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Abstract

The evolutionary basis for high species diversity in tropical regions of the world remains unresolved. Much research has
focused on the biogeography of speciation in the Amazon Basin, which harbors the greatest diversity of terrestrial life. The
leading hypotheses on allopatric diversification of Amazonian taxa are the Pleistocene refugia, marine incursion, and
riverine barrier hypotheses. Recent advances in the fields of phylogeography and species-distribution modeling permit a
modern re-evaluation of these hypotheses. Our approach combines comparative, molecular phylogeographic analyses
using mitochondrial DNA sequence data with paleodistribution modeling of species ranges at the last glacial maximum
(LGM) to test these hypotheses for three co-distributed species of leafcutter ants (Atta spp.). The cumulative results of all
tests reject every prediction of the riverine barrier hypothesis, but are unable to reject several predictions of the Pleistocene
refugia and marine incursion hypotheses. Coalescent dating analyses suggest that population structure formed recently
(Pleistocene-Pliocene), but are unable to reject the possibility that Miocene events may be responsible for structuring
populations in two of the three species examined. The available data therefore suggest that either marine incursions in the
Miocene or climate changes during the Pleistocene—or both—have shaped the population structure of the three species
examined. Our results also reconceptualize the traditional Pleistocene refugia hypothesis, and offer a novel framework for
future research into the area.
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Introduction

Tropical regions around the world are well known for their rich

diversity of life. Yet, the reasons why the tropics harbor more

species than temperate and arctic regions remain unclear [1,2,3,4].

The Amazon Basin has been of particular interest in this matter, as

it harbors perhaps the world’s greatest terrestrial biodiversity

[5,6,7,8]. As is true for the study of speciation in general [9], much

focus has been placed on the biogeography of processes generating

diversity in the Amazon Basin, specifically on how allopatry can be

achieved in a landscape without obvious geographic barriers

(although the presence of now invisible barriers, such as ancient

‘‘arches’’ has been suggested [10,11,12,13]). Although a plethora

of hypotheses have been suggested, three stand out as the most

widely discussed. These are the Pleistocene refugia hypothesis, the

marine incursion hypothesis, and the riverine barrier hypothesis.

The Pleistocene refugia hypothesis has been responsible for

generating the most interest in the field [12,13,14], but has also

become the most heavily criticized [15]. First proposed by Haffer in

1969 [16], this hypothesis suggests that historical climate changes,

specifically during periods of glacial maxima, restricted the

distribution of wet forests in Amazonia. Under this model, species

that inhabited these forests (birds in Haffer’s original hypothesis but

later expanded to include all terrestrial species [12]) would likewise

have become more isolated, resulting in the possibility for allopatric

speciation. Haffer [16] proposed the presence of several Pleistocene

forest refugia along the periphery of the Amazon Basin, reasoning

that these mountainous regions would have enough surface relief to

remain moist, even during periods of widespread aridity, by

generating local precipitation [17].

Although some studies [18,19,20,21,22] have found support for

the predictions of the Pleistocene refugia hypothesis (see Table 1

for a list of predictions), most have not [23,24,25,26,27].

Furthermore, the refugia hypothesis has been criticized because

(1) geological and paleoclimatic data do not generally support the

conclusion that wet forests were highly fragmented during the

Pleistocene [15,28,29,30]; (2) the locations and size of forest

refugia, if they did exist, would be different for each species

because of different environmental tolerances [12,14]; (3) some

areas that have been proposed as refugia because they appear to
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contain greater species diversity can be explained as artifacts of

sampling biases [31]; and (4) the ages of many extant Amazonian

species pre-date the Pleistocene, suggesting they were generated by

earlier mechanisms [12,14,32]. These criticisms have led some

researchers to call for the complete dismissal of the Pleistocene

refugia hypothesis on the grounds that it has been sufficiently

discredited [15].

The marine incursion hypothesis stems from evidence that

tectonic events combined with elevated sea levels, most recently

during the mid-Miocene (approximately 10–15 mya), flooded

much of the Amazon Basin in salty or brackish water

[33,34,35,36,37,38]. Such incursions would have restricted all

terrestrial organisms inhabiting the Amazon region to become

isolated in areas of higher elevation, namely near the Andes to the

west, the Guiana Shield to the north, and the Brazilian Shield to

the south. Under this model, the resulting isolation would permit

allopatric divergence of these populations. Support for the marine

incursion hypothesis has so far been found in woodcreepers [23]

and freshwater fish [39].

The riverine barrier hypothesis can be traced to early

observations on vertebrate distributions by Alfred Russell Wallace

[40]. This hypothesis suggests that tropical rivers serve as barriers

to gene flow for terrestrial organisms. These rivers, which are wide

and numerous in Amazonia, may promote divergence of

populations restricted to either side [14,41,42,43,44,45]. This

hypothesis has received mixed support. On the one hand, major

Amazonian rivers do seem to restrict dispersal of passerine birds

[46], small primates [47], lizards [48,49], frogs [50] and Riodinid

butterflies [51]. However, extensive molecular and morphological

work on small mammals and frogs along the Juruá River, a

tributary of the Amazon, failed to detect a significant river barrier

effect [10,41,43,44].

Two recent developments have allowed new insights into the

predictions made by these hypotheses (see Table 1). First, advances

in molecular techniques have not only increased the amount of

data available for analysis, they also permit a more quantitative

evaluation of species and population histories, which are essential

for testing competing hypotheses on tropical diversification [14].

Although molecular reconstructions of the biogeography of past

speciation events seems promising, the dynamic nature of species’

geographic ranges makes these inferences somewhat tenuous [52].

An alternative approach is to examine the current population

structure of widespread species. Such phylogeographic analyses

can provide insight into the processes responsible for generating

allopatry by giving not only a snapshot of the current population

structure, but also a window into the past through the

reconstruction of gene trees and historical demography [14,53,54].

The second recent development combines reconstructions of

paleoclimates with a flurry of novel techniques for modeling

species distributions under current as well as past (or future)

climate conditions. Such ‘‘paleodistribution’’ analyses provide a

means of independently assessing the extent to which past climate

has influenced species’ geographic ranges [55,56,57,58], thereby

avoiding assumptions about the presence and location of putative

forest refugia and thus bypassing several of the major criticisms of

the Pleistocene refugia hypothesis.

Several recent studies have demonstrated the utility of

combining molecular phylogeography and paleodistribution

reconstruction in a complimentary fashion to test a priori

biogeographic hypotheses [55,59,60,61]. However, paleoclimate

data for the Amazon basin are not nearly as complete as for other

regions, such as the Australian Wet Tropics [62], so such an

approach has not yet been utilized for Amazonian species.

Furthermore, the few studies that have used a molecular

phylogeographic approach to test these supposedly universal

hypotheses have primarily focused on vertebrate taxa

[10,23,27,43,44,45,63], which represent only a small proportion

of the total diversity of the Amazonian region [5,6,7,64].

We used three co-distributed species of leafcutter ants in the

genus Atta (Formicidae: Attini) to test the Pleistocene refugia,

marine incursion, and riverine barrier hypotheses using a

combination of paleodistribution modeling and comparative

molecular phylogeography. Leafcutter ants are widespread

throughout the Neotropics [65,66]. They are generalist herbivores,

cutting fresh vegetation as a food source for their mutualistic

fungal gardens [67,68]. Due to their tendency to forage on crops

and ornamental plants [69], leafcutter ants are considered to be

major agricultural pests, and have been described as the dominant

herbivores of the Neotropics [66,70]. They also play a key

ecological role in nutrient cycling as they bring organic material

deep into their subterranean nests [71,72].

Three leafcutter ant species, A. cephalotes, A. sexdens, and A.

laevigata, are ideal for testing the hypotheses in question because (1)

they co-occur throughout much of the Amazon Basin, as well as in

adjacent areas [65,73], (2) they diversified within the relevant time

frame for the hypotheses in question [74], (3) the three species

Table 1. Summary of the predictions of each hypothesis and overview of the methods used to test them (*Diversification any time
subsequent to the formation of the Amazon river (5–12 mya) would be consistent with the riverine barrier hypothesis, therefore
only diversification prior to 12 mya would falsify this prediction; we chose not to use this as a test of the riverine barrier hypothesis
because it is nearly impossible to reject for these species, which originated no more than 14 mya [81].).

Predictions Pleistocene refugia Marine incursion Riverine barrier Methods used

Reciprocal monophyly of
populations:

in different refugia in Eastern base of Andes, Brazilian
Shield, and/or Guiana Shield

on opposite banks of
Amazon River

Parametric bootstrap, Bayesian
hypothesis tests

Basal populations are located: in refugia in Eastern base of Andes, Brazilian
Shield, and/or Guiana Shield

N/A ML and Bayesian gene tree
reconstruction

Derived populations are located: outside refugia in Amazonian lowlands N/A ML and Bayesian gene tree
reconstruction

Barrier to gene flow: areas between refugia Amazonian lowlands Amazon River AMOVA, Mantel tests

Population history includes: bottlenecks and expansion bottlenecks and expansion N/A Mismatch distributions, Tajima’s D

Population structure formed: during Pleistocene
(10 kya–1.8 mya)

during Miocene (10–15 mya) N/A* IM

doi:10.1371/journal.pone.0002738.t001

Leafcutter Ant Diversification
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differ in their environmental tolerances [75,76], permitting an

evaluation of how historical climatic changes have differentially

influenced each, and (4) they can be easily collected due to their

enormous colony sizes [66,77].

We used these three species as independent tests of the

predictions of each hypothesis (summarized in Table 1). Further-

more, we hypothesized that, since these species have similar

distributions, dispersal abilities, and life histories

[65,73,75,76,78,79,80], the riverine barrier hypothesis and marine

incursion hypothesis should both apply equally to all three species.

However, because the three species chosen in this study display a

continuum of tolerance to aridity, such that A. cephalotes is the least

tolerant of aridity, A. laevigata the most tolerant, and A. sexdens

intermediate between the two [76], we hypothesized that each

species would respond differently to historical climate change

during the Pleistocene. Specifically, we predicted that increasing

aridity during the Pleistocene, reaching a climax at the last glacial

maximum (LGM; approximately 21,000 ybp) would have most

restricted the distribution of the least arid-tolerant species, Atta

cephalotes, while expanding the range of the most arid-tolerant, Atta

laevigata, with A. sexdens affected to an intermediate extent. To test

these predictions, we used a rigorous statistical framework

combining paleodistribution modeling with gene tree reconstruc-

tions, population genetic analyses, historical demographic analy-

ses, and coalescent dating analyses.

Results

Maps comparing the potential geographic range of each species

under current conditions and during the last glacial maximum

(LGM), approximately 21 kya, are shown in Figure 1. For current

conditions, the area under the receiver operating characteristic

curve (AUC) was 0.996, 0.983, and 0.986 for A. cephalotes, A.

laevigata, and A. sexdens, respectively. Furthermore, out of the ten

different thresholds (see Methods) used to obtain a binary (i.e.

presence/absence) prediction, all ten were significantly better than

random models for all three species. The cumulative probability

thresholds (chosen such that they minimized the commission (false

positive) rate for current conditions; see Methods) for A. cephalotes,

A. sexdens, and A. laevigata were 1, 5, and 5, respectively.

The projected distribution of each species at the LGM is shown

in panels D–F of Figure 1. Putative refugial areas, used for

subsequent hypothesis testing, were defined as contiguous areas

(i.e. solid green in Figure 1D–F) projected to have been suitable

habitat for a given species at the LGM (areas within colored circles

in Figure 1D–F). Areas predicted to have been suitable at the

LGM, but for which no samples were obtained, were logically

excluded for the purposes of hypothesis testing. For A. cephalotes,

the potential LGM range spanned most of the Amazon Basin, with

a contiguous population throughout the Guiana Shield

(Figure 1D). This range is somewhat reduced from the estimated

current potential distribution of the species (Figure 1A.). Other

areas with high probability of occurrence during the LGM include

the Atlantic Coastal Forests of Brazil, lower Central America and

the Chocó region of South America west of the Andes, and upper

Central America into central Mexico (the latter two regions are

separated by an area, corresponding to modern day Honduras,

predicted to have only very small patches of suitable habitat and

was therefore not considered a refugium for hypothesis testing).

For A. sexdens, the paleodistribution model predicts a more

fragmented potential distribution during the LGM (Figure 1E).

The largest block of inhabitable range was in the southwestern

Amazon Basin, from approximately just west of Manaus to the

southwestern edge of the Peruvian Andes. Other blocks of

inhabitable areas during the LGM for A. sexdens include the

Guiana Shield, the Atlantic Coastal Forests of Brazil, an area

south of the mouth of the Amazon River roughly between Belem

and São Luis, northwestern Colombia/eastern Panama, and

Nicaragua. For A. laevigata, the model predicted the presence of a

large area of unsuitable habitat spanning much of the Amazon

Basin (Figure 1F). The remaining areas of suitable habitat occur to

the north and south of the Amazon Basin, and are themselves

somewhat fragmented.

The topologies of mitochondrial gene trees are shown in

Figures 2–4. With one exception, these topologies were not

consistent with reciprocal monophyly of the populations predicted

by any of the three hypotheses, as determined by parametric

bootstrap and Bayesian hypothesis tests (Table S2). The exception

was the gene tree for A. sexdens, in which the populations predicted

by the Pleistocene refugia hypothesis were reciprocally monophy-

letic (parametric bootstrap p = 0.15; Bayesian posterior probabil-

ity = 0.843). However, the gene trees for A. cephalotes and A. laevigata

did have the relevant basal and derived populations as predicted

by both the Pleistocene refugia and marine incursion hypotheses.

The gene tree for A. sexdens is split at the base into two reciprocally

monophyletic clades that correspond to geographically distinct

populations, such that no statement could be made about which

populations are basal versus derived.

Population genetic analyses (AMOVA and Mantel tests) failed

to find any evidence that the lower Amazon River has served as a

barrier to gene flow for any of the three species (Tables S3–S4).

For the Pleistocene refugia and marine incursion hypotheses,

analyses of molecular variance (AMOVA) rejected the predicted

barrier in all cases (Table S3) except for the barrier predicted by

the Pleistocene refugia hypothesis for A. cephalotes (40.19% of

variance explained by the refugia dictated by paleoclimate

reconstructions; p = 0.00098). In contrast, partial Mantel tests

(Table S4) could not reject the barrier predicted by the Pleistocene

refugia or marine incursion hypotheses for any of the three species

(A. cephalotes: marine incursion r = 20.149, p = 0.00003; Pleistocene

refugia r = 0.076, p = 0.00589; A. sexdens: marine incursion

r = 20.396, p = 0.00138; Pleistocene refugia r = 0.251,

p = 0.00009; A. laevigata: marine incursion/Pleistocene refugia

r = 0.472043, p = 0.0073).

Evidence for population bottlenecks and subsequent expansions

was mixed in the two tests used (Table S5). For the purposes of

discussion, an inference of population expansion was only made in

the three instances in which both goodness-of-fit measures used to

evaluate mismatch distributions, as well as Tajima’s D statistic,

were all consistent with population expansion (A. cephalotes,

Pleistocene refugia: Atlantic Coast population [SSD = 0.0200829,

p = 0.299; Harpending’s Raggedness Index = 0.08930211, p = 0.3;

Tajima’s D = 21.65893, p = 0.033]; A. sexdens, marine incursion:

Brazilian Shield population [SSD = 0.20368588, p = 0.137; Har-

pending’s Raggedness Index = 0.47, p = 0.191; Tajima’s

D = 21.21852, p = 0.026]; A. laevigata, marine incursion/Pleisto-

cene refugia: Guiana Shield population [SSD = 0.01959799,

p = 0.181; Harpending’s Raggedness Index = 0.10577614,

p = 0.212; Tajima’s D = 22.31554, p = 0]). In all other instances,

at least one statistic was inconsistent with population expansion, or

there were insufficient data.

Coalescent dating analyses that estimated the oldest measurable

split (Tdiv) between extant populations for each species are shown

in Figure 5. The mode, upper, and lower 95% confidence intervals

of Tdiv are given in Table S6. In all three species, the posterior

distribution of Tdiv has a peak within the Pleistocene, and a long

tail that extends into the Pliocene and/or Miocene. The long tail

results in a rather wide 95% confidence interval, and is partially

Leafcutter Ant Diversification
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due to the high value (tmax = 133, corresponding to 14 mya) used

as an upper bound for the time since divergence in all three

species. This value was chosen based on the results of dating

analyses for the tribe Attini, in which the crown group of leafcutter

ants were estimated to have originated between 8 and 14 mya

[81]. The value for tmax used in this study is thus somewhat

conservative and likely extended the 95% confidence interval

farther than would a lower value; however, given the data

currently available, it would not be justified to use a lower value

for tmax.

The 95% confidence interval for population divergence in Atta

cephalotes extends from the mid-Pleistocene (819 kya) to the lower

Pliocene (4.893 mya), but does not include the Miocene (Figure 5).

It therefore appears that the population structure currently present

in A. cephalotes formed too recently to be explained by marine

incursions during the Miocene. For the other two species,

Figure 1. Overview of populations sampled and groupings used in hypothesis tests (left to right: Atta cephalotes, Atta sexdens, Atta
laevigata). A–C: Results of maxent binary distribution models for the three species under current conditions. Areas predicted to be suitable for each
species under current climate conditions are shaded in green. Populations used in this study are shown with red circles; populations for which
molecular data were obtained are indicated by filled circles, while populations used only for distribution modeling are indicated by open circles. D–F:
Paleodistributions of the three species at the LGM (21 kya) estimated by projecting the maxent model for current conditions onto climate layers from
the LGM. Red circles indicate populations used in molecular analyses; Regions outlined with colored lines show population groupings used to test the
Pleistocene refugia hypothesis. G–I: Population groupings used to test the marine incursion hypothesis are circled with colored lines (red = Andes,
blue = Guiana Shield, yellow = Brazilian Shield); populations for which molecular data were obtained are indicated by filled circles. J–L: Populations
used to test the riverine barrier hypothesis are shown with yellow or red circles, indicating populations located north or south of the Amazon river,
respectively. Populations for which molecular data were obtained but are located away from the Amazon river (and are therefore not considered in
tests of this hypothesis) are shown with empty, black circles.
doi:10.1371/journal.pone.0002738.g001
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however, the upper 95% confidence limit (13.279 mya and 12.817

mya in A. sexdens and A. laevigata, respectively) extends into the

Miocene, including the period between 10 and 15 mya when

marine incursions into the Amazon Basin are thought to have

achieved their greatest extent [38]. The wider confidence interval

in these two species may also be due to the smaller sample sizes for

A. sexdens (N = 46) and A. laevigata (N = 30) compared with A.

cephalotes (N = 118).

Discussion

Combining the results of the paleodistribution models with the

molecular phylogeographic analyses (Table 2), the accumulated

data rejected every prediction of the riverine barrier model for all

three species examined. The results of AMOVA and Mantel tests

for the presence of barriers to gene flow, as well as the topologies of

mitochondrial gene trees (in which closely related haplotypes are

found on opposite river banks), suggest that gene flow regularly

occurs across the lower Amazon River in all three species.

Although the exact dispersal abilities of Atta species are not known,

typical flight distances for mated queens are thought to be less than

2 km (Mueller, pers. obs.), with a maximum range of no more than

50 km [82]. The main channel of the lower Amazon river (e.g.

near the city of Santerém) is between 1 and 3 km in width,

although the seasonal floodplain can be 20 to 40 km wide in the

wet season [83]. The floodplain width is probably more relevant as

a dispersal barrier to leafcutter ants since they do not survive in

seasonally inundated soils (Solomon, pers. obs.). Although the

potential barrier effects of other major rivers in the Amazon Basin

were not tested in this analysis, the lack of a significant effect of the

lower Amazon River suggests that smaller rivers are unlikely to

structure populations of leafcutter ants.

In contrast, discriminating between the Pleistocene refugia and

marine incursion hypotheses was more difficult. This difficulty is

due in part to the similar predictions that these hypotheses make

(Table 1), since some areas reconstructed as refugia are also areas

Figure 2. Maximum likelihood gene tree for Atta cephalotes. Support values are 100 ML Bootstrap (top) and Bayesian posterior probabilities
(bottom). Outgroup sequences used for rooting were from A. columbica, A. texana, and A. mexicana. Uppercase letters correspond to regions shown
on map.
doi:10.1371/journal.pone.0002738.g002
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that would have avoided flooding during marine incursions

(Figure 1) [39,84,85]. However, by reconstructing the paleodis-

tribution of each species independently, our approach to testing

the Pleistocene refugia hypothesis avoids this issue (in part; see

below) since (1) we do not make the assumption that only areas of

high surface relief served as refugia, and (2) the areas reconstructed

as refugia are different for each species whereas the areas that

avoided marine incursions are the same for each species.

Nevertheless, the reconstructed paleodistribution for Atta laevigata

at the LGM (Figure 1F) coincides with the areas unaffected by

marine incursions (i.e. the Brazilian Shield and the Guiana Shield),

so the predictions of these two hypotheses were largely identical for

this species.

Paleodistribution modeling of species ranges during the LGM

also addresses one of the major criticisms of the Pleistocene refugia

hypothesis, namely that the locations and size of putative forest

refugia are likely to be different for every species considered

[12,14]. The results of paleodistribution models in the current

study strengthen this argument, since each of the congeneric

species examined is predicted to have responded differently to

environmental conditions at the LGM (Figure 1). Interestingly, the

paleoclimate model used in this study predicts that conditions

supporting wet forests persisted throughout much of the Amazon

Basin during the LGM, as is suggested by an increasing amount of

fossil pollen and other geological information [15,29]. However,

this reconstruction of Pleistocene climate conditions contradicts

claims by proponents of the refugia model that wet forest only

existed along the margins of the Amazon Basin during the LGM

[13,16,17,86].

The molecular data provided mixed support for the predictions

of the Pleistocene refugia and the marine incursion hypotheses

(Table 2). Reciprocal monophyly of the relevant populations was

only found in one instance: the gene tree of Atta sexdens as predicted

by the Pleistocene refugia hypothesis. However, failure to detect

reciprocal monophyly does not necessarily indicate that the

predictions of a given hypothesis have been invalidated, since

Figure 3. Maximum likelihood gene tree for Atta sexdens. Support values are 100 ML Bootstrap (top) and Bayesian posterior probabilities
(bottom). Outgroup sequences used for rooting were from A. laevigata. Uppercase letters correspond to regions shown on map.
doi:10.1371/journal.pone.0002738.g003
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incomplete lineage sorting is expected to also produce paraphyletic

and polyphyletic gene trees as populations are split by barriers to

gene flow [87]. Thus, although detecting reciprocal monophyly

provides strong support for the predicted genealogical history of a

species, failure to detect it does not necessarily indicate that the

relevant populations are not diverging in the expected manner,

especially if the suspected barrier promoting divergence appeared

recently. Visual inspection of the gene tree topologies (Figures 2–4)

offers an alternative way of interpreting a species genealogical

history that is less sensitive to the effects of incomplete lineage

sorting. Such an approach shows that the populations expected to

be more basal and/or more derived did in fact occupy the

positions predicted for Atta cephalotes by the Pleistocene refugia

hypothesis, but not the marine incursion hypothesis. The gene tree

for Atta laevigata shows the predicted positions for both these

hypotheses (which make identical predictions, as explained above).

However, because of the reciprocal monophyly of the relevant

populations of Atta sexdens, the gene tree could not determine which

populations were more basal or derived for this species.

The Pleistocene refugia and marine incursion hypotheses

predict that areas that were historically unsuitable for a species

to occur (due to inappropriate climatic conditions for the former,

flooded areas for the latter) formed barriers to gene flow. The two

methods used to test for the presence of these barriers (AMOVA

and Mantel tests) did not always provide congruent results

(Table 2, and Tables S32S4). In fact, the Mantel tests failed to

reject the barrier of interest in all six instances, while the AMOVA

found no evidence for the barrier of interest in the case of the

marine incursion hypothesis for Atta cephalotes, both the marine

incursion and Pleistocene refugia hypotheses for Atta sexdens, and

both hypotheses (which, again, make identical predictions) for Atta

laevigata. It would therefore appear that the AMOVA is a more

sensitive way of testing for the presence of gene flow barriers,

although we are not aware of any studies that directly compare the

discriminatory power of these two commonly used tests.

The two methods used to test for population bottlenecks and

subsequent expansions, as predicted by both the Pleistocene

refugia and marine incursion hypotheses, also occasionally gave

conflicting results (Table 2). We interpreted the results in a

conservative manner, such that population bottlenecks and

expansions were only inferred in instances in which the results

were unanimously consistent with such a demographic history.

This was the case in three instances: one population (‘‘Atlantic

Coast’’) of A. cephalotes predicted by the Pleistocene refugia

hypothesis, one population (‘‘Brazilian Shield’’) of A. sexdens

predicted by the marine incursion hypothesis, and one population

Figure 4. Maximum likelihood gene tree for Atta laevigata. Support values are 100 ML bootstrap replicates (top) and Bayesian posterior
probabilities (bottom). Outgroup sequences used for rooting were from A. sexdens. Uppercase letters correspond to regions shown on map.
doi:10.1371/journal.pone.0002738.g004
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(‘‘Guiana Shield’’) of A. laevigata predicted by both hypotheses. The

results of these tests therefore do not provide much assistance in

discriminating between the Pleistocene refugia and marine

incursion hypotheses.

Despite the largely similar predictions about geographic

population structure made by the Pleistocene refugia and marine

incursion hypotheses, these hypotheses operate on vastly different

temporal scales. On the one hand, marine incursions are thought to

have taken places during the Miocene [33,34,37,39,84], (approx-

imately 10–15 mya), whereas conditions thought to promote refugia

existed, generally speaking, during the Pleistocene (1.8 mya–10 kya)

and reached a climax during the last glacial maximum (21 kya)

[13,16,17,18,88]. The results of our coalescent dating analyses

indicate that the population structure observed today in all three

species formed between 371,000 and 13.279 million years ago, a

time period spanning the Pleistocene, Pliocene, and late Miocene.

The 95% confidence interval for population divergence in A.

cephalotes does not include the Miocene, suggesting that marine

incursions are unlikely to have been responsible for forming the

population structure observed today in this species. However,

despite a trend toward diversification during the Pleistocene in all

three species (Figure 5), marine incursions could not be ruled out as

the source of population divergence in A. sexdens or A. laevigata. More

precise dating of the origin of each of these species will require a

species-level phylogenetic analysis of the leafcutter ants as well as

their closest living relatives, Trachymyrmex, which have fossils that can

provide calibration points [81].

Although our results are not able to differentiate between many of

the predictions of the Pleistocene refugia and marine incursion

hypotheses, except possibly for A. cephalotes, it is important to

recognize, as some other authors have also noted [12,23,25,50], that

these hypotheses are not necessarily mutually exclusive. Marine

incursions in the Miocene could have been followed by isolation into

refugia during the Pleistocene, with species present at both times

being affected by both. It is therefore possible that our inability to

differentiate between these two ‘‘competing’’ hypotheses may be

Figure 5. Timeline of diversification in Amazonian Atta species. Top: Posterior distributions of Tdiv, the time since the oldest population
division for each species as reconstructed for each species using the program IM. Bottom: The 95% confidence limits for diversification in each species
are represented by horizontal bars, with a vertical bar indicating the best estimate for Tdiv, assuming a mutation rate of 9.5 substitutions per site per
million years and a generation time of 4 years.
doi:10.1371/journal.pone.0002738.g005
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more a function of their inherent compatibility than their mutual

exclusivity.

It should also be noted that, despite some support for the

Pleistocene refugia hypothesis, our results do not support its

traditional formulation, namely that isolated pockets of wet forest

at the periphery of the Amazon Basin were the refugia responsible

for diversification in all species [13,17]. Instead, the results of our

paleodistribution reconstructions, and to a large extent the genetic

data, suggest that the species restricted to wet forest, A. cephalotes, was

the most widespread at the LGM, while the species most closely

associated with open habitat, A. laevigata, was the most fragmented.

This result is exactly opposite that predicted by the traditional

Pleistocene refugia hypothesis, and suggests a more general model

for the role of Pleistocene climate change in generating diversity in

the Amazon region. Instead of restricting the role that allopatry has

played only to inhabitants of wet, lowland forests, it seems likely that

inhabitants of all Amazonian habitats should be subject to

distributional shifts that could generate population structure.

Indeed, the emerging picture of Amazonia during the Pleisto-

cene, based on data from fossil pollen [15,28,29,30], simulations of

paleoclimate, paleohabitat, and species’ paleodistributions [58,89],

and, increasingly, by genetic data from Amazonian species [23] all

point toward a similar scenario: temperatures, precipitation and

carbon dioxide levels were all lower than today, but forests

nevertheless remained widespread, and therefore species restricted

to forest habitats were not dissected in the way envisioned by Haffer

and colleagues [13,16,17,86]. Nevertheless, our results suggest that

these climate changes, perhaps acting on top of effects from earlier

events such as marine incursions, may have been sufficient to drive

diversification in some Amazonian species.

Our results suggest that the role that climate change has played

in the diversification of Amazonian species should be revisited, but

that other mechanisms that may act in concert should also be

considered. That climate change in general is linked to

diversification processes is also suggested by a number of recent

studies that span various taxa, time periods and geographic regions

[63,90,91,92,93,94,95]. The relationship between climate change

and diversity is of particular interest for predicting the biotic effects

of future climate change [96,97,98,99,100]. Combining paleodis-

tribution modeling with comparative, molecular phylogeography

across a diversity of taxa is likely to provide a productive

framework for future research into this area.

Materials and Methods

Collection of samples and molecular analyses
Samples for molecular analysis were obtained from 118 Atta

cephalotes colonies, 46 Atta sexdens colonies, and 30 Atta laevigata

Table 2. Overview of results.

Species Prediction Test
Riverine
barrier

Pleistocene
refugia

Marine
incursion

A. cephalotes Reciprocal monophyly of relevant populations Parametric bootstrap 1/1 1/1 1/1

Bayesian hypothesis tests 1/1 1/1 1/1

Relevant basal and derived populations ML and Bayesian trees N/A 0/1 1/1

Evidence for predicted barrier to gene flow AMOVA 1/1 0/1 1/1

Mantel Tests 1/1 0/1 0/1

History of population expansions Mismatch Distributions N/A 1/8 0/6

Tajima’s D N/A 2/4 3/3

Appropriate age of oldest population division IM N/A 0/1 1/1

A. sexdens Reciprocal monophyly of relevant populations Parametric bootstrap 1/1 0/1 1/1

Bayesian hypothesis tests 1/1 0/1 1/1

Relevant basal and derived populations ML and Bayesian trees N/A * *

Evidence for predicted barrier to gene flow AMOVA 1/1 1/1 1/1

Mantel Tests 1/1 0/1 0/1

History of population expansions Mismatch Distributions N/A 3/6 1/4

Tajima’s D N/A 3/3 1/2

Appropriate date for oldest population division IM N/A 0/1 0/1

A. laevigata** Reciprocal monophyly of relevant populations Parametric bootstrap 1/1 1/1 ** 1/1 **

Bayesian hypothesis tests 1/1 1/1 ** 1/1 **

Relevant basal and derived populations ML and Bayesian trees N/A 0/1 ** 0/1 **

Evidence for predicted barrier to gene flow AMOVA 1/1 1/1 ** 1/1 **

Mantel Tests 1/1 0/1 ** 0/1 **

History of population expansions Mismatch Distributions N/A 0/2 ** 0/2 **

Tajima’s D N/A 1/2 ** 1/2 **

Appropriate date for oldest population division IM N/A 0/1 ** 0/1 **

The number of instances (statistical tests per species or per population) in which the relevant prediction could be rejected are indicated followed after a slash by the
total number of instances (e.g. 1/2 means that one out of the two tests rejected the prediction); predictions which are not applicable are indicated by ‘‘N/A’’ (*the gene
tree for A. sexdens could not resolve which populations were basal or derived; **the predictions for the Pleistocene refugia and marine incursion models are identical for
A. laevigata).
doi:10.1371/journal.pone.0002738.t002
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colonies, spanning the known geographic range of each species

(Table S7). Sampling locations were chosen to allow testing of the

hypotheses in question and to maximize coverage within each

species’ geographic range. Individual worker ants were collected at

nests or along foraging trails and preserved in 95% ethanol during

transport to The University of Texas at Austin (for samples

collected outside Brazil) or São Paulo State University (UNESP),

Rio Claro, SP, Brazil (for samples collected in Brazil), where they

were stored at 4uC. The location of all samples was recorded using

a handheld GPS unit (Garmin eTrex).

Two disjunct sections of mitochondrial DNA, encompassing part

of the Cytochrome Oxidase I (COI) and tRNA-Leucine (tRNAleu)

genes, as well as the entire intergenic spacer between COI and

tRNAleu were sequenced for all samples. The sequences were

concatenated into a single alignment for each species that varied in

length from 635 base pairs in A. cephalotes to 701 base pairs in A.

sexdens and A. laevigata. Several nuclear pseudogenes were acciden-

tally amplified and sequenced for A. cephalotes (described in [101])

and were not used in subsequent analyses; all sequences included in

the final alignments for each species appeared to be functional,

mitochondrial loci, as no premature stop codons or frameshift

mutations were detected. Additional sequences for outgroup taxa

(Atta columbica, Atta mexicana, and Atta texana; see Table S7), used for

phylogenetic analyses of A. cephalotes were obtained from specimens

available in the Mueller Lab at The University of Texas at Austin.

Sequence information for all samples was deposited in GenBank

(Accession Numbers EU847821-EU848214).

Total genomic DNA was extracted from one individual per

colony using either the DNeasy Blood and Tissue Kit (QIAGEN)

or the AccuPrep Genomic DNA Extraction Kit (Bioneer, Inc.).

Several sets of mtDNA primers (Table S1 and References S1) were

used to amplify two sections of the cytochrome oxidase I (COI)

gene, as well as an intergenic spacer, and a portion of the tRNA-

Leucine gene. PCR reactions contained 1 ul each of genomic

DNA (approximately 10 ng), 1X reaction buffer, dNTPs, and

MgCl2, 0.04 ul of Taq polymerase, and 5.96 ul of water for a total

reaction volume of 10 ul. Average PCR conditions were as follows,

with slight modifications depending on the annealing temperatures

of individual primer pairs: Initial denaturation at 95uC for

3 minutes was followed by 35 cycles of 95uC for 5 seconds, and

an annealing temperature that increased by 0.5uC for each

successive round of amplification, beginning at 45uC, for 20

seconds each round, with a final elongation step of 68uC for 15

seconds. PCR products were analyzed by running 3 ul of the

product on a 1.5% agarose gel and subsequently visualized with

ethidium bromide staining. For samples that successfully ampli-

fied, the remaining 7 ul of PCR product were purified by

polyethylene glycol (PEG) precipitation, using a 1:1 PCR product/

20% PEG mixture which was incubated for 15 min at 37uC
followed by a 10-min centrifugation at 2,6886g and two washes

with 80% ethanol.

Cycle sequencing reactions were performed for both forward

and reverse sequences using the ABI BigDye Terminator Kit

(version 3.1). Sephadex column purification was used to clean the

cycle-sequencing product, which was then analyzed on a PRISM

3100 genetic analyzer (Applied Biosystems). Forward and reverse

sequences were assembled into individual contigs using SeqMan II

v.5.05 (DNASTAR) and alignments between sequences were

created initially using Clustal X [102] and then adjusted manually

in MacClade v. 4.06 [103].

Paleodistribution modeling
Estimates of the current and historical potential geographic

ranges of each species were made using Maxent version 2.3 [104].

Maxent uses presence-only species occurrence records (i.e.

latitudes & longitudes of known species sightings) and environ-

mental data (i.e. GIS layers) as input. In general, the maxent

approach seeks to estimate an unknown (‘‘target’’) distribution

using incomplete information about the target distribution and a

given set of constraints. For modeling species potential geograph-

ical ranges, the occurrence data are considered to be the

incomplete sample of a larger, unknown geographical distribution,

and the environmental data are used as constraints [104,105]. A

recent comparison of methods for niche-based modeling of species

potential ranges under current conditions identified Maxent as

among the best approaches available in terms of predictive

performance [56].

For each species, a model was constructed for the current

potential range using known collection localities (see below) and

current climate conditions; the model was then projected onto a

reconstruction of climate layers for the LGM to obtain a potential

geographic range of each species at the LGM. Localities used as

known presence records for each species of leafcutter ant (Table

S7) came primarily from observations by the authors. Additional

localities were obtained from A. Himler, N. Gerardo, C. Currie,

A. Little, A. Mikheyev, and S. Villamarin. Geographic coordinates

for each locality were obtained using a handheld GPS unit

(Garmin eTrex). Museum specimens, although abundant for many

species of Atta, were generally not used in these analyses because

they often do not contain detailed geographic coordinates

indicating where the collection was made.

For current environmental conditions, twenty bioclimatic layers

for the entire New World were obtained from the WorldClim

dataset (http://www.worldclim.org; version 1.4), each with a

resolution of approximately 10 km. The methods used to generate

these layers are described in Hijmans et al. [108]. The ‘‘auto

features’’ option was selected in Maxent for all analyses. In

addition, the following settings were used for the full training runs

for each species: 500 maximum iterations, a convergence

threshold of 1.0E-5, ‘‘minimize memory use,’’ and a regularization

multiplier equal to 1.0 [104].

Two approaches were used to determine whether the

predictions for current conditions generated by Maxent were

better than random predictions. First, the area under the receiver

Operating Characteristic curve (AUC), a commonly used

measurement for comparison of model performance [56], was

calculated for each species. The AUC varies from 0 to 1, with

greater scores indicating better discrimination ability; an AUC

greater than 0.5 indicates that the model discriminates better than

random [56].

Second, a separate analysis was conducted by randomly splitting

the localities into two sets: training and testing. The training set

(75% of localities for A. cephalotes, 90% for A. laevigata and A. sexdens)

was used to build the model while the testing set was used to test

the predictive ability of that model. The number of localities used

for testing versus training was dependent on how many sites were

available for each species. To test the predictive ability of the

model, Maxent’s cumulative prediction was converted to a binary

(i.e. presence vs. absence) prediction. Ten different thresholds

automatically generated by Maxent were used for this conversion

and the extrinsic omission rate (the fraction of test localities that

are outside the area in which the species is predicted to occur) was

tested against the null hypothesis that it is no better than a random

prediction (of equal area) using a one-tailed binomial test [104].

The same settings were used as for the full training runs, except

that all of the available samples were used to build the model.

Estimates of the potential geographic range of each species

during the last glacial maximum (LGM, approximately 21 kya)
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were made by projecting the model generated under current

environmental conditions onto a reconstruction of the same

environmental variables at the LGM (see [57] for an explanation

of how these layers were generated). A binary (presence vs.

absence) prediction for the LGM was necessary for hypothesis tests

(see below). To obtain a binary prediction, threshold values were

chosen that minimized the commission (false positive) rate for

current conditions, based on absence data obtained from recent

surveys (S. Solomon, unpublished). The cumulative probability

thresholds chosen for A. cephalotes, A. sexdens, and A. laevigata were 1,

5, and 5, respectively. The results of the paleodistribution models

were used in subsequent analyses to provide a priori population

groupings for all tests of the refugia hypothesis in the following

way: areas that were predicted to provide contiguous blocks of

suitable habitat during the LGM (using the binary prediction) were

grouped together as a single population (Figure 1: C, F, I); areas

that were predicted not to be suitable were ignored for the

purposes of hypothesis testing (see below).

Gene tree topology tests
Each hypothesis makes a specific prediction about the

genealogical relationships between populations across the geo-

graphic range of each species (see Table 1). Specifically, given

enough time, isolated populations that have diverged evolution-

arily are expected to become reciprocally monophyletic [14,87].

The relationships predicted by a strict interpretation of each

hypothesis, assuming complete lineage sorting, were converted

into backbone constraint topologies as follows. For the riverine

barrier hypothesis, populations occurring on either bank (i.e. north

and south) of the Amazon River should be reciprocally

monophyletic. For the marine incursion hypothesis, populations

near the eastern base of the Andes, on the Brazilian Shield, and on

the Guyana Shield should be reciprocally monophyletic. For the

refugia hypothesis, populations that were predicted by the

paleodistribution models to persist during the last glacial

maximum (Figure 1, middle rows) should be reciprocally

monophyletic.

To determine whether these predictions were met, mitochon-

drial DNA gene trees were estimated, using unique haplotypes,

with maximum likelihood and Bayesian inference techniques.

Maximum likelihood searches were performed with a beta version

of GARLI [109] that allows backbone constraints (version 0.952

Beta), with default settings and parameters estimated according to

the model of evolution selected using the Akaike Information

Criterion (AIC) as implemented in ModelTest [110]. The best tree

consistent with the constraint topology for each hypothesis was

then found using identical settings. In order to assess whether the

null hypothesis represented by the constraint trees could be

rejected, the difference between the log-likelihood values of the

best constrained and best unconstrained trees was used as a test

statistic, with statistical significance assessed through simulation

(parametric bootstrap or SOWH test [111,112]). One hundred

simulated datasets were generated using Seq-gen [113], with

parameters estimated by PAUP* [114] from the best constrained

tree under each constraint. Constrained and unconstrained

searches were performed in GARLI on the simulated data using

identical settings as for the empirical data. The distribution of

differences between constrained and unconstrained searches on

the simulated data was used to assess the significance of the test

statistic; the p value was equal to the number of simulated datasets

(out of 100 replicates) with a difference in log-likelihood scores

between constrained and unconstrained searches greater than the

empirical difference. The null hypothesis (i.e. constraint topology)

was rejected when p values were less than 0.05.

Bayesian searches were conducted in MrBayes version 3.1.2

[115]. Four separate runs were conducted, each with four

incrementally heated chains and uninformative, default priors;

convergence and optimal burn-in were assessed as described in

[116] using the program MrConverge (A. Lemmon, in prep.).

After discarding burn-in, the posterior samples of tree topologies

for each run were combined in PAUP*; the combined posterior

sample was then filtered with the constraint tree for each

hypothesis. The proportion of trees retained by the filter was the

Bayesian posterior probability of that hypothesis.

Population Genetic Structure
To determine whether populations are structured as predicted

by each of the hypotheses in question (Table 1), two types of

population-genetic analyses were performed, using all ingroup

haplotypes for each. Analysis of molecular variance (AMOVA)

was used, as implemented in Arlequin 3.11 [117], to calculate the

percentage of variance explained by a priori population groupings

in a hierarchical framework [118]. The population structure was

defined for each species/hypothesis, as for the constraint trees in

phylogenetic analyses. Tamura and Nei distances with an alpha

shape parameter were used to compute the pairwise distance

matrix for all AMOVA calculations, as this is the most complex

model of sequence evolution currently available in Arlequin [117].

Transitions and transversions were given equal weight, while

deletions (i.e. gaps) were ignored. Statistical significance of

variance components was assessed using the permutation proce-

dures described in the Arlequin user’s manual (http://cmpg.unibe.

ch/software/ arlequin3/arlequin31.pdf).

To further test for the presence of barriers to gene flow, as

predicted for each hypothesis, simple and partial Mantel tests

[119,120] were conducted on the following matrices. First, the

pairwise maximum likelihood genetic distance between individuals

(as defined a priori for each species/hypothesis) was calculated in

PAUP, using the model of sequence evolution selected by the AIC

in ModelTest [110]. Second, the pairwise geographic distance (in

kilometers) was calculated using the program Range (http://

earthquake.usgs.gov/research/ software/#Range). Third, the

presence or absence of a potential barrier between two individuals

was coded as a binary character and converted to a pairwise

barrier matrix. If the straight-line distance between two individuals

crossed the barrier of interest (e.g. the Amazon River in the case of

the riverine barrier hypothesis), then the barrier was coded as

present; if not, the barrier was coded as absent.

For each hypothesis/species, simple Mantel tests assessed the

correlation between pairwise genetic distance matrices and the

pairwise barrier matrix. Furthermore, isolation by distance was

tested for by a simple Mantel test of the pairwise genetic distance

and pairwise geographic distance. If both of the above tests were

statistically significant, a partial Mantel test was conducted to

determine whether the genetic distance between individuals was

correlated with the presence of a potential barrier when the effects

of geographic distance are removed. All Mantel tests were

conducted with the program zt [121] and used 10,000 permuta-

tions to assess statistical significance.

Demographic Analyses
Two types of analyses were performed using Arlequin 3.11

[117] to test the predictions of both the refugia and marine

incursion hypotheses that populations restricted to an isolated

region should show signs of population bottlenecks and subsequent

population expansion (Table 1). Tajima’s D statistic [122] which is

expected to be negative for populations that have experienced

recent population growth [123], was calculated for each
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population grouping (Figure 1) for each hypothesis. Significance

was tested, as described in the Arlequin manual (http://cmpg.

unibe.ch/ software/arlequin3/arlequin31.pdf) by simulating ran-

dom samples under a model of population equilibrium, where the

p value is equal to the number of simulated values less than or

equal to the observed value of D.

Second, pairwise nucleotide mismatch distributions were

calculated for each population. A population that is at equilibrium

is expected to have a multi-model mismatch distribution due to the

stochastic shape of its gene tree, whereas populations that have

experienced recent growth should have a unimodal mismatch

distribution resulting from a star-like gene tree [124,125]. A model

of stepwise population expansion was estimated using a general-

ized least-square approach [126], and its validity was tested as

follows: The sum of squared deviations (SSD) between the

observed and the simulated (i.e. expected) mismatch distributions

was used as a test statistic; 1000 bootstrap simulations of the data

were performed, and the SSD was calculated for each; the null

hypothesis of population expansion was rejected when fewer than

5% of the simulated SSD values were greater than the observed

SSD. To further test whether the observed mismatch distributions

deviated from the null expectations characteristic of an expanding

population, Harpending’s Raggedness Index [127] was calculated.

This index has greater values for distributions that are multimodal,

as expected for stationary (i.e. non-expanding) populations.

Significance for Harpending’s Raggedness Index was assessed

through bootstrap simulation as described for the SSD.

Coalescent dating of population divergence
The refugia and marine incursion hypotheses make similar

predictions about how populations should be structured (see

Table 1). However, these two hypotheses make predictions on

vastly different temporal scales. On the one hand, the Pleistocene

refugia model predicts that current population structure formed

during or subsequent to the Pleistocene, 10,000 to 1.8 million

years ago. In contrast, the population structure predicted by the

marine incursion hypothesis should date to the Miocene,

approximately 10–15 million years ago.

To discriminate between these alternative scenarios, a coales-

cent dating approach was used. The results of the phylogenetic

analyses for each species were used to determine where the most

basal split occurred between all sampled populations. The

approximate date of this split, in years before present (ybp), was

estimated using the isolation-with-migration model developed by

Nielsen and Wakeley [128] as implemented in the program IM

[129]. This program simultaneously approximates the divergence

time (t) between two populations that share a common ancestor,

the migration rates (m1 and m2) between these populations, the

proportion of the ancestral population that founded each of the

resulting populations (s and 1-s) and a measure of genetic diversity

for the ancestral (thetaA) as well as both resulting populations

(theta1, theta2) in a Bayesian framework using a Markov chain

Monte Carlo method. The program assumes that the diverging

populations are not exchanging migrants with any other

populations [128].

Preliminary analyses were conducted on each population pair to

assess mixing of the chains, as well as to determine appropriate

priors for the parameters that were not of interest (i.e. all but t; see

Table S6 for a list of the priors used for each species). The upper

limit for the prior distribution of t, tmax, was determined based on

recent estimates for the origin of the genus Atta [81]; the oldest

possible date recovered by that study for the origin of the crown

group of leafcutter ants, 14 mya (Schultz and Brady 2008 Table

S3), was used as tmax for all three species in our study. All searches

used the HKY model of sequence evolution (currently the most

appropriate model available in IM for mtDNA evolution), a

generation time of 4 years (based on life history data from Autuori

[130] and observations by the authors) and uninformative priors.

After the first 100,000 steps, which were discarded as burnin,

searches proceeded until the following criteria were satisfied: (1)

the minimum ESS was at least 100, (2) no trends were observable

in plots of parameter values throughout the course of the run, and

(3) the results from at least 3 independent runs using the same data

and prior values converged on similar posterior distributions.

The estimates for t were converted into time in years since

divergence (Tdiv) using the equation, Tdiv = t*u, where u is the

mutation rate in substitutions per site per year. The mutation rate

for COI was estimated based on unpublished sequence data for

the same gene from species spanning the tribe Attini and from

divergence times within the Attini, as reconstructed by Schultz and

Brady [81]; the resulting value of 9.5 substitutions per site per

million years is consistent with an estimate of the average mutation

rate for COI in a recent survey across the arthropods [131].

Supporting Information

Table S1 Mitochondrial DNA primers used for amplification

and sequencing of ants in the present study.

Found at: doi:10.1371/journal.pone.0002738.s001 (0.05 MB

DOC)

Table S2 Results of gene tree topology tests. For the parametric

bootstrap analyses, p values less than 0.05 indicate rejection of the

null hypothesis (i.e. the constraint tree). Bpp is the Bayesian

posterior probability of a given constraint topology (*The

predictions of the Pleistocene refugia and marine incursion

hypotheses are identical for A. laevigata).

Found at: doi:10.1371/journal.pone.0002738.s002 (0.07 MB

DOC)

Table S3 Results of Analyses of Molecular Variance (AMOVA).

For each hypothesis, population structure was defined as predicted

by each hypothesis (see text). The percentage of variance

explained by each hierarchical grouping is shown, with an asterix

indicating statistical significance as assessed by permutation. The

‘‘among regions’’ grouping is the grouping of interest for the

purposes of hypothesis testing in this study ( Negative percentages

and percentages greater than 100 should be interpreted as not

significantly different than zero and 100, respectively).

Found at: doi:10.1371/journal.pone.0002738.s003 (0.07 MB

DOC)

Table S4 Results of simple and partial Mantel tests of matrix

correlation. For each hypothesis, the correlation between correct-

ed, pairwise genetic distance between individuals and the presence

or absence of the barrier of interest was tested using a simple

Mantel test (Gen Dist6Barrier). The correlation between genetic

and geographic distances (Gen Dist6Geog Dist) was assessed to

test for isolation by distance. If a significant correlation was found

between both matrix comparisons, a partial Mantel test was

conducted on all three matrices to determine whether the presence

of the barrier of interest was significantly correlated with genetic

distance once the effects of geographic distance are factored out

(Partial). All tests used 10,000 permutations to assess statistical

significance.

Found at: doi:10.1371/journal.pone.0002738.s004 (0.06 MB

DOC)

Table S5 Results of demographic analyses. Pairwise nucleotide

mismatch distributions and Tajima’s (1989) D tests were used to
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test for historical population expansion for populations defined a

priori for each hypothesis.

Found at: doi:10.1371/journal.pone.0002738.s005 (0.08 MB

DOC)

Table S6 Summary of coalescent dating analyses using the

program IM. Left panel: priors used for estimating Tdiv, the time

since earliest population divergence for each species. Right panel:

the posterior estimate for Tdiv, as well as the lower (95Lo) and

upper (95Hi) 95% confidence limits for each species.

Found at: doi:10.1371/journal.pone.0002738.s006 (0.04 MB

DOC)

Table S7 List of all samples used, their geographic locations,

and GenBank Accession numbers for samples used in molecular

analyses. (BR = Brazil; BZ = Belize; CO = Colombia; CR = Costa

Rica; EC = Ecuador; FG = French Guiana; GT = Guatemala;

GU = Guyana; MX = Mexico; PA = Panama; PU = Peru;

TR = Trinidad; US = United States; VZ = Venezuela)

Found at: doi:10.1371/journal.pone.0002738.s007 (0.44 MB

DOC)
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