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Bezerra et al. (2008) proposed a new method, based on Yule-Walker equations, to estimate the
ARMA spectral model. In this paper, a Bayesian approach is developed for this model by using
the noninformative prior proposed by Jeffreys (1967). The Bayesian computations, simulation via
MarkovMonte Carlo (MCMC) is carried out and characteristics of marginal posterior distributions
such as Bayes estimator and confidence interval for the parameters of the ARMA model are
derived. Both methods are also compared with the traditional least squares and maximum
likelihood approaches and a numerical illustration with two examples of the ARMA model is
presented to evaluate the performance of the procedures.

1. Introduction

The spectral estimation of autoregressive moving average (ARMA) is considered a topic
of interest in several applied areas of knowledge, for example, engineering, econometrics,
and so forth [1–4]. Different methods have been studied, comprising two focuses, among
which, we can point out: (i) the optimal methods, such as the maximum likelihood estimates,
which are computational difficult to deal [1, 3, 4]; (ii) the suboptimal methods based on
the Yule-Walker equations, which employ linear equations in the parameters estimation [2–
8]. Another type of suboptimal method, proposed by [9], makes a simultaneous estimate
of both parameters AR and MA using the reformulated Steiglitz-McBride least-squares
algorithm.

The estimation methods for the ARMA process have been widely studied, especially
for the separate estimation of parameters, where Yule-Walker equations are used to estimate
the AR process parameters, and following this, the parameters MA process are estimated
through the Durbin method [3, 4]. Among these methods, the best known are the modified
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Yule-Walker equations (MYWEs) and the method of least squares Yule-Walker (LSYW).
Moreover, these methods provide similar results for ARMA spectral estimation. One of the
methods used to make the comparisons is proposed by [8].

Currently, Bayesian inference has been used successfully in practical problems also. In
Bayesian inference, the unknown parameter is considered a random variable, thus assuming
a probability distribution associated with (prior), which is specified from past data or in the
expert opinion.

The main objective of this paper is to show the viability of the Bayesian approach
in estimating the parameters of the ARMA process, considering a noninformative prior
proposed by Jeffrey [10]. Thus, a comparison between the classical and Bayesian estimation
methods is carried out by comparing the estimates of the parameters of the ARMA model
and consequently the estimates of the power spectrum. Themean estimates of the parameters
and their respective standard deviations are obtained from chains generated by simpleMonte
Carlo simulations MCMC algorithms.

The paper is organized as follows. In Section 2, the ARMAmodel and its main features
are presented. Section 3 is devoted to the separate estimation methods using Yule-Walker
equations, and presents the development of the method proposed, based on the methods
described in section. In Section 4, we present a Bayesian analysis considering the Jeffreys and
independent normal prior distributions for the parameters. Section 5 deals with applications
using Monte Carlo simulations for two numerical examples.

2. The ARMA Spectral Model

Consider xt an ARMA stationary random process of order (p, q), defined by the following
difference equation:

p∑

i=0

φixt−i =
q∑

j=0

θjεt−j , assuming a0 = 1, 1 ≤ t ≤ N, (2.1)

where φi, i = 0, 1, . . . , p; θj , j = 0, 1, . . . , q, are the parameters of the process and εt is a
white noise with mean zero and variance σ2. Thus, the vector of parameters to be estimated
is defined by

β =
[
φ1, . . . , φp, θ1, . . . , θq, σ

2
]
. (2.2)

We define the power spectral density of ARMA process, in plane-z, from the system
function, by

S(z) =
σ2B(z)B∗(1/z)
A(z)A∗(1/z∗)

, (2.3)

where A(z) =
∏p

i=1(1 − piz
−1
i ), A∗(1/z∗) =

∏p

i=1(1 − p∗
i z

∗
i ), pi, i = 1, . . . , p, are the poles, and

B(z) =
∏p

i=1(1 − qiz
−1
i ), B∗(1/z∗) =

∏q

i=1(1 − q∗
i z

∗
i ) and qi, i = 1, . . . , q, are the zeros. As usual,

the stars denote complex conjugation.
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The ARMA power spectral density on frequency domain is obtained by substituting
z = exp(j2πf) into (2.3) resulting in

S
(
f
)
=

σ2
∣∣B
(
f
)∣∣2

∣∣A
(
f
)∣∣2

=
σ2
∣∣∣
∑q

k=0 θk exp
(−j2πfk)

∣∣∣
2

∣∣∣1 +
∑p

k=1 φk exp
(−j2πfk)

∣∣∣
2
. (2.4)

The function S(f) is the Fourier transform of the autocorrelation function rk =
E[xtxt−k], presumably nonnegative and periodical in frequency with period 1Hz. It is
assumed to be band limited to ±0.5Hz [1–3].

The problem of ARMA spectral estimation consists initially on selecting the suitable
model such that we can estimate the vector of parameters of the process and then replace the
estimates value in the spectral density function. This parametrization of the function S(f) is
obtained by using the vector of parameters β.

3. Estimation Methods Using Yule-Walker Equations

There are several methods which use Yule-Walker equations in separate spectral estimation
for the ARMA model, as previously mentioned in the introduction. The methods the best
known are modified Yule-Walker equations (MYWEs) and the least squares modified Yule-
Walker (LSMYW). This uses more than p linear equations in the parameters estimation. In
both methods, the errors can be weighted in order to stabilize the variance. Moreover, these
methods provide similar results for ARMA spectral estimation.

3.1. Least-Squares Yule-Walker Method

This method is an attempt to reduce the variance of the MYWE estimator and improve the
quality of their estimates. It is known that the autocorrelation function of the ARMA process
is defined as [6]

rk +
p∑

i=1

φirk−i = 0, k ≥ q + 1. (3.1)

From the MYWE, initially we will describe the least squares method of the modified
Yule-Walker equations (LSYW) for the estimation of the parameters of the AR process, given
that the expanded equations of Yule-Walker for the ARMA process can be represented as
[2–4, 6]

r = −RΦ, (3.2)
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where R is the expanded autocorrelation matrix (M − q) × p, which is given by

R =

⎡
⎢⎢⎢⎣

rq rq−1 · · · rq−p+1
rq+1 rq · · · rq−p+2
...

...
. . .

...
rM−1 rM−2 · · · rM−p

⎤
⎥⎥⎥⎦
, (3.3)

and r is the autocorrelations vector (M − q) × 1 given by

r =
[
rq+1, rq+2, . . . , rM

]T
. (3.4)

The consistent estimates of AR vector parametersΦ = [φ1, . . . , φp]
T can be obtained by

expression (3.2). As M − q > p, there are more equations than unknowns. One error e of size
(M − q) × 1 in order to estimate the autocorrelations should be introduced given by

r̂ = −R̂Φ + e, (3.5)

where r̂ and R̂ correspond to r and R estimators, respectively.
It is convenient to use the unbiased autocorrelations rk to estimate r and R, so that the

bias of approximation error is null. Thus, the method of least squares can be applied to find
the vector which minimizes the sum of squares of errors, that is, [2, 6]

S =
M∑

k=q+1

|ek|2 (3.6)

or, in the matrix form:

S = eTe. (3.7)

Substituting the equation of the errors

e = r̂ + R̂Φ (3.8)

in (3.7), we obtain

S =
(
r̂ + R̂Φ

)T(
r̂ + R̂Φ

)
. (3.9)

The development of the products above in (3.9) one has the following expression results:

S = ΦT R̂T R̂Φ + r̂T R̂TΦ +ΦT R̂T r̂ + r̂T r̂. (3.10)
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Figure 1: Filtering of the signal through an AR filter so as to obtain a new estimate.

Taking the partial derivatives ∂S/∂Φ = 0 in expression (3.10),

∂S

∂Φ
= 2R̂T R̂Φ + 2R̂T r̂ = 0. (3.11)

We can obtain the Φ̂ estimator of the AR process, which is given by

Φ̂ = −
(
R̂T R̂

)−1
R̂T r̂. (3.12)

The matrix R̂T R̂ is usually positive definite, hermitian, and Φ̂ estimator cannot be a
minimum-phase estimator [2, 3].

The estimation of AR parameters of the ARMA model through LSYW method can
be interpreted as an application of the covariance method considering the set of values
{r̂q−p+1, r̂q−p+2, . . . , r̂M} [2, 3]. Moreover, the estimated process parameters MA can be obtained
applying the method of Durbin [3].

The performance of the LSYW, p + q < M < N, is usually better than the modified
Yule-Walker equations method (MYWE), whereM = p+q (number of equations), using only
p equations, but the results will also depend on the kind of spectrum to be estimated [2, 3, 5].

3.2. The Method Using AR Filter in MA Estimates

The new method for separate estimation consists of making a new AR filtering of the signal
xt by using the estimates of the MA parameters obtained with the Durbin method. Thus
determining a new signal x̂t, proposed by [8], as shown in the Figure 1 and according to the
expression:

x̂t = xt − θ̂1xt−1 − · · · − θ̂qxt−q. (3.13)

In Figure 1, the H(z) = 1/Y (z) is the system transfer function, and Y (z) = 1 − θ̂1z
−1 −

· · · − θ̂qz
−q. This procedure is like repeating the second step of the Durbin method. This is the

key idea of the separate estimation method [3, 6].
It is known that an AR(∞) process (large order) can be an approach for theMAprocess

[1–4]. In this method, a new signal estimate x̂t will be used to obtain a new AR estimate
through the LSYW method in order to subsequently determine a new MA estimate through
the Durbin method. The key idea of the method proposed is to consist of obtain a new signal,
from the AR filtering, which will provide better estimates when the parameters of the ARMA
process are reestimated.
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4. Bayesian Estimation

In a Bayesian framework, the inference is based on the posterior distribution of parameters
β, denoted by p(β | x), which, in turn, is used for inferences and decisions involving β.

The posterior distribution p(β | x) is obtained from the combination of the information
provided by a prior distribution f(β ) and the information supplied by the data through the
likelihood L(β | x) . Thus, using Bayes’ theorem, the posterior distribution is given by

p
(
β | x) ∝ f

(
β
)
L
(
β | x). (4.1)

The prior distribution represents the knowledge or uncertainty state about the
parameter β before the experiment is run and the posterior distribution describes the updated
information about β after the data x is observed.

For an ARMA(p, q) model, we need to estimate the parameters β and σ where
β =(φ1, . . . , φp, θ1, . . . , θq). The likelihood function proposed in [11] for the observations X
given the vector parameters (β, σ) can be written as follows:

L
(
β, σ | X) ∝ 1

σn
exp

{
− 1
2σ2

n∑

t=1

(
xt − μt

)2
}
, (4.2)

where μ1 =
∑p

i=1 φixt−i +
∑q

i=1 θiεt−i,

μt =
p∑
i=1
φixt−i +

t−1∑
i=1
θi
(
xt−i − μt−i

)
+

q∑
i=t
θiεt−i, t = 2, . . . , q,

μt =
p∑
i=1
φixt−i +

t−1∑
i=1
θi
(
xt−i − μt−i

)
+

q∑
i=t
θiεt−i , t = q + 1, . . . , n .

(4.3)

The likelihood above combined with the prior distribution results in the posterior
distribution given by

p
(
β, σ | x) ∝ 1

σn
exp

{
− 1
2σ2

n∑

t=1

ε2t

}
f
(
β
)
, (4.4)

The values of the variables xi−p , i = 1, . . . , p and error terms εi−q, i = 1, . . . , q are
arbitrarily fixed.

To progress with the Bayesian analysis, it is necessary to specify a prior distribution
over the parameter space. Different prior distributions can be used in our study according to
all currently available information.

If prior information on study parameters is unavailable or does not exist for a device,
then initial uncertainty about the parameters can be quantified with a noninformative prior
distribution. This is the same to include in the analysis just the information provided by the
data.

Therefore, for the ARMA coefficients, we assume that little is known about these
parameters such that an uniform distribution can be used as a prior distribution. We also
assume a prior that the components of β are independent and hence the overall prior for β
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is the product of the priors for its components. Besides, a conventional noninformative prior
distribution for the model variance σ2 can be represented by

f
(
σ2
)
∝ 1

σ2
. (4.5)

Therefore, the joint prior distribution of β and σ2 has the form:

f
(
β, σ2

)
∝ 1

σ2
, (4.6)

where −∞ < βi < ∞ and 0 < σ2 < ∞.
Other prior specifications also could be considered, as independent informative

normal distributions for the components of β, that is, βj ∼ N(μ,σ2
β), j = 1, . . .,k, with mean μ

and variance σ2
β
specified a prior and an informative prior as the inverse Gamma distribution

for the parameter σ2, that is, σ2 ∼ IG(aσ , bσ)with hyperparameters aσ and bσ known. Thus,
the joint prior for β and σ2 would be given by

f
(
β, σ2

)
∝ f(β)f

(
σ2
)
. (4.7)

To obtain the marginal posterior distribution for each parameter from the model,
one needs to solve integrals involving the joint posterior density that are not analytically
tractable and which standard integral approximations can perform poorly. In this case, we
use of Markov chain Monte Carlo (MCMC) approaches to carry out the Bayesian posterior
inference. Specifically, we can run an algorithm for simulating a long chain of draws from
the posterior distribution, and base inferences on posterior summaries of the parameters or
functional of the parameters calculated from the samples. MCMC is essentially Monte Carlo
integration using Markov chains.

Constructing such a Markov chain is not difficult. We first describe the Metropolis-
Hastings algorithm. This algorithm is due to [12], which is a generalization of the method
first proposed by [13].

Let g(γ) be the distribution of interest. Suppose at time t, γt+1 is chosen by first
sampling a candidate point η from a proposal distribution q(· | γt).

The candidate η is then accepted with probability:

α
(
γ, η
)
= min

(
1,

g
(
η
)
q
(
γt | η

)

g
(
γ
)
q
(
η | γt

)
)
. (4.8)

If the candidate point is accepted, the next state becomes γt+1 = η. If it is rejected, then
γt+1 = γt and the chain does not move. The proposal distribution is arbitrary and, provided
the chain is irreducible and aperiodic, the equilibrium distribution of the chain will be g(γ).

After obtaining a random sample from the MCMC algorithm for each component of
β, it is important to investigate issues such as convergence and mixing, to determine whether
the sample can reasonably be treated as a set of random realizations from the target posterior
distribution. Looking at marginal trace plots is the simplest way to examine the output
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Table 1: Estimation classic AR and MA parameters (standard deviation).

N = 256 Parameter AR Parameter MA

Method −0.520 1.018 −0.255 0.240 −0.337 0.810

MYWE −0.8394 0.8236 −0.2752 0.2145 −0.2712 0.6068
(2.1903) (1.8329) (0.2346) (0.2539) (0.4057) (0.3770)

LSYW −0.4057 0.7724 −0.2002 0.2252 −0.3132 0.6867
(0.2012) (0.2699) (0.1018) (0.0809) (0.3061) (0.2234)

LSYWS −0.5952 1.0085 −0.3210 0.2405 −0.3888 0.8040
(0.4266) (0.3257) (0.2659) (0.1406) (0.3061) (0.1698)

MLE −0.3760 0.7283 −0.1764 0.2167 −0.1954 0.5418
(0.4133) (0.4455) (0.1545) (0.1163) (0.4117) (0.4204)

besides formal procedures. This way, all the values of the chain have marginal distribution
given by the equilibrium distribution.

Formore details ofMCMC in a varietyways to construct these chains, see, for example,
[14–16].

We now describe the MCMC implementation used in our time series framework. We
generate a posterior Monte Carlo sample by simulating a Markov chain described as follows:

(i) choose starting values βo = (βo0 , β
o
1 , . . . , β

o
k) and σ2

0 . At step i + 1, we draw a new
sample (βi+1, σ

2
i+1) conditional on the current sample (βi, σ

2
i ) using the following

proposal distributions (and the usual Metropolis-Hastings acceptance rule);

(ii) sample a new vector βi+1 from the multivariate normal distribution Nk(βi ; V )
where V is a diagonal matrix;

(iii) the candidate for βi+1, denoted by βprop, will be accepted with a probability given
by the Metropolis ratio:

α
(
βi , βprop

)
= min

⎧
⎨

⎩1,
p
(
βprop, σ

2
i | X

)

p
(
βi, σ

2
i | X)

⎫
⎬

⎭; (4.9)

(iv) sample the new variance σ2
i+1 from inverse Gamma distribution IG(d, (d− 1) ∗σ2

i );

(v) because this proposal is not symmetric, we find

α
(
σ2
i , σ2

prop

)
= min

⎧
⎨

⎩1,
IG
(
σ2
i

)
p
(
βi+1, σ

2
prop | X

)

IG
(
σ2
prop
)
p
(
βi+1, σ

2
i | X)

⎫
⎬

⎭. (4.10)

The proposal distribution parameters V and d were chosen to obtain good mixing of
the chains.
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Table 2: Estimation Bayesian AR and MA parameters (standard deviation).

N = 256 Parameter AR Parameter MA

Method −0.520 1.018 −0.255 0.240 −0.337 0.810

Bayes non −0.5953 1.1073 −0.2650 0.2148 −0.4052 0.8759
(0.0282) (0.0291) (0.0372) (0.0386) (0.0440) (0.0469)

Empirical Bayes −0.5950 1.1065 −0.2645 0.2142 −0.4050 0.8754
(0.0281) (0.0290) (0.0372) (0.0389) (0.0439) (0.0425)

Table 3: Estimation classic AR parameters (standard deviation).

N = 256;M = 20 Parameter AR

Method 0.1 1.66 0.093 0.8649

MEYW
0.1361 1.6707 0.1254 0.8644
(0.1688) (0.1179) (0.1179) (0.0646)

LSYW
0.1054 1.6438 0.0978 0.8432
(0.0299) (0.0483) (0.0323) (0.0472)

LSYWS
0.1038 1.6537 0.0995 0.8522
(0.0706) (0.0528) (0.0600) (0.0555)

MLE
0.1001 1.6414 0.0942 0.8482
(0.0275) (0.0395) (0.0363) (0.0404)

5. Numerical Illustration

In this section, we describe the Monte Carlo simulations [17], in order to obtain the estimates
of the parameters and the spectral power density corresponding to each of the cited below
ARMA processes: (1) ARMA(4,2) [18] and (2) ARMA(4,4) [19]. The simulation and the
programs were implemented in the MATLAB and R softwares.

The methods used on the simulations are (1) modified Yule-Walker equations
(MYWE); (2) least squares modified Yule-Walker equations (LSYW); (3) least squares mod-
ified Yule-Walker equations with AR filtering (LSYWS—proposed method); (4) maximum
likelihood estimator (MLE); (5) Bayesian estimator considering the noninformative priors as
Jeffreys and independence normal priors for the parameters.

In order to evaluate the performance of the methods, the random data have been
generated from the same seed and that change it with the sequences, i = 1, . . . , B, and B is
the replications number in each simulation. We carried out this using N = 256 observations
and B = 30 replications. The random numbers are generated from a standard Gaussian
distribution (white noise) with mean equal zero and variance equal one, then generated a
signal of the process ARMA.

The modified covariance was the criterion in the Durbin method [3], and the large AR
process order was chosen using the criterion described by [20] and the number of equations,
M, was chosen in accordance with the spectral characteristics to be analyzed. On the other
hand, for the spectrumwith poles far from the unit circle (UC), as it was given in Example 5.1,
a small number was used for M, which has one pole near and other far from the unit cycle
(UC).
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Table 4: Estimation classic MA parameters (standard deviation).

N = 256;M = 20 Parameter MA

Method 0.0226 0.8175 0.0595 0.0764

MEYW
−0.0244 0.8848 −0.0020 0.1291
(0.2514) (0.2227) (0.2106) (0.2222)

LSYW
−0.0649 0.8739 −0.0137 0.0982
(0.1701) (0.2205) (0.2112) (0.2342)

LSYWS
−0.0681 0.8879 −0.0224 0.1070
(0.1914) (0.2236) (0.2262) (0.2403)

MLE
0.0241 0.8014 0.0653 0.0760
(0.0594) (0.0785) (0.0721) (0.1186)

Table 5: Estimation Bayesian AR parameters (standard deviation).

N = 256 Parameter AR

Method 0.1 1.66 0.093 0.8649

Bayes non 0.0967 1.6029 0.0875 0.8102
(0.0151) (0.0157) (0.0187) (0.0189)

Empirical Bayes 0.0824 1.5964 0.0739 0.8121
(0.0154) (0.0206) (0.0215) (0.0231)

In the first example, the ARMA(4,2)model was used withM = 10, L = 85, toN = 256,
and in the second example, we used ARMA(4,4) model with M = 20, L = 125 to N = 256.
The dashed curve is theoretical and solid curve is the average of estimates.

Example 5.1. The ARMA(4,2) model presented in [18] is given by

xt − 0.52xt−1 + 1.018xt−2 − 0.255xt−3 + 0.24xt−4 = εt − 0.337εt−1 + 0 810εt−2.
(5.1)

Example 5.2. The ARMA(4,4) model presented in [19] is given by

xt + 0.1xt−1 + 1.66xt−2 + 0.093xt−3 + 0.8649xt−4

= εt + 0.0226εt−1

+ 0.8175εt−2 + 0.0595εt−3 + 0.0764εt−4.

(5.2)

5.1. Discussion

Firstly, we consider a comparative analysis between the classical methods applied to the
ARMA(4,2) model fitted by the data of Example 5.1. Thus, Table 1 shows that the LSYWS
method provided the best averages for estimate parameters than other methods, but with
a slightly larger variability than the LSYW method for the AR model. The LSYW method
produces intermediate estimates but with a superior performance than the MYWE and MLE
methods. These facts can be observed through the average estimates of the spectra power in
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Table 6: Estimation Bayesian MA parameters (standard deviation).

N = 256 Parameter MA

Method 0.0226 0.8175 0.0595 0.0764

Bayes non 0.0151 0.7556 0.0518 0.0525
(0.0424) (0.0508) (0.0478) (0.0698)

Empirical Bayes 0.0077 0.7554 0.0517 0.0677
(0.0418) (0.0604) (0.0616) (0.0613)
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Figure 2: Density Spectral—ARMA(4,2)—Methods Classics.

Figures 2 and 3, which shows that the best estimate is really provided by LSYWS method
proposed by [8].

Comparing the classical methods and the Bayesian methods studied in this paper,
Table 2 shows that the estimates of parameters from both Bayesian methods are similar to
the LSYWS method, but with a smaller variability (see Figure 4).

By using the noninformative Jeffreys prior, we obtained a slightly better estimate than
the empirical prior, most likely due to the mean prior given by LME does not produce so
good results. Tables 3 and 4 present the results of estimation methods MEYW, LSYW, LSYWS,
and MLE applied to the ARMA(4,4) model from Example 5.2 (see Figures 5 and 6). In this
case, the average estimates of the parameters were approximately equal for all considered
methods. Just the standard deviations of the mean estimates showed a difference with the
Bayesian standard deviation, see Tables 5 and 6. The standard deviation, with Jeffreys prior,
had lower value than the other methods, but with a value slightly smaller than the standard
deviation obtained by the MLE method.
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Figure 3: Density Spectral—ARMA(4,2)—Methods Classics.
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Figure 4: Density Spectral—ARMA(4,2)—Methods Bayesian.
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Figure 5: Density Spectral—ARMA(4,4)—Methods Classics.
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Figure 6: Density Spectral—ARMA(4,4)—Methods Classics.
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Figure 7: Density Spectral—ARMA(4,4)—Methods Bayesian.

This analysis can also be confirmed by plots of the power spectra estimates 2 (see
Figures 6 and 7). In this case, this similarity can be due to the ARMA(4,4) has a stable power
spectrum and with more parameters to be estimated than case previous.

6. Conclusions

In this article, we describe the Bayesian approach by using the noninformative prior
distribution proposed by Jeffreys [10] to estimate the density spectral of the ARMA model.
This Bayesian approach is compared with non-Bayesian approaches LSYWS method and
LSYW, both based on Yule-Walker equations and least-squares method. Other methods
proposed in the literature as MLE and MYWE (Mod-fitted Yule-Walker Equations) are also
compared.

Two ARMA models with different orders were introduced to illustrate the proposed
methodologies and to examine their performances.

The study showed that the Bayesian approaches produced more accurate estimates
than the other approaches by considering ARMA(4,2) model, but similar results are found
for ARMA(4,4). This way, we conclude that Bayesian approach for less stable ARMAmodels
is justified, and more stable power spectrums any one procedures could be chosen. The
Bayesian approach provides best fitting of spectral applicable for any order of the ARMA
model than the other approaches. Finally, the choice of the approaches becomes irrelevant for
a moderate large size. In addition, generally speaking, it was seen that the results depend on
the spectrum to be estimated.
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