons exceeds the number of treat-
ments minus 1 [56]. In experiment 1, we had a total of three treatments
in which three comparisons were made; therefore, the family-wise
error rate was held to p b 0.033. Ventilation rate data were also
heteroscedastic and not normally distributed, so we also used the
Mann-Whitney U test in which statistical differences were considered
significant when p b 0.05. Plasma levels of cortisol and glucose were
normal and homoscedastic, analysed by an independent Student's
t-test at each time point, since we had independent groups. Outlying
data were identified and removed for locomotion (5) and VR (2), iden-
tified by values outside the range of themean towhich two standard de-
viations were added or subtracted. Residuals were removed in the top
or bottom 2.5% of the distribution [57].
2.8. Ethical note

This study complied with the Ethical Principles in Animal
Research adopted by the National Council for the Control of Animal
Experimentation — Brazil (CONCEA — Conselho Nacional de Controle
de Experimentacão Animal — Brazil) and was approved by the Ethical
Committee for Animal Research from the Instituto de Biociências/
UNESP (CEUA — Comissão de Ética no Uso de Animais), protocol 237.

3. Results

3.1. Behavioural responses

Fig. 1 represents three independent Mann-Whitney U tests used to
compare each possible treatment combination. Presence of non-preda-
tor odour did not affect locomotor activity compared to water control
(Mann-Whitney U test, Z = −0.213, p = 0.862), and no difference
was observed between predator and non-predator odour (Fig. 1C;
Mann-Whitney U test, Z = 1.483 p = 0.149), while presence of odour
frompredator fed on tilapia fillets caused a decrease in swimming activ-
ity compared towater control (Fig. 1D;Mann-WhitneyU test, Z=2.204
p = 0.027).

3.2. Stress responses

Physiological responses to the chemical cue are presented in Fig. 2.
Predator odour increased VR compared to eluent control (Fig. 2A;
Mann-Whitney U test, Z = −2.411, p = 0.015). Both plasma cortisol
(Fig. 2B; Student's t-test, p N 0.05) and glucose (Fig. 2C; Student's t-
test, p N 0.05) levels were not affected by predator odour at any time
point after exposure to chemical stimuli.

4. Discussion

In the present study, we showed that predator odour induces anti-
predator behaviour and physiological responses in Nile tilapia. When
exposed to predator odour, the model decreases locomotion and in-
creases VR. However, no increase was found in plasma levels of cortisol
and glucose. Although the HPI axis was not activated, the respiratory al-
terationmay have anticipated a physiological adjustment to prepare the



Fig. 2. Stress responses of Nile tilapia to chemical cues. Ventilation rate in fish exposed to
predator odour and control (A; Mann-Whitney U test; Z = −2.411, p = 0.015); Values
were considered as the deviation from the initial condition (post-stimulus minus
baseline). Cortisol concentration in blood plasma (B; Student's t-test, p N 0.05); and
glucose concentration in blood plasma (C; Student's t-test, p N 0.05) in fish exposed to
predator odour and control. Data represent mean ± SE and asterisk indicates significant
difference between treatments at p b 0.05.
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body for a defensive and highly metabolically demanding response,
such as escaping or facing the predator [32,58–60].

Some studies have reported antipredator responses in fish prey sub-
jected to the odour of predators fed on prey conspecifics [12,61–63], or
even chemical cues from predator faeces [64–67]. In both cases, prey
efficiently recognized the predator's diet and respondedmore drastical-
ly to predation risk when the predator ate prey conspecifics [12,14].
Therefore, these studies showed well-established evidences that prey
alarm cues are chemically preserved in the predator, evenwhen passing
through the digestive system [68]. African catfish odour donors had
their gut emptied before odour collection, suggesting that chemical
cues from prey could be derived from urine [69] or mucus [70], for ex-
ample. Our findings indicate that no active predation events were need-
ed (direct release of prey alarm cues in the water), not even the release
of predator faeces or other intestinal by-products as chemical cues, to
elicit antipredator responses in Nile tilapia.

Locomotion of Nile tilapia exposed to predator odour was evaluated
as an indicator of antipredator response. Swimming activity is strongly
affected by chemical cues that indicate predation risk and the reduction
of locomotion is considered a defensive response [2,41,71]. In our study,
nodifferencewas observed between non-predator andwater control, as
expected. In contrast, swimming activity was decreased by exposure to
chemical stimulus from the predator fed on Nile tilapia, according to
other species reports, such as in the fathead minnow Pimephales
promelas; [12], the brook charr Salvelinus fontinalis; [61] and theAtlantic
salmon Salmo salar; [64]. This decrease in locomotion after recognition
of a chemical cue which indicates risk of predation results in lower de-
tection [12,14,22] and predator encounter probabilities [1,10,24,72,73].

After the alteration in behaviour, we evaluated the effects on physi-
ological responses using deionizedwater as control. Our baseline values
of VR and blood plasma concentrations of cortisol and glucose showed
an unstressed baseline condition. Herein, fish were approximately
6.4 cm long with a baseline VR of approximately 116 ob/min, very
close to non-stressed values found in studies in which Nile tilapia
were approximately 6.8 cm long and showed rates of approximately
118 ob/min [74] and 117–124 ob/min [39]. Mean baseline cortisol
level was 50.01 ng/mL, in the range of 5.0 and 60.0 ng/mL [42,75–78],
previously described as pertaining to a non-stressed situation. Mean
baseline glucose level was 2.07 mmol/L, within the range reported by
others studies, between 1.91 and 7.21 mmol/L, also demonstrating a
non-stressed situation [6,43,79]. All baseline physiological values
showed in the present study are consistentwith reportsmentioned pre-
viously and it is important to validate the unstressed baseline condition
in which the Nile tilapia started from. The fact that we found no differ-
ence in cortisol and glucose levels in Nile tilapia after exposure to pred-
ator odour means that the HPI axis was not activated, showing that the
only physiological response reported in this study was elevation of VR.

Although the HPI axis was not activated due to exposure to odour of
a predator fed on prey conspecifics, Nile tilapia had a decrease in loco-
motion and an increase in VR when subjected to this chemical cue. De-
crease in swimming activity reduces water vibrations that could alert
predators, resulting in a lower probability of detection and encounter,
thus increasing prey survival odds [2,7,11,21]. Non-activation of the
HPI axismakes sense, since in an aquatic environment chemical percep-
tion of predators is facilitated [2]. An increase of cortisol, followed by an
increase of glucose every time a predator was noticed, could be consid-
ered a metabolic fright response [37] and a high-energy demanding
process [5,26], leading to a nonlethal energetic cost condition to the
prey [37,80,81]. Furthermore, the persistence of a sustained/chronic
HPI axis activation could elicit some tertiary stress responses such as re-
duction of growth rates [24,26,82], reproductive capacity [5,26] and, ul-
timately, fitness [83].

Surprisingly, increase in plasma catecholamines in response to
chemical predator cues in fish has not been described yet. In fish stress
condition, catecholamine release might be the major physiological re-
sponse when an increase in plasma cortisol does not occur [84], since
it induces hyperventilation, increases gill diffusing capacity, stimulates
blood oxygen transport capacity, and allows a greater uptake in order
to support adequate oxygen levels in the blood and tissues [25,84].
Thus, the increase in VR should be enough to augment oxygen uptake
and prepare the body for a possible and sudden aerobic activity, like
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escaping [32,33,85,86], with minimum but sufficient metabolic adjust-
ment after the first detection of predation risk [37].

This study is an attempt to investigatemore deeply the combination
of behavioural and physiological reactions of fish in response to chemi-
cal stimuli of a predator recently fed on conspecifics. As already shown
by Rehnberg and Schreck [30], our results also indicate that a tight link-
age between behavioural and prey HPI axis activation due to predator
chemical stimuli does not necessarily co-occur. We conclude that Nile
tilapia exposed to odour of a predator fed a tilapia diet elicit behavioural
and physiological responses by reducing locomotion and increasing VR,
but no change in plasma levels of cortisol and glucose occurs. Future
studies should take into account analysis of catecholamine levels and
examine if activation of the prey HPI axis could happenwhen predation
risk is more intense; e.g. in situations where chemical (predator
odour and prey alarm cues) and predator visual stimuli are coupled
simultaneously.
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