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ABSTRACT
This work aims at the physicochemical characterization of four species: Eucalyptus sp, Pinus sp, 
Citrus sinensis and Hevea brasiliensis for use in ceramic furnace. Immediate analysis, chemical 
analyses were carried out (total extractives, Klason lignin, holocellulose and alpha-cellulose 
content). Results were applied to ANOVA and Tukey for statistics. The ash content of Pinus sp 
was 1.60%, for volatile material content Eucalyptus sp presented 83.61%, for fixed carbon values, 
Citrus sinensis presented 20.03%. Chemical analyses in the total extractive content, Citrus sinensis 
presented 21.76%, Klason lignin content, Pinus sp had 39.24%, Eucalyptus sp 60.29% had the 
highest holocellulose and alpha-cellulose, which was 42.72%. Pinus sp sample was the one with 
the highest heating value of 20.090 J/g. According to results obtained in the analyses, it is possible 
to conclude that all species have potential for applications in ceramic furnace.
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1. INTRODUCTION

The demand for energy has greatly increased due 
to the vast productivity expansion in the industrial 
sector. It represents an important factor for the economy 
competitiveness. There are many options of energy 
sources, but fossil fuels still represent an important 
share of the world’s energy resources. However, most 
industrial sectors have been searching for other options 
which may be cheaper and more environmental 
friendly, such as renewable resources (Ciacco et al., 
2017; Al-Hamamre et al., 2017).

Biomass is one of renewable resource that should be 
highlighted since it produces biofuels in several forms, 
one of them is solid fuels (briquettes and pellets), such 
as wood and charcoal, liquid fuels such as ethanol, 
all of them with low production cost, low acidic gas 
and greenhouses gas emissions (GEE), contributing 
to the environment (Hansted et al., 2016). It results 
in clean combustion when compared with fossil fuels 
(Herbert & Krishnan, 2016), and it is estimated that 
about 30  million tons of wood wastes are annually 
generated in Brazil, and the main source is the timber 
industry (Aló et al., 2017).

The ceramic industry is an important sector in 
Brazil, with more than 7.431 industrial units (Prado & 
Bressiani, 2013). These industries have a mix of energy 
sources varying from natural gas, firewood, to different 
types of biomass such as wood chips, sawdust, waste 
pruning, among others (EPE, 2017). Using biomass 
may represent heterogeneity in the energy generation 
process, since at the time of collection, it contains 
very irregular moisture content, different sizes, and 
diverse elemental compositions (Singh et al., 2017). 
Therefore, it is necessary to provide previous studies 
and characterization in the use of biomass in order to 
predict the material behavior in the combustion process.

Physical characterization is necessary even 
among same species, as composition may vary due to 
elements such as cellulose, hemicellulose and lignin, 
presenting significant differences in lignocellulosic 
materials. For energy production, high lignin content is 
recommended since it increases the high heating value 
(HHV). Another recommendation is to perform the 
proximate analysis of the material due to the negative 
influence of the ash content during the energy generation 
process (Singh et al., 2017). Under certain conditions, 

the ash content can be reduced by carrying out some 
type of cleaning process (Hansted et al., 2016).

The biomass moisture content is also an important 
parameter. There is a direct and inversely proportional 
relationship between moisture content and HHV. This 
occurs since the energy released during combustion is 
used in the sample drying process (Posom et al., 2016).

The objective of this study was to perform the 
physicochemical characterization of four different 
types of biomass: Eucalyptus sp., Citrus sinensis, Pinus 
sp. and Hevea brasiliensis, and verify the viability of 
using these materials in the energy generation of a 
ceramic industry.

2. MATERIAL AND METHODS

A total of four species were evaluated: Eucalyptus sp, 
Citrus sinensis, Pinus sp. and Hevea brasiliensis sp. Citrus 
sinensis samples were collected in the municipal farm 
of Tatuí/SP-Brazil, firewood shaped; Hevea brasiliensis 
was collected in São José do Rio Preto/SP-Brazil as chips. 
Both Pinus sp. and Eucalyptus sp. were collected from 
ceramic units in Tatuí/SP-Brazil as chips.

Biomasses were submitted to milling in order to 
reduce the particle size to dust.

After material milling, only particles larger than 
250 µm were used for conducting the analysis.

Proximate analyses (i.e., moisture content, volatile 
matter, ash content and fixed carbon) of materials 
were performed according to Nakashima et al. (2017). 
HHV  of  materials was measured in a calorimeter 
according to Nakashima et al. 2017.

For extractives, 4.5 g were collected from 
each species. The experiment was performed with 
cyclohexane/ethanol (ECE) and for hot water (HWE), 
according to Nakashima et al. 2017. The procedure 
was carried out for 8 and 2 h, respectively. SOXHLET 
extraction apparatus was used.

Klason lignin (KL) was calculated according to 
Nakashima et al. (2017). The extractive-free biomass 
was treated with 78% H2SO4 solution (15 cm3) for 2 h 
at 25 ºC. Samples were diluted with water (560 cm3) for 
4 h. The residue was washed in filter using hot water 
until reaching neutral pH. The dry insoluble residue 
was the lignin content.

The procedure used for preparing holocellulose 
(HC) involved treatment of the milled extractive-free 
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wood (4 g) with acid solution (160 cm3 sodium acetate 
solution) at 75 ºC for 5 h. Sodium chlorite (4 cm3) was 
added every hour for 4 h. The mixture was cooled down 
and the residue filtered and washed first with water 
(1 dm3) and then with acetone (15 cm3). The residue 
was finally dried at room temperature. An aliquot was 
weighed and dried at 105ºC for the determination of 
the HC content. The standard for this procedure was 
TAPPI T 249-85 (TAPPI, 1985).

Extraction of α-Cellulose was based on Coldebella et al. 
(2018). For the test, 1 g of HC was added to 17.5 wt% 
NaOH solution (100 cm3) at 25 ºC for an incubating 
period of 30 min. The reaction was ground for 
5 minutes. The residue was filtered and washed with 
water and dried at 105 ºC. The amount of α-cellulose 
was gravimetrically determined.

Statistical analyses using ANOVA and Tukey’s test 
were performed using R 2.11.1 and Tinn-R 1.19.2.3 
statistical software.

3. RESULTS AND DISCUSSION

Proximate analysis is presented in Table 1 for the 
four materials.

When a given material has high moisture content, 
it is necessary to dry it before the initial burning stage, 
but this process requires energy. Most wastes contain 
high moisture content, and the high moisture content 
in biomass is one of the major disadvantages of using 

this material (Róz  et  al., 2015; Yamaji  et  al., 2013). 
However, biomasses were already collected within the 
indicated moisture content for use in heat generation 
according to Hansted et al. 2016, thus, these materials 
do not require drying treatment .

The ash content in all materials can be considered 
low, since it is indicated for use in energy generation. 
The European quality for pellets states that to be 
considered as a good fuel, the ash content should be 
less than or equal to 3.0% (Spanhol et al., 2015), and the 
material with the highest value was Pinus sp., 1.6%. This 
result indicates that it can be considered high-quality 
fuel, with low external contamination (Hansted et al., 
2016). It is also important to determine the ash content 
of a material since it can be responsible not only for 
reducing HHV but also to increase the erosive process 
of the equipment in which the biomass is consumed, 
thus affecting the maintenance demand, and resulting 
in extra production costs (Garcia et al., 2014).

Regarding volatile matter and fixed carbon, the 
expected values for the fuel to be considered for energy 
generation are from 75 to 85% and 15 to 25%, respectively, 
and all materials presented values within this range. 
Volatiles promote faster burning of the material by 
providing a quick but initially non-lasting and continuous 
burning during the process. In contrast, fixed carbon 
is responsible for the fuel thermal resistance, which 
means that it promotes slower and longer lasting burning 
(Brito & Barrichello, 1982; Santos et al., 2011). Table 2 

Table 1. Proximate analysis of the four materials. Means followed by different letters differed by the Tukey test at 
5% significance.

Sample Moisture content (%) Ash content (%) Volatile matter (%) Fixed carbon (%)
Eucalyptus sp. 11.00 0.76 (±0.23) a 83.61 (±0.77) a 15.62 (±0.63) a
Citrus sinensis 11.20 1.51 (±0.51) a 78.44 (±0.39) b 20.03 (±0.84) b
Pinus sp. 10.40 1.60 (±0.62) a 82.56 (±0.40) a 15.83 (±0.68) a
Hevea brasiliensis 12.72 1.21 (±0.31) a 82.78 (±1.22) a 16.00 (±1.13) a
Value in parenthesis represents the standard deviation for 3 replicates.

Table 2. Chemical analysis of the four materials.

Chemical analysis Eucalyptus sp. Citrus sinensis Pinus sp. Hevea brasiliensis
TE (%) 8.00 (± 0.27) b 21.76 (± 0.79) a 19.15 (± 0.64) b 9.87 (± 1.05) c
KL (%) 24.62 (± 2.71) bc 20.49 (± 1.25) c 39.24 (± 0.14) a 26.52 (± 3.28) b
HC (%) 60.29 35.31 51.38 53.07
AC (%) 42.72 18.30 30.36 21.01
HHV (J/g) 19.680 18.920 20.090 19.560
LHV (J/g) 18.351 17.585 18.757 18.226
TE: Total Extractives; KL: Klason Lignin; HC: Holocellulose Content; AC: Alpha-Cellulose; HHV: High Heating Value; LHV: Low 
Heating Value.
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presents the chemical analysis, with Total Extractives, 
Klason Lignin, holocellulose content, α-Cellulose and 
High and Low Heating Value for the four materials.

The composition of a lignocellulosic material may 
vary even within the same species. The analyses of 
compounds are essential to verify the energy potential. 
Total extractives (TE) and lignin content (KL) are 
compounds that present a direct relationship with 
energy potential (Hansted  et  al., 2016). These two 
elements provide a better thermal resistance to the 
material, keeping combustion at higher temperatures 
for longer period (Tenorio & Moya, 2013). The material 
presenting the highest KL (Pinus sp. 39.24%) was biomass 
that provided the highest HHV. This relationship was 
already reported in many studies (Hansted et al., 2016; 
Fahmia et al., 2008; Demirbaş, 2001).

Regarding heat production, the four species presented 
similar values with no significant differences. These 
values are considered high when compared with other 
species analyzed for use in bioenergy (Hansted et al., 
2016), and can also be compared with commercial 
eucalyptus plantation, which presents HHV values from 
18.100 J/g to 19.500 J/g according to Gominho et al. 
(2012).

For the elaboration of this work, intermittent 
production furnaces, vault-shaped (paulistinha) and 
tunnel, were analyzed. Burning and drying processes 
consume most fuel used for the manufacture of ceramic 
products. Firing provides the ceramic product with 
characteristics such as strength, color, among others, 
when it is submitted to heat. Firing temperatures are 
in the range from 750 to 900 °C to provide a more 
homogeneous product. Failure to follow firing parameters 
may cause deformation, cracking or breakage of parts.

Knowing the needs of the Ceramic Industry and 
how energy is essential for this activity, the results 
presented in Table 1 and 2 confirm the potential of 
Pinus sp species as fuel for the generation of energy 
in the form of heat. These results are in accordance 
with the preference of ceramic industries, which opt 
for this species.

4. CONCLUSION

The physicochemical evaluation of the four materials 
was carried out, and the results were satisfactory for 
the use of these biomasses in energy generation, in 

ceramic furnaces. All evaluated components presented 
satisfactory results in their use for bioenergy production.

It was possible to verify the viability of including 
both Citrus sinensis and Hevea brasiliensis species in 
the energy generation requirements of the ceramic 
industry.
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