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Abstract
Chagas’ disease is an infection that is caused by the protozoan Trypanosoma cruzi, affect-
ing millions of people worldwide. Because of severe side effects and variable efficacy, the

current treatments for Chagas’ disease are unsatisfactory, making the search for new che-

motherapeutic agents essential. Previous studies have reported various biological activities

of naphthoquinones, such as the trypanocidal and antitumor activity of vitamin K3. The com-

bination of this vitamin with vitamin C exerted better effects against various cancer cells

than when used alone. These effects have been attributed to an increase in reactive oxygen

species generation. In the present study, we evaluated the activity of vitamin K3 and vitamin

C, alone and in combination, against T. cruzi. The vitamin K3 + vitamin C combination

exerted synergistic effects against three forms of T. cruzi, leading to morphological, ultra-

structural, and functional changes by producing reactive species, decreasing reduced thiol

groups, altering the cell cycle, causing lipid peroxidation, and forming autophagic vacuoles.

Our hypothesis is that the vitamin K3 + vitamin C combination induces oxidative imbalance

in T. cruzi, probably started by a redox cycling process that leads to parasite cell death.

Introduction
More than one century after the discovery of Chagas’ disease [1], which is caused by the proto-
zoan Trypanosoma cruzi, millions of people are still infected worldwide [2]. Although the foci
have been reduced, estimates indicate that 50,000–200,000 new cases are diagnosed every year
[3]. Chagas’ disease is considered a silent pathology because the first symptoms may appear
several years after infection [4]. Only two drugs are available for treatment, benznidazole and
nifurtimox, which were developed more than four decades ago, and they have variable efficacy
and high toxicity [5]. These drawbacks justify the critical need to identify better treatments for
chagasic patients.
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Novel compounds, including natural and synthetic drugs and drug combinations, has been
intensively studied in an attempt to find the most effective chemotherapies with better activity
and fewer side effects [6–8]. The literature presents several studies of compounds with possible
efficacy for the treatment of Chagas’ disease. Many of these, such as (-)-elatol, eupomatenoid-5,
and naphthoquinones, act by inducing the formation of reactive oxygen and nitrogen species [9–
11]. Naphthoquinones are quinoids with a basic skeleton structure that is derived from naphtha-
lene [12]. They possess interesting biological and pharmacological activity [13–15]. For example,
2-methyl-1,4-naphthoquinone (menadione or vitamin K3 [VK3]) has anticancer effects [16, 17].
The combination of VK3 and ascorbic acid (vitamin C [VC]) has been shown to have tumor-spe-
cific antitumor effects against many cancer cells both in vitro and in vivo [18–25]. The mecha-
nism of cell death that is induced by this combination of vitamins is associated with oxidative
imbalance that is generated through a redox cycling process [26, 27], with apparent activity at
concentrations that are 10- to 50-times lower those of the individual vitamins alone [28, 29].

Considering the redox imbalance that is induced by VC + VK3 [26, 27] and the different
antioxidant capacity of T. cruzi parasites compared with mammals [30, 31], we investigated the
activity of this vitamin combination against the epimastigote, trypomastigote, and amastigote
forms of this protozoan. The results showed that the VC + VK3 combination has synergistic
effects against all three forms of T. cruzi. Additionally, based on the morphological and ultra-
structural alterations that were observed and the results of different probes and compounds
that were used to evaluate the effects of VC + VK3 on T. cruzi, we hypothesized that this vita-
min combination may trigger an initial processes that are related to increases in the generation
of reactive species and reduction of reduced thiol levels, followed by irreversible oxidative
imbalance that triggers alterations that are incompatible with T. cruzi survival.

Materials and Methods

Chemicals
VC, VK3, 2’,7’-dichlorodihydrofluorescein diacetate (H2DCFDA), 5,5’-dithiobis-(2-nitroben-
zoic acid) (DTNB), monodansylcadaverine (MDC), and wortmannin (WTM) were purchased
from Sigma-Aldrich (St. Louis, MO, USA). Dulbecco’s modified Eagle’s medium (DMEM),
fetal bovine serum (FBS), and Giemsa were obtained from Invitrogen (Grand Island, NY,
USA). Propidium iodide/RNase A (PI-RNase A), diphenyl-1-pyrenylphosphine (DPPP), and
4-amino-5-methylamino-2’,7’-difluorofluorescein (DAF-FM) diacetate were obtained from
Invitrogen (Eugene, OR, USA). All of the other reagents were of analytical grade.

Parasites and cell culture
All of the experiments were performed using the Y strain of T. cruzi [32]. Epimastigote forms
were axenically maintained at 28°C with weekly transfers in liver infusion tryptose (LIT)
medium supplemented with 10% heat-inactivated FBS, pH 7.4 [33]. Trypomastigote and amas-
tigote forms were obtained from the previously infected monolayers of LLCMK2 cells (epithe-
lial cells of monkey kidney [Macaca mulatta]; CCL-7; American Type Culture Collection,
Rockville, MD, USA) in DMEM supplemented with 2 mM L-glutamine and 10% FBS, buffered
with sodium bicarbonate in a 5% CO2 air mixture at 37°C.

In vitro assay of vitamin combination
To evaluate the effects of the VK3 + VC combination on epimastigotes, trypomastigotes, and
amastigotes, we applied the Combination Index method as described by Chou and Talalay [34]
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and reviewed by Zhao et al. [35]. The experimental design consisted of combinations of at least
four concentrations of each vitamin arranged on a checkerboard at a 1:2 concentration ratio.

Epimastigote forms (1 × 106 parasites/ml) in the exponential growth phase were resus-
pended in LIT medium supplemented with 10% FBS. The vitamins were added to the cell sus-
pension, alone or in combination (1.0–9.0 μMVK3 and 0.35–2.84 mM VC), in 24-well plates
and incubated at 28°C. The number of epimastigote forms was determined by counting in a
Neubauer hemocytometer after 96 h.

To evaluate activity against trypomastigote forms, parasites were obtained from the super-
natant of infected LLCMK2 cells. Trypomastigote forms (1 × 107 parasites/ml) were resus-
pended in the presence of DMEM supplemented with 10% FBS and different concentrations of
both vitamins, alone or in combination (0.14–4.65 μMVK3 and 0.09–1.42 mM VC), in 96-well
plates. Parasites were incubated for 24 h at 37°C in a 5% CO2 atmosphere. After incubation,
the viability of the parasites was determined by examining mobility under a light microscope
(Olympus CX31) using the Pizzi-Brener method [36].

To evaluate activity against intracellular amastigote forms, LLCMK2 cells (2.5 × 105 cells/
ml) were harvested, resuspended in DMEM supplemented with 10% FBS, and plated in 24-well
plates that contained round glass coverslips. When confluent growth was achieved, the cells
were infected with trypomastigotes (1 × 107 parasites/ml) that were obtained from preinfected
cultures. After 24 h, the medium that contained the parasites was removed. The cells were then
washed in phosphate-buffered saline (PBS), and DMEM with different concentrations of both
vitamins, alone or in combination (0.29–4.65 μMVK3 and 0.18–2.84 mM VC), was added. The
cells were maintained for 96 h at 37°C in a 5% CO2 atmosphere. Afterward, the glass coverslips
were subjected to fixation with methanol and Giemsa staining and permanently prepared with
Entellan (Merck, Darmstadt, Germany). The number of infected cells and amastigotes was
determined by randomly counting 200 cells. The results were calculated as the survival index,
which was obtained by multiplying the percentage of infected cells by the number of amasti-
gotes per infected LLCMK2 cell and then determining the percentage of inhibition. The treated
groups were compared with the untreated control, the survival index observed in the control
without treatment was considered 100%.

The data were calculated and mathematically expressed as the Combination Index: CI =
(IC50 VK3 combined / IC50 VK3 alone) + (IC50 VC combined / IC50 VC alone) for epimastigotes
and amastigotes and CI = (EC50 VK3 combined / EC50 VK3 alone) + (EC50 VC combined / EC50

VC alone) for trypomastigotes. The numerators are the concentrations of each vitamin that in
combination are active against 50% of the parasites, and the denominators are the concentra-
tions that have the same effect for each vitamin alone. The IC50 is the inhibitory concentration,
and the EC50 is the effective concentration. The interpretation of the CI was based on the
broadly used specifications that were established by Chou and Talalay [34]. When CI = 1, the
combination is additive. When CI< 1, the combination is synergistic. When CI> 1, the com-
bination is antagonistic. The data were also graphically expressed as isobolograms by plotting
concentrations of vitamins that alone or in combination induced activity against 50% of the
forms of the parasite.

Scanning electron microscopy analysis
For scanning electron microscopy (SEM), epimastigote forms (1 × 106 parasites/ml) were
treated with 1.90 μMVK3 and 0.61 mM VC, alone or in combination, for 72 h at 28°C. Trypo-
mastigote forms (1 × 107 parasites/ml) were treated with 0.35 μMVK3 and 0.20 mM VC, alone
or in combination, for 24 h at 37°C in a 5% CO2 atmosphere. Intracellular amastigotes were
treated with 0.30 μMVK3 and 0.18 mM VC, alone or in combination, for 24 h at 37°C in a 5%
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Fig 1. Combination effect of vitamin K3 and vitamin C. The isobolograms illustrate the effect of the VK3

+ VC combination against epimastigote forms (A), trypomastigote forms (B), and intracellular amastigote
forms (C). The dotted lines correspond to an additive effect. Points below the line indicate a synergistic effect.
Points above the line indicate an antagonistic effect. The points showmedian values.

doi:10.1371/journal.pone.0144033.g001
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CO2 atmosphere. After incubation, the parasites were harvested, washed twice in PBS, and
fixed with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer at 4°C. The parasites were
then placed on a glass support that was covered with poly-L-lysine, dehydrated in an ascending
series of ethanol, critical-point dried with CO2, coated with gold, and observed in a Shimadzu
SS-550 scanning electron microscope. For intracellular amastigotes, we used the fracture tape
method.

Transmission electron microscopy analysis
For transmission electron microscopy (TEM), epimastigote forms (1 × 106 parasites/ml) were
treated with 1.90 μMVK3 and 0.61 mM VC, alone or in combination, for 72 h at 28°C. Trypo-
mastigote forms (1 × 107 parasites/ml) were treated with 0.35 μMVK3 and 0.20 mM VC, alone
or in combination, for 24 h at 37°C in a 5% CO2 atmosphere. Intracellular amastigotes were
treated with 0.30 μMVK3 and 0.18 mM VC, alone or in combination, for 24 h at 37°C in a 5%
CO2 atmosphere. After incubation, the parasites were harvested, washed twice in PBS, fixed
with 2.5% glutaraldehyde in 0.1 M sodium cacodylate buffer at 4°C, and postfixed in a solution
of 1% OsO4, 0.8% potassium ferrocyanide, and 10.0 mM CaCl2 in 0.10 M cacodylate buffer.
The samples were then dehydrated in an increasing acetone gradient and embedded in Polybed
812 resin. Ultrathin sections were then obtained, stained with uranyl acetate and lead citrate,
and observed in a JEOL JM 1400 transmission electron microscope.

Detection of total reactive oxygen species
The production of total reactive oxygen species (total ROS) was evaluated in parasitic forms
after exposure to VK3 and VC using the probe H2DCFDA. Epimastigote forms (1 × 106 para-
sites/ml) were evaluated after exposure to 1.90 μMVK3 and 0.61 mM VC, alone and in combi-
nation, for 24 h at 28°C. Trypomastigote forms (1 × 107 parasites/ml) were evaluated after
exposure to 0.35 μMVK3 and 0.20 mM VC, alone and in combination, for 24 h at 37°C in a 5%
CO2 atmosphere. Amastigote forms (1 × 107 parasites/ml) were evaluated after exposure to
0.30 μMVK3 and 0.18 mM VC, alone and in combination, for 24 h at 37°C in a 5% CO2 atmo-
sphere. Hydrogen peroxide (H2O2; 20.0 μM) was used as a positive control. Afterward, the par-
asites were centrifuged, washed, and resuspended in PBS. Parasites were loaded with 10.0 μM
of the permeant probe H2DCFDA in the dark for 45 min. Total ROS were measured as an
increase in fluorescence that is caused by the conversion of nonfluorescent dye to highly fluo-
rescent 2’,7’-dichlorofluorescein (DCF) in a fluorescence microplate reader (Victor X3, Perki-
nElmer) at λexcitation = 488 nm and λemission = 530 nm.

Detection of nitric oxide
The production of nitric oxide (NO) was evaluated in parasitic forms after exposure to VK3 and
VC using the probe DAF-FM diacetate. Epimastigote forms (1 × 106 parasites/ml) were evaluated
after exposure to 1.90 μMVK3 and 0.61 mMVC, alone and in combination, for 24 h at 28°C. Try-
pomastigote forms (1 × 107 parasites/ml) were evaluated after exposure to 0.35 μMVK3 and 0.20
mMVC, alone and in combination, for 24 h at 37°C in a 5% CO2 atmosphere. Amastigote forms
(1 × 107 parasites/ml) were evaluated after exposure to 0.30 μMVK3 and 0.18 mMVC, alone and
in combination, for 24 h at 37°C in a 5% CO2 atmosphere. Afterward, the parasites were centri-
fuged, washed, and resuspended in PBS. The parasites were then loaded with 1.0 μM of the probe
DAF-FM diacetate in the dark for 30 min at 37°C. Afterward, the parasites were washed and
resuspended in PBS and incubated for an additional 15 min. DAF-FM diacetate is cell-permeant
that is deacetylated inside cells to become DAF-FM. This compound in the presence of NO is
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converted to form fluorescent benzotriazole, which was detected in a fluorescence microplate
reader (Victor X3, PerkinElmer) at λexcitation = 495 nm and λemission = 515 nm.

Determination of reduced thiol levels
Trypanothione reductase (TR) activity plays an important role in the antioxidant activity of trypa-
nosomatids. Its depletion decreases reduced thiol level [37]. Reduced thiol levels were evaluated in
parasitic forms after exposure to VK3 and VC. Epimastigote forms (1 × 106 parasites/ml) were
evaluated after exposure to 1.90 μMVK3 and 0.61 mMVC, alone and in combination, for 24 h at
28°C. Trypomastigote forms (1 × 107 parasites/ml) were evaluated after exposure to 0.35 μMVK3

and 0.20 mMVC, alone and in combination, for 24 h at 37°C in a 5% CO2 atmosphere. Amasti-
gote forms (1 × 107 parasites/ml) were evaluated after exposure to 0.30 μMVK3 and 0.18 mM
VC, alone and in combination, for 24 h at 37°C in a 5% CO2 atmosphere. Afterward, the parasites
were centrifuged. Tris-HCl buffer (10 mM, pH 2.5) was then added and the cells were sonicated.
Acidic pH was used during sonication to prevent oxidation of the free thiol groups. Cellular debris
was removed by centrifugation, and 100 μl of the supernatant and 100 μl of 500.0 mM phosphate
buffer (pH 7.5) were taken from each well, followed by the addition of 20 μl of 1.0 mMDTNB.
Free thiol levels were determined using DTNB. Absorbance was measured at 412 nm [37].

Lipid peroxidation assays
Lipid peroxidation was evaluated in parasitic forms after exposure to VK3 and VC. The extent
of lipid peroxidation was evaluated by DPPP, which is essentially nonfluorescent until it is oxi-
dized to a phosphine oxide (DPPP-oxide) by peroxides. Epimastigote forms (1 × 106 parasites/
ml) were evaluated after exposure to 1.90 μMVK3 and 0.61 mMVC, alone and in combination,
for 24 h at 28°C. Trypomastigote forms (1 × 107 parasites/ml) were evaluated after exposure to
0.35 μMVK3 and 0.20 mM VC, alone and in combination, for 24 h at 37°C in a 5% CO2 atmo-
sphere. Amastigote forms (1 × 107 parasites/ml) were evaluated after exposure to 0.30 μMVK3

and 0.18 mM VC, alone and in combination, for 24 h at 37°C in a 5% CO2 atmosphere. After
incubation, the parasites were centrifuged, washed, and resuspended in PBS. The parasites
were loaded with 50.0 μMDPPP in the dark for 15 min. The direct fluorometric detection was
measured as an increase in the fluorescence of the DPPP oxide in a fluorescence microplate
reader (Victor X3, PerkinElmer) at λexcitation = 355 nm and λemission = 460 nm.

We also determined the amount of thiobarbituric acid-reactive substances (TBARS) in
terms of malondialdehyde (MDA) levels. Epimastigote forms (14 mg/ml) were evaluated after
exposure to 1.90 μMVK3 and 0.61 mM VC, alone and in combination, for 24 h at 28°C. Trypo-
mastigote forms (14 mg/ml) were evaluated after exposure to 0.35 μMVK3 and 0.20 mM VC,
alone and in combination, for 24 h at 37°C in a 5% CO2 atmosphere. Amastigote forms (14
mg/ml) were evaluated after exposure to 0.30 μMVK3 and 0.18 mM VC, alone and in combi-
nation, for 24 h at 37°C in a 5% CO2 atmosphere. After incubation, the samples (0.50 mg pro-
tein) were heated in a solution that contained 0.37% thiobarbituric acid, 15.0% trichloroacetic

Fig 2. Morphological and ultrastructural alterations in epimastigote forms of Trypanosoma cruzi that
were treated with vitamin K3 and vitamin C alone and combined at 72 h. SEM images: (A) Untreated
epimastigote forms. (B) Epimastigote forms that were treated with 1.90 μMVK3. (C) Epimastigote forms that
were treated with 0.61 mM VC. (D) Epimastigote forms that were treated with 1.90 μMVK3 + 0.61 mM VC.
TEM images: (E) Untreated epimastigote forms. (F) Epimastigote forms that were treated with 1.90 μMVK3.
(G) Epimastigote forms that were treated with 0.61 mM VC. (H) Epimastigote forms that were treated with
1.90 μMVK3 + 0.61 mM VC. Star, cytoplasmic vacuoles; asterisk, lipid bodies; white arrowhead, myelin-like
structure; f, flagellum; g, Golgi complex; k, kinetoplast; m, mitochondrion; n, nucleus. Scale bars = 2 μm in
A-D and 0.2 μm in E-H.

doi:10.1371/journal.pone.0144033.g002
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Fig 3. Morphological and ultrastructural alterations in trypomastigote forms of Trypanosoma cruzi
that were treated with vitamin K3 and vitamin C alone and combined at 24 h. SEM images: (A) Untreated
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acid, and 0.25 N HCl for 45 min at 90–95°C. After cooling, absorbance was read at 532 nm,
and the TBARS concentration was calculated based on an ε value of 153,000 M-1cm-1 [38].

Evaluation of cell cycle
The cell cycle was evaluated in epimastigote forms of T. cruzi after exposure to VK3 and VC.
Epimastigote forms (1 × 106 parasites/ml) were evaluated after exposure to 1.90 μMVK3 and
0.61 mM VC, alone and in combination, for 24 h at 28°C. After incubation, the cells were fixed
in 70% cold methanol at 4°C for 1 h. Afterward, the parasites were washed in PBS, and 10 μl of
PI-RNase A was added, followed by incubation at 37°C for 45 min. Data acquisition and analy-
sis were performed using a FACSCalibur flow cytometer equipped with CellQuest software. A
total of 10,000 events were acquired in the region that corresponded to the parasites. The per-
centages of cells in each stage of the cell cycle were determined.

Evaluation of autophagic vacuoles
Autophagic vacuoles were evaluated in parasitic forms after exposure to VK3 and VC using MDC
labeling, a fluorescent probe that accumulates in autophagic vacuoles [39]. Epimastigote forms
(1 × 106 parasites/ml) were evaluated after exposure to 1.90 μMVK3 and 0.61 mMVC, alone and
in combination, for 24 h at 28°C. Trypomastigote forms (1 × 107 parasites/ml) were evaluated
after exposure to 0.35 μMVK3 and 0.20 mMVC, alone and in combination, for 24 h at 37°C in a
5% CO2 atmosphere. Amastigote forms (1 × 107 parasites/ml) were evaluated after exposure to
0.30 μMVK3 and 0.18 mMVC, alone and in combination, for 24 h at 37°C in a 5% CO2 atmo-
sphere. The cells were then incubated with 0.05 mMMDC in PBS for 1 h at 37°C. After incuba-
tion, the cells were washed twice in PBS. MDC staining was analyzed using an Olympus BX51
fluorescence microscope, images were captured using a UC30 camera, and fluorescence intensity
was evaluated by ImageJ 1.44o. In some of the experiments, the parasites were pretreated with
500.0 nMWTM before the induction of autophagy [40]. This compound is a potent phosphatidy-
linositol 3-kinase inhibitor, an enzyme that is involved in the regulation of autophagy [41].

Statistical analyses
All of the quantitative experiments were performed at least three times on independent occa-
sions. Data were evaluated using one- or two-way analysis of variance (ANOVA) with signifi-
cant differences among means identified by Tukey and Bonferroni post hoc tests, respectively.
Values of p� 0.05 were considered statistically significant. The statistical analyses were per-
formed using GraphPad software.

Results

Vitamin K3 + vitamin C combination induces trypanocidal effect
We initially investigated the effect of VK3 and VC, alone and in combination, on the growth of
epimastigotes and intracellular amastigotes and viability of trypomastigotes using in vitro assays.
We found that this vitamin combination had dose-dependent and robust synergistic effects on

trypomastigote forms. (B) Trypomastigote forms that were treated with 0.35 μMVK3. (C) Trypomastigote
forms that were treated with 0.20 mM VC. (D) Trypomastigote forms that were treated with 0.35 μMVK3

+ 0.20 mM VC. TEM images: (E) Untreated trypomastigote forms. (F) Trypomastigote forms that were treated
with 0.35 μMVK3. (G) Trypomastigote forms that were treated with 0.20 mM VC. (H) Trypomastigote forms
that were treated with 0.35 μMVK3 + 0.20 mM VC. Star, cytoplasmic vacuoles; f, flagellum; g, Golgi complex;
k, kinetoplast; m, mitochondrion. Scale bars = 1 μm in A-D and 0.2 μm in E-H.

doi:10.1371/journal.pone.0144033.g003
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Fig 4. Morphological and ultrastructural alterations in intracellular amastigote forms of Trypanosoma
cruzi that were treated with vitamin K3 and vitamin C alone and combined at 24 h. SEM images: (A)
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the three forms of T. cruzi (Fig 1). A CI of 0.85 against epimastigote forms was found, with a con-
cave curve profile on the isobologram (Fig 1A), confirming a synergistic interaction. A CI of 0.61
against trypomastigote forms was found, with the same curve shape on the isobologram, also
confirming a synergistic interaction (Fig 1B). Furthermore, VK3 + VC reduced the percentage of
infected LLCMK2 cells and the mean number of intracellular amastigotes per infected LLCMK2

cell. These data were reflected by a concave curve on the isobologram, with a CI of 0.43 (Fig 1C).
The combinations that presented synergistic effects on 50% of the parasites were the following:
1.90 μMVK3 + 0.61 mMVC, 0.35 μMVK3 + 0.20 mMVC, and 0.30 μMVK3 + 0.18 mMVC for
the epimastigote, trypomastigote, and amastigote forms, respectively (see S1 Table).

Vitamin K3 + vitamin C combination induces alterations in T. cruzi
morphology and ultrastructure
We evaluated the morphological and ultrastructural effects of VK3 and VC, alone and in com-
bination, on T. cruzi using SEM and TEM. By SEM was observed that the parasites incubated
with combinations of VK3 + VC exhibited alterations in the shape of the parasites, including
rounding (Figs 2D and 3D) and change of the plasma membrane (Fig 4D). In amastigotes a
rounding of the body also was observed (data not shown). In contrast, the parasites that were
treated with the same concentrations of the vitamins alone (Figs 2B and 2C, 3B and 3C, 4B and
4C) had a typical shape that was similar to untreated parasites (Figs 2A, 3A and 4A).

By TEM was observed that untreated parasites and parasites that were treated with the vita-
mins alone generally exhibited a normal organelle ultrastructure, such as prominent nucleus
and mitochondrion, and cellular membranes with preserved structures (Figs 2E–2G, 3E–3G,
and 4E–4G). The parasites that were treated with the VK3 + VC combination exhibited swell-
ing in the mitochondrion-kinetoplast region (Fig 2H), myelin-like structure (Fig 2H), cyto-
plasmic vacuoles (Figs 2H, 3H and 4H), the formation of intracellular lipid bodies (Fig 2H), the
formation of blebs in the parasite membrane (Fig 4H), separation between the membrane and
cytoplasm, and membranes within the mitochondrion (data not shown).

Vitamin K3 + vitamin C combination increases the production of total
reactive oxygen species and nitric oxide
We also investigated the effects of VK3 and VC, alone and in combination, on the generation of
total ROS (Fig 5) and NO (Fig 6) using H2DCFDA and DAF-FM diacetate, respectively. The para-
sites that were treated with the VK3 + VC combination exhibited a higher DCF fluorescence signal
compared with treatment with either vitamin alone and untreated parasites (Fig 5). This signal was
observed in all three forms of the parasite, and the concentrations of the vitamin combination that
exerted effects in 50% of the parasites (1.90 μMVK3 + 0.61 mMVC for epimastigotes, 0.35 μM
VK3 + 0.20 mMVC for trypomastigotes, and 0.30 μMVK3 + 0.18 mMVC for amastigotes) caused
increases in total ROS production of 67.0%, 108.0%, and 65.0%, respectively, compared with the
control group (Fig 5A–5C). The positive control (H2O2) also increased ROS production in epimas-
tigotes (69.0% Fig 5A), trypomastigotes (77.0% Fig 5B), and amastigotes (60.4% Fig 5C).

Untreated intracellular amastigote forms. (B) Intracellular amastigote forms that were treated with 0.30 μM
VK3. (C) Intracellular amastigote forms that were treated with 0.18 mM VC. (D) Intracellular amastigote forms
that were treated with 0.30 μMVK3 + 0.18 mM VC. TEM images: (E) Untreated intracellular amastigote forms.
(F) Intracellular amastigote forms that were treated with 0.30 μMVK3. (G) Intracellular amastigote forms that
were treated with 0.18 mM VC. (H) Intracellular amastigote forms that were treated with 0.30 μMVK3 + 0.18
mM VC. Star, cytoplasmic vacuoles; arrow, blebs in plasmamembrane; f, flagellum; k, kinetoplast; m,
mitochondrion; n, nucleus. Scale bars = 1 μm in A-D and 0.2 μm in E-H.

doi:10.1371/journal.pone.0144033.g004
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The VK3 + VC combination increased NO production by more than 100.0% in epimasti-
gotes, trypomastigotes, and amastigotes compared with the control group (Fig 6A–6C). The
VK3 alone also induced increased in NO production (Fig 6B).

Vitamin K3 + vitamin C combination decreases reduced thiol levels
We tested whether VK3 and VC, alone and in combination, decrease reduced thiol levels in T.
cruzi using DTNB. A significant decrease in total reduced thiol levels was observed in the three
forms of T. cruzi that were treated with vitamin combination compared with the control group
at 48 h of treatment (Fig 7). The treatment caused 16.0%, 37.0%, and 41.0% decreases in total
reduced thiol levels in epimastigotes, trypomastigotes, and amastigotes, respectively. In trypo-
mastigotes, a significant decrease in total reduced thiol levels (18.5%) was also observed with
vitamin combination compared with the control group, even at 24 h of treatment (Fig 7B).

Vitamin K3 + vitamin C combination increases lipid peroxidation
We quantified lipid peroxidation in the three forms of T. cruzi that were treated with VK3 and
VC, alone and in combination, using DPPP-labeled cells (Fig 8A–8C) and TBARS (in terms of
MDA levels; Fig 8D–8F). Both protocols revealed an increase in lipid peroxidation in parasites
that were treated with the vitamin combination compared with the control group. These
increases were> 27.0% (Fig 8A–8C) and> 39.0% (Fig 8D–8F) in the three forms of the para-
site compared with the control group. However, although not significant, we observed an
increase in TBARS in amastigotes that were treated with the vitamin combination (Fig 8F).

Vitamin K3 + vitamin C combination induces sub-G0/G1-phase cell-
division arrest
We evaluated the effects of VK3 and VC, alone and in combination, on the cell cycle of epimas-
tigote forms of T. cruzi using PI. The parasites that were treated with the VK3 + VC combina-
tion exhibited a significant percentage (36.0%) of cells in the sub-G0/G1 phase (nuclear DNA
and/or mitochondrial DNA fragmentation) compared with 13.2% in the control group and a
significant reduction of the percentage (13.5%) of cells in the G2/M phase (DNA duplication)
compared with 36.4% in the control group (Fig 9).

Vitamin K3 + vitamin C combination induces the formation of autophagic
vacuoles
We evaluated whether autophagy is the cell death process that is induced by VK3 + VC in T.
cruzi using MDC labeling. Fig 10 shows that the VK3 + VC combination induced the presence
of MDC-labeled structure accumulation in the three parasitic forms (Fig 10D, 10H, 10L and
10B, 10C, 10D). More autophagic vacuoles were induced by the vitamin combination com-
pared with either vitamin alone (Fig 10B and 10C, 10F and 10G, 10J and 10K) and the control

Fig 5. Total ROS production in parasitic forms of Trypanosoma cruzi that were treated with vitamin K3

and vitamin C, alone and combined, for 24 h using H2DCFDA labeling. (A) Epimastigote forms that were
treated with 1.90 μMVK3 and 0.61 mM VC, alone and combined. (B) Trypomastigote forms that were treated
with 0.35 μMVK3 and 0.20 mM VC, alone and combined. (C) Amastigote forms that were treated with
0.30 μMVK3 and 0.18 mM VC, alone and combined. H2O2 used as a positive control is also shown. Total
ROS were measured as an increase in fluorescence that is caused by the conversion of nonfluorescent dye
to fluorescent DCF. The results are expressed as the mean fluorescence (in arbitrary units [A.U.] ± SE) of at
least three independent experiments. * Indicate significant differences compared with the control group
(untreated cells; p� 0.05).

doi:10.1371/journal.pone.0144033.g005
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Fig 6. Nitric oxide production in parasitic forms of Trypanosoma cruzi that were treated with vitamin
K3 and vitamin C, alone and combined, for 24 h using DAF-FM diacetate labeling. (A) Epimastigote
forms that were treated with 1.90 μMVK3 and 0.61 mM VC, alone and combined. (B) Trypomastigote forms
that were treated with 0.35 μMVK3 and 0.20 mM VC, alone and combined. (C) Amastigote forms that were
treated with 0.30 μMVK3 and 0.18 mM VC, alone and combined. The NO was measured as an increase in
fluorescence that is caused by the conversion of DAF-FM to form fluorescent benzotriazole. The results are
expressed as the mean fluorescence (in arbitrary units [A.U.] ± SE) of at least three independent
experiments. * Indicate significant differences compared with the control group (untreated cells; p� 0.05).

doi:10.1371/journal.pone.0144033.g006
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Fig 7. Reduced thiol levels in parasitic forms of Trypanosoma cruzi that were treated with vitamin K3

and C, alone and combined, for 3, 24, and 48 h using DTNB. (A) Epimastigote forms that were treated with
1.90 μMVK3 and 0.61 mM VC, alone and combined. (B) Trypomastigote forms that were treated with 0.35 μM
VK3 and 0.20 mM VC, alone and combined. (C) Amastigote forms that were treated with 0.30 μMVK3 and
0.18 mM VC, alone and combined. The results are expressed as the mean percentage (± SE) of at least three
independent experiments. * Indicate significant differences compared with the control group (untreated cells;
p� 0.05).

doi:10.1371/journal.pone.0144033.g007

Vitamin K3 and Vitamin C Has Synergic Activity against T. cruzi

PLOSONE | DOI:10.1371/journal.pone.0144033 December 7, 2015 15 / 23



Fig 8. Lipid peroxidation in parasitic forms of Trypanosoma cruzi that were treated with vitamin K3 and vitamin C, alone and combined, for 24 h.
(A-C) Lipid peroxidation, determined by DPPP labeling. The results are expressed as the mean fluorescence (in arbitrary units [A.U.] ± SE) of at least three
independent experiments. (D-F) Lipid peroxidation, determined as the amount of TBARS in terms of MDA levels. The results are expressed as the mean
MDA nmol/mg protein (± SE) of at least three independent experiments. (A, D) Epimastigote forms that were treated with 1.90 μMVK3 and 0.61 mM VC,
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group (Fig 10A, 10E and 10I). This effect was partially prevented in the parasites that were pre-
treated with WTM (Fig 10D’, 10H’, 10L’ and 10B, 10C, 10D). The increase in the formation of
autophagic vacuoles was significant in epimastigotes (34.0% Fig 10B), trypomastigotes (50.2%
Fig 10C), and amastigotes (54.3% Fig 10D).

Discussion
Several studies have demonstrated the potential of VK3 + VC combinations against several cancer
cells [18–25], which induce pro-oxidative imbalance through the generation of reactive species
[42]. It is well described that the non-enzymatic reduction of VK3 by ascorbate leads to VK3 semi-
quinone and ascorbyl free radicals. Then, VK3 semiquinone is reoxidized to its quinone form by
molecular oxygen, which is, consequently, reduced to O2

•−. From this ROS, others as H2O2 and
HO● can be generated [26]. Thus, Apatone1 (one VK3 + VC combination) was developed as a
new therapeutic strategy for cancer treatment [42, 43]. Previous studies have also reported that the
VK3 + VC combination has low systemic toxicity [20, 44] and may have different biochemical tar-
gets, depending on the cellular type. Combination therapy has been shown to be an important
approach for many diseases other than cancer, including such infectious diseases as American try-
panosomiasis, which constitutes a serious public health problem [45, 46]. One study demonstrated
the effectiveness of a VC + vitamin B12 combination against epimastigote forms of T. cruzi, in
which the presence of VC reduced the IC50 of vitamin B12 [47]. Other studies highlighted the role
of VC in combination with vitamin E in attenuating the deleterious effects of chronic inflammatory
processes in Chagas’ disease [48] and the activity of VK3 against bloodstream trypomastigotes [49].

Considering the different antioxidant capacity of T. cruzi parasites compared with mam-
mals [30, 31], the present study investigated whether VK3 + VC has activity against the epimas-
tigote, trypomastigote, and amastigote forms of T. cruzi. The most important finding of the
present study was the synergistic effects of this vitamin combination against T. cruzi. We also
showed the likely mechanism by which these vitamins exert their trypanocidal effects.

By SEM and TEM we showed that the VK3 + VC combination induced several alterations in
T. cruzi parasites, but the most characteristic lesion was swelling in the mitochondrion-kineto-
plast region. Previous studies reported the potent effects of naphthoquinones and its deriva-
tives on mitochondrial function [50, 51]. Importantly, morphological or physiological changes

alone and combined. (B, E) Trypomastigote forms that were treated with 0.35 μMVK3 and 0.20 mM VC, alone and combined. (C, F) Amastigote forms that
were treated with 0.30 μMVK3 and 0.18 mM VC, alone and combined. * Indicate significant differences compared with the control group (untreated cells;
p� 0.05).

doi:10.1371/journal.pone.0144033.g008

Fig 9. Cell cycle in epimastigote forms of Trypanosoma cruzi that were treated with 1.90 μM vitamin K3

(VK3) and vitamin C (VC), alone and combined, for 24 h, evaluated by flow cytometry. The results are
expressed as the mean percentage of cells in each stage of the cell cycle (± SE) of at least three independent
experiments. * Indicate significant differences compared with the control group (untreated cells; p� 0.05).

doi:10.1371/journal.pone.0144033.g009
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Fig 10. Autophagic vacuoles in parasitic forms of Trypanosoma cruzi that were treated with vitamin K3 and vitamin C, alone and combined, for 24
h using MDC labeling. (A) MDC fluorescence microscopy images: (a, a’) Untreated epimastigote forms. (b, b’) Epimastigote forms that were treated with
1.90 μMVK3. (c, c’) Epimastigote forms that were treated with 0.61 mM VC. (d, d’) Epimastigote forms that were treated with 1.90 μMVK3 + 0.61 mM VC. (e,
e’) Untreated trypomastigote forms. (f, f’) Trypomastigote forms that were treated with 0.35 μMVK3. (g, g’) Trypomastigote forms that were treated with 0.20
mM VC. (h, h’) Trypomastigote forms that were treated with 0.35 μMVK3 + 0.20 mM VC. (i, i’) Untreated amastigote forms. (j, j’) Amastigote forms that were
treated with 0.30 μMVK3. (k, k’) Amastigote forms that were treated with 0.18 mM VC. (l, l’) Amastigote forms that were treated with 0.30 μMVK3 + 0.18 mM
VC. Arrows, stained autophagic vacuoles; MDC, monodansylcadaverine; MDC +WTM: monodansylcadaverine + wortmannin. Scale bars: 20 μm. (B-D)
MDC fluorescence obtained by ImageJ: (B) Epimastigote forms. (C) Trypomastigote forms. (D) Amastigote forms. * Indicate significant differences compared
with the control group (untreated cells; p� 0.05) and # indicate significant difference compared with the vitamins in combination without WTM (p� 0.05).

doi:10.1371/journal.pone.0144033.g010
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in mitochondria can induce a series of harmful events that drive cell death [52, 53]. We also
found that the VK3 + VC combination induced oxidative imbalance, demonstrated by two
findings: increase in reactive species production and a decrease in reduced thiol levels. This
vitamin combination is well known to induce a redox cycling process [26, 27]. Additionally,
the marked increase in ROS might overload the antioxidant defense system of T. cruzi, fol-
lowed by the depletion of key antioxidant enzymes, such as TR, reflected herein by the decrease
in reduced thiol levels. Thus, we believe that the increase in ROS formation via redox cycling
might be the main effector mechanism of VK3 + VC that interferes with maintaining redox
homeostasis and mediates T. cruzi death. T. cruzi also has the ability to synthesize and capture
VC [54], and VK3 is able to cross the membrane of the parasite. Based on this, ROS production
could occur not only outside the parasite but also inside the parasite, which could explain the
high efficacy of this vitamin combination. Other notable characteristics of T. cruzi are its single
mitochondrion [55] and different antioxidant system compared with mammalian counterparts
[30, 31, 56], which can be overwhelmed by increases in ROS/NO formation [57]. Studies sug-
gest that naphthoquinones, such as menadione, have been shown to be inhibitors of the T.
cruzi thiol-redox system [58]. Interestingly, alterations in oxidative metabolism in the parasite
were more marked in trypomastigotes (i.e., the infective flagellate form), with higher levels of
trypanothione, the main dithiol in antioxidant metabolism, compared with epimastigotes
(which do not have polyamine supplements) and amastigotes [59]. However, epimastigotes
possess a higher content of total thiols, followed by trypomastigotes and amastigotes [59, 60].

Additionally, VK3 + VC induced the lipid peroxidation and arrested the cell cycle of T.
cruzi. Alterations in the composition of certain lipids may impair the cell cycle of parasites
[61]. The cell cycle process is a key mechanism that regulates cytokinesis to maintain genetic
integrity. Cell cycle arrest has been previously shown to be caused by VK3 [62] and VK3 + VC
[22]. The VK3 + VC combination also induced the formation of autophagic vacuoles. An
increase in reactive species might be a critical event that triggers lipid oxidation, and this alter-
ation may activate cell autophagy machinery [63]. All of the effects of the VK3 + VC combina-
tion against T. cruzi described herein appear to be part of a cascade of events that is triggered
by redox imbalance, leading to the loss of homeostasis and culminating in parasite death.

In summary, the present study demonstrated the synergic trypanocidal effect of VK3 + VC
on the three forms of T. cruzi. These effects were marked by morphological, ultrastructural,
and functional changes in this parasite. The data clearly indicate the potential therapeutic util-
ity of this combination for the treatment of Chagas’ disease and open the way for further stud-
ies of Apatone1 and other naphthoquinones combined with VC.
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